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Abstract

The quest for Continual Learning (CL) seeks to
empower neural networks with the ability to learn
and adapt incrementally. Central to this pursuit is
addressing the stability-plasticity dilemma, which
involves striking a balance between two con-
flicting objectives: preserving previously learned
knowledge and acquiring new knowledge. While
numerous CL methods aim to achieve this trade-
off, they often overlook the impact of network
architecture on stability and plasticity, restrict-
ing the trade-off to the parameter level. In this
paper, we delve into the conflict between stabil-
ity and plasticity at the architectural level. We
reveal that under an equal parameter constraint,
deeper networks exhibit better plasticity, while
wider networks are characterized by superior sta-
bility. To address this architectural-level dilemma,
we introduce a novel framework denoted Dual-
Arch, which serves as a plug-in component for
CL. This framework leverages the complemen-
tary strengths of two distinct and independent net-
works: one dedicated to plasticity and the other
to stability. Each network is designed with a spe-
cialized and lightweight architecture, tailored to
its respective objective. Extensive experiments
demonstrate that Dual-Arch enhances the perfor-
mance of existing CL methods while being up to
87% more compact in terms of parameters.

1. Introduction
Continual Learning (CL) seeks to enable neural networks to
continuously acquire and update knowledge. The primary
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challenge in CL is catastrophic forgetting (McCloskey & Co-
hen, 1989; Goodfellow et al., 2013), i.e., directly updating
neural networks to learn new data causes rapid forgetting of
previously acquired knowledge. To learn continually with-
out forgetting, a neural network must balance plasticity, to
learn new concepts, and stability, to retain acquired knowl-
edge. However, emphasizing stability can limit the neural
network’s ability to acquire new knowledge, while excessive
plasticity can lead to severe forgetting, a challenge known
as the stability-plasticity dilemma (Grossberg, 2013).

To enhance CL, most of the research efforts (Li & Hoiem,
2017; Henning et al., 2021; Feng et al., 2022) are centered
on developing novel learning methods that achieve a better
trade-off between stability and plasticity. These methods
involve adding loss terms that prevent the model from chang-
ing, replaying past data, or explicitly using distinct parts of
the network for different tasks, etc (Wang et al., 2024a). In
particular, architecture-based methods have achieved great
success across various CL scenarios (Rusu et al., 2016;
Rosenfeld & Tsotsos, 2018; Wang et al., 2023). Character-
istically, this type of method introduces an extra part of the
network that is solely trained on the current data, which is
then integrated with other parts that have been continuously
trained on the previous data (Yan et al., 2021; Zhou et al.,
2023b). Since a new independent parameter space is used
to learn the current data, these methods avoid rewriting the
original parameters, thus preserving the old knowledge. In
this way, the conflict between stability and plasticity at the
parameter level can be significantly mitigated.

While studies that focus on expanding and allocating archi-
tecture have achieved notable success, research on the basic
architectures for CL is still in its infancy. This gap is crucial
because, despite the ability of advanced learning methods
to optimize parameters effectively, the overall CL perfor-
mance remains constrained by suboptimal architectures (Lu
et al., 2024). In this regard, certain pioneer works have con-
cluded that wider and shallower networks exhibit superior
overall CL performance, mainly contributing to enhanced
stability (Mirzadeh et al., 2022a;b). However, theoretical
analyses and practices (Simonyan & Zisserman, 2014; He
et al., 2016; Liang & Srikant, 2017; Raghu et al., 2017; Zhao
et al., 2024) have demonstrated that deeper networks pos-
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Figure 1: Left. (a) The average forgetting and (b) the accuracy on the new task of ResNet-18 and its wider and shallower
variant. Details are presented in Sec. 3. Right. While existing research mainly optimizes weights (represented by node
colors) for the stability-plasticity trade-off at the parameter level, this study proposes a novel insight for extending this
trade-off to the architectural level.

sess enhanced representation learning ability, indicating the
important role of depth in facilitating plasticity. These find-
ings raise a concern regarding whether there is an inherent
conflict between stability and plasticity at the architectural
level under a given parameter count constraint.

To investigate this, we conducted a comparison between
ResNet-18 (He et al., 2016) and its wider yet shallower vari-
ant, evaluating their average forgetting and accuracy on the
new task. As shown in Fig. 1, ResNet-18 achieves higher
accuracy on the new task, indicative of better plasticity,
whereas the wider yet shallower variant exhibits lower aver-
age forgetting, indicative of greater stability. However, both
networks underperform in the other aspect, which indicates
there may exist a stability-plasticity dilemma at the architec-
tural level as well. Given that existing works (Zhou et al.,
2023b; Lu et al., 2024) typically employ a uniform architec-
ture for both stability and plasticity, this inherent dilemma
may limit CL performance, even when the architecture and
parameters are finely optimized.

How to balance the stability and plasticity at the architec-
tural level? An intuitive and straightforward solution is
to combine two independent models with distinct architec-
tures: one dedicated to plasticity and the other to stability.
Previous studies on CL have demonstrated that incorporat-
ing an auxiliary model, specifically trained on the current
data, can enhance the plasticity of the primary model (Kim
et al., 2023; Bonato et al., 2024). Building on these insights,
we extend from an architectural perspective, proposing a
novel framework that employs a plastic architecture to ac-
quire new knowledge, which is then transferred to the main
model with a stable architecture. Specifically, knowledge
distillation (Hinton et al., 2015; Romero et al., 2014) is
utilized for this transfer due to its proven efficacy in trans-
ferring knowledge between networks with different archi-

tectures (Gou et al., 2021). Consequently, our proposed
framework, Dual-Architecture (Dual-Arch), leverages the
complementary strengths of two distinct architectures, effec-
tively balancing stability and plasticity at the architectural
level. Extensive experiments show that Dual-Arch markedly
enhances CL performance with significantly fewer parame-
ters when compared to the baselines. Code is available at
https://github.com/byyx666/Dual-Arch.

The contributions of this study are outlined as follows:

• We empirically demonstrate that existing architectural
designs typically exhibit good plasticity but poor stabil-
ity, while their wider and shallower variants exhibit the
opposite traits. Based on these findings, we propose a
novel insight for exploring the stability-plasticity trade-
off from an architectural perspective.

• We introduce a novel CL framework, Dual-Arch, which
employs dual architectures dedicated to stability and
plasticity and thus combines both advantages. Further-
more, Dual-Arch can be naturally incorporated with
various CL methods as a plug-and-play component.

• Extensive experiments demonstrate that Dual-Arch is
parameter-efficient, i.e., attaining better performance
with a remarkably reduced parameter count than using
a single architecture.

2. Related Work
CL involves letting models sequentially learn a series of
tasks without or with limited access to previous tasks. Based
on whether the task identity is provided or must be inferred,
CL can be broadly categorized into three typical scenarios:
Task/Class/Domain Incremental Learning (IL) (Van de Ven
et al., 2022). This study mainly focuses on the most general
and realistic scenario of these three, i.e., Class IL, where the
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task identity is unknown during inference (Van de Ven et al.,
2022; Wang et al., 2024a).

2.1. Learning Methods for CL

To address catastrophic forgetting, the CL community has
developed a variety of learning methods aimed at striking a
balance between stability and plasticity (Feng et al., 2025).
These methods can be broadly categorized into three main
approaches: replay-based methods, regularization-based
methods, and architecture-based methods. Replay-based
methods keep a subset of the previous data information in a
memory buffer, which is subsequently exploited to approx-
imate old data distributions during training (Aljundi et al.,
2019; Iscen et al., 2020; Qin et al., 2023). A common and
effective implementation involves jointly training the model
on both the stored data and the current task data (Robins,
1995; Chaudhry et al., 2018). It is important to note that
replay-based methods are often combined with other tech-
niques to enhance their effectiveness (Rebuffi et al., 2017;
Yan et al., 2021). Regularization-based methods introduce
a regularization loss term to balance the learning of new
tasks with the retention of old tasks.These methods can be
further divided into two subcategories based on the target
of regularization (Wang et al., 2024a). The first is weight
regularization, which selectively constrains the variation of
the network parameters based on their importance to pre-
viously learned tasks, e.g., EWC (Kirkpatrick et al., 2017)
and SI (Zenke et al., 2017). The second is function regular-
ization (Bian et al., 2024), which employs techniques such
as knowledge distillation (Romero et al., 2014) to maintain
consistency between the outputs of the original and updated
models, e.g., iCaRL (Rebuffi et al., 2017) and WA (Zhao
et al., 2020). Architecture-based methods dynamically
allocate task-specific network parameter space for each task
to mitigate inter-task interference, thereby balancing sta-
bility and plasticity (Yoon et al., 2017). These methods
typically involve dynamically expanding the networks, such
as DER (Yan et al., 2021) and MEMO (Zhou et al., 2023b).

Discussion. In principle, the performance of neural net-
works is jointly influenced by their parameters and architec-
tures. While the learning methods mentioned above mainly
enhance CL by optimizing the parameters or extending pa-
rameter space, the suboptimal basic architectures might still
limit CL performance. Our study aims to address this by
proposing a plug-and-play framework that leverages the
complementary strengths of two distinct architectures.

2.2. Neural Architectures for CL

Besides learning methods, there is a body of re-
search (Mirzadeh et al., 2022a;b; Pham et al., 2022) that
concentrates on exploring optimal neural architectures for
CL. In particular, ArchCraft (Lu et al., 2024) delves into

the influence of various network components and scaling on
CL performance, demonstrating that certain architectural de-
signs are more CL-friendly than existing ones. Furthermore,
it is shown that a well-designed architecture can achieve
superior CL performance with a smaller parameter count,
which is particularly beneficial for memory-constrained en-
vironments (Lu et al., 2024). These studies emphasize that
the impact of architectural designs on CL performance is at
least as significant as that of the learning methods. However,
it should be noted that existing studies focus exclusively
on the impact of architectures on the overall performance
of CL. Our work extends this line of inquiry by highlight-
ing the inherent conflict between stability and plasticity at
the architectural level and subsequently proposing a novel
solution to address it.

2.3. Multi Models for CL

Various existing studies have proposed employing additional
models to enhance CL (Li & Hoiem, 2017; Kim et al., 2023;
Bonato et al., 2024). In particular, certain works (Pham
et al., 2021; Arani et al., 2022) based on complementary
learning systems (McClelland et al., 1995; Kumaran et al.,
2016) utilize two learners (known as slow and fast learn-
ers) with different functions to achieve CL. Among them,
MKD (Michel et al., 2024) and Hare & Tortoise (Lee et al.,
2024) employ techniques such as exponential moving aver-
ages to integrate knowledge across two models, effectively
balancing stability and plasticity. Our proposed solution
shares a similar conceptual framework, crafting two inde-
pendent learners that assume roles of plasticity and stabil-
ity respectively during the CL process. However, unlike
these prior efforts that employ a uniform architecture for
all models, our study emphasizes the importance of spe-
cific architectural designs tailored to each learner. By doing
so, our study provides novel insights into more effectively
leveraging multiple models for CL.

3. Architectural Dimensions of Stability and
Plasticity

This section presents an investigation of the impact of ar-
chitectural designs on the stability and plasticity of neural
networks. The primary objective of this investigation is to
reveal the conflict between stability and plasticity at the
architectural level, with a focus on network scaling.

3.1. Empirical Study Settings

Architectural Variants. ResNet-18 (He et al., 2016) is
selected as the foundational architecture, given its exten-
sive utilization in existing CL research (Yan et al., 2021;
Goswami et al., 2024). Our primary focus is on examining
the impact of depth and width on CL. To this end, we vary
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Table 1: The performance (%) of the original ResNet-18 (gray background) and its variants. We report the mean and std of 5
runs with different task orders. Note that the ‘#P’ denotes the parameter counts of a single architecture here.

Depth Width Penultimate Layer #P (M) AAN ↑ FAF ↓ FRF ↓
18 64 GAP 11.23 86.41±0.60 35.76±1.62 41.09±2.08

10 96 GAP 11.10 83.44±0.84 (-2.97) 33.16±1.28 (-2.60) 39.15±2.06 (-1.94)
18 64 4× 4 AvgPool 11.38 84.64±0.43 (-1.77) 34.17±2.03 (-1.59) 39.97±2.71 (-1.12)

26 52 GAP 11.56 86.68±0.70 (+0.27) 36.02±1.79 (+0.26) 41.20±2.37 (+0.11)

the number of layers and initial channel counts in ResNet-18
while maintaining a relatively constant total parameter count.
Additionally, we conduct an extended study to investigate
the effect of pre-classification width. This involves replac-
ing the global average pooling (GAP) layer with a 4 × 4
average pooling layer with a stride of 3, thereby producing
an output feature map of size 2× 2.

Implementation Setup. A subset of ImageNet (Deng et al.,
2009), known as ImageNet100 (Rebuffi et al., 2017), is
utilized as the dataset. It is partitioned into 10 incremental
tasks, each comprising 10 classes. All models are trained
using iCaRL (Rebuffi et al., 2017), a classic learning method
in the CL field, with a fixed memory size of 2,000 exemplars.

Evaluation Metrics.

To evaluate plasticity, we measure the Average Accuracy on
New tasks (AAN) across all incremental steps, where higher
values indicate greater plasticity. For stability assessment,
we employ two complementary metrics: Average Forget-
ting (AF) and Relative Forgetting (RF). AF measures the
absolute stability after learning the k-th task, calculated as
AFk = 1

k−1

∑k−1
b=1 (a

∗
b − ab), where ab denotes the current

accuracy on task b and a∗b represents its peak past accuracy.
RF (Wang et al., 2024b) provides a normalized stability
measure to avoid penalizing highly plastic models, defined
as RF = 1

k−1

∑k−1
b=1 (1−

ab

a∗
b
). We specifically use the final-

task values (FAF and FRF) as overall stability indicators,
with lower values corresponding to better stability.

3.2. Empirical Study Results

The performance comparison between ResNet-18 and its
variants, under comparable parameter counts (within ±3%
margin), is summarized in Tab. 1. We observe that making
the network shallower but wider decreases both AAN and
forgetting metrics (FAF and FRF), indicating enhanced sta-
bility but reduced plasticity. This trend similarly emerges
when increasing the pre-classification width through penul-
timate layer modification, further confirming that wider ar-
chitectures improve stability while compromising plasticity.
Conversely, a deeper yet narrower variant exhibits a slight
increase in both AAN and forgetting measures, suggesting

marginally improved plasticity with reduced stability. These
results reveal an inherent trade-off between stability and
plasticity at the architectural level, governed by architec-
tural design choices within specific parameter limits.

4. Dual-Architecture for CL
In this section, we propose Dual-Arch, a framework that
can be easily plugged in existing CL methods, to address
the stability-plasticity dilemma at the architectural level.
Specifically, we will provide an overview of the Dual-Arch
framework and detail its learning algorithm.

4.1. Preliminaries

Before further description, some definitions related to the
CL are presented. CL aims to learn from a dynamic data
stream. Following convention (Zhou et al., 2023a), we
consider a sequence of K tasks (also known as steps)
{D1,D2, . . . ,DK} without overlapping classes. Specifi-
cally, Dk ∼ {Xk,Yk} represents the data of the k-th step,
containing Nk classes. Here, Xk denotes the set of samples,
and Yk denotes their respective labels. At the k-th step, the
CL model is trained on Dtrain

k and then tested on Dtest
0:k ,

which denotes the joint test dataset from task 0 to task k.
For replay-based methods, parts of data from previous tasks
are preserved and incorporated into the Dtrain

k .

In the traditional CL paradigm using a single learner, the
training loss at the k-th step can be formulated as:

Lsingle = LCE + LCL, (1)

where the loss term LCE is the classification loss calculated
using a cross-entropy loss function, and LCL is specifically
defined by the particular used CL methods. Specifically, we
consider the CL learner parameterized by weights θk and
we use o(x) to indicate the output logits of the learner on
input x. the LCE is defined as:

LCE(x, y; θk) = − log
exp(oy)∑Nk

m=1 exp(om)
. (2)
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Figure 2: The formulation of the traditional CL paradigm and CL with Dual-Arch (Ours). Dual-Arch (1) employs two
independent learners that are designed by modifying the traditional single learner, and (2) utilizes the stable learner to
perform CL with the assistance of the plastic learner. Note that Dual-Arch can be effortlessly combined with existing CL
methods (denoted by the dotted lines or box).

4.2. The Formulation of Dual-Arch

The overall framework of Dual-Arch is illustrated in Fig. 2.
Unlike the existing CL paradigm which relies on a sin-
gle learner, the Dual-Arch framework distributes the roles
of plasticity and stability across two distinct models: the
plastic learner and the stable learner. Inspired by existing
research (Kim et al., 2023) that employs auxiliary models
to enhance plasticity, our framework designates the sta-
ble learner as the main model, with the plasticity learner
serving as an auxiliary model. Throughout the learning
process, the plastic learner is dedicated to the extraction
of new knowledge, allowing for the potential forgetting of
previous knowledge. Conversely, the stable learner is re-
sponsible for retaining existing knowledge while integrating
new knowledge with the assistance of the plastic learner.

Dual-Arch allows the combination of the strengths of both
stable and plastic architectures by employing corresponding
architectures for the two learners. Specifically, these archi-
tectures are designed through targeted modifications to the
original one, with the objective of enhancing plasticity or
stability. Additionally, to overcome the increased memory
consumption associated with incorporating an additional
model, we concurrently reduce the parameter counts for
both learners. It is also worth highlighting that the Dual-
Arch framework is designed to facilitate integration with a
variety of CL methods, serving as a plug-and-play compo-
nent. This integration can be easily achieved by applying
these CL methods when training the stable learner, mir-

roring the training process of the single learner within the
traditional CL paradigm. In particular, for replay-based
methods, the replay buffer is concatenated with the training
data for both the stable and plastic learners.

4.3. Architectures for the Stable and Plastic Learners

This subsection presents the specific architectural designs
tailored to the stable and plastic learners, with the objective
of achieving superior CL performance while minimizing
parameter counts. Building upon the insights from Sec. 3,
we employ a wide and shallow architecture for the stable
learner, denoted as Sta-Net, and a deep and thin architec-
ture for the plastic learner, denoted as Pla-Net. Following
standard practices (Masana et al., 2022; Goswami et al.,
2024), we have chosen ResNet-18 as the foundation for
crafting both architectures. Specifically, Sta-Net retains the
same width as ResNet-18 but incorporates only half as many
residual blocks. Furthermore, we modify the GAP layer of
Sta-Net to produce an output feature map of size 2× 2 in-
stead of the original 1× 1, thereby increasing the width of
the classifier. To design Pla-Net, we maintain the depth of
ResNet-18 while reducing its width from 64 to 42 to align
with the parameter count of Sta-Net.

4.4. Learning Algorithm of Dual-Arch

The learning process of the Dual-Arch framework involves
training the plastic and stable learners in sequence. In the
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initial stage of the learning process, our framework trains
the plastic learner as a new task emerges. At this stage,
the primary objective is to facilitate the acquisition of new
knowledge, without consideration of the maintenance of
previously acquired knowledge. Consequently, the train-
ing objective of the plastic learner is simplified to mini-
mize the classification loss on the current training data, i.e.,
Lplastic = LCE . Subsequently, the stable learner is trained
to integrate the existing knowledge with that acquired by the
plastic learner. This process entails the transfer of recently
acquired knowledge from the plastic learner to the stable
learner via knowledge distillation. Specifically, a distillation
loss term is incorporated into the training objective of the
stable learner, to align the logit outputs between the stable
and plastic learners. Following convention (Hinton et al.,
2015), a hard label loss (i.e., cross-entropy loss) is also em-
ployed to minimize the discrepancy between the predictions
of the stable learner and the actual labels of the training data.
Moreover, established CL methods are implemented during
this phase to facilitate the retention of previous knowledge,
which can also be expressed as a loss term. In light of the
aforementioned considerations, the total learning target of
the stable learner can be formulated as:

Lstable = αLCE + (1− α)LKD + LCL, (3)

where LKD denotes the distillation loss and α is a parameter
that balances the weight of LKD and LCE . We set the
default value of α to 0.5, following (Hinton et al., 2015).

Within Dual-Arch, the distillation loss LKD is employed
to enhance the plasticity of the stable learner, which in-
volves enabling it to learn from the soft outputs of the plastic
learner. Specifically, the LKD is calculated by measuring
the Kullback-Leibler divergence between the soft outputs of
the teacher model (i.e., the plastic learner) and those of the
student model (the stable learner) on the current data. Let T
denote the teacher model, and S denote the student model,
the LKD is defined as:

LKD = −
Nk∑
i=1

P i
T logP i

S , (4)

where PT and PS represent the soft outputs of the teacher
and student models. These soft outputs are derived by
applying the SoftMax function to transform the output
logits of these models, i.e., OT and OS , into probability
distributions. Specifically, PT = SoftMax(OT /t) and
PS = SoftMax(OS/t), where t is the temperature factor
that controls the smoothness of the soft outputs.

The detailed training procedure of the proposed framework
is summarized in Alg. 1. For each task k, the plastic learner
is first trained to convergence using the standard classifi-
cation loss LCE . Its optimized weights are then frozen
and preserved as a teacher model. Subsequently, the stable

learner is trained using the composite loss Lstable (Eq. 3),
which incorporates knowledge from the teacher model. Af-
ter each task, the stable learner is evaluated on all learned
tasks (1 to k) to assess its CL performance.

Algorithm 1 Training Procedure of Dual-Arch

1: Input: Stable learner weights θ0, Plastic learner
weights ϕ0

2: Output: Optimized stable learner weights θK
3: for task k = 1, 2, ..,K do
4: Train ϕk−1 for E epochs using normal classification

loss LCE on task k to obtain ϕk

5: Freeze ϕk and save as teacher model
6: Train θk−1 for E epochs using Lstable (Eq. (3)) on

task k to obtain θk
7: Evaluate θk on tasks (1 to k)
8: end for

5. Experiment
5.1. Experiment Setup

Benchmark. Following convention (Rebuffi et al., 2017),
We choose CIFAR100 (Krizhevsky et al., 2009) and Ima-
geNet100 (Deng et al., 2009) for evaluation. Both datasets
are divided into 10 tasks of 10 classes each and 20 tasks of
5 classes each to construct four benchmarks: CIFAR100/10,
CIFAR100/20, ImageNet100/10, and ImageNet100/20.

Baselines. To assess the efficacy of our proposed method,
we integrate it into five distinct CL approaches spanning
the three major categories: replay-based, regularization-
based, and architecture-based methods. These methods
include iCaRL (Rebuffi et al., 2017), WA (Zhao et al., 2020),
DER (Yan et al., 2021), Foster (Wang et al., 2022), and
MEMO (Zhou et al., 2023b). Specifically, we compare the
performance of Dual-Arch with that of the original ResNet-
18 to evaluate the enhancements provided by our method.
We also select ArchCraft (Lu et al., 2024) as a baseline,
which employs a single CL-friendly architecture to improve
CL performance, to show the benefits of dual architectures.

Implementation Setup. For all experiments, we train all
models for 200 epochs in the first task and 100 epochs
in the subsequent tasks. The learning rate starts from 0.1
and gradually decays with a cosine annealing scheduler. A
fixed memory size of 2,000 exemplars is utilized for all
replay-based methods during the learning process. Given
the significant impact of hyper-parameters on CL (Cha &
Cho, 2024; Mirzadeh et al., 2020), the hyperparameters for
all methods adhere to the settings in the open-source library
PyCIL (Zhou et al., 2023a) to ensure a fair comparison.
Following convention (Mirzadeh et al., 2022b; Zhou et al.,
2023a), the first convolution layer and following max pool-
ing layer of networks are replaced by a 3× 3 convolution
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Table 2: The LA, AIA and FAF (%) using five state-of-the-art CL methods. ‘#P’ represents the parameter counts of all used
models. ‘Improvement’ represents the boost of Dual-Arch towards original methods. Note that the parameter counts of DER
and MEMO vary from incremental settings, resulting in two values for ‘/20’ and ‘/10’. Bolded indicates best.

Method #P (M)
CIFAR100/20 CIFAR100/10 ImageNet100/20 ImageNet100/10

LA↑ AIA↑ FAF↓ LA↑ AIA↑ FAF↓ LA↑ AIA↑ FAF↓ LA↑ AIA↑ FAF↓
iCaRL 22.4 49.78 65.63 33.33 54.87 68.30 27.76 46.22 63.89 41.05 51.74 68.47 35.91
w/ ArchCraft 17.4 52.60 68.71 - 55.52 69.62 - 45.12 63.98 - 52.46 68.42 -
w/ Ours 15.1 52.53 67.80 29.49 57.69 70.40 23.63 47.22 65.06 35.66 54.84 69.37 28.22

Improvement ↓ 33% +2.75 +2.17 ↓3.84 +2.82 +2.10 ↓4.13 +1.00 +1.17 ↓5.39 +3.10 +0.90 ↓7.69

WA 22.4 46.78 62.75 19.05 56.98 69.16 23.53 46.98 65.76 39.05 57.64 71.20 28.27
w/ ArchCraft 17.4 53.23 69.19 - 59.79 71.40 - 49.94 67.20 - 58.86 71.56 -
w/ Ours 15.1 55.02 68.84 24.91 59.78 71.57 17.91 52.84 68.79 31.73 60.84 72.57 24.53

Improvement ↓ 33% +8.24 +6.09 ↑5.86 +2.80 +2.41 ↓5.62 +5.86 +3.03 ↓7.32 +3.20 +1.37 ↓3.74

DER 224.4/112.2 58.39 70.19 25.63 61.83 72.48 22.13 64.32 74.91 20.51 67.40 75.93 15.22
w/ ArchCraft 173.5/86.8 61.65 73.59 - 63.94 74.84 - 63.98 74.50 - 68.34 77.26 -
w/ Ours 106.9/55.9 64.08 73.86 20.08 66.22 75.08 17.73 65.40 75.17 16.97 68.52 77.49 12.96

Improvement ↓ 52%/50% +5.69 +3.67 ↓5.55 +4.39 +2.60 ↓4.40 +1.08 +0.26 ↓3.54 +1.12 +1.56 ↓2.26

Foster 22.5 49.99 63.39 35.03 58.67 69.95 27.39 54.74 66.77 34.67 62.88 71.09 25.18
w/ ArchCraft 17.5 57.22 69.99 - 61.44 72.54 - 54.32 66.41 - 61.94 71.16 -
w/ Ours 15.4 57.69 71.01 23.75 61.23 73.22 18.23 55.20 67.63 32.42 63.24 72.42 25.04

Improvement ↓ 32% +7.70 +7.62 ↓11.28 +2.56 +3.27 ↓9.16 +0.46 +0.86 ↓2.25 +0.36 +1.33 ↓0.14

MEMO 171.7/87.2 52.10 67.60 35.71 58.46 70.71 27.99 56.10 69.13 29.64 61.64 73.31 21.87
w/ ArchCraft 126.6/64.6 57.28 72.07 - 61.93 73.30 - 57.46 70.54 - 62.46 74.01 -
w/ Ours 101.1/53.1 62.39 72.69 24.09 65.35 74.34 20.82 60.26 72.53 24.59 65.40 75.54 16.53

Improvement ↓ 41%/39% +10.29 +5.09 ↓11.62 +6.89 +3.63 ↓7.17 +4.16 +3.40 ↓5.05 +3.76 +2.23 ↓5.34

layer with a stride of 1 for CIFAR100.

Evaluation Metrics. The overall performance of CL is
measured by two metrics: the Last Accuracy (LA) and the
Average Incremental Accuracy (AIA). The LA is the total
classification accuracy after the last task, which reflects the
overall accuracy among all classes. Further, the AIA denotes
the average classification accuracy over all tasks, which re-
flects the performance across all incremental steps. The
higher LA and AIA, the better overall CL performance. Let
K be the number of tasks, these two metrics are defined as
LA = AK , AIA = 1

K

∑K
b=1 Ab, where Ab represents clas-

sification accuracy measured on the test set that covers all
tasks learned up to and including the b-th task. Additionally,
we report the FAF to quantify catastrophic forgetting.

5.2. Overall Results

Tab. 2 presents the comparative performance of Dual-Arch
using five state-of-the-art CL methods. The results demon-
strate that across various methods, datasets, and incremental
steps, the integration of Dual-Arch consistently outperforms
the baseline that employs ResNet-18 as a single learner. In
particular, adopting Dual-Arch leads to maximum improve-
ments of 10.29% in LA and 7.62% in AIA, while simul-
taneously reducing the parameter counts by at least 33%.

Moreover, Dual-Arch outperforms Arch-Craft in most cases,
underscoring the advantages of dual architectures over a sin-
gle, CL-friendly architecture. In conclusion, Dual-Arch
emerges as a valuable complement to existing CL methods,
enhancing both effectiveness and efficiency.

5.3. Ablation Study

In this subsection, we present the results of our ablation
study to show the significance of employing dual networks
in conjunction with dedicated architectures. To simplify,
we select the CIFAR-100/10 as a representative dataset and
utilize AIA as the performance metric for our analysis.

As displayed in Tab. 3, we examine the effects of removing
two pivotal components from our method. Specifically,
we present the outcomes of employing only a Sta-Net to
underscore the necessity of the dual-networks framework,
along with results from using alternative architectures for
the two learners, highlighting the importance of tailored
designs. We observe from Tab. 3 that the absence of a plastic
learner leads to a decrease in AIA by an average of 2.63%.
Similarly, employing non-specialized architectures for two
learners within Dual-Arch results in lower performance,
with the AIA declining by an average of 1.74%, 0.65%, and
1.68%. These results clearly demonstrate the benefits of
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Table 3: The ablation study results using five CL methods. We report the mean±std of 3 runs with different initializations. †

denotes performing CL with a single learner. Bolded indicates the best.

Stable
Learner

Plastic
Learner

AIA (%) on CIFAR100/10

iCaRL WA DER Foster MEMO Average

Sta-Net Pla-Net 70.21±0.19 71.53±0.13 75.26±0.20 73.18±0.04 74.44±0.07 72.92
Sta-Net None† 66.69±0.10 69.33±0.17 72.47±0.07 70.84±0.24 72.11±0.27 70.29 (-2.63)
Pla-Net Pla-Net 69.57±0.10 69.98±0.08 74.64±0.28 71.92±0.28 69.80±0.15 71.18 (-1.74)
Sta-Net Sta-Net 69.27±0.26 71.38±0.25 74.30±0.08 72.65±0.11 73.77±0.05 72.27 (-0.65)
Pla-Net Sta-Net 69.85±0.13 70.31±0.26 74.25±0.35 71.86±0.06 69.92±0.12 71.24 (-1.68)

each component in our proposed solution.
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Figure 3: Performance of CL vs. Number of Parameters
using DER and Foster on CIFAR100/10.

5.4. Parameter Efficiency Analysis

To assess the parameter efficiency more comprehensively,
we vary the parameter counts of Dual-Arch and ResNet-18
by reducing the network width by a quarter and a half. As il-
lustrated in Fig. 3, the Dual-Arch series significantly outper-
forms the baseline in terms of parameter efficiency. Specif-
ically, Dual-Arch can enhance AIA by 0.90% and 1.94%
when using DER and Foster as the CL method, respectively,
while simultaneously reducing parameter counts by 87%
and 81%. Additionally, Dual-Arch surpasses ArchCraft, a
state-of-the-art solution that enhances parameter efficiency
in CL by recrafting the network architecture. These empir-
ical results highlight the potential of Dual-Arch to signifi-
cantly benefit CL in memory-restricted scenarios.

5.5. Computation Efficiency Analysis

We note that although Dual-Arch involves training two mod-
els, the total computational cost, measured in FLOPs, re-
mains lower than that of the baselines. For instance, on
CIFAR-100, the FLOPs for Sta-Net and Pla-Net are 255M
and 241M, respectively, yielding a combined total of 496M.
In comparison, ResNet-18 requires approximately 558M
FLOPs. Furthermore, during inference, only the stable
learner is utilized, enabling Dual-Arch to achieve computa-

tional efficiency at test time (255M vs. 558M).

However, despite the reduced FLOPs, the training time
increases due to the non-parallelizable nature of training the
two learners. As illustrated in Table 4, Dual-Arch incurs a
1.39× to 1.77× overhead in training time compared to the
baselines. This represents a limitation of our approach.

Table 4: Training time (minutes) comparison between Dual-
Arch and baselines on CIFAR-100/10.

Method iCaRL WA DER Foster MEMO

Original (ResNet-18) 40 39 74 93 49
w/ Dual-Arch (Ours) 70 69 106 129 85

5.6. Analysis on the Stability-Plasticity Trade-off

To further scrutinize the effectiveness of Dual-Arch in com-
bining the strength of both architectures, we compare it to
a single learner with one of the architectures (i.e., Pla-Net
or Sta-Net). To simplify, we choose the top-performing ap-
proach DER as the used CL method. We observe from Fig. 4
(a) that Dual-Arch achieves the best overall performance in
CL. Moreover, as illustrated in Fig. 4 (b) and (c), the single
learner either forgets severely on previous tasks (Pla-Net) or
underperforms on new ones (Sta-Net), whereas Dual-Arch
demonstrates competitive performance in both aspects. This
result indicates that Dual-Arch combines the advantages of
both types of architecture, leading to a trade-off between
stability and plasticity at the architectural level.

5.7. Analysis on Bias-correction

In Class IL, the task-recency bias is a major cause of catas-
trophic forgetting, where models tend to misclassify in-
stances from earlier tasks as belonging to more recently
introduced classes during inference (Masana et al., 2022;
Zhao et al., 2020). To discover the reasons why Dual-Arch
benefits CL, we further evaluate its effectiveness in miti-
gating the task-recency bias. Specifically, we present the
task confusion matrices for the Dual-Arch and the baseline
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Figure 4: The performance of Dual-Arch and two baselines using DER on CIFAR100/10.
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Figure 5: Task confusion matrices after learning the final
task w/ and w/o Dual-Arch plugged in on CIFAR100/10.

which employs a single ResNet-18 in Fig. 5. From Fig. 5
(b) and (d), we observe that the integration of Dual-Arch fa-
cilitates a more precise determination of the correct task ID,
thereby reducing inter-task classification errors. Notably,
Dual-Arch significantly diminishes the misclassification of
data from earlier tasks (e.g., task 1) as belonging to recently
learned tasks (e.g., task 10). These observations indicate
that Dual-Arch can effectively reduce the task-recency bias,
thus mitigating catastrophic forgetting.

5.8. Validation on Vision Transformers

While our study primarily focuses on ResNet, the insights
presented in this paper are potentially applicable to other

architectures, such as Vision Transformers (ViTs). To val-
idate this, we conduct experiments to transfer our method
to SepViT (Li et al., 2022), training all models from scratch
and using ImageNet100/10 as the benchmark. It is important
to note that the training settings remain consistent with those
described in Sec. 5.1, with adjustments made to the learning
rate and optimizer to align with the official implementation
of SepViT (Li et al., 2022). The results, summarized in
Tab. 5, demonstrate that Dual-Arch consistently improves
the CL performance of SepViT, underscoring its potential
generalizability to other architectures.

Table 5: The LA and AIA (%) using SepVit on Ima-
geNet100/10. ‘#P’ represents the parameter counts of all
used networks. Bolded indicates the best.

Method #P (M) LA AIA

iCaRL 7.57 43.08 60.62
w/ Ours 5.32 46.34 (+3.26) 63.09 (+2.47)

WA 7.57 38.40 57.67
w/ Ours 5.32 44.28 (+5.88) 61.15 (+3.48)

6. Conclusion
In this paper, we point out the stability-plasticity dilemma
at the architectural level and further introduce Dual-Arch,
a novel CL framework, to address it. Dual-Arch operates
at an architectural level, complementary to most existing
CL methods that focus on parameter optimization, thereby
serving as a plug-in component for enhancing CL. Our
extensive experiments demonstrate that Dual-Arch consis-
tently outperforms the baselines while significantly reducing
the parameter counts. We hope this work inspires further
study on exploring a better trade-off between stability and
plasticity from an architectural perspective.
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A. Appendix
A.1. Implementation Details

We employ the same data augmentation as in PyCIL (Zhou et al., 2023a) for all experiments. For the experiments in Section
3, we report results in different task orders using 5 seeds 1, 2, 3, 4, and 5. For other experiments, we adhere to a fixed seed
of 1993, consistent with established conventions (Rebuffi et al., 2017; Zhou et al., 2023a). We utilize a temperature factor
for Dual-Arch of t = 4 for CIFAR100 and t = 3 for ImageNet-100.

Details about Parameter Counts. We compute the sum of the parameter counts of all used models for each incremental
step and report their peak values throughout the CL process as the final result. For instance, for iCaRL, we sum the parameter
counts of the current and last models. For iCaRL with Dual-Arch, we sum the parameter counts of the plastic learner, the
current stable learner, and the last stable learner. All results are detailed in Tab. 2 of the main paper. Moreover, it should be
noted that the parameter counts vary slightly between the CIFAR100 and ImageNet100, and we report all results based on
CIFAR100.

A.2. Architectural Dimensions of Stability and Plasticity in MLP

We further investigate the impact of network width (i.e., the number of neurons in the hidden layer) and depth (i.e., the
number of layers) on the stability and plasticity of the MultiLayer Perceptron (MLP). Following HAT (Serra et al., 2018),
we employ a width of 800 and a depth of 4 as the default design for the MLP. Additionally, we design a wider yet shallower
variant and a deeper yet thinner variant, both with a parameter count comparable to the default design. We evaluated all
MLPs on the split MNIST dataset, which consists of five tasks, using the LWF (Li & Hoiem, 2017). Note that we train all
models with 10 epochs, and report results using five different task orders. The results are reported in Tab. 6. We observe
that the wider yet shallower variant exhibits lower values for both AAN and FAF. These results suggest that within a fixed
parameter budget, the wider and shallower variants offer superior stability at the expense of reduced plasticity, a trend
consistent with the findings observed in ResNet architectures.

Table 6: The AAN and FAF (%) of MLP with different depths and widths. Note that the ‘#P’ denotes the parameter counts
of a single architecture here.

Depth Width #P AAN ↑ FAF ↓
4 800 1.92 84.20±5.37 42.10±7.58
3 1050 1.94 79.23±5.13 (-4.97) 26.78±5.18 (-15.32)
5 680 1.93 87.35±3.77 (+3.15) 59.28±6.71 (+17.18)

A.3. Architectural Dimensions of Stability and Plasticity in Vision Transformers

We further investigate the impact of network width (i.e., the dimension of the attention heads) and depth (i.e., the number of
blocks) on the stability and plasticity of ViTs. Specifically, we use SepViT-Lite (Li et al., 2022) as the default design, which
is configured with a width of 32 and a depth of 11. Additionally, we design a wider yet shallower variant with a width of 49
and depth of 5, which has a parameter count comparable to the default design. Both ViTs are evaluated on ImageNet-100/10
using iCaRL as the learning method (Rebuffi et al., 2017). Note that the training settings are consistent with Sec. 5.1, but the
learning rate and optimizer are adjusted to match the official implementation of SepVit (Li et al., 2022). The results are
reported in Tab. 7. We observe that the wider yet shallower variant exhibits lower values for both AAN and FAF. These
results suggest that within a fixed parameter budget, the wider and shallower variants offer superior stability at the expense
of reduced plasticity, a trend consistent with the findings observed in ResNet architectures.

Table 7: The AAN and FAF (%) of SepVit with different depths and widths. Note that the ‘#P’ denotes the parameter counts
of a single architecture here.

Depth Width #P AAN ↑ FAF ↓
11 32 3.78 79.54 40.51
5 49 3.76 78.96 (-0.58) 39.47 (-1.04)
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(f) MEMO + Dual-Arch

Figure 6: Task confusion matrices after learning the final task of different CL methods w/ and w/o Dual-Arch plugged in on
CIFAR100/10.

A.4. Additional Results on Bias-correction

We report the task confusion matrices for the DER, Foster and MEMO with/without Dual-Arch here.

A.5. Validation on Long Task Sequences

In this subsection, we report the results on settings with a greater number of tasks, specifically CIFAR100/50, which contains
50 tasks, in Tab. 8. These results demonstrate that Dual-Arch consistently outperforms the baselines in this challenging
setting, thereby underscoring its generality.

Table 8: The LA and AIA (%) using five state-of-the-art CL methods on CIFAR100/50. Bolded indicates the best.

Method
iCaRL WA DER Foster MEMO

LA AIA LA AIA LA AIA LA AIA LA AIA

Original 45.30 63.99 42.12 58.26 55.73 69.53 43.45 59.81 42.44 62.57
w/ ArchCraft 48.70 67.24 39.83 61.02 57.89 71.53 53.02 68.14 54.47 69.96
w/ Ours 48.95 65.93 47.13 64.41 61.88 73.09 53.16 67.83 58.09 71.17
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A.6. Validation on CL with Blurry Task Boundaries

Beyond Class-IL, a series of works have focused on a more challenging and realistic CL scenario where task boundaries are
not explicitly available, known as Generalized Class IL (Buzzega et al., 2020; Arani et al., 2022). In this section, we validate
the generality of Dual-Arch in this setting. Following convention (Arani et al., 2022; Sarfraz et al., 2022), we report the
results on the typical benchmark, GCIL-CIFAR-100, as shown in Tab. 9. Our findings indicate that Dual-Arch consistently
enhances CL performance in this scenario, underscoring its broad applicability.

Table 9: The LA (%) on GCIL-CIFAR-100 with different buffer sizes. Bolded indicates the best. Note that the benchmark
settings follow (Arani et al., 2022).

Method Buffer Size 500 Buffer Size 1000

ER (Rostami et al., 2019) 20.30 34.13
w/ Dual-Arch (Ours) 27.57 (+7.27) 35.40 (+1.27)

DER++ (Buzzega et al., 2020) 25.82 33.64
w/ Dual-Arch (Ours) 30.34 (+4.52) 36.84 (+3.20)
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