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Abstract

Recent advances in long-term time series forecasting have introduced numerous complex
supervised prediction models that consistently outperform previously published architectures.
However, this rapid progression raises concerns regarding inconsistent benchmarking and
reporting practices, which may undermine the reliability of these comparisons. In this
study, we first perform a broad, thorough, and reproducible evaluation of the top-performing
supervised models on the most popular benchmark and additional baselines representing
the most active architecture families. This extensive evaluation assesses eight models on
14 datasets, encompassing ∼5,000 trained networks for the hyperparameter (HP) searches.
Then, through a comprehensive analysis, we find that slight changes to experimental setups
or current evaluation metrics drastically shift the common belief that newly published results
are advancing the state of the art. Our findings emphasize the need to shift focus away from
pursuing ever-more complex models, towards enhancing benchmarking practices through
rigorous and standardized evaluations that enable more substantiated claims, including
reproducible HP setups and statistical testing. We offer recommendations for future research.

1 Introduction

100%
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Figure 1: There is no champion. The rela-
tive MSE averaged over all forecast horizons re-
veals that no model dominates on all datasets.

Long-term time series forecasting (LTSF) is critical across var-
ious domains, including energy management (Weron, 2014),
financial planning (Sezer et al., 2020), and environmental
modeling (Soni et al., 2024). Accurately predicting future
values in time series data enables better decision-making and
resource allocation. LTSF remains challenging due to the
complex temporal dynamics, including trends, seasonality, ir-
regular fluctuations, and significant variability across datasets
(Qiu et al., 2024; Shao et al., 2024).

Recent advances in deep learning have improved LTSF capa-
bilities, and the field is currently witnessing an exponential
surge in publication rates (Kim et al., 2024). Popular research
directions within the field include supervised LTSF, which
involves training and testing models on IID data from histor-
ical time series (Wang et al., 2024a; Liu et al., 2024a; Wang
et al., 2025), in contrast to the pre-training and zero-shot
or fine-tuning paradigms introduced by foundation models
(Cao et al., 2024; Woo et al., 2024). From an architectural
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perspective, transformer models have been adapted to time series forecasting with innovative modifications,
such as univariate patching (Nie et al., 2023) and attention mechanisms tailored to exploit inter-variate
dependencies (Liu et al., 2024a; Wang et al., 2024c). In addition, models leveraging multiscale signal mixing
(Wang et al., 2024a), Fourier-based 2D decomposition (Wu et al., 2023), state-space modeling (Wang et al.,
2025), 1D convolution (Luo & Wang, 2024), and novel recurrent processing (Beck et al., 2024; Alharthi &
Mahmood, 2024) have expanded the field.

However, we claim that the field is facing significant challenges regarding fair benchmarking, transparent
reporting, and guidelines for model selection. Although this problem is not uniquely encountered in LTSF
(Eriksson et al., 2025; Herrmann et al., 2024), we highlight the specific challenges in LTSF to promote
discussions towards improvements in the field, as it was done in other disciplines (Bechler-Speicher et al., 2025;
McIntosh et al., 2025; Sarfraz et al., 2024; Wu & Keogh, 2023). In this work, we focus on supervised LTSF
and therefore exclude foundation models, as their evaluation requires distinct experimental protocols involving
large-scale pre-training with potential data leakage concerns (Aksu et al., 2024). We observe inconsistencies
in test setups across different benchmarks, biased comparisons, and challenges with reproducibility that
hinder fair performance assessment in the field. Moreover, marginal performance gains in recent literature
cast doubt on the practical value of increasingly complex model architectures (Zeng et al., 2023). To support
our claim, we conduct a comprehensive, rigorous, and reproducible evaluation of the top-performing models
on the most widely used benchmark, encompassing five models and three additional baselines representing
the most popular neural architectures over 14 datasets (∼5,000 trained networks for the HP searches). Our
results reveal that no single model consistently outperforms all the baselines (Fig. 1), directly challenging the
prevailing narrative of new architectures consistently surpassing competing models across all domains (Liu
et al., 2024a; Nie et al., 2023; Wang et al., 2024a;c; Wu et al., 2023; Alharthi & Mahmood, 2024). The findings
of our work emphasize the need to shift focus away from pursuing ever-more complex models and towards
enhancing benchmarking practices through rigorous and standardized evaluation methods. We analyze the
potential reasons behind this phenomenon and propose recommendations to help the field progress. To foster
reproducibility, our code is available at https://github.com/AIHNlab/NoChamps. The contributions of our
paper are as follows:

• We question the narrative of consistently dominated supervised LTSF benchmarks (Sec. 2), and
support our claim with results obtained through a comprehensive and reproducible experimental
setup (Sec. 3).

• We challenge previous guidelines for model selection based on dataset characteristics (Sec. 3) and
highlight the need for further research in this direction (Sec. 5).

• We investigate potential causes behind overstated claims by carefully analyzing our experimental
setup and those from prior work in the literature (Sec. 4), and offer recommendations to help prevent
similar issues in future work (Sec. 5).

2 Field overview

We provide an overview of recent advancements in LTSF, focusing on current benchmarks (Sec. 2.1) and
emerging champions (Sec. 2.2). Due to space limitations, additional related work on recent time series
forecasting models and paradigms is included in Appendix A.

2.1 Benchmarks and their recommendations for dataset-guided model selection

TSLib (Wang et al., 2024b) compares 12 deep learning models across five tasks: classification, imputation,
anomaly detection, and long-/short-term forecasting. For long-term forecasting, nine datasets from four
domains are used. Results are presented for two settings: unified hyperparameters (HPs) and an HP search
per model, but details on parameters, context length, forecast horizon, or the search process are missing.
The evaluation metric is the mean squared error (MSE) averaged across datasets. The authors claim that
their results clearly demonstrate the superior forecasting capabilities of transformer models, particularly
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iTransformer and PatchTST, despite arguably marginal improvements over MLP-based models, such as
N-Beats (Oreshkin et al., 2020). They further emphasize continued exploration of temporal-token methods.

TFB (Qiu et al., 2024) evaluates 22 statistical, classical machine learning, and deep learning methods using
25 multivariate and 8,068 univariate datasets. Based on their results, the authors claim that linear models
outperform deep learning methods in datasets with increased trends and distribution shifts. Conversely,
transformers excel in datasets with marked patterns (e.g., seasonality). Notably, PatchTST and DLinear
(Zeng et al., 2023) consistently perform well across datasets, exhibiting no major weaknesses.

BasicTS+ (Shao et al., 2024) incorporates 28 forecasting models, including 17 short-term forecasting
(STF) and 11 LTSF models, across 14 widely used datasets. STF models encompass prior-graph-based,
latent-graph-based, and non-graph-based methods, while LTSF models consist of transformer-based and
linear-layer-based architectures. Models are implemented following publicly available architectures and HPs,
with further tuning of parameters like learning rate and batch size via grid search to ensure performance
is at least as good as reported in the original paper. Upon analyzing the results, the authors argue that
dataset characteristics play a major role in determining model performance. They claim that transformer
models excel on datasets with clear, stable patterns, whereas simpler models like DLinear perform comparably
on datasets without such patterns. The authors emphasize the need to address data distribution drift and
unclear patterns instead of focusing solely on increasing model complexity. They suggest that this may
indicate potential overfitting to commonly used datasets like ETT*, Electricity, Weather, and Exchange,
which risks creating a misleading impression of progress. They conclude that careful dataset selection and
curation are essential to advance the field.

GIFT-Eval (Aksu et al., 2024) assesses five statistical forecasting models, eight supervised deep learning
models, and four foundation models on 21 LTSF datasets and 55 STF datasets. The implementations of the
supervised deep learning models adhere to the original works. This benchmark enables simple assessments
of model performances across several dataset characteristics (univariate/multivariate, sampling frequency,
domain, and forecast horizon). The authors found that PatchTST offered the most reliable results across
all characteristics, while foundation models showed inconsistent performance, suggesting that these models
are still in an early and relatively underperforming stage compared to well-tuned supervised approaches, a
finding also corroborated by Xu et al. (2025).

2.2 Emergent LTSF champions

Table 1: Model win rates in previous works. Winners
in LTSF for forecast horizons T ∈ T = {96, 192, 336, 720}.
The win rates (%) are according to each T without averaging.
TimeMixer reported unified parameters (A) and HP search
(B) results. † avg. over T and ETT* datasets.

Model Win % (MSE) Win % (MAE)
DLinear (Zeng et al., 2023) 50.0 16.7
PatchTST (Nie et al., 2023) 87.5 59.4

TimeMixer (Wang et al., 2024a) A) 93.8 A) 100
B) 81.2 B) 81.2

iTransformer (Liu et al., 2024a) 33.3 47.2
71.4† 85.7†

TimeXer (Wang et al., 2024c) 85.7 60.7

Recent models have made a leap in LTSF perfor-
mance (Liu et al., 2024a; Nie et al., 2023; Wang
et al., 2024a;c; Wu et al., 2023; Zeng et al.,
2023). A popular benchmark for supervised
LTSF is TSLib (Wang et al., 2024b), which, at
the time of acceptance, has accumulated over
11.2k stars and 1.8k forks on GitHub, reflect-
ing its wide adoption in the field. A series of
new models in 2024 has reportedly dominated
the field. The current leaderboard in TSlib
includes five models, originally published in
top-tier machine learning conferences. We sum-
marize the striking win percentages from their
original works in Tab. 1 and briefly describe each model in the following box.

TSLib Long-Term Time Series Forecasting Leaderboard

We present top TSLib models under fixed and searched look-back settings, ordered by publication year:
DLinear - Zeng et al. AAAI-23 : Linear model introduced to challenge transformers in early benchmarks.
PatchTST - Nie et al. ICLR-23 : Transformer with univariate patching of time series for tokenization.
TimeMixer - Wang et al. ICLR-24 : MLP-mixer that introduced past-decomposable and future-predictor mixing.
iTransformer - Liu et al. ICLR-24 : Transformer variant that attends across variates instead of patches.
TimeXer - Wang et al. NeurIPS-24 : Transformer with dual attention for interactions on patches and variates.
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Table 2: Results. Mean values averaged over prediction lengths. Datasets span the energy, economy,
transport, health, and environment domains. Best and second-best are highlighted.

Model DLinear PatchTST iTransformer TimeMixer TimeXer S-Mamba xLSTMTime ModernTCN
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTh1 0.474 0.477 0.414 0.432 0.424 0.443 0.429 0.443 0.425 0.44 0.467 0.466 0.53 0.515 0.532 0.51
ETTm1 0.403 0.422 0.394 0.431 0.408 0.437 0.432 0.449 0.412 0.445 0.409 0.434 0.434 0.449 0.414 0.435
ETTh2 0.485 0.474 0.379 0.41 0.378 0.405 0.374 0.404 0.377 0.406 0.383 0.407 0.803 0.647 0.405 0.423
ETTm2 0.151 0.261 0.156 0.269 0.166 0.276 0.162 0.27 0.168 0.277 0.168 0.279 0.17 0.278 0.166 0.276

Electricity 0.162 0.259 0.164 0.261 0.165 0.262 0.156 0.254 0.17 0.268 0.166 0.263 0.163 0.257 0.275 0.376
Weather 0.244 0.298 0.225 0.263 0.238 0.279 0.231 0.271 0.224 0.264 0.237 0.277 0.229 0.268 0.241 0.282
Exchange 0.389 0.434 0.368 0.409 0.379 0.416 0.55 0.476 0.374 0.412 0.426 0.438 0.699 0.6 0.761 0.531

MotorImagery 4.592 1.183 3.775 1.006 1.692 0.383 3.869 1.011 3.649 0.915 0.745 0.244 6.622 1.362 3.088 0.769
TDBrain 1.151 0.802 0.982 0.725 0.978 0.722 0.981 0.723 0.97 0.719 0.972 0.72 1.211 0.799 0.984 0.725

BeijingAir 0.583 0.472 0.578 0.46 0.58 0.464 0.592 0.471 0.582 0.462 0.567 0.452 0.569 0.43 0.581 0.461
BenzeneConcentration 0.008 0.02 0.011 0.042 0.012 0.053 0.008 0.022 0.012 0.037 0.01 0.044 0.01 0.028 0.15 0.265

AustraliaRainfall 0.838 0.751 0.855 0.757 0.849 0.754 0.853 0.755 0.847 0.753 0.848 0.753 0.827 0.743 0.872 0.766
KDDCup2018 0.997 0.63 1.086 0.647 1.088 0.648 1.035 0.631 1.045 0.64 1.085 0.646 1.051 0.628 1.068 0.638

PedestrianCounts 0.298 0.289 0.291 0.293 0.295 0.285 0.292 0.284 0.311 0.307 0.292 0.278 0.282 0.259 0.466 0.408
Average 0.77 0.484 0.691 0.458 0.547 0.416 0.712 0.462 0.683 0.453 0.484 0.407 0.971 0.519 0.714 0.49
Rank 4.43 4.5 3.5 3.93 4.29 4.5 4.07 4.14 4.07 4.14 4.07 4.14 5.07 4.64 6.5 6

Beyond these leading models, additional neural architectures have recently gained attention within the
community for their focus on efficient computation. Namely, these approaches include state-space Mamba
models (Gu & Dao, 2024), recurrent models via the extended LSTM (xLSTM) architecture (Beck et al., 2024),
and fully convolutional networks (Luo & Wang, 2024). We select three models that represent these architecture
families, were explicitly adapted or designed for LTSF, and gained rapid interest within the community
(measured in terms of citations). Specifically, we include S-Mamba (Wang et al., 2025), xLSTMTime (Alharthi
& Mahmood, 2024), and ModernTCN (Luo & Wang, 2024).

3 Who is the real champion?

Motivating confirmatory research in LTSF. As seen in the previous section, recent papers often suggest
that newly proposed architectures outperform others across almost all tested datasets. However, the variability
in results for the same algorithms and reliance on prior studies with different experimental setups raise
questions about their consistent superiority. This concern goes beyond the field of LTSF and is well supported
by a growing body of work criticizing the reliability and generalizability of empirical results in machine
learning (Bechler-Speicher et al., 2025; Eriksson et al., 2025; Jordan et al., 2024; Sarfraz et al., 2024; Snoek
et al., 2018; Stine, 2006; Wu & Keogh, 2023). In response, the community has increasingly recognized the need
for more confirmatory research (Herrmann et al., 2024), i.e., empirical evaluations conducted by researchers
without vested interest in a particular method, aiming to ensure fairness, minimize bias, and reduce overly
optimistic conclusions. Motivated by the exponential surge in publication rates in time series forecasting (Kim
et al., 2024) and the community quest for more neutral benchmarking (Herrmann et al., 2024), we selected the
previously introduced five top-performing models from TSLib (Wang et al., 2024b), S-Mamba, xLSTMTime,
and ModernTCN to perform a comprehensive empirical evaluation across 14 datasets from various domains.
For completeness, a comparison including classical statistical methods is presented in Appendix H.

Datasets. We evaluate models on 14 datasets from five domains: Energy, Economy, Transport, Health, and
Environment. They vary substantially in sample size, sampling frequency, number of variates, and various
statistics for time series dynamics (Appendix B). The selection aims to minimize bias by preventing any
model from gaining an unfair advantage due to specific dataset characteristics.

HP search. We searched HPs aligned with those described in TimeMixer (Wang et al., 2024a). Specifically,
we optimized input lengths, learning rates, and the number of encoder layers. We used the Optuna framework
(Akiba et al., 2019), employing the default TPEsampler for HP sampling and the SuccessiveHalvingPruner
as the trial scheduler. We employed Adam with an exponentially decaying scheduler. For xLSTMTime,
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+

Figure 2: Potential lack in dataset diversity The benchmarks do not span a wide range of frequencies
and number of variates across domains.

we switched the loss function from MSE (default in TSLib) to MAE, following previous implementations
(Alharthi & Mahmood, 2024; Kraus et al., 2024), as we indeed observed worse performance using MSE in
preliminary experiments. The optimized HPs were used to train and evaluate the final model across three
random seeds to ensure robust results. For the rest of the model HPs, we default to the configurations
provided in TSLib. We refer the reader to Appendix C for a more detailed description.

Finding: There is no champion. We follow the TSlib benchmark and use MSE and mean absolute
error (MAE) to evaluate model performance. Tab. 2 presents the MSE and MAE for each dataset, averaged
over the most common forecast horizons (Liu et al., 2024a; Nie et al., 2023; Wang et al., 2024c), revealing
results that differ substantially from recent papers where proposed algorithms often dominate. Instead, our
findings indicate no definitive best-performing model across all datasets and forecast horizons (Tab. 12 and
Tab. 13, Appendix H). To assess reliability, we compared our results with the best-reported outcomes from
the original studies on three common datasets—ETT*, Electricity, and Weather—and found that our HP
search performed similarly or better, confirming the proper implementation and tuning of our baselines
(Tab. 9, Appendix D). To present a comprehensive view that highlights both the optimal outcomes and the
realistic performance variability, we report the minimum values (best MSE/MAE) and the averages. We
further analyze HP-search run-to-run variability in Appendix E.

Finding: Recommendations for dataset-guided model selection do not hold. We analyze whether
our results align with the guidelines proposed by BasicTS+ (Shao et al., 2024) and TFB (Qiu et al., 2024)
(Sec. 2.1), which aim to address the challenge of selecting appropriate models for specific datasets in LTSF.

(
)↓

Figure 3: Uni- vs. multivariate PatchTST and iTrans-
former perform comparably in terms of explained variance.

We revisit the example in (Shao et al.,
2024) and assess the performance of a linear
model (DLinear) versus a transformer model
(PatchTST) on data with clear and unclear
patterns, respectively. We use Exchange as
the dataset with an unclear pattern and Pedes-
trianCounts as the dataset with a clear pat-
tern (Fig. 6, Appendix B.2). PatchTST out-
performs DLinear on both occasions (Tab. 12,
Appendix H), contradicting the previous rec-
ommendations that linear models should be preferred when the data lacks clear patterns (Shao et al., 2024).
Next, to assess guidelines regarding univariate and multivariate data, we compare PatchTST (univariate)
against iTransformer (multivariate) on all datasets. We use the explained variance from principal component
analysis as a proxy for inter-variate similarity (Appendix B.1). Neither model performs increasingly better
depending on the inter-variate similarity as ranks fluctuate across the spectrum (Fig. 3), contradicting the
guideline that multivariate models should be preferred if the data has strong inter-variate similarities (Qiu
et al., 2024; Shao et al., 2024).

Furthermore, GIFT-Eval claims to provide insights into the strengths of different models across domains,
frequencies, prediction lengths, and the number of variates. To investigate this, we compiled all datasets
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W/ MotorImagery Win % MSE
S-Mamba 55.68 0.49 ± 0.16
PatchTST 17.58 0.69 ± 0.38
TimeXer 10.58 0.68 ± 0.38
DLinear 8.18 0.77 ± 0.46
TimeMixer 5.10 0.71 ± 0.39
xLSTMTime 2.56 0.97 ± 0.64
iTransformer 0.28 0.55 ± 0.21
ModernTCN 0.04 0.72 ± 0.31
W/o MotorImagery Win % MSE
PatchTST 46.78 0.45 ± 0.14
TimeXer 24.48 0.45 ± 0.14
TimeMixer 9.46 0.47 ± 0.14
DLinear 11.84 0.48 ± 0.15
iTransformer 0.96 0.46 ± 0.14
S-Mamba 2.70 0.46 ± 0.14
xLSTMTime 3.70 0.54 ± 0.17
ModernTCN 0.08 0.53 ± 0.15

Figure 4: Model rankings are highly sensitive to dataset and horizon selection. We assess the
robustness of rankings across 5,000 experimental configurations, each using a random subset of datasets and
forecast horizons. Including MotorImagery, the only dataset with clear model gaps (Fig. 8, Appendix H),
favors S-Mamba, while excluding it yields close performance across models. This highlights the brittleness
of current benchmarks, where small changes in datasets or forecast horizons can easily shift which model
appears as a champion. Best and second-best are highlighted.

included in the LTSF benchmarks and analyzed their distribution by sampling frequency, number of variates,
and domain, revealing a substantial imbalance (Fig. 2). For instance, GIFT-Eval represents the Transport
domain with two univariate datasets, while BasicTS+ and TFB include several multivariate transport datasets,
which is more consistent with the graph-structured nature of such systems (Shao et al., 2024; Qiu et al., 2024).
Moreover, no benchmark includes high-frequency datasets (e.g., EEG or wearable-sensor data), excluding
many real-world applications. Hence, we speculate that LTSF benchmarks lack sufficient dataset variety to
enable systematic, dataset-guided model evaluation, ultimately hampering progress toward understanding
when and why particular models succeed in LTSF.

4 Why are they all champions?

4.1 Impact of selective inclusion of datasets and forecast horizons

Model rankings are highly sensitive to dataset and horizon selection. We systematically analyze
how the selective exclusion of datasets and forecast horizons in the experimental settings may affect overall
rankings. Let D = {D1, . . . , DM } be the collection of datasets and T = {T1, . . . , TH} the forecast horizons.
We sample K = 5,000 experimental configurations, each defined by uniformly drawn subsets of datasets
and horizons: SD ⊆ D, |SD| = k, k ∼ U{1, M}, and ST ⊆ T , |ST | = ℓ, ℓ ∼ U{1, H}. When all datasets
are included, S-Mamba seems to clearly be the best model, obtaining a win percentage of ∼56% and the
lowest average MSE of 0.49 over the distribution (Fig. 4, left). However, after repeating the analysis without
MotorImagery, i.e., the only dataset with a clear performance gap among baselines (Fig. 8, Appendix H),
the distributions overlap (Fig. 4, center), implying equivalency of all models. Since win percentages and
average MSEs are similar across models, minor changes in datasets and forecast horizons can shift which
model appears best, supporting our view regarding the brittleness of current model superiority claims.

Prior work employed inconsistent dataset and horizon selection. We observe that subsets of the full
benchmark were occasionally used, which may be justified, e.g., for lack of dataset size. In iTransformer (Liu
et al., 2024a), the authors averaged the performance over the ETT datasets, which they justified by their
intrinsic similarity. However, this increased the percentage of wins of their proposed method from 33.3% to
71.4%. BasicTS+ (Shao et al., 2024) focuses solely on a forecast horizon of 336, whereas TFB (Qiu et al.,
2024) bases the analysis of the impact of different data characteristics on a horizon of 96, despite reporting
performance for all four forecast horizons.
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Table 3: HP search sensitivity. We report the MSE of DLinear for Weather at prediction length 96 when
HP tuning is/is not performed, both in our and previous papers, along with the relative performance
improvement expressed in % (when possible). “−” indicates a missing analysis.

DLinear (MSE) (Zeng et al., 2023) (Nie et al., 2023) (Wu et al., 2023) (Liu et al., 2024a) (Wang et al., 2024a) (Wang et al., 2024c) Ours

Unified HP – – 0.196 0.196 0.195 0.196 0.198

HP tuning 0.176 0.176 – – 0.176 – 0.168

Rel. Improv. – – – – +9.7% – +15.1%

4.2 Impact of selective inclusion of baseline models

Model exclusion reshape leaderboards. While unsurprising, we stress that excluding the top model from
a benchmark may automatically crown the second-best as a champion. For instance, removing S-Mamba
from Tab. 2 would champion iTransformer as it scores the second-best average metrics.

Prior work overlooked SOTA models in the analyses. We notice the lack of inclusion of baselines like
N-Beats in the publications of recent “champions”, although it is a top-3 method in (Wang et al., 2024b)
(Appendix G). In addition, we identified cases where the best-performing model was excluded from discussions
without justification. For example, (Qiu et al., 2024; Shao et al., 2024) claim recent transformers underperform
compared to earlier methods, but their experiments show the most recent LTSF transformer at the time
(PatchTST) outperformed competitors, contradicting this claim. Moreover, (Shao et al., 2024) claims linear
models are better for LTSF on datasets with unclear patterns or distribution shifts. However, the claim is
based on experiments that excluded PatchTST, thereby weakening the strength of their conclusion.

4.3 Impact of hyperparameters

HP search raises absolute performance. The impact of HP tuning on the benchmarking performance of
models is becoming increasingly evident (Brigato et al., 2021; McElfresh et al., 2024). We investigate whether
this is also the case in LTSF via a proof-of-concept example. We report the evaluation in terms of MSE for
DLinear on the Weather dataset at forecast horizon 96 (Tab. 3). HP tuning brings a relative performance
boost of ∼15% in our setup and an ∼10% in (Wang et al., 2024b). Similarly, building on the HP search
details in (Wang et al., 2024c), we found comparable performance between TimeMixer, iTransformer, and
PatchTST, unlike the original work, where TimeMixer consistently ranks first. This underscores how close the
actual performance of models is, making outcomes and conclusions sensitive to slight variations in HP search.

Prior work put models at disadvantage through unified HP setup. In TSLib, models are usually
based on the implementation of the original publications. However, in (Wu et al., 2023), for a fair comparison,
they changed the input embeddings and the final projections to be the same for all models. Specifically, the
sequence length was set to 96 for all models by default. This is critical since DLinear (Zeng et al., 2023),
after a broad ablation study, explicitly states that short input sequences (< 336) lead to underfitting.

4.4 Influence of visualizations

Visualizations may bias perceived rankings. Visualizations are a strong tool to convey a message.
In Fig. 5, we investigate the impact of scales to visualize results. We observe that using an absolute scale
in radar plots exaggerates differences between models that are not perceived in the relative scale with
uniform axes. Conversely, it can obscure substantial differences, as in the example of MotorImagery and
BenzeneConcentration (Fig. 5, right, b and e).

Prior work employed misleading visualization practices. We identified two examples that used radar
plots with absolute scales to visualize the model performances between models (Liu et al., 2024a) and across
dataset characteristics (Qiu et al., 2024), respectively. These choices can create a misleading impression of
the models’ actual performance and lead to false conclusions. Note that other plots may also create biased
impressions through axis scaling or selective metric representation.
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Figure 5: Bias in visualizations. The plots show the same results (MSE) represented at two scales. The
relative scale makes performance differences between models appear more subtle.

4.5 Statistical evidence for model superiority

Table 4: iPatch as a questionable champion. Although
iPatch scores the best average rank and the third-best
MSE/MAE averaged over all datasets, it does not statisti-
cally differ from all the other baselines under a Friedman
test. Best and second-best are highlighted.

Model MSE MAE Rank (MSE) Rank (MAE)

DLinear 0.770 0.484 4.93 5.00

PatchTST 0.691 0.458 4.07 4.50

iTransformer 0.547 0.416 5.07 5.29

TimeMixer 0.712 0.462 4.64 4.79

TimeXer 0.683 0.453 4.57 4.71

iPatch 0.580 0.422 4.00 4.07

S-Mamba 0.484 0.407 4.64 4.57

xLSTMTime 0.971 0.519 5.64 5.21

ModernTCN 0.714 0.490 7.43 6.86

Analysis. We illustrate, through a proof-of-
concept example, how the lack of robust sta-
tistical testing can lead to false claims regard-
ing models’ superiority. First, we introduce
recommended non-parametric statistical tests
(Demšar, 2006). Second, we upgrade the ex-
isting iTransformer to emulate current model-
design proposals and rigorously evaluate it in
our setup (see Sec. 3 for details).

Statistical tests. (Demšar, 2006) studied var-
ious statistical tests for comparing classifiers
from both theoretical and empirical perspec-
tives. The study recommended a set of simple,
reliable, and robust tests for such comparisons.
In particular, the sign test (Salzberg, 1997) com-
pares two classifiers over multiple datasets, and
the Friedman test compares various classifiers
over multiple datasets (see Appendix F).

iPatch: A proof-of-concept model. We briefly introduce the iPatch model as a hybrid architecture that
integrates design principles of PatchTST into iTransformer, emulating common model design trends observed
in recent research. Let the input series be x ∈ RB×C×L, where B is the batch size, C is the number of variates,
and L is the lookback length. Firstly, in iPatch, unlike iTransformer, we reshape the input by splitting
the sequence into N cycles of length P (L = N · P ), transforming it from B × C × L to B × (C · N) × P
to later enable in the layer the temporal attention as in PatchTST. Each cycle is subsequently embedded
to dm, resulting in z ∈ RB×(C·N)×dm . Secondly, we enhance the attention module as a sequence of two
attentions over variates and cycles. First, the input is reshaped to (B · N) × C × dm to isolate the C variates
for each cycle and consequently to apply attention over C similarly to iTransformer. Next, the output
of the variate attention is reshaped to (B · C) × N × dm to isolate temporal cycles and apply the second
attention mechanism similarly to PatchTST. Since the iTransformer MLPs operating on univariate data were
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Table 5: Limited gains from increased model complexity. Efficiency-weighted performance comparison
(ξ) relative to DLinear (↑ is better). Despite higher complexity, most models fail to outperform DLinear
across multiple performance-weighted efficiency metrics with all datasets (A) and without MotorImagery (B).
TP indicates throughput. Best and second-best are highlighted.

ξ(m, DLinear, MSE, Φ) (↑)
DLinear PatchTST iTransformer TimeMixer TimeXer S-Mamba xLSTMTime ModernTCN

A B A B A B A B A B A B A B A B

Φ = {FLOPs} 1.00 1.00 0.88 0.82 1.21 0.90 0.69 0.65 0.78 0.72 1.42 0.92 0.71 0.81 0.75 0.63
Φ = {#params} 1.00 1.00 0.98 0.92 1.27 0.94 0.95 0.89 0.96 0.89 1.39 0.91 0.70 0.79 0.74 0.62
Φ = {TP, memory} (train) 1.00 1.00 0.91 0.86 1.25 0.92 0.83 0.79 0.93 0.86 1.18 0.77 0.67 0.75 0.77 0.64
Φ = {TP, memory} (test) 1.00 1.00 0.92 0.87 1.26 0.93 0.88 0.83 0.96 0.89 1.29 0.83 0.68 0.76 0.78 0.66

hypothesized to capture time series properties like amplitude and periodicity (Liu et al., 2024a), we reshape
the series to (B · N) × C × dm before applying the MLP and finally map it back to B × (C · N) × dm for the
next transformer layer. The linear decoder is applied channel-wise to predict T steps from B × C × (dm · N).

Statistical testing substantiates performance gains from targeted architectural adjustments.
Initially, we evaluate the performance of iPatch following either average MSE/MAE (Wang et al., 2024b) or
ranks. Tab. 4 shows that iPatch achieves the best average rank and the third-best average MSE and MAE.
Complete results for iPatch are available in Tab. 14, Appendix H. In line with these outcomes and common
practices in the field of LTSF, iPatch may “almost” seem the best-performing model. However, performing
the Friedman test, we observe that no model differs from the others considering MAE (χ2

F = 9.33, p = 0.31).
Given the lack of overall differences, we conduct a focused comparison between iPatch and iTransformer
using the sign test (Salzberg, 1997), since iPatch builds directly upon iTransformer. Despite their similar
architectures, iPatch wins in terms of MSE/MAE on 11 out of 14 datasets, yielding a statistically significant
p-value of 0.05 under the sign test (Appendix F), suggesting that targeted architectural modifications can
lead to performance improvements.

Prior work neglected statistical testing. The TSLib benchmark (Wang et al., 2024b) employs averaging
for presenting aggregated results. However, averages are susceptible to outliers (Demšar, 2006). A classifier’s
strong performance on one dataset can mask weaknesses elsewhere, so we prioritize consistent performance
across problems, making dataset averaging unsuitable for evaluation (Sec. 4). BasicTS+ (Shao et al., 2024)
and TFB (Qiu et al., 2024) focus on the number of wins achieved by each model but do not incorporate any
statistical testing, making conclusions less reliable and harder to communicate in a concise manner.

4.6 Trade-off between model performance and efficiency

Analysis. It is also essential to consider other factors that contribute to a model’s superiority, such as the
trade-offs between performance (e.g., MSE) and efficiency (e.g., training speed or memory consumption)
introduced by architectural modifications.

Efficiency-weighted error metric. Drawing inspiration from neural-architecture-search literature (Tan
et al., 2019), we define a composite metric that summarizes prediction quality and efficiency relative to a
baseline model. Let m denote a candidate model and b our baseline, with ϵ(·) representing our prediction
error metric and Φ = {ϕk(·)}K

k=1 being a set of efficiency metrics. The efficiency-weighted error metric ξ is
formulated as: ξ(m, b, ϵ, Φ) = ϵ(b)

ϵ(m) ·
∏K

k=1
ϕk(b)
ϕk(m)

skw
where sk ∈ {−1, +1} controls the metric-specific ratio

directionality (lower/higher is better) and w encodes the relative importance of efficiency. Thus, the weighted
product formulation of ξ ensures models’ error ratios against the baseline are scaled by efficiency ratios
weighted by the exponent w. When w = 1, the efficiency ratio scales linearly with the error ratio, while if
w = 0, the efficiency ratio has zero relevance. Models with ξ > 1 outperform the baseline, while ξ < 1 indicate
unfavorable trade-offs. The baseline always scores a value of one, i.e., when m = b, ξ = 1. Furthermore, b is
chosen such that 0 < ϕk(b)

ϕk(m)
sk

< 1, ensuring that the efficiency term always penalizes all other models unless
compensated by accuracy gains.

Performance-efficiency rankings show lack of improvements. For this analysis, we consider DLinear
as the baseline, being the most efficient model across all metrics. Furthermore, we set w = 0.07 so that
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a 10% reduction in any efficiency metric corresponds approximately to a 1% loss in the error-metric ratio
ϵ(b)
ϵ(m) when the efficiency ratio ϕk(b)

ϕk(m) lies in the range [0.3, 1], as x0.07 ≈ 0.1x + 0.9 in this interval. We select
FLOPs and #params for theoretical complexity, and throughput (TP) with memory usage for practical hardware
efficiency. In Tab. 5, we report that, with all datasets included (column A), all models except iTransformer and
S-Mamba underperform DLinear (ξ < 1). These two models are primarily leading the performance-efficiency
leaderboard for their superior results on MotorImagery. Indeed, when the MotorImagery dataset is excluded
(see Sec. 4.1), even iTransformer and S-Mamba no longer achieve the best trade-offs. These results suggest
that the additional architectural complexity does not currently lead to meaningful benefits. This pattern is
clearly captured by efficiency-weighted error metrics such as ξ, which summarize trade-offs between accuracy
and efficiency across all datasets and horizons. Further analyses and details on efficiency metric estimation
are provided in Appendix I.

Prior work lacks consensus on performance-efficiency trade-offs. Although there are examples that
perform certain trade-off analyses (Liu et al., 2024a; Wang et al., 2024a; Shao et al., 2024; Wang et al., 2024c),
their interpretations appear to be limited by selected subsets of datasets, models, and efficiency metrics,
lacking a holistic perspective offered by metrics aggregated across all datasets and horizons, thereby conveying
incomplete conclusions.

5 How can the field establish real champions?

Summary of Recommendations

Improving
benchmarking practices

· Results should be reported across all datasets and forecast horizons (Sec. 4.1).
· Results from the best-performing models should always be included (Sec. 4.2).
· Rigorously tuned HP configurations must be used for all models (Sec. 4.3).
· Third-party evaluations should be encouraged to strengthen reliability.

Reducing
unsubstantiated claims

· Visualizations should not exaggerate minor differences (Sec. 4.4).
· Statistical tests should be used when comparing models (Sec. 4.5).

Increasing dataset
diversity and revising
guidelines for
model selection

· Benchmarks should include datasets that reflect real-world diversity.
· Benchmarks should define forecast horizons informed by dataset characteristics.
· Methodologies relating model-dataset characteristics should be further explored.
· Performance-efficiency trade-offs should be tackled systematically (Sec. 4.6).

Concluding the previous chapters, we provide recommendations that can be tackled by the community. To
ensure continued progress in LTSF, the field must address persistent shortcomings in benchmarking, evaluation
methodology, and guidelines for model selection. We outline guidelines aimed at improving transparency,
rigor, and the practical relevance of LTSF research.

Improving benchmarking practices. Benchmarks should provide rigorously tuned HP configurations
for all models, ideally supported by integrated HP optimization tools. Benchmark users must report
performance consistently across all supported datasets, forecast horizons, and context lengths. Even minor
deviations in experimental setup can dramatically shift performance rankings (Sec. 4), underscoring the
need for transparency and standardization. Additionally, the field would benefit from objective, independent
evaluations, in which test sets are withheld and assessed by third parties, e.g., as originally practiced for
ImageNet.

Reducing unsubstantiated claims. Researchers should adopt robust statistical testing to supplement
performance rankings and mitigate unreliable claims, as exemplified in Sec. 4.5. Visualizations must be
designed with care to avoid distorting perceived differences. For instance, scale choices can easily exaggerate
or obscure performance gaps as highlighted in Sec. 4.4.

Increasing dataset diversity and revising guidelines for model selection. To develop effective model
selection guidelines, the benchmarks should include datasets to cover a large spectrum of characteristics.
Potential starting points are the UTSD database (Liu et al., 2024b) and the LOTSA database (Woo et al.,
2024), as both databases encompass a wide range of datasets with diverse characteristics. In addition
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to providing the data, a crucial step is to define meaningful forecast horizons based on intrinsic dataset
characteristics—an issue exemplified by the arbitrary performance on datasets such as Exchange (Hewamalage
et al., 2023). Then, future studies should focus on datasets where performance varies significantly among
SOTA models. As illustrated in Fig. 1, only two datasets—BenzeneConcentration and MotorImagery—exhibit
clearly distinguishable performance patterns, highlighting the need for further investigation into what dataset
characteristics drive such differences. In this context, we particularly value dedicated studies examining
more broadly which architectures succeed or fail under varying conditions, following the style of recent work
(Chen et al., 2025). From a benchmarking perspective, instead, the field should conduct comprehensive
evaluations across datasets with diverse characteristics and consistently compare a broad range of model
architectures, ensuring that the best-performing architecture for each category, such as linear, MLP, and
transformer models, is clearly reported. Additionally, practical trade-offs between model performance and
efficiency should be assessed by systematically analyzing how architectural changes impact computational cost
and memory usage (Sec. 4.6). Composite metrics such as ξ can unify performance and efficiency into a single
score. To support such evaluations, benchmarks should provide standardized functionalities for consistent
and detailed comparisons.

6 Discussion and limitations

Objective and scope of our evaluation. While our experimental design enables a broad and reproducible
evaluation of recent supervised LTSF models, it also carries inherent limitations. We focused on a representative
subset of recent, high-impact models belonging to the most popular families, i.e., transformers, MLPs, state-
space, convolutional, and recurrent models, to capture current evaluation practices in the field. Our results
may be sensitive to specific dataset choices, hyperparameter search ranges, and implementation details,
which remain open challenges for reproducible supervised LTSF. However, our goal was not to establish
exhaustive benchmarks or definitive rankings but to show that recent advancements often yield only marginal
improvements when evaluated under consistent and controlled settings with experimental variance dominating
over architectural advancements. By emphasizing recent models, we intentionally highlight the present
challenges of the field—particularly the difficulty of reliably assessing progress across comparable experimental
conditions. Moreover, while certain models may excel in narrow, context-specific scenarios (e.g., S-Mamba in
MotorImagery), such isolated successes do not translate into universal applicability, further supporting our
argument against the “champion” narrative.

Setting of fixed “long-term” forecast horizons. A limitation of our study lies in the use of fixed forecast
horizons across datasets from different domains which can render the notion of “long-term” arbitrary and
detached from domain-specific constraints. Although not necessarily optimal, the chosen forecast horizons
reflect current practice and enable comparability with past work. In particular, we adopt the horizons used
in TSLib, which are consistent with those in other recent benchmarks, such as BasicTS+ and TFB, further
aligning with the ranges reported in the original publications. Identifying truly meaningful forecast horizons
remains an open challenge, with recent efforts aiming to define horizons in a more data-informed manner
(Aksu et al., 2024), complicated by the unclear distinction between short- and long-term forecasting. Our
findings may also be applicable to shorter horizons, although this requires empirical testing.

Exclusion of foundation models. While recent trends in time series research increasingly explore the
development of foundation models (Shi et al., 2024; Yao et al., 2025), including multimodal large language
models (LLMs) (Jin et al., 2024), as SOTA time series forecasters, we purposely excluded their evaluation
from our work. Practically, substantial differences in terms of benchmarking compared to supervised models
hold, including factors such as potential data leakage and the considerable computational cost of pre-training
(Aksu et al., 2024). Dedicated benchmarks are more suitable for critically evaluating and moving forward this
parallel line of research in LTSF (Aksu et al., 2024). In this regard, the claims following our evaluations do not
directly apply to this set of models, given the lack of empirical evidence. However, we argue that incorporating
them would be unlikely to alter the conclusions of our work considering recent studies questioning their actual
effectiveness (Xu et al., 2025; Aksu et al., 2024; Tan et al., 2024; Bergmeir, 2024; Karaouli et al., 2025; Zhao
et al., 2025). Specifically, in GIFT-Eval, the best-performing foundation model, MOIRAI (Woo et al., 2024),
did not outperform PatchTST on medium and long-term forecasts, even without any HP optimization applied
to the latter. This result highlights that these models are still in an early and relatively underperforming
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stage compared to well-tuned supervised baselines, a finding also corroborated by (Xu et al., 2025). Therefore,
while we concur that future work should revisit this question as the field progresses, some of the insights
derived from our study may prove valuable for future benchmarking efforts involving foundation models (e.g.,
rigorous statistical testing). To acknowledge the growing interest in this direction, we include a brief overview
of recent developments in foundation models for time series in Appendix A.3, as well as another description
of LLM-based approaches in Appendix A.4.

7 Conclusions

In this work, we critically evaluate supervised LTSF research and put forward a proposal to address persistent
issues in the field. Importantly, our aim is not to criticize prior work in this longstanding and recently
revitalized domain but to provide a constructive analysis that supports both our own work and future research
in the field, including its translation into domain-specific applications. Through an extensive and reproducible
evaluation of eight models across 14 datasets, we demonstrated that claims of consistent performance
improvements in newly published models often rely on specific experimental setups and evaluation methods.
Our findings question the idea of universal advancements, revealing that no single model consistently excels
across our experiments. We identified issues in the supervised LTSF domain, such as non-standardized
evaluation frameworks, biased comparisons, and limited reproducibility that hinder fair assessment and
delay real progress. To address these challenges, we propose a set of actionable recommendations: adopt
standardized evaluation protocols, prioritize benchmarking robustness over architectural complexity, and
deepen the analysis of how dataset characteristics influence model performance.
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A Related work

A.1 Classical approaches

Traditional statistical methods, such as AutoRegressive Integrated Moving Average (Box & Pierce, 1970),
Vector Autoregression (Toda & Phillips, 1993), Exponential Smoothing (Hyndman et al., 2008), and Spectral
Analysis (Koopmans, 1995) were widely used in TS forecasting. Progressively, machine learning models such
as XGBoost (Chen & Guestrin, 2016), Random Forest (Breiman, 2001), Gradient Boosting Regression Trees
(Friedman, 2001), and LightGBM (Ke et al., 2017) have shown improvements in the forecast due to their
ability to handle non-linear patterns.

A.2 Deep learning models

Deep learning models have advanced TS forecasting, starting with Recurrent Neural Networks (RNNs),
specifically designed to model sequential data. In particular, advanced variants such as RNNs with Long
Short-Term Memory units, widely adopted within the TS community, have seen significantly increased usage
(Hochreiter & Schmidhuber, 1997). Additionally, MLP-based models, such as DLinear (Zeng et al., 2023),
N-BEATS (Oreshkin et al., 2020), and N-Hits (Challu et al., 2023) use MLP to learn the coefficients that
produce both backcast and forecast outputs from their structure.

Originally from Natural Language Processing (NLP), the Transformer architecture is increasingly adapted
for time series forecasting, often with modified attention layers to capture temporal dependencies, as seen in
Sec. 2 and other prior works, which we describe in the following. Informer (Zhou et al., 2021) and Pyaformer
(Liu et al., 2022b) are transformer-based models that modify the attention mechanism. Informer designs a
ProbSparse self-attention mechanism to replace the standard self-attention. Pyaformer, on the other hand,
presents a pyramidal attention module, where the inter-scale tree structure captures features at different
resolutions, and the intra-scale neighboring connections model the temporal dependencies across different
ranges. Wu et al. (Wu et al., 2021) introduced the Autoformer with an Auto-Correlation mechanism to
capture the series-wise temporal dependencies based on the learned periods. Following, FEDformer (Zhou
et al., 2022) utilizes a mixture-of-expert framework to improve seasonal-trend decomposition and integrates
Fourier and Wavelet-enhanced blocks to capture key structures in the TS. (Zhang & Yan, 2023) presented
Crossformer, a transformer-based model utilizing cross-dimension dependency for multivariate TS forecasting.
Another recent approach is TimesNet (Wu et al., 2023), which is a univariate 2D CNN that segments 1D time
series according to Fourier decomposition. The segments are then stacked to build a 2D series. This enables
the convolutions to simultaneously look at the local structure of the signal at ti and ti−T simultaneously,
where T denotes a dominant signal period.

A.3 Foundation Models

There is a growing interest in foundation models designed explicitly for TS tasks (Shi et al., 2024; Yao et al.,
2025). Tiny Time Mixers (Ekambaram et al., 2024) introduce a compact model for multivariate TS forecasting.
Timer-XL is a foundation model for unified time series forecasting, supporting univariate and multivariate data
by extending next-token prediction for causal generation (Liu et al., 2024b). The model introduced a universal
TimeAttention mechanism to capture fine-grained intra- and inter-series dependencies. MOIRAI (Woo et al.,
2024) addresses challenges like cross-frequency learning and varied distributional properties in large-scale
data, achieving competitive zero-shot forecasting performance. TimeGPT-1 (Garza & Mergenthaler-Canseco,
2023) and Lag-LLama (Rasul et al., 2023), utilizing decoder-only transformer architectures and achieving
strong zero-shot generalization. Chronos (Ansari et al., 2024) trains transformer-based models on discrete
tokens processed from TS data, demonstrating superior performance on diverse datasets.

A.4 Large Language Models

The success of Large Language Models (LLMs) like BERT and GPT in NLP has inspired researchers to
apply these models to TS tasks. As outlined in (Jin et al., 2024), LLMs may serve in three roles (R): as
Enhancers (R1), which incorporate domain-specific external knowledge while relying on specialized models
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Table 6: Dataset statistics. Refer to Appendix B.1 for a detailed description of the statistics.
Domain Dataset # Timesteps # Channels Shannon Entr. Spectral Entr. Sample Entr. Stationarity Complexity Expl. Var. Source

Energy ETTh1 17420 7 0.775 0.669 0.769 -5.909 0.497 0.344 Wang et al. (2024b)

Energy ETTm1 69680 7 0.789 0.548 0.430 -14.985 0.485 0.346 Wang et al. (2024b)

Energy ETTh2 17420 7 0.813 0.639 0.526 -4.136 0.397 0.431 Wang et al. (2024b)

Energy ETTm2 69680 7 0.817 0.527 0.319 -5.664 0.425 0.431 Wang et al. (2024b)

Energy Electricity 26304 321 0.516 0.497 0.714 -8.445 0.673 0.547 Wang et al. (2024b)

Environment Weather 52696 21 0.453 0.57 0.110 -26.681 0.632 0.424 Wang et al. (2024b)

Economic Exchange 7588 8 0.805 0.347 0.066 -1.902 0.529 0.618 Wang et al. (2024b)

Health MotorImagery 1134000 64 0.719 0.519 0.326 -3.133 0.763 0.305 Liu et al. (2024b)

Health TDBrain 2221212 33 0.823 0.749 0.987 -3.167 0.404 0.475 Liu et al. (2024b)

Environment BeijingAir 407184 9 0.493 0.686 0.951 -13.253 0.165 0.383 Liu et al. (2024b)

Environment BenzeneConcentration 2042880 8 0.799 0.701 1.938 -3.114 -0.049 0.534 Liu et al. (2024b)

Environment AustraliaRainfall 3846408 3 0.838 0.604 2.215 -31.734 -0.013 0.996 Liu et al. (2024b)

Environment KDDCup2018 2942364 1 0.569 0.665 0.410 -9.379 0.530 1.000 Liu et al. (2024b)

Transport PedestrianCounts 3132346 1 0.687 0.522 0.412 -4.590 0.630 1.000 Liu et al. (2024b)

for prediction; Forecasters (R2), which replace expert models entirely and cast LLMs directly as predictive
models; or Agents (R3), which orchestrate workflows involving external tools and models. One significant
approach involves transforming numerical TS data into natural language prompts to leverage pre-trained
language models without modifications. PromptCast (Xue & Salim, 2023) and (Gruver et al., 2024) present
this method, demonstrating generalization in zero-shot settings and often outperforming traditional numerical
models. However, recent work cast doubts on the actual significance of LLMs as base forecasters (Tan et al.,
2024). Moving to few-shot training strategies, TEST (Sun et al., 2024) adapts TS data for pre-trained LLMs
by tokenizing the data and aligning the embedding space, particularly in few-shot and generalization scenarios.
Several frameworks focus on enhancing TS forecasting through specialized fine-tuning strategies such as
LLM4TS (Chang et al., 2025) and TEMPO (Cao et al., 2024).

B Datasets

We include a popular set of datasets (ETT*, Electricity, Weather, Exchange) and a set of larger datasets (Mo-
torImagery, TDBrain, BeijingAir, BenzeneConcentration, AustraliaRainfall, KDDCup2018, PedestrianCounts)
representing a subset of the Unified Time Series Dataset (UTSD) (Liu et al., 2024b).

This section provides a summary of descriptive statistics about the employed datasets, an example of two
datasets with clear and unclear patterns, respectively, and dataset-specific preprocessing steps.

B.1 Dataset statistics

In Tab. 6, we provide a comprehensive description of the datasets employed in this work and their corresponding
statistics. Next, we describe in detail the methodology to derive such dataset statistics.

Time steps and channels. We counted the number of time steps and number of channels.

Shannon entropy and spectral entropy. Shannon entropy quantifies the average level of uncertainty
or information content associated with the outcomes in a discrete variable X. Spectral entropy, a related
concept, applies this measure to the frequency domain, using the normalized power spectral density as the
probability distribution. Entropy is calculated as

H(X) = −
∑
x∈χ

p(x) log p(x)

where χ is the set of all possible outcomes, and p(x) is the probability of outcome x.

Sample entropy. Sample entropy is a statistical measure used to quantify the complexity or regularity of a
time series. Unlike Shannon entropy, which evaluates uncertainty in discrete probability distributions, sample
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entropy assesses the likelihood that similar patterns in the time series remain similar at the next time step.
It is defined as the negative natural logarithm of the conditional probability that two sequences of length m
that match within a tolerance r will still match when extended to m + 1. A lower sample entropy indicates
more regularity or predictability in the series, while a higher value suggests greater randomness or complexity.
Sample entropy is calculated as

SampEn(m, r, N) = − ln A

B

where m is the embedding dimension, r is the tolerance, N is the total length of the time series, A is the
number of matching pairs of length m + 1, and B is the number of matching pairs of length m.

Stationarity. In LTSF, stationarity is an important characteristic of time series, where the statistical
characteristics, such as mean and variance, remain constant over time. We used the Augmented Dickey-Fuller
(ADF) test to assess stationarity. This test evaluates the null hypothesis that a unit root is present and
confirms stationarity if γ < 0 and the result is statistically significant. We report γ since it scales with
stationarity.

Complexity. In time series analysis, complexity refers to the irregularity or unpredictability in the data.
We quantify complexity by using Higuchi’s fractal dimension. A higher fractal dimension indicates greater
complexity, while a lower value suggests more regularity or predictability in the data. Higuchi’s fractal
dimension is calculated as

D = lim
k→0

log
(∑n

i=1

(
|xi+k−xi|

k

))
log k

where xi is a point, k is the time scale, and the sum is taken over different segments of the time series.

Inter-variate similarity. As a proxy for inter-variate similarity, we provide the explained variance of the
first principal component (PC1) obtained through principal component analysis (PCA). PC1 represents the
direction of maximum variance in the data, capturing the dominant shared variation among the variables.
The explained variance of PC1 quantifies the proportion of the total variance that is accounted for by
this component. A higher explained variance indicates stronger similarity and shared dynamics among the
variables, while a lower value suggests more independent behavior.

B.2 Clear vs. unclear patterns

In Sec. 3, we assessed the performance of a linear model versus a transformer model on datasets with clear
and unclear patterns, respectively. We use the same dataset as BasicTS+ (Shao et al., 2024) with an unclear
pattern (Exchange) and replace their previously used PEMS with a clear pattern by PedestrianCounts (Fig. 6).
The plots of the time series highlight contrasting characteristics: Exchange displays seemingly random trends,
whereas PedestrianCounts exhibits evident cyclic behavior. To further emphasize this distinction, we provide
butterfly plots, which reveal pronounced periodic patterns in PedestrianCounts and irregular, stochastic-like
trends in Exchange. Additionally, the power spectrum analysis underscores this contrast, showing a dominant
peak for PedestrianCounts and an absence of such peaks for Exchange.

B.3 Preprocessing

We followed the preprocessing steps from TSlib (Wang et al., 2024b). Furthermore, we added functionality
to import data from UTSD as curated by (Liu et al., 2024b). Since the UTSD datasets are magnitudes
larger, we modified the respective dataloader to return sequences at a stride length S = 100 to accelerate the
training.

C HP search details

HP search. To ensure a fair comparison, we performed an extensive HP search for all models on all the
datasets. Specifically, we searched for an input length between 96 and 512, model size dm from 16 to 512,
learning rate ranging from 10−5 to 0.1, and encoder layers between 1 and 5. The specific ranges are presented
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PedestrianCounts

Exchange

Figure 6: Clear vs. unclear patterns (top vs bottom) in two datasets.

in Tab. 7. TimeMixer was limited to a maximum of 3 layers and a model size of 128 due to increasingly high
memory demands (> 49GB of VRAM on an RTX A6000 GPU if dm > 128 and L = 720). However, this is
unlikely to affect performance, as the original HP search for all datasets in this study yielded results within
these limits. Additionally, we limited the search space for dm in ModernTCN to a region closely centered
around its default value for LTSF (dm = 64). We used the Optuna framework (Akiba et al., 2019) with a
budget of 40 trials to optimize the HPs. We employed the default TPEsampler for HP sampling and applied
the SuccessiveHalvingPruner, configured with a minimum of three epochs and a reduction factor of two to
prune unpromising trials. The search was conducted with a batch size of 8, a maximum of 15 epochs, and
early stopping with a patience of 3 epochs. All models were optimized with the Adam optimizer and an
exponentially decaying scheduler following the default TSLib configuration. The optimal HPs, determined
by the minimum validation loss in the trials, were used to train and evaluate the final model across three
random seeds to ensure robust results. We set the dimensions of the fully connected layers df equal to dm.
The patch length, a parameter used in PatchTST and TimeXer (and by extension also iPatch), was set based
on the characteristics of the datasets (Tab. 8). As visualized in Fig. 6, there are datasets with dominant
periodic behavior. We set the patch length P ≈ argmax(FFT(X)) wherever we observed such a natural
pattern. Unsurprisingly, the patch length resulted in a span of one day in all datasets with a pattern. In
the remaining cases, we set the patch length manually (Exchange, MotorImagery, TDBrain). We aligned
with the idea of TimesNet, which introduced series segmentation based on dominant frequencies to enhance
performance (Wu et al., 2023). Moreover, the original works concluded that variations in patch length have
minimal effects (Nie et al., 2023; Wang et al., 2024c). For the rest of the model HPs, we default to the
configurations provided in TSLib.

Table 7: Searched HPs values.
Hyperparameter TimeMixer ModernTCN Other Models

Input Length {96, 192, 336, 720} {96, 192, 336, 720} {96, 192, 336, 720}
Learning Rate {10−5, 10−4, 10−3, 10−2} {10−5, 10−4, 10−3, 10−2} {10−5, 10−4, 10−3, 10−2}

#Layers {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4}
dm {16, 32, 64, 128} {32, 64, 128, 256} {16, 32, 64, 128, 256, 512}
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Table 8: Patch lengths. Employed patch lengths for PatchTST, TimeXer, and iPatch models.
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D Implementation reliability

To assess the reliability of our implementation, we compare our results (best and average MSE) against the
original works on popular datasets. Despite not being directly comparable for slight differences in setups, we
align with previous values (Tab. 9).

Table 9: Implementation reliability. To assess the reliability of our implementation, we compare our
results (best and average MSE) against the original works on popular datasets. Despite not being directly
comparable due to slight differences in experimental setups, we align with previous values.

Model Dataset Original Ours Min Ours Mean

DLinear
ETT* 0.370 0.378 0.378

Electricity 0.166 0.162 0.162
Weather 0.246 0.244 0.244

PatchTST
ETT* 0.338 0.332 0.336

Electricity 0.159 0.163 0.164
Weather 0.225 0.224 0.225

iTransformer
ETT* 0.383 0.342 0.344

Electricity 0.178 0.162 0.166
Weather 0.258 0.237 0.239

TimeMixer
ETT* 0.333 0.342 0.349

Electricity 0.156 0.154 0.156
Weather 0.222 0.225 0.231

TimeXer
ETT* 0.363 0.341 0.346

Electricity 0.171 0.165 0.170
Weather 0.241 0.222 0.224

ModernTCN
ETT* 0.333 0.374 0.379

Electricity 0.156 0.268 0.275
Weather 0.224 0.233 0.241

xLSTMTime
ETT* 0.339 0.460 0.484

Electricity 0.157 0.160 0.163
Weather 0.221 0.226 0.229

S-Mamba
ETT* 0.380 0.353 0.357

Electricity 0.170 0.164 0.166
Weather 0.251 0.230 0.237

E Stability of HP search

In this section, we perform a small proof-of-concept experiment to show the reliability of our HP search. For
a subset of datasets and models, we performed two independent HP runs and consequent training of three
models with the found optimal HPs to analyze the stability of the performed HP search. We focused on
forecast horizon 96. In Fig. 7, we plot the MSE of the two searches over two opposing axes, meaning that
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Figure 7: HP search variability. Comparison among two independent HP search results in terms of MSE
for forecast horizon 96. The average of the final three models shows minimal variability except for a few cases
(left), while the best model is even more stable (right).
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Figure 8: Violin plot for datasets and horizons. We provide an alternative view of model performance
on datasets and prediction horizons. Each point represents the average MSE obtained for a given forecast
horizon over three independent seeds with the found HP configuration. It is clearly visible that the difference
in average scores solely depends on the MotorImagery dataset since baseline scores are comparable over the
rest of the dataset-horizon setups.

points on the diagonal indicate a very stable search that leads to the same final result. To provide an even
more comprehensive analysis, we show the average of the three final models (left) and also the best model
out of the final three (right). The averages show a few cases with slight variability, namely PatchTST on
BejingAir and TimeXer on BenzeneConcentration, but overall, the experiment proves a reliable and stable
HP search across independent runs. In the case of best results (Fig. 7, right), the variability is even less
noticeable.
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F Statistical tests

F.1 Friedman test

The Friedman test (Friedman, 1937; 1940) is a non-parametric statistical method designed as an alternative
to repeated-measures ANOVA. It enables the comparison of multiple algorithms across multiple datasets
when the assumptions of parametric tests may not hold. The test works by ranking the algorithms on each
dataset separately, with the best-performing algorithm assigned a rank of 1, the second-best a rank of 2, and
so forth. In cases of ties, average ranks are assigned across the tied algorithms.

Let rj
i denote the rank of the j-th algorithm out of k algorithms on the i-th dataset out of N datasets. The

Friedman test evaluates the average ranks of the algorithms, calculated as Rj = 1
N

∑N
i=1 rj

i . Under the null
hypothesis, which assumes that all algorithms are equivalent in performance and thus their ranks Rj should
be approximately equal, the Friedman statistic is given by:

χ2
F = 12N

k(k + 1)

 k∑
j=1

(Rj)2 − k(k + 1)2

4


For sufficiently large values of N and k, as a rule of thumb N > 10 and k > 5 (Demšar, 2006), this statistic
follows a χ2 distribution with k − 1 degrees of freedom. Note our experimental setup aligns with these
conditions.

The Friedman test, though less powerful than parametric repeated-measures ANOVA when its assumptions
are met, is more robust in handling violations of these assumptions, with (Friedman, 1940) observing largely
consistent results between the two tests across 56 independent problems.

F.2 Sign test

The sign test (Salzberg, 1997) is a non-parametric statistical method commonly used to compare the
performance of two algorithms across multiple datasets. It operates by evaluating the number of datasets on
which each algorithm outperforms the other, assuming that the outcomes are independent and identically
distributed. Contrary to popular belief, counting only significant wins and losses actually makes the tests less
reliable, as it imposes an arbitrary threshold of p < 0.05 to determine meaningfulness (Demšar, 2006).

Under the null hypothesis, it is assumed that the two algorithms are equivalent in their performance, and
thus, each algorithm has an equal probability (0.5) of outperforming the other on a given dataset. This leads
to the number of wins for either algorithm following a binomial distribution with parameters N (the total
number of datasets) and p = 0.5. The null hypothesis is rejected if the observed number of wins for one
algorithm is significantly different from N

2 , indicating that one algorithm systematically outperforms the
other.

For small sample sizes, as in our case, with a total number of datasets being equal to 14, critical values can
be determined directly from the cumulative distribution function of the binomial distribution. For larger
sample sizes, the central limit theorem allows for an approximation using the normal distribution. Specifically,
the number of wins under the null hypothesis can be approximated by a normal distribution with mean
µ = N/2 and standard deviation σ =

√
N/2. In cases where there are ties in performance, these ties are

treated as supporting evidence for the null hypothesis. To account for this, ties are split evenly between
the two algorithms. If the number of tied datasets is odd, one tie is disregarded to ensure that only whole
numbers are assigned to each algorithm.

G Baseline comparisons

We provide an overview of included baselines for the top-performing LTSF models (Tab. 10). We observe
that previous models were replaced by recent ones as the field progressed. We highlight that TimeMixer was
not included as a baseline in TimeXer, although it was available at the time.
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Table 10: Included baseline models from top-performing models in long-term forecasting.
x: included; o: introduced
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DLinear Zeng et al. (2023) o x x x x x
PatchTST Nie et al. (2023) x o x x x x x
TimeMixer Wang et al. (2024a) x x o x x x x x x x
iTransformer Liu et al. (2024a) x x o x x x x x x x x
TimeXer Wang et al. (2024c) x x x o x x x x x x x x

Table 11: Efficiency metrics. Average efficiency metrics for all optimized models over datasets and
prediction horizons (1,000 iterations, batch size of 1). Best and second-best are highlighted.

Metric DLinear PatchTST iTransformer TimeMixer TimeXer S-Mamba xLSTMTime ModernTCN
Train TP ( seq

s ) 1663.58 281.78 324.49 92.82 162.29 68.57 187.70 97.30
Train memory (MB) 150.86 477.50 170.13 380.41 243.88 456.86 179.42 1086.83
Test TP ( seq

s ) 4483.45 879.69 1038.87 311.98 529.83 246.29 577.69 242.11
Test memory (MB) 143.66 440.95 155.21 197.89 176.21 158.36 167.00 717.08
FLOPs (G) 0.02 0.69 0.20 15.16 4.36 0.13 0.11 4.21
#params (M) 0.37 2.37 1.54 2.47 3.76 2.40 2.15 74.33

H Full results

Tab. 12 and Tab. 13 shows the full results from our extensive experiments. We present the MSE and MAE
for all forecast horizons T ∈ {96, 192, 336, 720} and their average, respectively. To provide a comprehensive
view, we show the average (Tab. 12) and the best (Tab. 13) values over three random seeds. Tab. 14 presents
the corresponding full results for iPatch.

For completeness, we also included two simple baselines to contextualize model performance in the challenging
task of long-term forecasting. We included ARIMA as a classic statistical forecasting model (Box & Pierce,
1970) and Last Observation Carried Forward (LOCF), which predict all future time steps by repeating the
last observed value from the input sequence (Hewamalage et al., 2023). We observe that, on average, the more
recent machine learning models perform substantially better than the simple baselines (Tab. 12, Tab. 13).
However, ARIMA and LOCF are among the best-performing models on Exchange. This is not surprising,
given that stock market data lacks obvious periodicities and was previously shown to be best predicted
by simple baselines (Hewamalage et al., 2023). This further supports our broader message: no model is
consistently best, and performance can vary widely depending on the dataset.

I Efficiency comparisons

Efficiency metrics setup. The efficiency metrics were computed by evaluating model performance across
1,000 iterations using synthetic input and target data shaped according to the specified sequence length and
prediction horizon stemming from the optimal experimental setup found during the HP search. During each
iteration, the model was executed in either training or inference mode with a batch size of one, depending on
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the configuration, and both the throughput (TP) and peak GPU memory (memory) usage were recorded. The
TP was quantified as the number of processed sequences per second, calculated by dividing the total number
of sequences by the elapsed time. We run the above analyses on a machine equipped with an RTX 4090
NVIDIA GPU and an AMD EPYC 7742 64-Core Processor (128 threads) CPU. Additionally, we computed
the number of floating-point operations (FLOPs) and total trainable parameters (#params), offering insight
into the theoretical computational complexity of evaluated models. We subsequently scaled all efficiency
metrics for interpretability: parameters to millions, FLOPs to gigaflops, and memory usage to megabytes
(MB).

Efficiency metrics results. In Tab. 11, we provide an overview of the average efficiency metrics for all
models over datasets and prediction horizons. Note that for each dataset-horizon combination, we compute
the metrics for the configuration found with the HP search. Unsurprisingly, DLinear consistently demonstrates
superior efficiency across all metrics, achieving the highest training and inference throughput, lowest memory
usage, minimal FLOPs, and the smallest parameter count. iTransformer is the second most efficient model in
all metrics, except for FLOPs (xLSTMTime), showing an advantageous trade-off between throughput and
memory across the more complex models. TimeMixer and TimeXer lag particularly behind in terms of
efficiency against DLinear. Specifically, DLinear attains a training throughput of ≈1,600 sequences/s, making
it roughly 10× faster than TimeXer and 20× faster than TimeMixer. In terms of training memory, DLinear
requires on average 150.86 MB, which is about 2.5× less than TimeMixer and 1.6× less than TimeXer.
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Table 12: Full results. Mean values for all prediction lengths. Best and second-best are highlighted.
Model DLinear PatchTST iTransformer TimeMixer TimeXer SMamba xLSTMTime ModernTCN ARIMA CLOF

Dataset
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.37 0.394 0.38 0.404 0.381 0.403 0.37 0.397 0.376 0.4 0.386 0.406 0.445 0.467 0.474 0.472 0.944 0.598 1.294 0.713
192 0.423 0.437 0.418 0.428 0.413 0.438 0.411 0.435 0.417 0.43 0.431 0.44 0.493 0.493 0.506 0.488 0.967 0.616 1.325 0.733
336 0.543 0.532 0.422 0.433 0.435 0.442 0.438 0.442 0.425 0.434 0.489 0.472 0.499 0.486 0.524 0.501 0.974 0.63 1.33 0.746
720 0.561 0.546 0.438 0.463 0.468 0.488 0.497 0.498 0.483 0.496 0.563 0.545 0.683 0.614 0.623 0.579 0.975 0.641 1.335 0.755

ETTh1

Avg 0.474 0.477 0.414 0.432 0.424 0.443 0.429 0.443 0.425 0.44 0.467 0.466 0.53 0.515 0.532 0.51 0.965 0.621 1.321 0.737

96 0.341 0.374 0.326 0.374 0.337 0.387 0.341 0.387 0.348 0.396 0.335 0.382 0.344 0.386 0.342 0.389 0.818 0.638 1.463 0.777
192 0.402 0.407 0.362 0.412 0.403 0.425 0.397 0.427 0.401 0.428 0.402 0.419 0.392 0.425 0.42 0.426 0.912 0.68 1.517 0.805
336 0.412 0.435 0.406 0.445 0.423 0.452 0.498 0.481 0.428 0.461 0.412 0.438 0.452 0.456 0.421 0.444 0.983 0.714 1.577 0.831
720 0.458 0.472 0.48 0.496 0.469 0.485 0.49 0.5 0.472 0.493 0.486 0.498 0.549 0.527 0.473 0.483 1.065 0.752 1.647 0.867

ETTm1

Avg 0.403 0.422 0.394 0.431 0.408 0.437 0.432 0.449 0.412 0.445 0.409 0.434 0.434 0.449 0.414 0.435 0.944 0.696 1.551 0.82

96 0.304 0.368 0.283 0.341 0.303 0.352 0.287 0.344 0.296 0.349 0.298 0.351 0.549 0.552 0.322 0.371 0.366 0.388 0.432 0.422
192 0.423 0.443 0.36 0.392 0.384 0.402 0.388 0.406 0.366 0.397 0.379 0.398 0.582 0.536 0.389 0.401 0.463 0.442 0.534 0.473
336 0.513 0.487 0.406 0.426 0.403 0.425 0.414 0.429 0.402 0.427 0.417 0.428 0.615 0.574 0.46 0.454 0.528 0.487 0.597 0.511
720 0.7 0.599 0.468 0.48 0.425 0.444 0.409 0.439 0.444 0.452 0.439 0.451 1.465 0.925 0.448 0.467 0.576 0.524 0.594 0.519

ETTh2

Avg 0.485 0.474 0.379 0.41 0.378 0.405 0.374 0.404 0.377 0.406 0.383 0.407 0.803 0.647 0.405 0.423 0.483 0.46 0.539 0.481

96 0.108 0.221 0.109 0.224 0.118 0.232 0.11 0.225 0.114 0.227 0.118 0.234 0.109 0.223 0.111 0.227 0.192 0.298 0.202 0.31
192 0.134 0.247 0.14 0.256 0.148 0.262 0.14 0.253 0.156 0.269 0.151 0.265 0.145 0.254 0.144 0.261 0.224 0.324 0.235 0.337
336 0.162 0.271 0.168 0.281 0.183 0.29 0.179 0.285 0.178 0.287 0.181 0.291 0.183 0.29 0.188 0.293 0.258 0.348 0.27 0.361
720 0.201 0.304 0.209 0.315 0.216 0.32 0.218 0.318 0.225 0.324 0.223 0.324 0.243 0.344 0.223 0.324 0.324 0.389 0.335 0.401

ETTm2

Avg 0.151 0.261 0.156 0.269 0.166 0.276 0.162 0.27 0.168 0.277 0.168 0.279 0.17 0.278 0.166 0.276 0.25 0.34 0.261 0.352

96 0.133 0.23 0.13 0.227 0.135 0.23 0.131 0.228 0.137 0.24 0.132 0.23 0.13 0.225 0.258 0.365 1.306 0.862 1.588 0.945
192 0.147 0.243 0.147 0.241 0.153 0.253 0.147 0.243 0.149 0.249 0.159 0.253 0.152 0.246 0.262 0.366 1.457 0.9 1.596 0.951
336 0.163 0.262 0.172 0.272 0.17 0.269 0.165 0.264 0.163 0.261 0.173 0.27 0.171 0.267 0.275 0.377 1.824 0.954 1.618 0.961
720 0.203 0.299 0.207 0.304 0.205 0.297 0.183 0.281 0.229 0.321 0.203 0.298 0.2 0.29 0.305 0.396 3.624 1.088 1.647 0.975

Electricity

Avg 0.162 0.259 0.164 0.261 0.165 0.262 0.156 0.254 0.17 0.268 0.166 0.263 0.163 0.257 0.275 0.376 2.053 0.951 1.612 0.958

96 0.168 0.226 0.146 0.195 0.164 0.216 0.157 0.211 0.147 0.199 0.156 0.21 0.15 0.195 0.172 0.226 0.212 0.252 0.259 0.254
192 0.216 0.275 0.197 0.247 0.208 0.258 0.204 0.254 0.192 0.241 0.207 0.252 0.199 0.247 0.209 0.262 0.255 0.294 0.309 0.292
336 0.263 0.316 0.243 0.282 0.26 0.3 0.253 0.289 0.245 0.286 0.261 0.301 0.243 0.281 0.249 0.29 0.32 0.34 0.376 0.338
720 0.331 0.377 0.312 0.33 0.322 0.343 0.311 0.328 0.31 0.329 0.326 0.344 0.324 0.348 0.334 0.349 0.416 0.396 0.465 0.394

Weather

Avg 0.244 0.298 0.225 0.263 0.238 0.279 0.231 0.271 0.224 0.264 0.237 0.277 0.229 0.268 0.241 0.282 0.301 0.321 0.352 0.319

96 0.102 0.23 0.086 0.203 0.092 0.214 0.084 0.201 0.086 0.205 0.086 0.206 0.142 0.28 0.088 0.206 0.082 0.199 0.081 0.196
192 0.158 0.29 0.197 0.317 0.184 0.307 0.76 0.526 0.181 0.302 0.184 0.306 0.536 0.56 0.198 0.315 0.168 0.289 0.167 0.289
336 0.616 0.581 0.338 0.424 0.354 0.431 0.384 0.449 0.359 0.433 0.454 0.496 0.688 0.645 0.4 0.457 0.316 0.406 0.306 0.398
720 0.678 0.636 0.849 0.693 0.884 0.71 0.973 0.73 0.868 0.707 0.981 0.742 1.431 0.916 2.359 1.146 0.814 0.687 0.81 0.676

Exchange

Avg 0.389 0.434 0.368 0.409 0.379 0.416 0.55 0.476 0.374 0.412 0.426 0.438 0.699 0.6 0.761 0.531 0.345 0.395 0.341 0.39

96 2.734 0.913 2.049 0.781 0.472 0.165 2.047 0.754 1.27 0.344 0.168 0.127 6.533 1.236 1.728 0.531 4.702 1.166 2.192 0.87
192 4.569 1.152 3.333 0.941 0.841 0.272 3.504 0.948 3.161 0.877 0.224 0.121 7.579 1.378 2.88 0.748 6.484 1.378 3.489 1.04
336 5.965 1.328 4.813 1.095 2.373 0.437 4.995 1.119 5.177 1.173 0.864 0.261 7.25 1.465 4.042 0.922 7.04 1.452 5.08 1.211
720 5.101 1.341 4.905 1.207 3.08 0.66 4.93 1.224 4.988 1.268 1.726 0.465 5.128 1.37 3.701 0.874 5.047 1.289 5.305 1.341

Motor
Imagery

Avg 4.592 1.183 3.775 1.006 1.692 0.383 3.869 1.011 3.649 0.915 0.745 0.244 6.622 1.362 3.088 0.769 5.818 1.321 4.016 1.115

96 0.769 0.65 0.664 0.596 0.673 0.598 0.673 0.596 0.657 0.591 0.67 0.596 0.87 0.657 0.691 0.604 0.863 0.675 1.106 0.764
192 1.002 0.746 0.835 0.669 0.831 0.667 0.837 0.669 0.824 0.663 0.827 0.664 1.135 0.759 0.843 0.672 1.013 0.739 1.261 0.826
336 1.286 0.846 1.066 0.754 1.053 0.749 1.057 0.75 1.05 0.748 1.042 0.744 1.317 0.836 1.056 0.751 1.207 0.809 1.467 0.895
720 1.547 0.964 1.363 0.88 1.356 0.876 1.358 0.877 1.348 0.872 1.349 0.874 1.522 0.946 1.344 0.871 1.495 0.92 1.782 1.007

TDBrain

Avg 1.151 0.802 0.982 0.725 0.978 0.722 0.981 0.723 0.97 0.719 0.972 0.72 1.211 0.799 0.984 0.725 1.145 0.786 1.404 0.873

96 0.529 0.441 0.522 0.43 0.54 0.441 0.551 0.452 0.526 0.432 0.552 0.442 0.537 0.41 0.527 0.435 0.665 0.504 1.16 0.598
192 0.569 0.463 0.572 0.454 0.571 0.458 0.595 0.472 0.574 0.454 0.564 0.453 0.557 0.422 0.567 0.454 0.74 0.541 1.214 0.646
336 0.591 0.473 0.591 0.466 0.595 0.468 0.589 0.467 0.588 0.465 0.584 0.461 0.572 0.435 0.588 0.463 0.756 0.548 1.077 0.628
720 0.643 0.509 0.627 0.488 0.615 0.488 0.631 0.495 0.639 0.496 0.567 0.453 0.608 0.452 0.64 0.491 0.788 0.571 1.149 0.653

BeijingAir

Avg 0.583 0.472 0.578 0.46 0.58 0.464 0.592 0.471 0.582 0.462 0.567 0.452 0.569 0.43 0.581 0.461 0.737 0.541 1.15 0.631

96 0.007 0.016 0.01 0.041 0.01 0.058 0.006 0.016 0.009 0.041 0.007 0.037 0.008 0.016 0.281 0.39 0.931 0.764 1.264 0.862
192 0.007 0.015 0.01 0.027 0.008 0.037 0.006 0.019 0.01 0.037 0.009 0.044 0.008 0.028 0.055 0.157 1.003 0.81 1.345 0.9
336 0.008 0.019 0.009 0.042 0.013 0.059 0.008 0.028 0.011 0.032 0.011 0.053 0.009 0.024 0.131 0.258 1.043 0.829 1.281 0.87
720 0.011 0.028 0.016 0.058 0.015 0.058 0.013 0.027 0.016 0.038 0.014 0.043 0.015 0.041 0.132 0.256 1.104 0.856 1.281 0.871

Benzene
Concen-
tration

Avg 0.008 0.02 0.011 0.042 0.012 0.053 0.008 0.022 0.012 0.037 0.01 0.044 0.01 0.028 0.15 0.265 1.02 0.815 1.293 0.876

96 0.806 0.73 0.815 0.732 0.809 0.727 0.813 0.729 0.807 0.728 0.808 0.726 0.788 0.716 0.84 0.745 1.911 1.092 1.878 1.083
192 0.839 0.751 0.862 0.758 0.851 0.755 0.855 0.755 0.847 0.753 0.847 0.752 0.826 0.743 0.867 0.762 1.978 1.122 1.949 1.115
336 0.85 0.76 0.864 0.764 0.863 0.763 0.868 0.765 0.861 0.762 0.863 0.764 0.841 0.754 0.888 0.777 1.976 1.128 1.944 1.119
720 0.858 0.764 0.877 0.772 0.874 0.77 0.876 0.771 0.871 0.769 0.873 0.769 0.853 0.761 0.893 0.78 2.011 1.141 1.979 1.132

Australia
Rainfall

Avg 0.838 0.751 0.855 0.757 0.849 0.754 0.853 0.755 0.847 0.753 0.848 0.753 0.827 0.743 0.872 0.766 1.969 1.121 1.938 1.112

96 1.086 0.627 1.169 0.652 1.186 0.655 1.12 0.63 1.145 0.656 1.188 0.654 1.136 0.633 1.158 0.651 1.152 0.661 1.506 0.782
192 0.978 0.627 1.09 0.645 1.094 0.651 1.048 0.641 1.034 0.629 1.089 0.646 1.075 0.629 1.092 0.641 1.069 0.658 1.414 0.774
336 1.021 0.648 1.092 0.658 1.065 0.653 1.011 0.634 1.01 0.638 1.068 0.65 1.014 0.626 1.022 0.626 1.04 0.654 2.097 0.782
720 0.901 0.619 0.99 0.634 1.008 0.635 0.959 0.619 0.99 0.636 0.993 0.632 0.979 0.623 1.002 0.634 1.088 0.681 1.492 0.821

KDDCup
2018

Avg 0.997 0.63 1.086 0.647 1.088 0.648 1.035 0.631 1.045 0.64 1.085 0.646 1.051 0.628 1.068 0.638 1.087 0.664 1.627 0.79

96 0.239 0.258 0.22 0.254 0.226 0.246 0.225 0.248 0.219 0.245 0.216 0.229 0.216 0.222 0.456 0.403 2.655 1.093 1.995 0.954
192 0.266 0.272 0.257 0.274 0.255 0.255 0.259 0.267 0.377 0.367 0.258 0.261 0.244 0.24 0.416 0.38 2.644 1.1 2.029 0.964
336 0.307 0.295 0.305 0.303 0.312 0.306 0.297 0.284 0.289 0.287 0.304 0.291 0.291 0.265 0.451 0.4 2.663 1.123 2.065 0.988
720 0.381 0.332 0.384 0.341 0.386 0.334 0.389 0.338 0.36 0.327 0.39 0.332 0.376 0.31 0.541 0.449 3.011 1.208 2.238 1.052

Pedestrian
Counts

Avg 0.298 0.289 0.291 0.293 0.295 0.285 0.292 0.284 0.311 0.307 0.292 0.278 0.282 0.259 0.466 0.408 2.744 1.131 2.082 0.99

Avg Avg 0.77 0.484 0.691 0.458 0.547 0.416 0.712 0.462 0.683 0.453 0.484 0.407 0.971 0.519 0.714 0.49 1.419 0.726 1.392 0.746

Rank Avg 4.79 4.86 3.64 4.07 4.5 4.64 4.21 4.29 4.21 4.29 4.21 4.29 5.57 5.14 6.64 6.14 8.36 8.43 8.86 8.86
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Table 13: Full results. Best values for all prediction lengths. Best and second-best are highlighted.
Model DLinear PatchTST iTransformer TimeMixer TimeXer SMamba xLSTMTime ModernTCN ARIMA CLOF

Dataset
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.37 0.393 0.378 0.403 0.379 0.4 0.368 0.396 0.371 0.398 0.385 0.403 0.432 0.459 0.467 0.466 0.944 0.598 1.294 0.713
192 0.423 0.437 0.412 0.423 0.411 0.437 0.404 0.426 0.407 0.423 0.428 0.438 0.449 0.451 0.502 0.485 0.967 0.616 1.325 0.733
336 0.543 0.532 0.417 0.431 0.433 0.441 0.434 0.438 0.422 0.431 0.47 0.46 0.47 0.461 0.522 0.499 0.974 0.63 1.33 0.746
720 0.555 0.543 0.423 0.454 0.465 0.485 0.491 0.494 0.481 0.493 0.556 0.542 0.601 0.578 0.596 0.563 0.975 0.641 1.335 0.755

ETTh1

Avg 0.472 0.476 0.408 0.428 0.422 0.441 0.424 0.439 0.42 0.436 0.46 0.461 0.488 0.487 0.522 0.503 0.965 0.621 1.321 0.737

96 0.341 0.374 0.324 0.371 0.329 0.38 0.329 0.378 0.339 0.39 0.331 0.378 0.34 0.382 0.341 0.385 0.818 0.638 1.463 0.777
192 0.402 0.407 0.361 0.41 0.401 0.424 0.369 0.413 0.393 0.422 0.395 0.416 0.387 0.422 0.414 0.421 0.912 0.68 1.517 0.805
336 0.409 0.432 0.402 0.443 0.416 0.447 0.487 0.473 0.425 0.457 0.411 0.438 0.448 0.452 0.421 0.443 0.983 0.714 1.577 0.831
720 0.457 0.47 0.479 0.494 0.466 0.482 0.477 0.491 0.465 0.489 0.483 0.496 0.518 0.506 0.467 0.478 1.065 0.752 1.647 0.867

ETTm1

Avg 0.402 0.421 0.391 0.429 0.403 0.433 0.416 0.439 0.405 0.44 0.405 0.432 0.423 0.441 0.411 0.432 0.944 0.696 1.551 0.82

96 0.301 0.366 0.281 0.339 0.296 0.348 0.284 0.341 0.295 0.346 0.297 0.35 0.533 0.54 0.32 0.365 0.366 0.388 0.432 0.422
192 0.423 0.443 0.356 0.39 0.379 0.397 0.384 0.404 0.362 0.395 0.375 0.396 0.516 0.5 0.386 0.401 0.463 0.442 0.534 0.473
336 0.513 0.487 0.403 0.424 0.398 0.423 0.397 0.42 0.398 0.422 0.416 0.427 0.59 0.559 0.452 0.45 0.528 0.487 0.597 0.511
720 0.699 0.599 0.455 0.471 0.424 0.443 0.408 0.439 0.443 0.451 0.431 0.446 1.429 0.914 0.441 0.465 0.576 0.524 0.594 0.519

ETTh2

Avg 0.484 0.474 0.374 0.406 0.374 0.403 0.368 0.401 0.375 0.404 0.38 0.405 0.767 0.628 0.4 0.42 0.483 0.46 0.539 0.481

96 0.108 0.221 0.109 0.223 0.118 0.232 0.109 0.224 0.113 0.227 0.117 0.233 0.107 0.22 0.111 0.227 0.192 0.298 0.202 0.31
192 0.134 0.247 0.138 0.255 0.147 0.261 0.139 0.253 0.15 0.264 0.149 0.264 0.136 0.248 0.143 0.26 0.224 0.324 0.235 0.337
336 0.162 0.271 0.166 0.279 0.182 0.289 0.175 0.283 0.177 0.285 0.176 0.288 0.18 0.288 0.181 0.289 0.258 0.348 0.27 0.361
720 0.201 0.304 0.208 0.313 0.214 0.317 0.216 0.315 0.221 0.321 0.22 0.323 0.239 0.338 0.222 0.323 0.324 0.389 0.335 0.401

ETTm2

Avg 0.151 0.261 0.155 0.268 0.165 0.275 0.16 0.269 0.165 0.274 0.166 0.277 0.165 0.273 0.164 0.275 0.25 0.34 0.261 0.352

96 0.133 0.23 0.13 0.227 0.134 0.229 0.13 0.227 0.137 0.239 0.129 0.228 0.13 0.224 0.249 0.359 1.306 0.862 1.588 0.945
192 0.147 0.243 0.146 0.241 0.149 0.246 0.146 0.242 0.148 0.247 0.156 0.251 0.149 0.242 0.254 0.361 1.457 0.9 1.596 0.951
336 0.163 0.261 0.171 0.271 0.163 0.26 0.163 0.262 0.16 0.257 0.169 0.268 0.168 0.265 0.269 0.373 1.824 0.954 1.618 0.961
720 0.203 0.299 0.206 0.304 0.202 0.296 0.178 0.279 0.213 0.311 0.201 0.296 0.195 0.289 0.302 0.394 3.624 1.088 1.647 0.975

Electricity

Avg 0.161 0.258 0.163 0.261 0.162 0.258 0.154 0.252 0.165 0.263 0.164 0.261 0.16 0.255 0.268 0.372 2.053 0.951 1.612 0.958

96 0.168 0.226 0.145 0.195 0.162 0.214 0.149 0.201 0.146 0.197 0.154 0.209 0.149 0.195 0.17 0.223 0.212 0.252 0.259 0.254
192 0.216 0.275 0.196 0.246 0.207 0.258 0.194 0.244 0.189 0.239 0.202 0.249 0.197 0.244 0.201 0.253 0.255 0.294 0.309 0.292
336 0.262 0.316 0.241 0.281 0.258 0.299 0.25 0.285 0.243 0.282 0.251 0.294 0.241 0.279 0.247 0.288 0.32 0.34 0.376 0.338
720 0.331 0.377 0.311 0.328 0.32 0.341 0.307 0.326 0.309 0.328 0.313 0.337 0.317 0.343 0.315 0.342 0.416 0.396 0.465 0.394

Weather

Avg 0.244 0.298 0.223 0.262 0.237 0.278 0.225 0.264 0.222 0.262 0.23 0.272 0.226 0.265 0.233 0.277 0.301 0.321 0.352 0.319

96 0.081 0.202 0.084 0.201 0.089 0.21 0.082 0.2 0.085 0.204 0.086 0.206 0.142 0.28 0.085 0.203 0.082 0.199 0.081 0.196
192 0.155 0.284 0.193 0.313 0.181 0.303 0.171 0.297 0.18 0.302 0.175 0.299 0.431 0.507 0.174 0.296 0.168 0.289 0.167 0.289
336 0.309 0.424 0.323 0.413 0.345 0.427 0.359 0.437 0.35 0.425 0.417 0.475 0.653 0.625 0.373 0.44 0.316 0.406 0.306 0.398
720 0.514 0.57 0.846 0.692 0.843 0.697 0.907 0.704 0.866 0.705 0.959 0.734 1.357 0.891 2.258 1.12 0.814 0.687 0.81 0.676

Exchange

Avg 0.265 0.37 0.362 0.405 0.364 0.409 0.38 0.409 0.37 0.409 0.409 0.428 0.646 0.576 0.723 0.515 0.345 0.395 0.341 0.39

96 2.728 0.911 2.028 0.779 0.438 0.159 1.956 0.721 1.15 0.306 0.163 0.124 6.415 1.222 1.668 0.522 4.702 1.166 2.192 0.87
192 4.551 1.15 3.289 0.934 0.709 0.238 3.463 0.937 3.11 0.857 0.199 0.116 7.382 1.358 2.863 0.743 6.484 1.378 3.489 1.04
336 5.956 1.327 4.777 1.088 2.071 0.385 4.921 1.105 5.061 1.146 0.686 0.232 6.927 1.382 4.014 0.916 7.04 1.452 5.08 1.211
720 5.098 1.341 4.885 1.2 2.766 0.569 4.911 1.22 4.984 1.264 1.665 0.428 5.006 1.336 3.67 0.868 5.047 1.289 5.305 1.341

Motor
Imagery

Avg 4.583 1.182 3.745 1 1.496 0.338 3.813 0.996 3.576 0.893 0.679 0.225 6.432 1.325 3.054 0.762 5.818 1.321 4.016 1.115

96 0.769 0.65 0.662 0.595 0.67 0.597 0.664 0.592 0.657 0.591 0.662 0.592 0.861 0.652 0.691 0.603 0.863 0.675 1.106 0.764
192 1.002 0.746 0.833 0.669 0.828 0.665 0.83 0.666 0.822 0.663 0.822 0.663 1.12 0.754 0.842 0.672 1.013 0.739 1.261 0.826
336 1.286 0.846 1.047 0.747 1.044 0.745 1.049 0.747 1.037 0.743 1.038 0.742 1.307 0.832 1.055 0.751 1.207 0.809 1.467 0.895
720 1.544 0.963 1.361 0.879 1.355 0.875 1.354 0.876 1.344 0.871 1.347 0.873 1.502 0.937 1.344 0.871 1.495 0.92 1.782 1.007

TDBrain

Avg 1.15 0.801 0.976 0.722 0.974 0.721 0.974 0.72 0.965 0.717 0.967 0.717 1.198 0.794 0.983 0.724 1.145 0.786 1.404 0.873

96 0.528 0.44 0.518 0.428 0.515 0.433 0.528 0.441 0.522 0.43 0.535 0.437 0.528 0.406 0.527 0.435 0.665 0.504 1.16 0.598
192 0.569 0.463 0.572 0.454 0.568 0.458 0.576 0.467 0.563 0.448 0.561 0.452 0.556 0.421 0.567 0.454 0.74 0.541 1.214 0.646
336 0.591 0.473 0.59 0.466 0.593 0.467 0.588 0.466 0.586 0.464 0.582 0.46 0.566 0.433 0.587 0.463 0.756 0.548 1.077 0.628
720 0.641 0.507 0.623 0.486 0.612 0.487 0.629 0.493 0.635 0.494 0.547 0.445 0.605 0.449 0.638 0.489 0.788 0.571 1.149 0.653

BeijingAir

Avg 0.582 0.471 0.576 0.458 0.572 0.461 0.58 0.467 0.577 0.459 0.556 0.449 0.564 0.427 0.58 0.46 0.737 0.541 1.15 0.631

96 0.007 0.014 0.009 0.039 0.009 0.048 0.006 0.013 0.009 0.039 0.007 0.033 0.008 0.013 0.279 0.388 0.931 0.764 1.264 0.862
192 0.006 0.013 0.009 0.024 0.008 0.035 0.006 0.016 0.01 0.033 0.008 0.041 0.008 0.017 0.052 0.153 1.003 0.81 1.345 0.9
336 0.008 0.017 0.009 0.04 0.013 0.055 0.007 0.02 0.011 0.03 0.01 0.048 0.008 0.011 0.127 0.255 1.043 0.829 1.281 0.87
720 0.011 0.026 0.015 0.05 0.014 0.053 0.012 0.026 0.014 0.028 0.013 0.04 0.014 0.026 0.13 0.253 1.104 0.856 1.281 0.871

Benzene
Concen-
tration

Avg 0.008 0.018 0.011 0.038 0.011 0.048 0.008 0.019 0.011 0.032 0.01 0.041 0.009 0.017 0.147 0.262 1.02 0.815 1.293 0.876

96 0.805 0.729 0.814 0.731 0.808 0.727 0.81 0.728 0.806 0.726 0.805 0.725 0.784 0.715 0.838 0.743 1.911 1.092 1.878 1.083
192 0.839 0.75 0.855 0.756 0.849 0.754 0.852 0.754 0.847 0.752 0.846 0.751 0.825 0.742 0.867 0.762 1.978 1.122 1.949 1.115
336 0.85 0.759 0.864 0.763 0.862 0.762 0.865 0.764 0.859 0.761 0.862 0.763 0.84 0.753 0.883 0.774 1.976 1.128 1.944 1.119
720 0.857 0.764 0.877 0.772 0.874 0.77 0.874 0.77 0.871 0.769 0.872 0.769 0.852 0.761 0.892 0.779 2.011 1.141 1.979 1.132

Australia
Rainfall

Avg 0.838 0.751 0.852 0.756 0.848 0.753 0.85 0.754 0.846 0.752 0.846 0.752 0.825 0.743 0.87 0.765 1.969 1.121 1.938 1.112

96 1.082 0.627 1.14 0.647 1.183 0.654 1.113 0.627 1.111 0.645 1.185 0.653 1.126 0.628 1.141 0.65 1.152 0.661 1.506 0.782
192 0.978 0.626 1.09 0.645 1.087 0.646 1.044 0.636 1.034 0.628 1.084 0.645 1.072 0.626 1.086 0.638 1.069 0.658 1.414 0.774
336 1.006 0.641 1.085 0.654 1.059 0.65 1.008 0.629 0.999 0.63 1.034 0.635 1 0.621 1.021 0.621 1.04 0.654 2.097 0.782
720 0.889 0.616 0.988 0.631 1.007 0.635 0.956 0.617 0.975 0.629 0.99 0.632 0.977 0.622 1 0.634 1.088 0.681 1.492 0.821

KDDCup
2018

Avg 0.989 0.627 1.076 0.644 1.084 0.646 1.03 0.627 1.03 0.633 1.073 0.641 1.044 0.624 1.062 0.636 1.087 0.664 1.627 0.79

96 0.238 0.257 0.218 0.252 0.22 0.241 0.219 0.239 0.216 0.241 0.212 0.227 0.216 0.222 0.455 0.401 2.655 1.093 1.995 0.954
192 0.265 0.272 0.255 0.273 0.253 0.255 0.255 0.266 0.322 0.331 0.253 0.258 0.244 0.24 0.415 0.379 2.644 1.1 2.029 0.964
336 0.307 0.295 0.303 0.301 0.309 0.302 0.295 0.283 0.284 0.282 0.302 0.291 0.291 0.265 0.451 0.399 2.663 1.123 2.065 0.988
720 0.381 0.332 0.378 0.339 0.383 0.332 0.375 0.328 0.358 0.324 0.385 0.33 0.372 0.307 0.54 0.448 3.011 1.208 2.238 1.052

Pedestrian
Counts

Avg 0.298 0.289 0.289 0.291 0.291 0.283 0.286 0.279 0.295 0.295 0.288 0.277 0.281 0.259 0.465 0.407 2.744 1.131 2.082 0.99

Avg Avg 0.759 0.478 0.686 0.455 0.529 0.41 0.691 0.452 0.673 0.448 0.474 0.403 0.945 0.508 0.706 0.486 1.419 0.726 1.392 0.746

Rank Avg 4.64 4.71 3.86 4.29 4.5 5 3.86 3.79 4.29 4.14 4.43 4.43 5.43 4.86 6.57 6.36 8.5 8.5 8.93 8.93
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Table 14: Full results iPatch. We present TSLib (left) and UTSD datasets (right). See Tab. 4 for average
MSE, MAE, and Rank.

Dataset
Model iPatch

Dataset
Model iPatch

Metric MAE MSE Metric MAE MSE
Statistic Mean Min Mean Min Statistic Mean Min Mean Min

ETTh1

96 0.4074 0.3995 0.3877 0.379

MotorImagery

96 0.1433 0.1287 0.4238 0.3541
192 0.4241 0.4221 0.415 0.413 192 0.2633 0.2079 1.0616 0.7352
336 0.4301 0.4284 0.4241 0.4198 336 0.3999 0.3458 2.183 1.8659
720 0.4635 0.4599 0.45 0.4451 720 1.1959 1.1879 4.8701 4.8506

Average 0.4313 0.4275 0.4192 0.4142 Average 0.5006 0.4676 2.1346 1.9515

ETTm1

96 0.383 0.3726 0.3229 0.3115

TDBrain

96 0.5985 0.5909 0.6747 0.6592
192 0.418 0.4171 0.3749 0.3719 192 0.6704 0.665 0.8383 0.824
336 0.4478 0.446 0.4289 0.4259 336 0.7483 0.7423 1.0502 1.036
720 0.4963 0.4919 0.4937 0.4862 720 0.871 0.8704 1.3459 1.3451

Average 0.4363 0.4319 0.4051 0.3989 Average 0.722 0.7171 0.9773 0.9661

ETTh2

96 0.3445 0.3423 0.2935 0.2902

BeijingAir

96 0.4345 0.4302 0.5334 0.5231
192 0.3953 0.3931 0.3759 0.3711 192 0.4559 0.455 0.569 0.5643
336 0.4337 0.4323 0.4226 0.4205 336 0.4665 0.4658 0.5962 0.5941
720 0.4443 0.4419 0.4197 0.4172 720 0.4721 0.4685 0.5909 0.5843

Average 0.4045 0.4024 0.3779 0.3747 Average 0.4573 0.4549 0.5724 0.5665

ETTm2

96 0.2282 0.2281 0.1145 0.1134

BenzeneConcentration

96 0.0197 0.0192 0.0059 0.0059
192 0.2595 0.2593 0.146 0.1457 192 0.0247 0.0244 0.0112 0.0111
336 0.2865 0.285 0.18 0.1786 336 0.0188 0.0166 0.0077 0.0076
720 0.3181 0.3148 0.214 0.2099 720 0.0315 0.0302 0.0152 0.0149

Average 0.2731 0.2718 0.1636 0.1619 Average 0.0237 0.0226 0.01 0.0098

Electricity

96 0.2315 0.2304 0.1333 0.133

AustraliaRainfall

96 0.7284 0.7274 0.8115 0.8093
192 0.2471 0.2456 0.1511 0.15 192 0.7533 0.7524 0.85 0.8484
336 0.2808 0.2782 0.1798 0.1769 336 0.7623 0.7608 0.8624 0.8583
720 0.3196 0.3159 0.2295 0.2268 720 0.7691 0.7683 0.8719 0.8702

Average 0.2698 0.2675 0.1734 0.1717 Average 0.7533 0.7522 0.8489 0.8466

Weather

96 0.204 0.2031 0.1532 0.1525

KDDCup2018

96 0.6556 0.6539 1.1853 1.1828
192 0.2501 0.2494 0.2032 0.2016 192 0.6455 0.6454 1.0951 1.0948
336 0.2879 0.2878 0.2516 0.2511 336 0.6397 0.6366 1.0313 1.0267
720 0.3348 0.3337 0.3202 0.3192 720 0.6504 0.6478 1.0057 0.9874

Average 0.2692 0.2685 0.232 0.2311 Average 0.6478 0.6459 1.0793 1.0729

Exchange

96 0.2146 0.2114 0.0934 0.0906

PedestrianCounts

96 0.2316 0.2309 0.2139 0.213
192 0.3127 0.3067 0.1901 0.1853 192 0.2628 0.2498 0.2564 0.2475
336 0.4260 0.4219 0.3461 0.3397 336 0.2797 0.274 0.2939 0.2894
720 0.8205 0.8104 1.1578 1.1318 720 0.3196 0.318 0.3726 0.372

Average 0.4435 0.4376 0.4469 0.4369 Average 0.2734 0.2682 0.2842 0.2805
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