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Abstract
We show that the gradient of the cosine similarity between two points goes to zero in two under-
explored settings: (1) if a point has large magnitude or (2) if the points are on opposite ends of
the latent space. Counterintuitively, we prove that optimizing the cosine similarity between points
forces them to grow in magnitude. Thus, (1) is unavoidable in practice. We then observe that these
derivations are extremely general – they hold across deep learning architectures and for many of the
standard self-supervised learning (SSL) loss functions. This leads us to propose cut-initialization:
a simple change to network initialization that helps all studied SSL methods converge faster.

1. Introduction

Self-supervised learning (SSL) methods can learn robust, multi-use representations in the absence of
labeled data by ensuring that similar (positive) inputs are mapped to nearby locations in embedding
space. Despite their success, we find that the properties of the cosine similarity – the common loss
function across SSL methods – have gone under-studied.

Indeed, we verify that the cosine similarity loss has unexpected interactions with gradient de-
scent. Namely, the gradient acting on a point is near-zero if the point has large magnitude or if it
is on the opposite side of the space from its counterpart. We prove that both cases impose at least
a quadratic slowdown on the gradient descent convergence. Furthermore, we show that optimizing
the cosine similarity between two points must cause those points to grow in magnitude.

This leads to an unfortunate catch-22: SSL methods can only be trained under small embed-
ding norms but optimizing the loss-function grows those same embedding norms. Furthermore,
this derivation holds for any objective that is itself a function of the cosine similarity (such as the
InfoNCE loss [16]) and is independent of the SSL architecture, implying that almost all SSL mod-
els are affected. We experimentally verify that this is a concern in practice by showing that large
embedding norms indeed slow down SSL convergence across architectures and training paradigms.
We therefore propose cut-initialization to mitigate the issue and verify that, when paired with ℓ2-
normalization, cut-initialization improves convergence across all settings.

2. Preliminaries and Related Work

SSL representations are learned from a dataset without utilizing any labels. This is typically done
by obtaining two augmented variants xi and xj from an input image x and ensuring that the cor-
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Figure 1: Left: The gradients w.r.t. zi in Proposition 1 and Corollary 4 exclusively exist in the
tangent space at zi. Right: The growing embeddings in Corollary 2. Blue points represent zi at
iterations t = 1, 2, 3. Yellow points represent z′i, i.e. the result of each step of gradient descent.

responding embeddings zi and zj have high cosine similarity. We refer to (xi, xj) (resp. (zi, zj))
as ‘positive’ pairs of points (resp. embeddings). Each SSL method then introduces an additional
mechanism that prevents the entire learned representation from collapsing to a single embedding.

SSL methods. SimCLR [3] follows a line of research of contrastive methods for self-supervised
learning [5, 10, 11, 14, 16] which all use repulsions from negative samples, zk, to prevent collapse.
These negative samples are the other samples in the batch, implying that no two inputs can be
mapped to the same location. Thus, SimCLR minimizes the InfoNCE loss [16] for embedding zi:

Li(Z) = − log
ExpSim(zi, zj)∑
k ̸∼i ExpSim(zi, zk)

= − ẑ⊤i ẑj︸︷︷︸
LA
i (Z)

+ log (Si)︸ ︷︷ ︸
LR
i (Z)

, (1)

where ẑ is the unit vector of z, ExpSim(a, b) = exp
(
â⊤b̂

)
is the exponent of the cosine similarity,

and Si =
∑

k ̸∼i ExpSim(zi, zk) is the sum over the repulsive terms. For clarity, we split the loss
term into attraction LA

i (Z) and repulsion LR
i (Z) loss functions1, where LA

i (Z) is the negative
cosine similarity between zi and zj . Surprisingly, BYOL [8] and SimSiam [4] showed that one can
optimize LA

i , the cosine similarity between positive pairs, and avoid collapse by only applying the
gradients to embedding zi (rather than to both zi and zj). We refer to these as non-contrastive
methods.

Across SSL methods, the quality of a learned representation is measured by training classifiers
on the learned representations. If the classifier achieves high accuracy then embeddings correspond-
ing to the same class must be near one another. As is standard, we use the k-nn classifier accuracy
(this effectively lower-bounds the linear classifier’s finetuning accuracy [17]).

SSL Learning Dynamics. The seminal work of [25] showed that repulsion-based contrastive
learning must satisfy two requirements: all positive pairs must be near one another (alignment) and
all negative samples must spread evenly over the hypersphere (uniformity). They then argued that
these requirements lead to classes grouping together. Expanding on this blueprint, subsequent works
have sought to formalize the learning capacity of contrastive methods [9, 13, 21, 25, 29] while much
of the research studying non-contrastive methods has focused on how their architectural components
help to prevent collapse [1, 7, 12, 20, 23, 26].

1. The result of optimizing the attraction term is that the positive pair of embeddings is pulled closer together. Similarly,
optimizing the repulsion term causes the negative embedding pairs to be pushed apart from each other.
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Importantly, both the contrastive and non-contrastive literature assumes that an embedding’s
direction in latent space is its relevant parameter. The magnitude’s role has, to our knowledge, only
been considered in [24] and [27]. The former shows that replacing the softmax’s inner products
with the cosine similarity resolves distributional issues in the softmax function. The latter identifies
that embedding norms affect the cosine similarity but resolves this by simply standardizing the
embeddings to have consistent norms. Our work shows that the embedding norms will always grow
when optimizing the cosine similarity. Thus, we show that standardizing the norms is insufficient
– they must also be minimized. We lastly note that it is an open question why SSL models require
ℓ2-normalization [8, 18, 23] in order to converge. Our work resolves this question.

3. The Cosine Similarity’s Dynamics

We begin with the gradients of the cosine similarity loss with respect to an arbitrary point zi.
Throughout this section, we refer to Z as any set of points in Rd, with no other assumptions over
the distribution.

Proposition 1 (Prop. 3 in [27]; proof in A.1) Let zi and zj be two points in Rd and define LA
i (Z) =

−ẑ⊤i ẑj . Let ϕij be the angle between zi and zj . Then the gradient of LA
i (Z) w.r.t. zi is

∇A
i = − 1

||zi||

(
I− ziz

⊤
i

||zi||2

)
zj

||zj ||
= −

(
ẑj

||zi||

)
⊥zi

where a⊥b is the component of a orthogonal to b. This has magnitude ||∇A
i || =

sin(ϕij)
||zi|| .

This has an easy interpretation: I − ziz
⊤
i

||zi||2 projects the unit vector ẑj onto the subspace orthogonal
to zi and it is then inversely scaled by ||zi||. We visualize this in Figure 1 (left), where the purple
plane represents the projection onto the tangent space at zi. Corollary 4 in Section B of the Appendix
shows that a similar behavior holds for the InfoNCE loss function. As a consequence of these results,
we see that optimizing the cosine similarity or the InfoNCE loss can only grow the embeddings:

Corollary 2 (Proof in A.2) Let zi and zj be positive embeddings with angle ϕij . Let z′i be the
embedding after applying the gradients in Proposition 1 or Corollary 4 to zi via a step of gradient
descent. Then ||z′i|| ≥ ||zi||.

We consider this surprising: one would expect that optimizing the cosine similarity would bring
points “in” rather than “out”. Nonetheless, the results in Prop. 1 and Corollary 2 reveal an inevitable
catch-22: we require small embeddings to optimize the cosine similarity but optimizing the cosine
similarity grows the embeddings. This is the key dynamic that [27] missed. Note, these results do
not depend on the embedding pipeline – they simply assume that we apply the cosine similarity onto
some distribution Z. Furthermore, these results hold for the mean squared error between normalized
embeddings, since ||ẑi − ẑj ||22 = 2− 2ẑ⊤i ẑj . We visualize Corollary 2 in Figure 1 (right).

Effects on Convergence. Our key insights lie in the cosine similarity’s (and, by extension, the
InfoNCE loss’s) gradient magnitude. Namely, it goes to zero when an embedding has large norm
or has a large angle to its positive-pair counterpart. We refer to these as the embedding-norm and
opposite-halves effects, respectively. We note that both are counter-intuitive: the former contradicts
SSL intuition that an embedding’s direction is the relevant term [25] and the latter implies that the
maximal loss incurs the smallest gradients. Despite this, both quadratically slow down convergence:
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Figure 3: Left: The embedding norms when optimizing the subsets of the InfoNCE loss function
for SimCLR. Right: The mean embedding norms for SimCLR/SimSiam/BYOL as a function of the
weight-decay. Note, we use the terms ℓ2-normalization and weight-decay interchangeably.

Theorem 3 (Proof in A.3) Let zi and zj be embeddings with equal norm, i.e. ||zi|| = ||zj || = ρ.
Let z′i = zi +

γ
ρ (zj)⊥zi and z′j = zj +

γ
ρ (zi)⊥zj be the embeddings after maximizing the cosine

similarity via a step of gradient descent with learning rate γ. Then the change in cosine similarity
is bounded from above by:

ẑ′⊤i ẑ
′
j − ẑ⊤i ẑj <

2γ sin2 ϕij
ρ2

. (2)

To visualize this slowdown, we ap-
ply the cosine similarity gradients
to sets of random samples in R20.
By varying the mean embedding
norms and ϕij values, we can then
observe how much each parameter
affects the convergence. Namely,
we apply the gradients in Prop. 1
until the mean cosine similarity ex-
ceeds 0.999. We plot the number
of steps until convergence in Fig-
ure 2. There, we see that although
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Figure 2: The effect of the embedding norm and angle be-
tween positive samples on the convergence rate.

both effects incur quadratic slowdowns, having large embedding norms is significantly worse for
optimization (∼100× slowdown) than having large angles between positive pairs (∼2× slowdown).

We now discuss whether these effects occur in practice. First, we plot the embedding norms dur-
ing training on Cifar10 in Figure 3 and see that, across SSL models, the norms indeed grow during
training. Thus, Corollary 2 is experimentally supported. Furthermore, applying ℓ2-normalization
counteracts this growth since it forces the embeddings to shrink over time. Consequently, Table 1
shows that ℓ2-normalization directly affects SSL model quality – small embeddings lead to higher
k-nn accuracies. We lastly plot the rate at which positive pairs have angle greater than π

2 in Table 2
and see that, although positive pairs may have large angle at epoch 1, by epoch 16 this effectively
stops occurring. We conclude that the embedding-norm effect indeed slows down SSL training
while the opposite-halves effect has a negligible impact (further evidence in Appendix C.1).
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Cifar10 Cifar100 Imagenet-100 Modified
Flowers

Epoch Epoch Epoch Epoch
100 500 100 300 500 100 300 500 100 300 500

SimCLR∗ Default 75.7 85.2 33.9 48.1 51.9 44.6 55.9 59.4 18.9 28.3 35.8
Cut (c = 3) 79.6 86.1 42.3 50.8 52.6 46.7 58.1 60.9 23.7 50.8 65.3

SimSiam Default 67.1 87.0 23.7 50.1 58.6 33.6 61.1 62.0 15.3 16.5 16.9
Cut (c = 9) 77.7 89.0 41.1 59.4 61.7 52.9 63.7 67.2 15.9 27.6 38.5

BYOL Default 69.5 88.2 18.8 53.5 61.9 26.0 65.8 67.7 16.1 17.4 17.1
Cut (c = 9) 82.2 88.6 46.2 62.4 61.4 54.2 68.7 68.6 15.9 27.6 43.1

Table 3: k-nn accuracies for default and cut-initialized training.
Weight
Decay

SimCLR SimSiam BYOL
k-nn ||zi|| k-nn ||zi|| k-nn ||zi||

λ = 5e-2 10.0 0.0 10.0 0.0 10.0 0.0
λ = 5e-3 54.0 0.10 57.2 0.47 78.0 0.45
λ = 5e-4 81.3 0.41 73.3 0.81 74.3 0.70
λ = 5e-6 75.7 13.5 48.2 24.5 47.8 23.2
λ = 0 75.3 16.4 47.9 31.4 47.3 30.1

Table 1: Effect of ℓ2-normalization on SSL
training for Cifar10. We report the k-nn ac-
curacy and the embedding norms for various
weight decay parameters and SSL models. ||zi||
represents the mean embedding norm.

Model Dataset Effect Rate
Epoch 1

Effect Rate
Epoch 16

SimCLR Imagenet-100 2% 0%
Cifar-100 11% 1%

SimSiam Imagenet-100 26% 1%
Cifar-100 21% 0%

BYOL Imagenet-100 28% 1%
Cifar-100 20% 0%

Table 2: The rate at which embeddings are
on opposite sides of the latent space for var-
ious datasets and SSL models.

4. Cut-Initialization

The previous sections showed that the embedding-norm effect occurs in SSL models and that weight
decay eventually remedies it. Rather than waiting for the weight-decay to slowly shrink the embed-
dings, we propose to initialize the embeddings directly at the correct size via cut-initialization: an
initialization scheme where we divide each layer’s weights with cut-constant c > 1 before training.

We refer to Tables 5 and 6 to study the relationship between the cut-constant and the weight-
decay. Specifically, we analyze the classification accuracy after 100 epochs and see that, in both the
contrastive and non-contrastive settings, pairing cut-initialization with weight decay accelerates the
training process. Based on these results, we default to cut-constant c = 3 for contrastive methods
and c = 9 for non-contrastive ones. Table 3 then evaluates the effectiveness of cut-initialization on
full training runs2. The takeaway is that cut-initialization essentially guarantees faster convergence.

We note that the original Flowers102 dataset [15] is nearly impossible for self-supervised image
recognition. We therefore create a new training split using the supplementary imbalanced class
examples. Each class in our modified-flowers dataset has between 50 and 250 samples, implying
a long-tailed data distribution [28]. Despite this still being challenging for the default models,
incorporating cut-initialization allows them to obtain significantly higher accuracies in Table 3.
Thus, not only does cut-initialization accelerate training, it can sometimes facilitate it entirely.

It remains to show that cut-initialization works across SSL models and backbone architectures.
To this end, Table 3 shows that cut-initialization still provides the expected boost in performance
for MoCov2 and for MoCov3 (which uses a ViT-s trasnformer backbone). We point out that Dino’s
objective function does not depend on the cosine similarity [2]. Consequently, it does not (and

2. Due to lack of compute, we use a batch-size of 128 with the Resnet50 backbone, indicated by the asterisk.
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should not) benefit from cut-initialization. This supports our analysis: using cut-initialization in
theoretically unmotivated settings no longer has a positive impact on training.

Top-1 Top-5

M
oC

o
V

2 c = 1 38.7 69.7
c = 3 43.8 71.8

M
oC

o
V

3 c = 1 54.8 82.7
c = 3 58.8 86.0

D
IN

O c = 1 43.7 76.6
c = 3 29.0 55.6

Table 4: Imagenet-100 k-
nn accuracy (epoch 100) for
MoCo and Dino.

SimCLR
Weight Decay

1e-8 1e-6 5e-6 1e-5

C
ut

c = 1 40.8 40.5 40.9 41.5
c = 2 42.7 42.8 42.9 42.2
c = 4 42.3 41.4 42.0 41.1
c = 8 37.1 36.8 37.9 37.3

Table 5: SimCLR k-nn accuracy
(epoch 100) on Cifar100 for various
cut-constants and weight-decays. De-
fault weight-decay is underlined.

SimSiam
Weight Decay

5e-5 1e-4 5e-4 1e-3

C
ut

c = 1 36.7 38.5 40.5 44.7
c = 2 41.1 44.0 48.8 42.1
c = 4 40.2 41.2 49.8 49.1
c = 8 44.4 46.4 50.2 53.2

Table 6: SimSiam k-nn accuracy
(epoch 100) on Imagenet-100 for var-
ious values of c and λ. Default
weight-decay is underlined.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Proof We are taking the gradient of LA
i as a function of zi. The principal idea is that the gradient

has a term with direction ẑj and a term with direction −ẑi. We then disassemble the vector with
direction ẑj into its component parallel to zi and its component orthogonal to zi. In doing so, we
find that the two terms with direction zi cancel, leaving only the one with direction orthogonal to zi.

Writing it out fully, we have LA
i = −z⊤i zj/(||zi|| · ||zj ||). Taking the gradient amounts to using

the quotient rule, with f = −z⊤i zj and g = ||zi|| · ||zj || =
√
z⊤i zi ·

√
z⊤j zj . Taking the derivative

of each, we have

f ′ = −zj

g′ = ||zj ||
zi√
z⊤i zi

= ||zj ||
zi

||zi||

=⇒ f ′g − g′f

g2
=

− (zj · ||zi|| · ||zj ||) +
(
||zj || zi

||zi|| · z
⊤
i zj

)
||zi||2 · ||zj ||2

=
−zj

||zi|| · ||zj ||
+

ziz
⊤
i zj

||zi||3||zj ||
,

where we use boldface z to emphasize which direction each term acts along. We now substitute
cos(ϕij) = z⊤i zj/(||zi|| · ||zj ||) in the second term to get

f ′g − g′f

g2
=

−ẑj
||zi||

+
zi cos(ϕ)

||zi||2
(3)

It remains to separate the first term into its sine and cosine components and perform the resulting
cancellations. To do this, we take the projection of ẑj = zj/||zj || onto zi and onto the plane
orthogonal to zi. The projection of ẑj onto zi is given by

cosϕij
zi

||zi||

while the projection of zj/||zj || onto the plane orthogonal to zi is(
I− ziz

⊤
i

||zi||2

)
zj

||zj ||
.

It is easy to assert that these components sum to zj/||zj || by replacing the cosϕij by z⊤i zj
||zi||·||zj || .
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We plug these into Eq. 3 and cancel the first and third term to arrive at the desired value:

f ′g − g′f

g2
=− 1

||zi||
cosϕ

zi
||zi||

− 1

||zi||
·
(
I− ziz

⊤
i

||zi||2

)
zj

||zj ||

+
zi cos(ϕ)

||zi||2

=
−1

||zi||
·
(
I− ziz

⊤
i

||zi||2

)
zj

||zj ||
.

A.2. Proof of Corollary 2

Proof First, consider that we applied the cosine similarity’s gradients from Proposition 1. Since
zi and (zj)⊥zi are orthogonal, ||z′i||22 = ||zi||2 + γ2

||zi||2 ||(zj)⊥zi ||2. The second term is positive if
sinϕij > 0. Figure 1 visualizes this.

The same exact argument holds for the InfoNCE gradients. The gradient is orthogonal to the
embedding, so a step of gradient descent can only increase the embedding’s magnitude.

A.3. Proof of Theorem 3

We first restate the theorem:
Let zi and zj be positive embeddings with equal norm, i.e. ||zi|| = ||zj || = ρ. Let z′i and z′j

be the embeddings after 1 step of gradient descent with learning rate γ. Then the change in cosine
similarity is bounded from above by:

ẑ′⊤i ẑ
′
j − ẑ⊤i ẑj <

γ sin2 ϕij
ρ2

[
2− γ cosϕ

ρ2

]
.

We now proceed to the proof:
Proof Let zi and zj be two embeddings with equal norm3, i.e. ||zi|| = ||zj || = ρ. We then perform
a step of gradient descent to maximize ẑ⊤i ẑj . That is, using the gradients in 1 and learning rate γ,
we obtain new embeddings z′i = zi +

γ
||zi||(ẑj)⊥zi and z′j = zj +

γ
||zj ||(ẑi)⊥zj . Going forward, we

write δij = (ẑj)⊥zi and δji = (ẑi)⊥zj , so z′i = zi +
γ
ρδij and z′j = zj +

γ
ρδji. Notice that since zi

and δij are orthogonal, by the Pythagorean theorem we have ||z′i||2 = ||zi||2 + γ2

ρ2
||δij ||2 ≥ ||zi||2.

Lastly, we define ρ′ = ||z′i|| = ||z′j ||.
We are interested in analyzing ẑ′⊤i ẑ

′
j − ẑ⊤i ẑj . To this end, we begin by re-framing ẑ′⊤i ẑ

′
j :

ẑ′⊤i ẑ
′
j =

(
zi +

γ
ρδij

ρ′

)⊤(
zj +

γ
ρδji

ρ′

)

=
1

ρ′2

[
z⊤i zj + γ

z⊤i δji
ρ′

+ γ
z⊤j δij

ρ′
+ γ2

δ⊤ijδji

ρ′2

]
.

3. We assume the Euclidean distance for all calculations.
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We now consider that, since δij is the projection of ẑj onto the subspace orthogonal to zi, we
have that the angle between zi and δji is π/2− ϕij . Plugging this in and simplifying, we obtain

z⊤i δji = ||zi|| · ||δji|| cos(π/2− ϕij)

= ||zi|| · ||δji|| sinϕij
= ρ sin2 ϕij .

By symmetry, the same must hold for z⊤j δij .
Similarly, we notice that the angle ψij between δij and δji is ψij = π− ϕij . The reason for this

is that we must have a quadrilateral whose four internal angles must sum to 2π, i.e. ψij+ϕij+2π
2 =

2π. Thus, we obtain δ⊤ijδji = ||δij || · ||δji|| cos(ψ) = − sin2 ϕij cosϕij .
We plug these back into our equation for ẑ′⊤i ẑ

′
j and simplify:

ẑ′⊤i ẑ
′
j =

1

ρ′2

[
z⊤i zj + γ

z⊤i δji
ρ

+ γ
z⊤j δij

ρ
+ γ2

δ⊤ijδji

ρ2

]

=
1

ρ′2

[
z⊤i zj + γ

ρ sin2 ϕij
ρ

+ γ
ρ sin2 ϕij

ρ
− γ2

sin2 ϕij cosϕij
ρ2

]
=

1

ρ′2

[
z⊤i zj + 2γ sin2 ϕij − γ2

sin2 ϕij cosϕij
ρ2

]
.

We now consider the original term in question:

ẑ′⊤i ẑ
′
j − ẑ⊤i ẑj =

1

ρ′2

[
z⊤i zj + 2γ sin2 ϕij − γ2

sin2 ϕij cosϕij
ρ2

]
− z⊤i zj

ρ2

≤ 1

ρ2

[
z⊤i zj + 2γ sin2 ϕij − γ2

sin2 ϕij cosϕij
ρ2

]
− z⊤i zj

ρ2

=
1

ρ2

[
2γ sin2 ϕij − γ2

sin2 ϕij cosϕij
ρ2

]
=
γ sin2 ϕij

ρ2

[
2− γ cosϕij

ρ2

]
≤ 2γ sin2 ϕij

ρ2

This concludes the proof.

Appendix B. InfoNCE Gradients

The InfoNCE gradient has a similar structure to the cosine similarity’s:

Corollary 4 Let Z be a set of b embeddings in Rd, with zi corresponding to the i-th row of Z. Let
Li(Z) = LA

i (Z) + LR
i (Z). Then the gradient of Li(Z) w.r.t. zi is

∇InfoNCE
i = − 1

||zi||

(ẑj)⊥zi
+
∑
k ̸∼i

(
ẑk ·

ExpSim(zi, zk)

Si

)
⊥zi

 . (4)

11
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Proof We are interested in the gradient of LR
i with respect to zi. By the chain rule, we get

∇R
i = −

∑
k ̸∼i ExpSim(zi, zk)

∂
z⊤i zk

||zi||·||zk||
∂zi∑

k ̸∼i ExpSim(zi, zk)

= −
∑

k ̸∼i ExpSim(zi, zk)
∂

z⊤i zk
||zi||·||zk||

∂zi

Si

It remains to substitute the result of Prop. 1 for ∂ z⊤i zk
||zi||·||zk||/∂zi.

We sum this this with the gradients of the attractive term to obtain the full InfoNCE gradient,
completing the proof.

In essence, because the InfoNCE loss is a function of the cosine similarity, the chain rule implies
that its gradients have similar properties to the cosine similarity’s. Specifically, just like those of
LA
i , the gradients of LR

i have the properties that (1) they are inversely scaled by ||zi||, (2) they are
only defined in zi’s tangent space, and (3) optimizing the repulsions cause the embeddings to grow4.
Since the InfoNCE loss is the sum of LA

i and LR
i , these properties all extend to the InfoNCE loss

as well.

Appendix C. Further Discussion and Experiments

C.1. Opposite-Halves Effects

We first consider how much the opposite-halves effect plays a role in SSL training in theory. Re-
ferring back to Figure 2, we see that the effect is most impactful when the angle between positive
embeddings is close to π, i.e. ϕij > π − ε for ε → 0. The following result shows that this is
exceedingly unlikely in high-dimensions:

Proposition 5 Let xi, xj ∼ N (0, I) be d-dimensional, i.i.d. random variables and let 0 < ε < 1.
Then

P
[
x̂⊤i x̂j ≥ 1− ε

]
≤ 1

2d(1− ε)2
. (5)

Proof By [22], the cosine similarity between two i.i.d. random variables drawn from N (0, I) has
expected value µ = 0 and variance σ2 = 1/d, where d is the dimensionality of the space. We
therefore plug these into Chebyshev’s inequality:

Pr
[∣∣∣∣ x⊤i xj
||xi|| · ||xj ||

− µ

∣∣∣∣ ≥ kσ

]
≤ 1

k2

→Pr
[∣∣∣∣ x⊤i xj
||xi|| · ||xj ||

∣∣∣∣ ≥ k√
d

]
≤ 1

k2

4. The primary difference is that the repulsive gradients have a weighted average over all the negative samples zk. We
note that this weighted average over a set of unit vectors leads to the repulsive force being smaller than the attractive
one.
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Figure 4: Lines between positive samples in 2D latent space during training. The color goes from
red to blue as the cos. sim. goes from −1 to 1.

We now choose k =
√
d(1− ε), giving us

P
[∣∣∣∣ x⊤i xj
||xi|| · ||xj ||

∣∣∣∣ ≥ 1− ε

]
≤ 1

d(1− ε)2
.

It remains to remove the absolute values around the cosine similarity. Since the cosine similarity
is symmetric around 0, the likelihood that its absolute value exceeds 1 − ε is twice the likelihood
that its value exceeds 1− ε, concluding the proof.

We note that this is actually an extremely optimistic bound since we have not taken into account
the fact that the maximum of the cosine similarity is 1.

Thus, the opposite-halves effect is exceedingly unlikely to occur in theory.
Nonetheless, Table 2 shows that embeddings have angle greater than π/2 at a rate of 5% and

25% for SimCLR and SimSiam/BYOL, respectively. So even if the ‘strongest’ variant of the
opposite-halves effect is not occurring, a weaker one may still be. To visualize why this happens
more for non-contrastive embeddings, we train SimCLR and BYOL with a 2-dimensional projec-
tion/prediction latent space (as is done for MoCo in [25]) and draw lines between positive samples
in Figure 4. SimCLR performs as expected – it distributes the embeddings across the latent space
and keeps positive samples close together. However, Figure 4 suggests that BYOL begins by con-
centrating its embeddings at antipodal points on the hypersphere and does not spread out evenly
from there. Drawing from [4, 6, 19], we attribute this to the batch-normalization that is present in
BYOL and SimSiam’s projection/prediction heads5.

Putting these pieces together explains why SimSiam and BYOL have a higher rate of the
opposite-halves effect at the start of training. Since they only optimize attractions, they must begin

5. Consider what happens if the distribution has collapsed to a single point right before the batch-normalization layer.
Since batch-normalization subtracts the mean and divides by the variance, the single collapsed cluster becomes
chaotically distributed across the latent space [6]. Thus, batch-normalized models cannot collapse to a single point.
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Figure 5: The effect of cut-initialization on Cifar10 SSL representations. x-axis and embedding
norm’s y-axis are log-scale. λ = 5e−4 in all experiments.
by concentrating embeddings together. Due to batch-normalization, this concentration occurs in
several clusters that straddle the origin. Thus, some positive pairs will necessarily have an angle
greater than π

2 at the beginning of training (seen in the ‘Epoch 1’ row of Figure 4).
We point out, however, that very early into training (epoch 16), every method has a rate of

effectively 0 for the opposite-halves effect. This is visualized in Figure 4, where the learned rep-
resentations at epoch 128 have very few ‘red’ lines6. Furthermore, the rates in Table ?? measure
how often ϕij > π

2 : the absolute weakest version of the opposite-halves effect. If we instead count
the number of times that ϕij > 7π

8 (the range where the opposite halves effect could start mattering
according to Figure 2), then it occurs 0 times across all the experiments in Table ??. Thus, it is clear
that while some weak variant of the opposite-halves effect must occur at the beginning of training,
it does not have a strong impact on the convergence dynamics and, in either case, disappears quite
quickly.

C.2. Cut-Initialization

To get a preliminary intuition for cut-initialization’s impact on the convergence, we plot the effect
of the cut constant on the embedding norms and accuracies over training in Figure 57. We see
that dividing the network’s weights by c > 1 leads to immediate convergence improvements in all
models. Furthermore, this effect degrades gracefully: as c > 1 becomes c < 1, the embeddings stay
large for longer and, as a result, the convergence is slower. We also see that cut-initialization has a
more pronounced effect in attraction-only models – a trend that remains consistent throughout the
experiments.

6. Interestingly, Figure 4 also implies that attraction-only methods never reach uniformity over the latent space.
7. To make the effect more apparent, we use weight-decay λ = 5e− 4 in all models.
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