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Abstract

Learning from datasets without interaction with environments (Offline Learning) is
an essential step to apply Reinforcement Learning (RL) algorithms in real-world
scenarios. However, compared with the single-agent counterpart, offline multi-
agent RL introduces more agents with the larger state and action space, which is
more challenging but attracts little attention. We demonstrate current offline RL
algorithms are ineffective in multi-agent systems due to the accumulated extrapola-
tion error. In this paper, we propose a novel offline RL algorithm, named Implicit
Constraint Q-learning (ICQ), which effectively alleviates the extrapolation error
by only trusting the state-action pairs given in the dataset for value estimation.
Moreover, we extend ICQ to multi-agent tasks by decomposing the joint-policy
under the implicit constraint. Experimental results demonstrate that the extrapo-
lation error is successfully controlled within a reasonable range and insensitive
to the number of agents. We further show that ICQ achieves the state-of-the-art
performance in the challenging multi-agent offline tasks (StarCraft II). Our code is
public online at https://github.com/YiqinYang/ICQ.

1 Introduction

Recently, reinforcement learning (RL), an active learning process, has achieved massive success
in various domains ranging from strategy games [59] to recommendation systems [8]. However,
applying RL to real-world scenarios poses practical challenges: interaction with the real world, such
as autonomous driving, is usually expensive or risky. To solve these issues, offline RL is an excellent
choice to deal with practical problems [3, 24, 35, 42, 15, 28, 4, 23, 54, 12], aiming at learning from a
fixed dataset without interaction with environments.

The greatest obstacle of offline RL is the distribution shift issue [16], which leads to extrapolation
error, a phenomenon in which unseen state-action pairs are erroneously estimated. Unlike the online
setting, the inaccurate estimated values of unseen pairs cannot be corrected by interacting with the
environment. Therefore, most off-policy RL algorithms fail in the offline tasks due to intractable over-
generalization. Modern offline methods (e.g., Batch-Constrained deep Q-learning (BCQ) [16]) aim to
enforce the learned policy to be close to the behavior policy or suppress the Q-value directly. These
methods have achieved massive success in challenging single-agent offline tasks like D4RL [14].

However, many decision processes in real-world scenarios belong to multi-agent systems, such as
intelligent transportation systems [2], sensor networks [37], and power grids [7]. Compared with
the single-agent counterpart, the multi-agent system has a much larger action space, which grows
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Figure 1: The comparison between ICQ and BCQ for the target Q-value estimation. The spots denote
states, and the connections between spots indicate actions. The red solid-lines denote seen pairs,
and the gray dotted-lines are unseen pairs. (a) BCQ estimates Q-value in a defined similar action
set (orange) while unseen pairs still exist in the set with low probability. (b) ICQ only adopts seen
pairs (orange) in the training set for Q-value estimation.

exponentially with the increasing of the agent number. When coming into the offline scenario, the
unseen state-action pairs will grow exponentially as the number of agents increases, accumulating the
extrapolation error quickly. The current offline algorithms are unsuccessful in multi-agent tasks even
though they adopt the modern value-decomposition structure [26, 48, 25]. As shown in Figure 2, our
results indicate that BCQ, a state-of-the-art offline algorithm, has divergent Q-estimates in a simple
multi-agent MDP environment (e.g., BCQ (4 agents)). The extrapolation error for value estimation is
accumulated quickly as the number of agents increases, significantly impairing the performance.

Based on these analyses, we propose the Implicit Constraint Q-learning (ICQ) algorithm, which
effectively alleviates the extrapolation error as no unseen pairs are involved in estimating Q-value.
Motivated by an implicit constraint optimization problem, ICQ adopts a SARSA-like approach [49]
to evaluate Q-values and then converts the policy learning into a supervised regression problem. By
decomposing the joint-policy under the implicit constraint, we extend ICQ to the multi-agent tasks
successfully. To the best of our knowledge, our work is the first study analyzing and addressing the
extrapolation error in multi-agent reinforcement learning.

We evaluate our algorithm on the challenging multi-agent offline tasks based on StarCraft II [40],
where a large number of agents cooperatively complete a task. Experimental results show that ICQ
can control the extrapolation error within a reasonable range under any number of agents and learn
from complex multi-agent datasets. Further, we evaluate the single-agent version of ICQ in D4RL, a
standard single-agent offline benchmark. The results demonstrate the generality of ICQ for a wide
range of task scenarios, from single-agent to multi-agent, from discrete to continuous control.

2 Background

Notation. The fully cooperative multi-agent tasks are usually modeled as the Dec-POMDP [31]
consisting of the tupleG = 〈S,A, P, r,Ω, O, n, γ〉. Let s ∈ S denote the true state of the environment.
At each time step t ∈ Z+, each agent i ∈ N ≡ {1, . . . , n} chooses an action ai ∈ A, forming a joint
action a ∈ A ≡ An. Let P (s′ | s,a) : S ×A× S → [0, 1] denote the state transition function. All
agents share the same reward function r(s,a) : S ×A→ R.

We consider a partially observable scenario in which each agent draws individual observations
oi ∈ Ω according to the observation function O(s, a) : S × A → Ω. Each agent has an
action-observation history τ i ∈ T ≡ (Ω × A)t, on which it conditions a stochastic policy
πi(ai | τ i) parameterized by θi : T × A → [0, 1]. The joint action-value function is defined
as Qπ(τ ,a) , Es0:∞,a0:∞ [

∑∞
t=0 γ

trt | s0 = s,a0 = a,π], where π is the joint-policy with param-
eters θ = 〈θ1, . . . , θn〉. Let B denote the offline dataset, which contains trajectories of the behavior
policy µ.

We adopt the centralized training and decentralized execution (CTDE) paradigm [43]. During
training, the algorithm has access to the true state s and every agent’s action-observation history τi,
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as well as the freedom to share all information between agents. However, during execution, each
agent has access only to its action-observation history.

Batch-constrained deep Q-learning (BCQ) is a state-of-the-art offline RL method, which aims
to avoid selecting an unfamiliar action at the next state during a value update. Specifically, BCQ
optimizes π by introducing perturbation model ξ(τ, a,Φ) and generative model G(τ ;ϕ) as follows

π(τ) = arg max
a[i]+ξ(τ,a[i],Φ)

Qπ(τ, a[i] + ξ(τ, a[i],Φ);φ), s.t. {a[i] ∼ G(τ ;ϕ)}mi=1, (1)

where π selects the highest valued action from a collection of m actions sampled from the generative
model G(τ ;ϕ), which aims to produce only previously seen actions. The perturbation model
ξ(τ, a[i],Φ) is adopted to adjust action a[i] in the range [−Φ,Φ] to increase the diversity of actions.

3 Analysis of Accumulated Extrapolation Error in Multi-Agent RL

In this section, we theoretically analyze the extrapolation error propagation in offline RL, which lays
the basis for Section 4. The extrapolation error mainly attributes the out-of-distribution (OOD) actions
in the evaluation of Qπ [16, 21]. To quantify the effect of OOD actions, we define the state-action
pairs within the dataset as seen pairs. Otherwise, we name them as unseen pairs. We demonstrate that
the extrapolation error propagation from the unseen pairs to the seen pairs is related to the size of the
action space, which grows exponentially with the increasing number of agents. We further design a
toy example to illustrate the inefficiency of current offline methods in multi-agent tasks.

3.1 Extrapolation Error Propagation in Offline RL

Following the analysis in BCQ [16], we define the tabular estimation error* as εMDP(τ, a) ,
QπM (τ, a) − QπB(τ, a) (here we abuse τ to denote the state for analytical clarity), where the M
denotes the true MDP and B denotes a new MDP computed from the batch by PB(τ ′ | τ, a) =
N (τ, a, τ ′)/

∑
τ̃ N (τ, a, τ̃). BCQ [16] has shown that εMDP(τ, a) has a Bellman-like form with the

extrapolation error εEXT(τ, a) as the "reward function":

εMDP(τ, a) , εEXT(τ, a) +
∑
τ ′

PM (τ ′ | τ, a)γ
∑
a′

π(a′ | s′)εMDP(τ ′, a′),

εEXP(τ, a) =
∑
τ ′

(
PM (τ ′ | τ, a)− PB(τ ′ | τ, a)

)(
r(τ, a, τ ′) + γ

∑
a′

π(a′ | τ ′)QπB(τ ′, a′)
)
.

(2)

For the seen state-action pairs, εEXT(τ, a) = 0 since PM (τ ′ | τ, a) − PB(τ ′ | τ, a) = 0 in the
deterministic environment. In contrast, the εEXT(τ, a) of unseen pairs is uncontrollable and depends
entirely on the initial values in tabular setting or the network generalization in DRL.

To further analyze how the extrapolation error in the unseen pairs impacts the estimation of actions in
the dataset, we partition εMDP and εEXT as εMDP = [εs, εu]

T and εEXT = [0, εb]T respectively
according to seen and unseen state-action pairs. Let denote the transition matrix of the state-action
pairs as PπM (τ ′, a′ | τ, a) = PM (τ ′ | τ, a)π(a′ | τ ′). We decompose the transition matrix as
PπM =

[
Pπs,s, P

π
s,u;Pπu,s, P

π
u,u

]
according to state-action pairs’ property (e.g., Pπs,u(τ ′u, a

′
u | τs, as) =

PM (τ ′u | τs, as)π(a′u | τ ′u) denotes the transition probability from seen to unseen pairs). Then the
extrapolation error propagation can be described by the following linear system:[

εs
εu

]
= γ

[
Pπs,s Pπs,u
Pπu,s Pπu,u

] [
εs
εu

]
+

[
0
εb

]
. (3)

Based on the above definitions, we have the following conclusion.
Theorem 1. Given a deterministic MDP, the propagation of εb to εs is proportional to ‖Pπs,u‖∞:

‖εs‖∞ ≤
γ
∥∥Pπs,u∥∥∞

(1− γ)
(

1− γ
∥∥Pπs,s∥∥∞) ‖εb‖∞ . (4)

*Note that we adopt a different definition of extrapolation error with BCQ. The εMDP(τ, a) is regraded as the
extrapolation error in BCQ, while the generalization error of unseen pairs εEXT(τ, a) is considered in this work.
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(a) Two-state MMDP.
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(b) Estimated value of the joint action-value function.

Figure 2: (a) An MMDP where Q-estimates of BCQ will diverge as the number of agents increases.
(b) The learning curve of the joint action-value function while running several agents in the given
MMDP. The true values are similar in this task with different agent numbers, calculated by averaging
the Monte-Carlo estimation under different agents. The Q-estimates of BCQ (4 agents) diverge while
our algorithm (ICQ) has accurate Q-estimates. Please refer to Appendix C.2 for the complete results.

The above theorem indicates the effect of extrapolation error on seen state-action pairs is directly
proportional to ‖Pπs,u‖∞. In the practice, ‖Pπs,u‖∞ is related to the size of action space and the dataset.
If the action space is enormous, such as a multi-agent task with a number of agents, we need a larger
amount of data to reduce ‖Pπs,u‖∞. However, the dataset size in offline learning tasks is generally
limited. Moreover, when using the networks to approximate the value function, εb does not remain
constant as QB(τu, au) could be arbitrary during training, making the Q-values extreme large even
for the seen pairs. For these reasons, we have to enforce the Pπs,u → 0 by avoiding using OOD actions.
For example, BCQ utilizes an auxiliary generative model to constrain the target actions within a
familiar action set (see Section 2 for a detailed description). However, the error propagation heavily
depends on the accuracy of the generative model and is intolerable with the agent number increasing.
We will demonstrate this effect in the following toy example.

3.2 Toy Example

We design a toy two states Multi-Agent Markov Decision Process (MMDP) to illustrate the accumu-
lated extrapolation error in multi-agent tasks (see Figure 2a). All agents start at state τ2 and explore
rewards for 100 environment steps by taking actions a[1] = 0 or a[2] = 1. The optimal policy is
that all agents select a[1]. The MMDP task has sparse rewards. The reward is 1 when following the
optimal policy, otherwise, the reward is 0. The state τ2 will transfer to τ1 if the joint policy satisfies∑n
i=1 ai ≤

n
2 at τ2, while the state τ1 will never return to τ2.

We run BCQ and our method ICQ on a limited dataset, which only contain 32 trajectories generated
by QMIX. Obviously, the number of unseen state-action pairs exponentially grows as the number of
agents increases. We control the amount of valuable trajectories (r = 1) in different datasets equal
for fair comparisons. The multi-agent version of BCQ shares the same value-decomposition structure
as ICQ (see Appendix D.2).

As shown in Figure 2b, the joint action-value function learned by BCQ gradually diverges as the
number of agents increases while ICQ maintains a reasonable Q-value. The experimental result is
consistent with Theorem 1, and we provide an additional analysis for the toy example in Appendix B.2.
In summary, we show theoretically and empirically that the extrapolation error is accumulated quickly
as the number of agents increases and makes the Q-estimates easier to diverge.

4 Implicit Constraint Approach for Offline Multi-Agent RL

In this section, we give an effective method to solve the accumulated extrapolation error in offline
Multi-Agent RL based on the analysis of Section 3. From the implementation perspective, we find
that a practical approach towards offline RL is to estimate target Q-value without sampled actions
from the policy in training. We propose Implicit Constraint Q-learning (ICQ), which only trusts the
seen state-action pairs in datasets for value estimation. Further, we extend ICQ to multi-agent tasks
with a value decomposition framework and utilize a λ-return method to balance the variance and bias.
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4.1 The Implicit Constraint Q-learning (ICQ) Approach

Based on the analysis of Section 3, we find that the extrapolation error can be effectively alleviated
by enforcing the actions within the dataset when calculating the target values, which is the most
significant difference between offline and off-policy RL. For a formal comparison of off-policy and
offline algorithms, we first introduce the standard Bellman operator T π as follows:

(T πQ)(τ, a) , Q(τ, a) + Eτ ′ [r + γEa′∼π[Q(τ ′, a′)]−Q(τ, a)]. (5)

Many off-policy evaluation methods, such as the Tree Backup [10] and Expected SARSA [41], are
designed based on this operator. However, when coming into the offline setting, the standard Bellman
operator suffers from the OOD issue as the actions sampled from current policy π are adopted for
target Q-value estimation. A natural way to avoid the OOD issue is adopting the importance sampling
measure [30]:

(T πQ)(τ, a) = Q(τ, a) + Eτ ′ [r + γEa′∼µ[ρ(τ ′, a′)Q(τ ′, a′)]−Q(τ, a)], (6)

where ρ(τ ′, a′) , π(a′|τ ′)
µ(a′|τ ′) denotes the importance sampling weight. If we can calculate ρ(τ ′, a′) with

action a′ sampled from µ rather than π, the unseen pairs will be avoided for targetQ-value estimation.
In this case, the extrapolation error is theoretically avoided since Pπs,u → 0. The estimated Q-value
based on the above operation would be stable even in complex tasks with enormous action space.
However, in most real-world scenarios, it is hard to obtain the exact behavior policy to calculate
ρ(τ ′, a′), e.g., using expert demonstrations. Fortunately, we find that the solution of following implicit
constraint optimization problem is efficient to compute the desired importance sampling weight.

4.1.1 Implicit Constraint Q-learning

In offline tasks, the policies similar to the behavior policy are preferred while maximizing the
accumulated reward Qπ(τ, a), i.e., DKL(π ‖ µ)[τ ] ≤ ε. The policy optimization with the behavior
regularized constraint can be described in the following problem:

πk+1 = arg max
π

Ea∼π(·|τ)[Q
πk(τ, a)], s.t. DKL(π ‖ µ)[τ ] ≤ ε. (7)

This problem has well studied in many previous works [36, 1, 58]. Note that the objective is a linear
function of the decision variables π and all constraints are convex functions. Thus we can obtain the
optimal policy π∗ related to µ through the KKT condition [9], for which the proof is in Appendix B.4:

π∗k+1(a | τ) =
1

Z(τ)
µ(a | τ) exp

(
Qπk(τ, a)

α

)
, (8)

where α > 0 is the Lagrangian coefficient and Z(τ) =
∑
ã µ(ã | τ) exp

(
1
αQ

πk(τ, ã)
)

is the
normalizing partition function. Next, we calculate the ratio between π and µ by relocating µ to the
left-hand side:

ρ(τ, a) =
π∗k+1(a | τ)

µ(a | τ)
=

1

Z(τ)
exp

(
Qπk(τ, a)

α

)
. (9)

Motivated on Equation 9, we define the Implicit Constraint Q-learning operator as

TICQQ(τ, a) = r + γEa′∼µ
[

1

Z(τ ′)
exp

(
Q (τ ′, a′)

α

)
Q (τ ′, a′)

]
. (10)

Thus we obtain a SARAR-like algorithm which not uses any unseen pairs.

Comparison with previous methods. While BCQ learns an action generator to filter unseen pairs
in Q-value estimation, it cannot work in enormous action space due to the error of the generator (see
Figure 1). Instead, in the value update of ICQ, we do not use the sampled actions to compute the
target values, thus we alleviate extrapolation error effectively. There are some previous works, such
as AWAC [29] and AWR [35], addressing the offline problem with similar constrained problem in
Equation 7. However, these methods only impose the constraint on the policy loss and adopt the
standard Bellman operator to evaluate Q-function, which involves the unseen actions or converges to
the value of behavior policy µ. Differently, we re-weight the target Q(τ ′, a′) with the importance
sampling weight derived from the optimization problem, which makes the estimated value closer to
the optimal value function.
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4.1.2 Theoretical Analysis

The ICQ operator in Equation 10 results in a SARSA-like algorithm, which be re-written as:

TICQQ(τ, a) = r + γ
∑
a′∈B

[
1

Z(τ ′)
µ(a′ | τ ′) exp

(
1

α
Q (τ ′, a′)

)
Q (τ ′, a′)

]
. (11)

This update rule can be viewed as a regularized softmax operator [46, 34] in the offline setting. When
α→∞, TICQ approaches T µ. When α→ 0, TICQ becomes the batch-constrained Bellman optimal
operator TBCQ [16], which constrains the possible actions with respect to the batch:

TBCQQ(τ, a) = r + γmax
a′∈B

Q(τ ′, a′). (12)

TBCQ has been shown to converge to the optimal action-value function Q∗ of the batch, which means
limk→∞ T kBCQQ0 = Q∗ for arbitrary Q0. Based on this result, we show that iteratively applying
TICQ will result in a Q-function not far away from Q∗:

Theorem 2. Let T kICQQ0 denote that the operator TICQ are iteratively applied over an initial state-
action value function Q0 for k times. Then, we have ∀(τ, a), lim supk→∞ T kICQQ0(τ, a) ≤ Q∗(τ, a),

lim inf
k→∞

T kICQQ0(τ, a) ≥ Q∗(τ, a)− γ(|A| − 1)

(1− γ)
max

{
1

( 1
α + 1)C + 1

,
2Qmax

1 + C exp( 1
α )

}
, (13)

where |A| is the action space, |Aτ | is the action space for state τ , C , infτ∈S inf2≤i≤|Aτ |
µ(a[1]|τ)

µ(a[i]|τ)

and µ(a[1] | τ) denotes the probability of choosing the expert action according to behavioral policy
µ. Moreover, the upper bound of T kBCQQ0 − T kICQQ0 decays exponentially fast in terms of α.

While TICQ is not a contraction [5] (similar with the softmax operator), the Q-values are still within
a reasonable range. Further, TICQ converges to TBCQ with an exponential rate in terms of α. Our
result also quantifies the difficulty in offline RL problems. Based on the definition of µ(a[i]|τ), C
shows the proportion of the expert experience in the dataset. A larger C corresponds to more expert
experience, which induces a smaller distance between T kICQQ0(τ, a) and Q∗(τ, a). In contrast, with
a small C, the expert experience is few and the conservatism in learning is necessary.

4.1.3 Algorithm

Based on the derived operator TICQ in Equation 9, we can learn Q(τ, a;φ) by minimizing

JQ(φ) = Eτ,a,τ ′,a′∼B
[
r + γ

1

Z(τ ′)
exp

(
Q (τ ′, a′;φ′)

α

)
Q (τ ′, a′;φ′)−Q (τ, a;φ)

]2

, (14)

where the Q-network and the target Q-network are parameterized by φ and φ′ respectively.

As for the policy training, we project the non-parametric optimal policy π∗k+1 in Equation 8 into the
parameterized policy space θ by minimizing the following KL distance, which is implemented on the
data distribution of the batch:

Jπ(θ) = Eτ∼B
[
DKL

(
π∗k+1‖πθ

)
[τ ]
]

= Eτ∼B

[
−
∑
a

π∗k+1(a | τ) log
πθ(a | τ)

π∗k+1(a | τ)

]
(a)
= Eτ∼B

[∑
a

π∗k+1(a | τ)

µ(a | τ)
µ(a | τ) (− log πθ(a | τ))

]
(b)
= Eτ,a∼B

[
− 1

Z(τ)
log(π(a | τ ; θ)) exp

(
Q(τ, a)

α

)]
,

(15)

where (a) ignores Eτ∼B
[∑

a π
∗
k+1(a | τ) log π∗k+1(a | τ)

]
that is not related to θ, and (b) applies

the importance sampling weight derived in Equation 9 under forward KL constraint. Note that
tuning the α parameter in Equation 15 between 0 and ∞ interpolates between Q-learning and
behavioral cloning. See Appendix A for the complete workflow of the ICQ algorithm. We provide
two implementation options to compute the normalizing partition function Z(τ), which is discussed
in detail in Appendix D.1.
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4.2 Extending ICQ to Multi-Agent Tasks

In the previous section, we propose an implicit constraint Q-learning framework by re-weighting
target Q-value Q(τ ′, a′) in the critic loss, which is efficient to alleviate the extrapolation error. We
next extend ICQ to multi-agent tasks. For notational clarity, we name the Multi- Agent version of
ICQ as ICQ-MA.

4.2.1 Decomposed Multi-Agent Joint-Policy under Implicit Constraint
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Figure 3: Mixer Network.

Under the CTDE framework, we have to train individual poli-
cies for decentralized execution. Besides, it is also challeng-
ing to compute Eµ[ρ(τ ′,a′)Qπ(τ ′,a′)] in multi-agent policy
evaluation as its computational complexity is O(|A|n). To
address the above issues, we first define the joint-policy as
π(a | τ ) , Πi∈Nπ

i(ai | τ i), and then introduce a mild
value-decomposition assumption:

Qπ(τ ,a) =
∑
i

wi(τ )Qi(τ i, ai) + b(τ ), (16)

where wi(τ ) ≥ 0 and b(τ ) are generated by the Mixer Net-
work whose inputs are global observation-action history (see
Figure 3). Based on the above assumptions, we propose the decomposed multi-agent joint-policy
under implicit constraint in the following theorem:
Theorem 3. Assuming the joint action-value function is linearly decomposed, we can decompose the
multi-agent joint-policy under implicit constraint as follows

π = arg max
π1,...,πn

∑
i

Eτ i,ai∼B
[

1

Zi(τ i)
log(πi(ai | τ i)) exp

(
wi(τ )Qi(τ i, ai)

α

)]
, (17)

where Zi(τ i) =
∑
ãi µ

i(ãi | τ i) exp
(

1
αw

i(τ )Qi(τ i, ãi)
)

is the normalizing partition function.

The decomposed multi-agent joint-policy has a concise form. We can train individual policies πi by
minimizing

Jπ(θ) =
∑
i

Eτ i,ai∼B
[
− 1

Zi(τ i)
log(πi(ai | τ i; θi)) exp

(
wi(τ )Qi(τ i, ai)

α

)]
. (18)

Besides, wi(τ ) achieves the trade-off between the roles of agents. If some agents have important
roles, the value of corresponding wi(τ ) is relatively large. Also, if wi(τ )→ 0, πi is approximately
considered as the behavior cloning policy. As for the policy evaluation, we train Q(τ ,a;φ, ψ) by
minimizing

JQ(φ, ψ) = EB

∑
t≥0

(γλ)t
(
rt + γ

1

Z(τt+1)
exp

(
Q(τt+1,at+1)

α

)
Q(τt+1,at+1)−Q(τt,at)

)2

,

(19)
where Q(τt+1,at+1) =

∑
i w

i(τt+1;ψ′)Qi(τ it+1, a
i
t+1;φ′i)− b(τt+1;ψ′).

4.2.2 Multi-Agent Value Estimation with λ-return

As the offline dataset contains complete behavior trajectories, it is natural to accelerate the convergence
of ICQ with the n-step method. Here we adopt Q(λ) [27] to improve the estimation of ICQ, which
weights the future temporal difference signal with a decay sequence λt. Further, the constraint in
Equation 7 implicitly meets the convergence condition of Q(λ). Therefore, we extend the ICQ
operator in Equation 10 to n-step estimation, which is similar to Q(λ):

(T λICQQ)(τ ,a) , Q(τ ,a) + Eµ

∑
t≥0

(γλ)t (rt + γρ(τt+1,at+1)Q(τt+1,at+1)−Q(τt,at))

 ,
(20)

where ρ(τt,at) = 1
Z(τt)

exp( 1
αQ(τt,at)) and hyper-parameter 0 ≤ λ ≤ 1 provides the balance

between bias and variance.

7



0 10 20 30 40
Thousand Episodes

0

5

10

15

A
ve

ra
ge

R
et

ur
n

MMM

0 10 20 30 40
Thousand Episodes

0

5

10

15
10m vs 11m

0 10 20 30 40
Thousand Episodes

0

5

10

15

20
3s vs 3z

0 10 20 30 40
Thousand Episodes

0

5

10

15

2s3z

ICQ-MA BCQ-MA CQL-MA QMIX BC-MA Behavior

Figure 4: Performance comparison in offline StarCraft II tasks.

Table 1: Performance of ICQ with five offline RL baselines on the single-agent offline tasks with the
normalized score metric proposed by D4RL benchmark [14], averaged over three random seeds with
standard deviation. Scores roughly range from 0 to 100, where 0 corresponds to a random policy
performance and 100 indicates an expert. The results for BC, BCQ, CQL, AWR and BRAC-p are
taken from [14, 22].

Dataset type Environment ICQ (ours) BC BCQ CQL AWR BRAC-p

fixed antmaze-umaze 85.0± 2.7 65.0 78.9 74.0 56.0 50.0
play antmaze-medium 80.0± 1.3 0.0 0.0 61.2 0.0 0.0
play antmaze-large 51.0± 4.8 0.0 6.7 15.8 0.0 0.0

diverse antmaze-umaze 65.0±3.3 55.0 55.0 84.0 70.3 40.0
diverse antmaze-medium 65.0± 3.9 0.0 0.0 53.7 0.0 0.0
diverse antmaze-large 44.0± 4.2 0.0 2.2 14.9 0.0 0.0

expert adroit-door 103.9± 3.6 101.2 99.0 - 102.9 -0.3
expert adroit-relocate 109.5± 11.1 101.3 41.6 - 91.5 -0.3
expert adroit-pen 123.8± 22.1 85.1 114.9 - 111.0 -3.5
expert adroit-hammer 128.3± 2.5 125.6 107.2 - 39.0 0.3
human adroit-door 6.4±2.4 0.5 -0.0 9.1 0.4 -0.3
human adroit-relocate 1.5± 0.7 -0.0 -0.1 0.35 -0.0 -0.3
human adroit-pen 91.3± 10.3 34.4 68.9 55.8 12.3 8.1
human adroit-hammer 2.0±0.9 1.5 0.5 2.1 1.2 0.3

medium walker2d 71.8±10.7 66.6 53.1 79.2 17.4 77.5
medium hopper 55.6±5.7 49.0 54.5 58.0 35.9 32.7
medium halfcheetah 42.5±1.3 36.1 40.7 44.4 37.4 43.8

med-expert walker2d 98.9± 5.2 66.8 57.5 98.7 53.8 76.9
med-expert hopper 109.0±13.6 111.9 110.9 111.0 27.1 1.9
med-expert halfcheetah 110.3± 1.1 35.8 64.7 104.8 52.7 44.2

5 Related Work

As ICQ-MA seems to be the first work addressing the accumulated extrapolation error issue in offline
MARL, we briefly review the prior single-agent offline RL works here, which can be divided into
three categories: dynamic programming, model-based, and safe policy improvement methods.

Dynamic Programming. Policy constraint methods in dynamic programming [20, 3, 58, 51, 17] are
most closely related to our work. They attempt to enforce π to be close to µ under KL-divergence,
Wasserstein distance [53], or MMD [47], and then only use actions sampled from π in dynamic
programming. For example, BCQ [16] constrains the mismatch between the state-action visitation of
the policy and the state-action pairs contained in the batch by using a state-conditioned generative
model to produce only previously seen actions. AWR [35] and ABM [42] attempt to estimate the value
function of the behavior policy via Monte-Carlo or TD(λ). Unlike these methods, our algorithm, ICQ,
estimates the Q-function of the current policy using actions sampled from µ, enabling much more
efficient learning. Another series of methods [52, 32, 33] aim to estimate uncertainty to determine
the trustworthiness of a Q-value prediction. However, the high-fidelity requirements for uncertainty
estimates limit the performance of algorithms.

8



0 10 20 30 40
Thousand Episodes

0

5

10

15

A
ve

ra
ge

R
et

ur
n

(a) Performance comparison.

0 10 20 30 40
Thousand Episodes

0

5

10

15

E
st

im
at

ed
V

al
ue ICQ-MA

ICQ-MA (w/o decom)

ICQ-MA (one step)

ICQ-MA (Tree Backup)

ICQ-MA (Q(λ))

True Value

(b) Q-value estimation and True values.

Figure 5: Module ablation study on MMM map.

Model-based and Safe Policy Improvement. Model-based methods [18, 50, 13, 56, 19] attempt
to learn the model from offline data, with minimal modification to the algorithm. Nevertheless,
modeling MDPs with very high-dimensional image observations and long horizons is a major open
problem, which leads to limited algorithm performance [24]. Besides, safe policy improvement
methods [23, 44, 6, 11] require a separately estimated model to µ to deal with unseen actions.
However, accurately estimating µ is especially hard if the data come from multiple sources [29].

6 Experiments

In this section, we evaluate ICQ-MA and ICQ on multi-agent (StarCraft II) and single-agent (D4RL)
offline benchmarks and compare them with state-of-the-art methods. Then, we conduct ablation
studies on ICQ-MA. We aim to better understand each component’s effect and further analyze the
main driver for the performance improvement.

6.1 Multi-Agent Offline Tasks on StarCraft II

We first construct the multi-agent offline datasets based on ten maps in StarCraft II (see Table 2 in
Appendix E). The datasets are made by collecting DOP [55] training data. All maps share the same
reward function, and each map includes 3000 trajectories. We are interested in non-expert data or
multi-source data. Therefore, we artificially divide behavior policies into three levels based on the
average episode return (see Table 3 in Appendix E). Then, we evenly mix data of three levels.

We compare our method against QMIX [39], multi-agent version of BCQ (BCQ-MA), CQL (CQL-
MA), and behavior cloning (BC-MA). To maintain consistency, BCQ-MA, CQL-MA, and BC-MA
share the same linear value decomposition structure with ICQ-MA. Details for baseline implementa-
tions are in Appendix D.2. Each algorithm runs with five seeds, where the performance is evaluated
ten times every 50 episodes. Details for hyper-parameters are in Appendix E.1.

We investigate ICQ-MA’s performance compared to common baselines in different scenarios. Results
in Figure 4 show that ICQ-MA significantly outperforms all baselines and achieves state-of-the-art
performance in all maps. QMIX, BCQ-MA, and CQL-MA have poor performances due to the
accumulated extrapolation error. Interestingly, since BC does not depend on the policy evaluation, it
is not subject to extrapolation error. Thus BC-MA has a sound performance as StarCraft II is near
deterministic. We implement BCQ and CQL according to their official code*.

6.2 Single-Agent Offline Tasks on D4RL

To compare with current offline methods, we evaluate ICQ in the single offline tasks (e.g., D4RL),
including gym domains, Adroit tasks [38] and AntMaze. Specifically, adroit tasks require controlling
a 24-DoF robotic hand to imitate human behavior. AntMaze requires composing parts of sub-optimal
trajectories to form more optimal policies for reaching goals on a MuJoco Ant robot. Experimental
result in Table 1 shows that ICQ achieves the state-of-the-art performance in many tasks compared
with the current offline methods.

*BCQ: https://github.com/sfujim/BCQ, CQL: https://github.com/aviralkumar2907/CQL.
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6.3 Ablation Study

We conduct ablation studies of ICQ-MA in the MMM map of StarCraft II to study the effect of
different modules, value estimation, important hyper-parameters, and data quality.

Module and Value Estimation Analysis. From Figure 5, we find that if we adopt other Q-value
estimation methods in implicit constraint policies (e.g., Q(λ) [27] or Tree Backup), the corresponding
algorithms (ICQ-MA (Q(λ)) or ICQ-MA (Tree Backup)) have poor performances and incorrect
estimated values. Suppose we train ICQ-MA without decomposed implicit constraint module (e.g.,
ICQ-MA (w/o decom)). In that case, the algorithm’s performance is poor, although the estimated
value is smaller than the true value, confirming the necessity of decomposed policy. Besides, the
performance of one-step estimation (ICQ-MA (one step)) indicates n-step estimation is not the critical
factor for improving ICQ-MA, while one-step estimation will introduce more bias.

The Parameter α. The Lagrangian coefficient α of implicit constraint operator directly affects
the intensity of constraint, which is a critical parameter for the performance. A smaller α leads
to a relaxing constraint and tends to maximize reward. If α → 0, ICQ-MA is simplified to Q-
learning [57] while α→∞ results in that ICQ-MA is equivalent to behavior cloning. Indeed, there
is an intermediate value that performs best that can best provide the trade-off as in Appendix C.4.

Data Quality. It is also worth studying the performance of ICQ-MA and BC-MA with varying data
quality. Specifically, we make the datasets from behavior policies of different levels (e.g., Good,
Medium, and Poor). As shown in Figure 9 in Appendix C.4, ICQ-MA is not sensitive to the data
quality, while the performance of BC-MA drops drastically with the data quality deteriorates. Results
confirm that ICQ-MA is robust to the data quality while BC-MA strongly relies on the data quality.

Computational Complexity. With the same training steps in SMAC, BCQ-MA consumes 70%
time of ICQ-MA. Although ICQ-MA takes a little long time compared with BCQ-MA, it achieves
excellent performance in benchmarks. The computing infrastructure for running experiments is a
server with an AMD EPYC 7702 64-Core Processor CPU.

7 Conclusion

In this work, we demonstrate a critical problem in multi-agent off-policy reinforcement learning
with finite data, where it introduces accumulated extrapolation error in the number of agents. We
empirically show the current offline algorithms are ineffective in the multi-agent offline setting.
Therefore, we propose the Implicit Constraint Q-learning (ICQ) method, which effectively alleviates
extrapolation error by only trusting the state-action pairs in datasets. To the best of our knowledge,
the multi-agent version of ICQ is the first multi-agent offline algorithm capable of learning from
complex multi-agent datasets. Due to the importance of offline tasks and multi-agent systems, we
sincerely hope our algorithms can be a solid foothold for applying RL to practical applications.
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