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Abstract

Image watermarking embeds imperceptible signals into AI-generated images for
deepfake detection and provenance verification. Although recent semantic-level
watermarking methods demonstrate strong resistance against conventional pixel-
level removal attacks, their robustness against more advanced removal strategies
remains underexplored, raising concerns about their reliability in practical sce-
narios. Existing removal attacks primarily operate in the pixel domain without
altering image semantics, which limits their effectiveness against semantic-level
watermarks. In this paper, we propose Next Frame Prediction Attack (NFPA),
the first semantic-level removal attack. Unlike pixel-level attacks, NFPA formu-
lates watermark removal as a video generation task: it treats the watermarked
image as the initial frame and aims to subtly manipulate the image semantics to
generate the next-frame image, i.e., the unwatermarked image. We conduct a
comprehensive evaluation on eight state-of-the-art image watermarking schemes,
demonstrating that NFPA consistently outperforms thirteen removal attack base-
lines in terms of the trade-off between watermark removal and image quality.
Our results reveal the vulnerabilities of current image watermarking methods
and highlight the urgent need for more robust watermarks. Code is available at
https://github.com/1249748036/NFPA.

1 Introduction

Text-to-image (T2I) generation models [34, 35, 38] have found widespread applications across
various domains [11, 36, 23], yet they also face significant risks of malicious misuse, particularly in
generating deepfake content [16, 40, 1]. Numerous cases demonstrate that these models are exploited
to produce false information [4] and inappropriate materials [10]. As an active defense mechanism,
image watermarking embeds imperceptible watermarks into generated images to effectively mitigate
the negative consequences of model abuse [39]. For example, DeepMind employs the SynthID [14] to
embed invisible watermarks in AI-generated images for copyright protection and misuse prevention.
However, since malicious attackers may become aware of these watermarks and attempt to remove
them, watermarks must possess sufficient robustness to withstand potential removal attacks [37].

To address this issue, many image watermarking schemes prioritize robustness as a core design
principle, with a gradual research shift from pixel-level to semantic-level watermarks that offer greater
potential for resilience [48]. For example, HiDDeN [49], an early pixel-level watermarking scheme,
embeds watermarks by introducing small perturbations in the pixel space and incorporates noise
simulation layers to enhance robustness against noise-based distortions. In contrast, TreeRing [43]
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Figure 1: Examples of existing removal attacks. Pixel-level attacks attempt to remove the watermark
by modifying pixels, yet the semantic-level watermark remains detectable. In contrast, our attack
manipulates image semantics to effectively evade watermark detection.

represents a recent semantic-level approach that embeds circular watermark patterns in the initial
noise frequency domain of T2I models, thereby manipulating the semantic features of the generated
images. This design improves the watermark’s adaptability to transformations such as translation
and rotation. Compared to pixel-level watermarks, semantic-level watermarks leverage the semantic
structure of images for detection, making them inherently more robust to image transformations,
denoising, and other perturbations [8].

However, despite the robustness of state-of-the-art (SOTA) image watermarking schemes against
certain removal attacks, their resilience remains insufficiently validated and underexplored. This gap
may lead to an overestimation of their reliability in real-world applications, fostering a false sense of
security [3, 22]. As illustrated in Figure 1, existing attack methods primarily operate at the pixel level,
attempting to remove watermarks through minor perturbations in the pixel space without modifying
the underlying semantic structure. This limitation may explain their reduced effectiveness against
semantic-level watermarks. Consequently, a natural question arises:

Is there a semantic-level removal attack capable of removing SOTA image watermarks?

Our Work. This paper, for the first time, proposes a semantic-level watermark removal attack,
providing a clear affirmative answer to the question raised above. Unlike traditional pixel-level
removal methods, we develop a semantic-level attack that removes watermarks in AI-generated
images by manipulating their semantic structure. However, the semantic-level attack faces several
key challenges, primarily how to effectively remove the watermark while preserving the semantic
content of the image as much as possible (see section 3 for details).

Inspired by advances in video generation [21, 31, 30], we propose Next Frame Prediction Attack
(NFPA) to address these challenges. Specifically, NFPA formulates the semantic-level watermark
removal task as a next-frame prediction problem: it treats the watermarked image as the initial frame
x0, and removes the watermark by semantically modifying the image through the prediction of the
next frame x1. Since temporal consistency is a fundamental property of video generation, x1 typically
differs only slightly from x0, and the two frames are generally considered visually equivalent [45],
thereby ensuring semantic consistency between the attacked and watermarked images. In addition,
NFPA possesses several key properties: (i) universal, effective against all image watermark types, (ii)
black-box, requiring no knowledge of the watermark, (iii) data-free, requiring no additional data, and
(iv) query-free, requiring no feedback from the detector.

To enable the effectiveness of NFPA, we design a novel video (frame) generation framework to
support our attack pipeline. This architecture leverages a pre-trained T2I generation model and
adapts it as a next-frame prediction model in a zero-shot, tuning-free manner, allowing for the rapid
generation of high-quality next-frame images without additional training. Specifically, we take the
watermarked image as a conditional input and obtain its latent representation through the DDIM
inversion process, which serves as the initial-frame noise. We then construct a flow matrix to simulate
the motion trajectory of the next frame and accordingly warp the initial noise to produce the noise
for the next frame. To effectively remove the watermark, we constrain the next-frame noise to lie
within a predefined search space while maximizing its distance from the initial noise. Furthermore,
we replace the standard self-attention mechanism with a frame-level attention mechanism to enhance
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spatiotemporal consistency between adjacent frames. Finally, we apply the denoising process to
generate the next-frame image, which corresponds to the unwatermarked image.

Overall, the main contributions of this paper are as follows:

• We propose the first semantic-level image watermark removal attack, Next Frame Prediction
Attack (NFPA), which focuses on removing watermarks by modifying the semantic structure
of the image. Drawing inspiration from video generation, we reframe the semantic-level
removal attack as a next-frame prediction task, ensuring that the attacked image maintains
semantic consistency with the original watermarked image.

• We design a novel zero-shot, tuning-free next-frame prediction framework, which takes the
watermarked image as the initial frame condition and efficiently generates unwatermarked
images through next-frame prediction. By introducing a flow matrix with a maximization
search strategy, NFPA effectively facilitates watermark removal.

• We conduct a systematic evaluation of NFPA on eight image watermarking schemes and
compare it with thirteen removal attack baselines. The experimental results validate that
NFPA effectively removes SOTA image watermarks while preserving image quality, further
revealing significant shortcomings in the robustness of current image watermarking schemes.

2 Related Work

2.1 AI-Generated Image Watermarks

Watermarking for AI-generated images aims to embed imperceptible watermarks into generated
content [26]. These watermarks are nearly invisible to the human eye but can be reliably detected by
designated detectors, making them widely applicable in areas such as copyright protection [19, 50, 27]
and deepfake detection [29, 47, 6]. Early developments in this field rely primarily on traditional
handcrafted methods, such as DwtDct [9], which embed watermarks in the frequency domain using
wavelet and discrete cosine transforms. Recent research shifts toward leveraging deep learning models
to embed watermarks, with the goal of enhancing watermark robustness. Based on the embedding
stage, image watermarking schemes are generally categorized into two types [3]: Post-processing
Watermarks, which add watermarks after image generation, and in-processing watermarks, which
integrate watermarking during the generation process.

Post-processing Watermarks. StegaStamp [41] adopts a joint optimization framework of encoder-
decoder to encode and decode the watermark, introducing a noise layer to enhance the robustness
of the watermark. RivaGAN [46] improves the encoder-decoder framework by incorporating an
attention mechanism. SSL watermarking [12] employs a self-supervised training paradigm, using
data augmentation to enhance the watermark’s adaptability to image transformations. However, these
watermarks are essentially subtle disturbances and are vulnerable to denoising or other more advanced
attack methods. Although StegaStamp demonstrates good robustness, it may leave noticeable artifacts
in the image [41].

In-processing Watermarks. Stable Signature [13] fine-tunes the VAE decoder of the diffusion
model to ensure the generated image contains a watermark. Gaussian Shading [44] offers a lossless
watermarking solution by mapping the watermark message into latent representations that follow
a standard Gaussian distribution. TreeRing [43] introduces preset patterns into the initial noise of
the diffusion model, causing a change in the semantic structure of the generated image. RingID [8]
improves upon Tree-Ring, optimizing watermark capacity.

In addition, watermarking methods can also be categorized based on whether they alter the semantic
content of the image, distinguishing between pixel-level and semantic-level watermarks. The former,
such as DwtDct, RivaGAN, SSL, and Stable Signature, typically embed ownership signals directly
into the image pixels or frequency domain through perturbations or frequency modulation. These
approaches are generally subtle and nearly imperceptible to humans but are vulnerable to common
distortions such as compression, cropping, or noise injection. The latter, including TreeRing, RingID,
Gaussian Shading, and StegaStamp, typically operate in the latent space of diffusion models, encoding
ownership by modifying high-level semantic features. Semantic-level watermarks offer stronger
robustness and are considered a powerful alternative to pixel-level watermarks [48], but it may also
introduce potential sensitivity to changes in semantic structure.
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Figure 2: Pipeline of NFPA. By adapting a pretrained T2I model as a next-frame prediction frame-
work, NFPA takes a watermarked image as input and generates a semantically coherent next-frame
prediction in which the watermark is effectively removed.

2.2 Watermark Removal Attacks

Watermark removal attacks aim to remove embedded watermarks in images to evade watermark
detection. According to their underlying attack mechanisms, existing methods can be categorized
into three types [3, 20]: distortion attacks, regeneration attacks, and adversarial attacks.

Distortion attacks involve common image processing operations applied during image transmission,
such as cropping, rotation, and JPEG compression. These attacks are characterized by their simplicity
and efficiency but often achieve only limited effectiveness in removing watermarks [49]. Regeneration
attacks seek to remove watermarks by reconstructing the image using generative models. The typical
process involves adding noise to the watermarked image and then reconstructing it through models
such as diffusion models or variational autoencoders. While regeneration attacks are particularly
effective against pixel-level watermarking methods, recent semantic-level watermarking techniques
demonstrate significant robustness against such attacks [48]. In contrast, adversarial attacks optimize
adversarial perturbations to mislead watermark detectors. However, these attacks require stronger
attacker capabilities, such as knowledge of the watermark or access to the watermark detector.
Attackers may also collect watermarked and clean images to train surrogate detectors, leveraging
transferability to conduct adversarial attacks. The additional attack cost limits their application,
though they show some effectiveness against SOTA semantic-level watermarking schemes [37].

3 Method

In this section, we present a detailed description of NFPA and explain how it addresses two key
challenges associated with semantic-level removal attacks through its methodological design: (i)
watermark removal, how it ensures that the semantic changes are effective enough to cause watermark
detection failure; (ii) semantic preservation, how it ensures that semantic modifications maintain
visual consistency with the original image, thus preserving perceptual fidelity.

3.1 Overview

Motivated by advances in video generation, we formulate the semantic-level image watermark
removal problem as a video generation task. However, existing video generation methods either fail
to provide effective guidance for watermark removal or incur substantial training and computational
costs, making them unsuitable for NFPA. To address this, we design a novel image-to-video generation
framework to enhance the targeting and efficiency of NFPA’s attack. This framework leverages the
generation capabilities of T2I models, such as Stable Diffusion-v2.1-base [2], to perform zero-shot
next-frame prediction, enabling watermark removal without any training or fine-tuning. Notably,
NFPA naturally benefits from ongoing improvements in image generation models.

Formally, We define an image-to-video generation function f , which takes a watermarked image
x ∈ RH×W×3 as input and outputs a sequence of video frames V ∈ Rm×H×W×3, where H ×W

4



denotes the image resolution and m denotes the number of frames. In our attack setting, we fix m = 2
to significantly reduce the computational cost of generation, thereby simplifying f into a next-frame
prediction function. As a result, the output video sequence V consists of only two frames, denoted as
V = [x0, x1] ∈ R2×H×W×3, where x0 represents the reconstruction of the input watermarked image
x, and x1 denotes the next frame based on x. Accordingly, the attack pipeline of NFPA is formalized
as f(x) = [x0, x1], where x1 serves as the attack target, i.e., the unwatermarked image.

Attack Pipeline. Figure 2 illustrates the architecture of our zero-shot next-frame prediction framework
and the overall attack pipeline of NFPA. As the first step, NFPA performs DDIM inversion to map
the input watermarked image x to its corresponding noise representation xT . DDIM inversion
approximates the reverse diffusion process, aiming to find a latent noise xT such that the forward
denoising process approximately reconstructs the original image, i.e., x ≈ Denoiser(xT ). By
applying this operation, we extract the noise representation x0

T from the input watermarked image x,
which serves as the initialization for the next-frame prediction task. To model the dynamics of video
frames, we construct an optical flow matrix based on x0

T to simulate the spatial motion trajectory of
the next frame. Specifically, we apply an optical flow transformation to x0

T , resulting in a candidate
next-frame noise representation x1

T . To enhance watermark removal, we constrain the optical flow
matrix within a restricted search space and optimize it to maximize the distance between x1

T and x0
T ,

thereby disrupting with the potential watermark signal.

To ensure spatiotemporal consistency between adjacent frames, we replace the self-attention module
in the diffusion model with a frame-attention module, which better captures semantic dependencies
across frames and mitigates artifacts caused by local disturbances. Finally, we concatenate x0

T and x1
T

along the frame dimension and feed them into the denoising process. Leveraging the model’s forward
denoising capability, we generate the corresponding next-frame image x1. Since x1

T is sufficiently
separated from the watermark-related distribution of x0

T , the resulting image x1 naturally removes
the embedded watermark, thus achieving semantic-level watermark removal.

3.2 Watermark Removal: Optical Flow Transformation

To enable effective watermark removal, we propose an optimization algorithm over the optical flow
matrix that maximizes the perceptual distance between the noise representations of consecutive
frames in the latent space. This strategy drives the noise distribution away from watermark-related
features, thereby decoupling watermark traces from the latent representation. Specifically, starting
from the initial noise representation x0

T , obtained via DDIM inversion of a watermarked image, we
search for a two-dimensional optical flow matrix f ∈ RH×W×2 within a constrained motion space
Sδ . Applying this flow to x0

T yields a candidate next-frame noise representation x1
T . The optimization

objective is defined as:
f∗ = argmax

f∈Sδ

ℓd
(
x0
T ,W(x0

T ; f)
)
, (1)

where W(x0
T ; f) = x1

T denotes the result of backward warping x0
T using flow f , and ℓd(·) is a

perceptual distance metric in latent space (e.g., ℓ1).

The search space Sδ defines a bounded set of admissible flow perturbations, ensuring that the
generated next-frame noise x1

T remains within a plausible local motion range relative to x0
T . Formally,

we define Sδ as:

Sδ =
{
f ∈ RH×W×2

∣∣ |fi,j,k| ≤ δ, ∀(i, j, k) ∈ [1, H]× [1,W ]× [1, 2]
}
, (2)

where fi,j,k denotes the k-th component of the flow vector at spatial location (i, j), and δ > 0 is a
predefined motion bound that constrains the maximum displacement per pixel along each spatial
axis. This constraint ensures that the generated x1

T remains within the local motion subspace of x0
T ,

preserving temporal coherence through spatial continuity. Simultaneously, x1
T exhibits a statistically

distinct distribution from x0
T , disrupting the latent consistency typically exploited by watermarking

mechanisms. By integrating this adversarial flow search into the generation pipeline, we enable
watermark removal in a black-box setting, without requiring any prior knowledge of the watermarking
algorithm or the watermark carrier.

Motion in video sequences typically comprises two components: global transformations induced by
camera motion and local variations caused by object motion within the scene. Since watermarked
images may lack prominent dynamic objects, we focus on modeling camera-induced motion to guide
semantic transformations. To this end, we construct flow-based transformation matrices that simulate
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various camera motions by spatially warping the initial noise representation. We design three basic
yet representative types of camera motion to evaluate the generality and effectiveness of NFPA under
different motion conditions:

• Horizontal motion (x-axis): simulates lateral movement of the camera (e.g., from left to right).
• Vertical motion (y-axis): simulates vertical displacement of the camera (e.g., from top to bottom).
• Combined horizontal and vertical motion (xy-axis): simulates motion along both axes, where the

camera can be moved in any direction within the image plane. The resulting flow matrix combines
both horizontal and vertical components to form a more complex motion pattern.

It is important to note that NFPA is agnostic to specific camera motion patterns. Our attack does not
rely on any fixed trajectory and can be extended to more complex or naturalistic motion types, such
as camera zoom or rotation around an object.

3.3 Semantic Preservation: Frame-Attention

To ensure semantic and visual consistency between the next-frame prediction x1 and the initial frame
x0, we introduce a modified frame-attention mechanism specifically designed for this task. We adapt
the self-attention mechanism in the UNet backbone (i.e., Denoiser) into a frame-attention mechanism
without modifying any model parameters. This mechanism explicitly conditions the generation of
the next frame on the first frame in the sequence, thereby preserving semantic information such as
object identity, spatial layout, and appearance across frames, despite the perturbations introduced for
watermark removal.

In the original self-attention formulation, the input feature map x ∈ Rh×w×c is linearly projected
into queries Q, keys K, and values V , and the attention output is computed as:

Self-Attention(Q,K, V ) = Softmax
(
QK⊤
√
n

)
V, (3)

where n denotes the embedding dimension of the features. In our frame-attention setting, we consider
a sequence of two frames x0:1 = [x0, x1] ∈ R2×h×w×c, where x0 serves as the reference frame. For
each frame xk, where k ∈ {0, 1}, we compute attention using the query Qk from frame k and the
key-value pairs (K0, V 0) from the reference frame x0:

Frame-Attention(Qk,K0, V 0) = Softmax
(
Qk(K0)⊤√

n

)
V 0. (4)

Importantly, the reference frame x0 retains the standard self-attention mechanism to preserve its
internal feature consistency and to provide a stable semantic anchor during each denoising timestep.
Meanwhile, the next frame x1 performs cross-attention with respect to x0, explicitly inheriting
semantic structures such as object arrangement and scene appearance from the reference frame.

This asymmetric attention formulation enforces a one-sided semantic dependency: x1 is conditioned
on x0. As a result, the generated frame x1 remains consistent with the original image in terms of
semantics, while maintaining sufficient flexibility in the latent noise space to facilitate watermark
removal. We find this design essential for balancing the competing objectives of watermark removal
and semantic preservation. It maintains coherent object boundaries and improves perceptual fidelity.
In practice, this frame-conditioning strategy enables NFPA to generate realistic and temporally
coherent frames that are perceptually indistinguishable from the original watermarked images.

4 Evaluation and Analysis

4.1 Evaluation Setup

Model and Dataset. We use Stable Diffusion-v2.1-base (SD-v2.1) [2] as the default image generation
model. SD-v2.1 is a widely adopted open-source generative model capable of producing high-fidelity
images. Based on SD-v2.1 and the image-text descriptions from the MS-COCO-2017 [24] validation
set, we generate AI-created images without watermarks to serve as the original images. We use 50
inference steps to generate all images and set a random seed for each image to eliminate the influence
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of stochastic variation. On this basis, we apply various image watermarking methods to produce the
corresponding watermarked images. All experiments are conducted on a machine equipped with an
Nvidia GeForce RTX 4090 GPU.

Proposed Attack Setup. We construct a next-frame prediction framework based on SD-v2.1 by
default and set the maximum search range δ of the optical flow matrix to 40, limiting the motion
range of the next-frame image to between -40 and 40 pixels. By adjusting δ allows us to trade-off
Quality-detectability, see Appendix D for details. For DDIM inversion, we set the number of inference
steps to 10 by default to improve attack efficiency and use an empty prompt during the inversion
process, as the prompt for the watermarked image is unknown during the attack. In the subsequent
experimental section, we perform ablation studies to examine the impact of hyperparameters such as
the base model, frame-attention, and inference steps.

Watermark Baselines. We consider four post-processing watermark methods, including Dwt-
Dct [9], RivaGAN [46], StegaStamp [41], and SSL Watermarking [12], as well as four in-processing
watermark methods, including Tree-Ring [43], RingID [8], StableSignature [13], and GaussianShad-
ing [44]. These methods cover a range of techniques, from traditional pixel-level watermarking to the
latest semantic-level watermarking. The watermark embedding process strictly follows the default
configurations provided in the official implementations of each method, with detailed information
provided in Appendix A. In the watermark detection phase, we follow prior work [48, 43], and set
the decision threshold to reject the null hypothesis at a significance level of p < 0.01. The null
hypothesis H0 assumes that the image does not contain an embedded watermark. Formally, this
hypothesis is defined as: H0 :

∑n
i=τ+1

(
n
i

)
(0.5)n < 0.01, where n denotes the total number of

embedded watermark bits, and τ is the minimum number of correctly extracted bits required to reject
H0. For example, when embedding a n = 32 bit watermark, if at least 23 bits are correctly extracted,
H0 can be rejected, indicating that the image contains a watermark.

Attack Baselines. To comprehensively evaluate the performance of our method in removing image
watermarks, we consider seven distortion attack baselines: Rotation, JPEG Compression, Cropping &
Scaling, Gaussian Blur, Gaussian Noise, Color Jitter, and Translation. We also consider four regenera-
tion attack baselines: Diffusion-Attack (DA) [48, 37], VAE-Attack (VA) [48], CtrlRegen+ [25], and a
comparison baseline that uses Stable Video Diffusion (SVD) [5] to predict the next frame. In addition,
we consider two adversarial attack baselines: model substitution adversarial attack (MSAA) [37] and
IRA [28]. Because there is a trade-off between watermark removal effectiveness and image quality,
we adjust the attack parameters to faithfully reflect the performance of each baseline, ensuring they
produce similar image quality for a fair comparison. Under these settings, the attack with the lowest
watermark verification accuracy can reasonably be considered the most effective. See Appendix B
for detailed attack parameters.

Evaluation Metrics. Following prior work [43, 48, 15], we adopt the true positive rate at a false
positive rate of 1% (TPR@1%FPR) as the metric for evaluating watermark robustness. This setting
aligns with the null hypothesis defined in watermarking baselines, and it quantifies the ability of the
watermark detector to reliably identify watermarked images while maintaining a low false positive
rate. To assess the fidelity of attacked images relative to their originals, we use the Frechet Inception
Distance (FID) [17] to measure image quality and the CLIP score [33, 7] to evaluate the semantic
consistency between the image and its associated prompt. For TPR@1%FPR, we apply all attack
baselines to 1,000 watermarked images to compute the metric. To evaluate the FID and CLIP scores,
we compute them over 1,000 attacked watermarked images and 1,000 corresponding real image-text
pairs from the MS-COCO-2017 validation set. Since our attacks operate at the semantic level,
pixel-level metrics such as PSNR and SSIM are not applicable, and thus are excluded from this study.

4.2 Evaluation Results

We conducted experiments on eight image watermarking schemes and validated the performance of
NFPA by comparing it against thirteen watermark removal attacks. Our extensive experiments aim to
answer the following research questions (RQs):

• [RQ1] How effective is NFPA in removing image watermarks?
• [RQ2] How well does NFPA preserve image quality?
• [RQ3] How efficient is NFPA in executing attacks?
• [RQ4] How do different modules affect the performance of NFPA?
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Table 1: [RQ1] Watermark removal performance of the removal attack across eight image watermark-
ing methods, evaluated using TPR@1%FPR. Lower values indicate more effective removal. Bolded
values denote the best performance; underlined italicized values indicate the second best.

Attack DwtDct RivaGAN SSL StegaStamp TreeRing StableSignature RingID GaussianShading Avg.
None 0.79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
JPEG Compression 0.01 0.59 0.08 1.00 0.97 0.79 1.00 0.99 0.68
Cropping & Scaling 0.01 0.96 0.90 0.00 0.05 0.99 0.01 0.00 0.36
Gaussian Blur 0.14 1.00 1.00 1.00 1.00 0.66 1.00 1.00 0.85
Gaussian Noise 0.00 0.86 0.02 1.00 0.99 0.41 1.00 0.99 0.66
Color Jitter 0.16 0.86 0.62 0.99 0.97 0.96 0.99 0.98 0.82
Rotation 0.01 0.99 1.00 0.45 0.21 0.98 1.00 0.00 0.58
Translation 0.03 1.00 1.00 0.17 0.38 1.00 0.31 0.01 0.49
VA 0.02 0.73 0.34 1.00 1.00 0.95 1.00 1.00 0.75
DA 0.01 0.05 0.01 0.72 0.92 0.00 0.99 0.99 0.46
CtrlRegen+ 0.01 0.02 0.03 0.36 0.73 0.00 0.96 1.00 0.39
SVD 0.10 0.53 0.51 1.00 0.91 0.10 0.99 0.76 0.61
IRA 0.02 0.02 0.00 0.15 0.04 0.00 0.14 0.00 0.05
MSAA - - - 1.00 0.07 - - - 0.53
NFPA-x 0.01 0.15 0.16 0.20 0.25 0.00 0.16 0.00 0.12
NFPA-y 0.01 0.13 0.16 0.14 0.22 0.00 0.10 0.00 0.10
NFPA-xy (Ours) 0.01 0.13 0.09 0.02 0.07 0.00 0.02 0.00 0.04
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Figure 3: [RQ1] Histogram distributions of TreeRing before and after attack. Images with smaller ℓ1
distances are more likely to contain watermarks.

RQ1: Analysis of Watermark Removal Effectiveness. Table 1 reports the detection accuracy
(TPR@1%FPR) of eight representative image watermarking methods under various attack strategies.
We include MSAA only for TreeRing and StegaStamp due to their high computational cost, as
it requires training watermark-specific surrogate detectors. We use the official pretrained models
released by the authors for these two watermarking methods.

We summarize four key observations from the results: First, traditional distortion attacks (e.g., JPEG
compression, blurring, noise) generally fail to remove watermarks effectively. Most watermarking
methods still exhibit high detection rates after such perturbations, indicating strong robustness
to low-level image degradations. Second, regeneration attacks such as diffusion attack (DA) are
more effective, particularly for pixel-level watermarking methods like DwtDct and Stable Signature.
For these methods, the TPR drops substantially demonstrating that latent-space regeneration can
disrupt low-level watermark features. However, DA remains less effective against semantic-level
watermarks such as TreeRing and RingID, which are embedded through high-level features. Third,
adversarial attacks such as MSAA show greater potential in removing semantic-level watermarks.
Nevertheless, they incur high attack costs, including training dedicated agent models or running
iterative optimization loops, which limits their scalability and practicality. Finally, NFPA achieves
consistently superior performance across all evaluated watermarking methods. Regardless of the
motion strategy employed (e.g., x-axis, y-axis, or combined xy-axis), NFPA significantly reduces
detection accuracy for both pixel-level and semantic-level watermarks. It achieves the lowest average
TPR@1%FPR (0.04) across all attacks. As illustrated in Figure 3, NFPA substantially increases the
ℓ1 distance between the attacked images and the watermark patterns of TreeRing, rendering them
indistinguishable from unwatermarked images. These results validate our approach that decoupling
watermark signals in the latent space (formulated through the optimization in Equation 1) is an
effective strategy for watermark removal.

8



W
at

er
m

ar
ke

d 
Im

ag
e 

   
   

DwtDct RivaGAN SSL StegaStamp TreeRing StableSignature RingID GaussianShading

A
tta

ck
ed

 
Im

ag
e 

  

Figure 4: [RQ2] Attacked image examples of NFPA for eight image watermarking schemes.

It is worth noting that although IRA demonstrates performance comparable to ours, it is inherently an
adversarial attack whose effectiveness heavily depends on the architectural similarity between the
target and surrogate models. As reported in the original paper, when the target and surrogate models
differ (e.g., SD2.1 vs. SDXL), IRA fails to reduce the TreeRing watermark detection rate below
0.33 even after 100 optimization steps. In our implementation, both the target and surrogate models
use SD2.1, corresponding to IRA’s white-box setting and effectively representing its upper-bound
performance. In contrast, NFPA operates as a stable black-box attack that makes no assumptions
about the target model’s architecture. This design enables our method to achieve state-of-the-art
performance in terms of watermark removal effectiveness and practicality.

Table 2: [RQ2] Average FID
and CLIP scores of water-
marked images under attack.

Attack FID↓ CLIP↑
None 66.57 0.33
JPEG 73.42 0.33
Crop 69.33 0.32
Blur 73.99 0.33
Noise 69.98 0.32
Color Jitter 70.84 0.32
Rotation 73.63 0.32
Translation 68.15 0.31
VA 70.92 0.33
DA 74.89 0.32
CtrlRegen+ 66.60 0.32
SVD 67.85 0.32
IRA 66.60 0.32
MSAA 73.34 0.32
NFPA-x 69.40 0.32
NFPA-y 69.39 0.32
NFPA-xy 69.48 0.32

RQ2: Analysis of Image Quality Preservation. To evaluate the
impact of removal attacks on visual quality, we report the average
FID and CLIP score across eight watermarking methods in Table 2,
with full results provided in Appendix C. Notably, we calibrate
the parameters of all evaluated attacks to ensure comparable image
quality, thereby enabling a fair comparison of watermark removal
effectiveness. NFPA achieves image quality on par with the original
images, demonstrating its ability to preserve visual fidelity during the
watermark removal process. Crucially, under similar quality condi-
tions, NFPA outperforms all other baselines in watermark removal
performance. These results highlight the trade-off achieved by NFPA
between effective watermark removal and high perceptual quality.
Examples in Figure 4 further support these findings, showing that the
subtle semantic modifications introduced via next-frame prediction
have negligible perceptual impact. Additional image examples for
baseline attacks are provided in Appendix C.

Furthermore, we control the attack intensity by adjusting the corre-
sponding parameters and present the resulting quality–detectability
trade-off in Appendix D. NFPA consistently achieves the optimal
Pareto frontier across all evaluated scenarios.

Table 3: [RQ3] Time cost of
different attacks.

Attack Time (s/image)
VA 0.013.15×10−3

DA 0.300.01
CtrlRegen+ 2.410.48
SVD 79.173.62
IRA 323.870.65
MSAA 2.480.25
NFPA-xy 1.270.02

RQ3: Analysis of Attack Efficiency. Distortion attacks involve
simple transformations and incur only millisecond-level overhead.
In contrast, regeneration and adversarial attacks are more effective
but substantially more costly, e.g., IRA takes on average approxi-
mately five minutes per image, as shown in Table 3. In this context,
NFPA achieves a favorable balance between attack effectiveness and
execution efficiency. By leveraging our novel next-frame prediction
framework, NFPA substantially reduces the computational cost of
video generation, lowering the average removal time for a single
watermarked image to 1.2 seconds. This design enables NFPA to
maintain strong attack performance while ensuring practical runtime
efficiency, outperforming existing baselines in terms of overall attack utility.

RQ4: Ablation Study of Different Components. We perform a systematic ablation study to quantify
how the choice of base model, the inclusion of the frame-attention mechanism, and the number of
inference denoising steps affect NFPA ’s watermark removal performance and perceptual quality. All
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Figure 5: [RQ4] Ablation study results for base models.
Base

Model
TreeRing Stable Signature

T@1%F ↓ FID ↓ CLIP Score ↑ T@1%F ↓ FID ↓ CLIP Score ↑
SD-v1.4 0.05 69.38 0.33 0.00 69.07 0.33
SD-v1.5 0.04 69.47 0.33 0.00 69.04 0.33
SD-v2.0 0.07 69.35 0.33 0.00 68.83 0.33
SD-v2.1 0.07 69.18 0.33 0.00 68.87 0.33
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Figure 6: [RQ4] Effect of frame-attention on image quality.
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Figure 7: [RQ4] Performance across in-
ference steps for TreeRing watermark.

ablations use two representative watermarking schemes, TreeRing and Stable Signature, to ensure
conclusions generalize across different watermark types.

First, Table Figure 5 presents results obtained with several diffusion backbones, ranging from SD-v1.4
to SD-v2.1. As the capacity of the base model increases, we observe a modest improvement in
perceptual image quality. Importantly, NFPA ’s ability to remove watermarks remains consistently
strong across all tested model versions. This stability demonstrates that NFPA is largely model
agnostic and that its removal capability does not rely on a particular backbone architecture.

Second, Figure Figure 6 compares outputs produced with and without the frame-attention module.
Removing this module causes a clear and substantial drop in visual fidelity and inter-frame semantic
coherence. These results confirm that the frame-attention mechanism is essential for preserving
semantic consistency across frames while allowing effective watermark removal.

Third, Figure Figure 7 analyzes the influence of the number of denoising steps used during inference.
Increasing the number of steps yields finer denoising and therefore better pixel-level reconstruction
and perceptual quality. At the same time, more steps can slightly reduce attack strength because the
reconstruction becomes closer to the original image, which can preserve some watermark evidence at
the semantic level. To strike a practical balance between removal effectiveness and visual quality,
we adopt 10 denoising steps as the default setting. We also study the role of the maximum optical
flow search range, denoted by δ, in Appendix D. When δ is set to zero, no motion is introduced
and NFPA reduces to a latent regeneration attack that performs poorly. As δ grows, the method can
explore a larger motion and feature space to better decouple watermark signals from content, but
larger values of δ may introduce more perceptual distortion. This parameter therefore provides a
controllable trade-off between detection evasion and image quality.

5 Conclusion

In this work, we introduce NFPA, the first semantic-level image watermark removal method, which
reveals the vulnerabilities of state-of-the-art watermarking techniques. Leveraging our next-frame
prediction model, NFPA effectively addresses the dual challenges of watermark removal and semantic
preservation. Extensive experimental results demonstrate that NFPA achieves SOTA watermark
removal performance, while striking an optimal balance between image quality and attack efficiency.
Our findings highlight the inherent weaknesses of current watermarking approaches, underscoring
the urgent need for stronger defense mechanisms in AI-generated image watermarking.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Please see Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The codes are available at https://anonymous.4open.science/r/NFPA/.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codes are available at https://github.com/1249748036/NFPA. and
we use open source model and data, which are cited correctly in the main paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see subsection 4.1, Appendix A and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Please see Table 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see subsection 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

17



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix F
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any models or data.
Guidelines:

• The answer NA means that the paper poses no such risks.

18

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets we used are public and cited properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The codes and data are available at https://anonymous.4open.science/
r/NFPA/.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not an important, original, or non-standard component of the core
methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Watermark Baselines Descriptions

• DwtDct [9]: DwtDct is a traditional watermark scheme that implants the watermark in
the frequency domain by using a combination of Discrete Wavelet Transform (DWT) and
Discrete Cosine Transform (DCT). For implementation, we utilize a popular Python library
named invisible-watermark 2, and we set the watermark length to 30 bits by default.

• RivaGAN [46]: RivaGAN is an encoder-decoder based watermark scheme originally used
for video watermarking, and can also be adapted for robust image watermarking. This
watermark incorporates a custom attention-based mechanism for embedding arbitrary data.
Additionally, it employs two independent adversarial networks to maintain video quality and
enhance watermark robustness through adversarial optimization. For implementation, we
also leverage invisible-watermark 2 and we set the watermark length to 32 bits by default.

• StegaStamp [41]: StegaStamp also uses a trained encoder neural network to embed the
watermark information, and then leverages a trained decoder neural network to detect the
embedded watermark. However, it introduces more human-visible artifacts, compromising
the image quality. For implementation, we use the code and the pretrained model published
by the original authors 3 and we set the watermark length to 100 bits by default.

• SSL [12]: SSL embeds watermarks in self-supervised-latent spaces by shifting the feature
of the image to a selected region. For implementation, we use the code and the pretrained
model published by the original authors 4 and we set the watermark length to 30 bits by
default.

• StableSignature [13]: StableSignature is an in-process watermark mechanism that embeds
the watermark during the image generation process. It leverages the watermark decoder
from HiDDeN [49], and then fine-tunes the VAE decoder of the latent-diffusion model
(LDM) to ensure the watermark information can be decoded from the generated images. For
implementation, we use the code and the pretrained model published by the original authors
5 and we set the watermark length to 48 bits by default.

• TreeRing [43]: TreeRing also belongs to the in-process watermark mechanism. Differing
from StableSignature, TreeRing modifies the initial seed of the diffusion model by embed-
ding a predefined ring pattern. In the verification stage, the specific pattern can be detected
by using the DDIM inversion process on the watermark images. For implementation, we
use the code published by the original authors 6.

• RingID [8]: Based on TreeRing, RingID also embeds the watermark information by
modifying the initial seed of the diffusion model. It identifies the limitations in Tree-
Ring’s design and introduces a series of approaches for enhanced distinguishability and
robustness. For implementation, we use the code published by the original authors 7.

• GaussianShading [44]: Based on TreeRing, GaussianShading develops an initial seed
modification watermark that doesn’t deteriorate the generated image quality by watermark
randomization and distribution preserving sampling. For implementation, we use the code
published by the original authors 8 and we set the watermark length to 256 bits by default.

Table 4: Watermark length of different watermark schemes. (Note that TreeRing and RingID
watermarks are not binary; thus, this metric is not applicable.)

Watermarking DwtDct RivaGAN StegaStamp SSL StableSignature GaussianShading

Length (# bits) 30 32 100 30 48 256

2https://github.com/ShieldMnt/invisible-watermark
3https://github.com/tancik/StegaStamp
4https://github.com/facebookresearch/ssl_watermarking
5https://github.com/facebookresearch/stable_signature
6https://github.com/YuxinWenRick/tree-ring-watermark
7https://github.com/showlab/RingID
8https://github.com/bsmhmmlf/Gaussian-Shading
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B Attack Baselines Descriptions

• JPEG Compression: It is a widely used image compression method, characterized by a
quality factor parameter that controls the degree of compression. A lower quality factor
results in greater loss of fine image details and increases the likelihood of watermark
degradation. In Section 4, the quality factor is set to 20. In Appendix D, the quality factors
are set to 10, 20, 30, 40, 50, and 60.

• Cropping & Scaling: Crop is a common image processing operation. It maintains portions
of an image based on the selected crop ratio. A higher crop ratio means more portions
remain. Excessive cropping can result in loss of critical image content and may affect the
integrity of the embedded watermark. In our experiments, we employ a center crop strategy
followed by resizing the cropped image to its original size. In Section 4, the crop ratio is set
to 0.7. In Appendix D, the crop ratios are 0.6, 0.65, 0.7, 0.75, 0.8, and 0.85.

• Gaussian Blur: It involves convolving the watermark image with a kernel, such as a
Gaussian kernel, to make the watermark less detectable. The kernel size determines the
degree of distortion applied to the watermark image, and a larger kernel size results in
stronger attack performance. In Section 4, a Gaussian kernel with a size of 15 is used.
In Appendix D, kernel sizes of 5, 7, 9, 11, 13, and 15 are employed.

• Gaussian Noise: It introduces Gaussian noise, to each pixel of the watermark images to
distort the watermark information. For Gaussian noise, the variance determines the strength
of the added noise. A higher variance causes the watermark image to lose more information.
In Section 4, the variance is set to 30. In Appendix D, variances of 10, 15, 20, 25, 30, 35,
and 40 are used.

• Color Jitter: It modifies the brightness of the watermark images by scaling all the pixels in
the watermark images. Larger brightness changes make the watermark harder to detect. In
Section 4, the brightness factor is set to 4. In Appendix D, brightness factors of 1, 2, 3, 4, 5,
and 6 are applied.

• Rotation: It is a common geometric transformation that alters the orientation of an image
by a specified angle. Larger rotation angles can cause misalignment of the embedded
information and increase the risk of watermark distortion. In Section 4, the rotation angle
is set to 10 degrees. In Appendix D, rotation angles of 5, 6, 7, 8, 9, and 10 degrees are
considered.

• VAE-Attack (VA) [48]: VA represents a type of regeneration attack, and can remove the
watermark during the regeneration process. The watermark image is first mapped to the
latent space by the VAE encoder and then mapped to the pixel space by the VAE decoder.
Both the encoder and decoder are parameterized with neural networks. Specifically, we
utilize the VAE-Bmshj2018 9 to perform the VA. The compression factor controls the attack
strength of VA, with lower values corresponding to stronger attacks. In Section 4, the
compression factor is set to 5. In Appendix D, compression factors of 3, 4, 5, 6, 7, and 8 are
used.

• Diffusion-Attack (DA) [48]: DA utilizes a diffusion model to first add noise to the water-
mark image to eliminate the watermark, and then uses the reverse process to reconstruct
the image. Increasing the number of noise steps introduces more noise, thus resulting in
better attack performance. In our experiments, we use the Stable Diffusion-v2.1-base [2] to
perform the DA. In Section 4, the number of noise steps is set to 100. In Appendix D, noise
steps of 70, 80, 90, 100, 110, and 120 are evaluated.

• Model Substitute Adversarial Attack (MSAA) [37]: MSAA involves training a substitute
classifier and conducting projected gradient descent (PGD) attacks on it to deceive black-
box watermark detectors. The perturbation budget ϵ in the PGD attack controls the attack
strength of MSAA, and a larger perturbation budget induces a stronger attack performance.
In Section 4, the perturbation budget is set to 8. In Appendix D, perturbation budgets of 5, 6,
7, 8, 9, and 10 are used.

• Imprint-Removal Attack (IRA) [28]: IRA is an attack designed to remove semantic
watermarks using a black-box proxy model. The attack first maps the watermarked image

9https://github.com/InterDigitalInc/CompressAI
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Table 5: [RQ2] FID of watermarked images under attack. Lower values indicate better semantic
consistency.

Attack DwtDct RivaGAN SSL StegaStamp TreeRing StableSignature RingID GaussianShading Avg.

None 65.22 65.60 64.89 67.79 67.31 66.48 68.32 66.99 66.57

JPEG 72.09 72.31 73.16 79.56 71.99 72.41 73.13 72.75 73.42
Crop 68.22 67.88 67.09 71.19 69.87 68.25 71.00 71.16 69.33
Blur 71.78 70.52 70.07 82.29 74.16 73.10 75.40 74.64 73.99
Noise 69.54 68.89 70.01 73.69 68.26 69.12 70.50 69.84 69.98
Color Jitter 70.60 69.44 71.18 72.41 70.00 69.09 71.23 72.77 70.84
Rotation 72.79 71.12 72.85 79.32 72.56 71.55 74.53 74.28 73.63

VA 69.60 69.97 69.84 74.42 70.66 70.53 71.66 70.68 70.92
DA 70.29 69.69 70.08 70.82 78.25 79.07 82.17 78.74 74.89
IRA 66.11 64.90 66.14 69.70 65.53 66.04 67.83 66.52 66.60
CtrlRegen+ 66.06 66.24 65.60 65.76 67.10 65.97 68.72 67.32 66.60

MSAA - - - 74.67 72.01 - - - 73.34
SVD 66.11 66.80 66.10 69.29 68.55 67.45 69.58 68.91 67.85
Translation 66.51 66.48 65.82 71.65 68.43 67.22 69.77 69.30 68.15
NFPA-x 67.74 68.54 67.89 70.00 69.65 69.85 71.74 69.77 69.40
NFPA-y 68.08 68.73 67.95 69.84 69.93 69.17 71.40 69.99 69.39
NFPA-xy (Ours) 67.52 68.60 71.47 69.56 69.18 68.87 71.09 69.54 69.48

to the proxy model’s latent space and inverts it to estimate the latent noise vector. It then
performs gradient descent to find a perturbation for the latent image, optimizing a loss
function that encourages the new inverted latent noise to be dissimilar to the original one
(e.g., by targeting its negation). The strength of the attack is controlled by the number of
optimization steps. More steps generally improve watermark removal but can increase image
distortion. In the experiments, we set the number of optimization steps to 50 by default.

• CtrlRegen+ [25]: CtrlRegen+ is an adjustable watermark removal method that uses a
controllable regeneration process. The method first encodes the watermarked image into its
latent representation and adds a specified number of noise steps to create a noisy latent. It
then uses a controllable diffusion model, guided by semantic and spatial features extracted
from the original watermarked image, to denoise this latent and reconstruct the image. The
number of noise steps controls the attack strength; more steps lead to more thorough water-
mark removal, particularly for high-perturbation watermarks, while the control networks
maintain high image quality and consistency. In the experiment, we set the number of noise
steps to 500 following the source code.

• SVD [5]: It uses Stable Video Diffusion (SVD), a trained latent diffusion model for generat-
ing short video clips from a single conditioning image. We use the watermarked image and
an empty text prompt as input conditions to generate the video. To align with our method’s
setup, we by default use the frame at generated video index 1 (i.e., the next frame) as the
attacked image.

• Translation: Translation is a common geometric transformation that shifts an image hori-
zontally or vertically by a specified number of pixels. This spatial displacement interferes
with the detection of embedded watermarks, especially when the detection process depends
on position. Larger translation distances cause more severe displacement and increase
the risk of watermark distortion. To align with our method’s setup, we set the translation
distance to 40 pixels in both the horizontal and vertical directions.

C Analysis of Image Quality Preservation

To comprehensively evaluate the impact of removal attacks on image quality, we report detailed results
for all eight watermarking schemes in terms of FID and CLIP score. As shown in Table 5 and Table 6,
NFPA consistently achieves FID and CLIP scores comparable to those of the original images,
indicating negligible degradation in visual fidelity. These results confirm that NFPA effectively
preserves perceptual quality while successfully removing watermarks. Figure 8 presents image
examples of attacked images produced by each method across all watermarking schemes. Based on
our next-frame prediction frame, NFPA introduces only minor semantic modifications, resulting in
images that remain visually indistinguishable from their watermarked counterparts. These qualitative
results further support the effectiveness of our approach in maintaining high image fidelity across
diverse watermarking scenarios.
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Figure 8: [RQ2] Attacked image examples for eight image watermarking schemes.
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Table 6: [RQ2] CLIP score of watermarked images under attack. Higher values indicate better image
quality.

Attack DwtDct RivaGAN SSL StegaStamp TreeRing StableSignature RingID GaussianShading Avg.

None 0.32 0.33 0.33 0.32 0.33 0.33 0.33 0.33 0.33

JPEG 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Crop 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
Blur 0.32 0.33 0.33 0.32 0.33 0.33 0.33 0.33 0.33
Noise 0.32 0.32 0.32 0.31 0.32 0.32 0.32 0.32 0.32
Color Jitter 0.32 0.32 0.32 0.31 0.32 0.32 0.32 0.32 0.32
Rotation 0.32 0.32 0.32 0.32 0.33 0.33 0.32 0.33 0.32

VA 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
DA 0.32 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32
IRA 0.31 0.32 0.32 0.31 0.32 0.32 0.32 0.32 0.32
CtrlRegen+ 0.31 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32
MSAA - - - 0.32 0.32 - - - 0.32

SVD 0.32 0.33 0.32 0.32 0.32 0.32 0.32 0.33 0.32
Translation 0.31 0.31 0.31 0.32 0.32 0.32 0.31 0.32 0.31
NFPA-x 0.32 0.32 0.31 0.32 0.33 0.33 0.32 0.33 0.32
NFPA-y 0.32 0.32 0.31 0.32 0.33 0.33 0.32 0.33 0.32
NFPA-xy 0.32 0.32 0.31 0.32 0.33 0.33 0.32 0.33 0.32
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Figure 9: Trade-off between detectability and
FID averaged over eight watermarking schemes
tested against all attack methods.
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Figure 10: Trade-off between detectability and
CLIP score averaged over eight watermarking
schemes tested against all attack methods.

D Quality-Detectability Tradeoff

To further analyze the balance between watermark detectability and visual quality, we adjust the
hyperparameters of each attack method (detailed in Appendix B) to control the attack intensity,
thereby characterizing their performance in the quality–detectability trade-off. Figure 9 and Figure 10
illustrate the relationship between detectability and visual quality, as measured by FID and CLIP
scores, respectively. Each curve represents a specific attack method, and the results are averaged over
eight watermarking schemes to reflect the overall performance.

The results show that NFPA consistently lies on or near the optimal Pareto frontier across. Specifically,
NFPA achieves low average detectability while maintaining high perceptual quality, demonstrating su-
perior overall attack effectiveness. This indicates that our semantic-level watermark removal approach
effectively balances attack strength and image fidelity. In contrast, distortion-based methods (e.g.,
JPEG, cropping, noise) generally exhibit better visual quality but limited ability to reduce detectability.
Adversarial and regeneration-based attacks, while sometimes effective, fail to consistently suppress
detectability across all watermark types, leading to suboptimal removal performance. In comparison,
NFPA bridges this gap and consistently reduces watermark detectability across all evaluated schemes,
significantly outperforming existing baselines in the quality–detectability trade-off.

E Limitations and Future Work

In this study, we take an important step toward understanding and revealing the vulnerabilities of
existing image watermarking schemes. The proposed attack relies on a pretrained T2I diffusion
model to predict the next frame image. While this strategy already demonstrates promising results,
future work may explore customized or fine-tuned video generation models to further improve fidelity
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and consistency. In addition, the quality of the generated images in our attack is affected by the
accuracy of DDIM inversion. Notably, the inherent information loss during the inversion process may
be mitigated by constructing more precise and reversible generative trajectories [18, 32, 42], which
could further enhance the attack performance.

In formalizing NFPA, we introduce several basic camera motion patterns, such as planar translation.
Experimental results show that even with such simple motion patterns, NFPA is already effective
at removing SOTA image watermarks. Future research may explore more complex camera motion
patterns to assess their potential and advantages in more challenging watermarking scenarios. In our
evaluation, we have tried our best to cover influential watermarking schemes published in recent
top-tier conferences. Future works may consider further validating our attack in more newly proposed
image watermarking.

F Societal Impacts

This work proposes NFPA and reveals, for the first time, the potential vulnerabilities of several
influential image watermarking schemes when facing semantic perturbations. Although such attack
methods carry the risk of malicious exploitation, we emphasize that the core purpose of this paper is to
promote a deeper understanding and open discussion of the limitations of current watermark defense
mechanisms, thereby advancing the overall security in this field. Through an extensive evaluation
of multiple mainstream image watermarking schemes, we demonstrate that these watermarks can
be effectively removed in practical application scenarios, highlighting the urgent need to design
more robust watermarking mechanisms. As the first attack framework that transforms the watermark
removal problem into a video frame prediction task, NFPA provides a novel validation benchmark
for developing the next generation of image watermarking techniques capable of resisting semantic-
level perturbations. In general, we believe that this study contributes to the development of image
watermarking techniques that will ultimately enhance the detectability and traceability of AI-generated
images.
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