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Abstract

Suicide is a global health issue and early di-
agnosis is necessary for effective treatment.
Recent advancements in natural language pro-
cessing has aided the identification of men-
tal health disorders in social media. This pa-
per investigated the efficacy of pre-trained lan-
guage model (PLM) in identifying depression
and post-traumatic stress disorder (PTSD) with
Twitter data. Leveraging the CLPysch 2015
dataset (which constitutes of tweets from users
with depression, PTSD and neither condition),
we implemented various experimental designs
using Long Short Term Memory (LSTM) and
attention. The results demonstrate that while
detecting specific mental health issues is still
difficult, the detection of general mental health
conditions improves with the implementation
of attention. The results provide insights into
the strengths and weaknesses of these models
in identifying mental health issues from social
media content, with potential implications for
improving mental health monitoring.

1 Introduction

Suicide is a global health problem and is the fourth
leading cause of death for the 15-44 years de-
mographic globally (World Health Organization,
2021). Mental disorders, including depression and
post-traumatic stress disorder (PTSD) have been
found to increase the likelihood of suicidal ideation
and suicide (Holliday et al., 2021; Busby Grant
etal., 2023; Chou et al., 2023; Kratovic et al., 2021).
These disorders not only hamper the quality of life
for the people who suffer with them but also lessen
the quality of life for their families and environment
(Garcia-Noguez et al., 2023). Early diagnosis and
subsequent treatment can help to lessen the nega-
tive impacts that arise from mental health disorders
(Beirao et al., 2020; Kearns et al., 2012).
Researchers are leveraging social context to bet-
ter understand mental health problems and has been
an ongoing process. In the past, researchers used

Google trends for mental health surveillance (Page
et al., 2011), examining depression based chatter
on Twitter (Cavazos-Rehg et al., 2016), and imple-
menting machine learning algorithms to classify
tweets in terms of stress or relaxation (Doan et al.,
2017). Recent advancements in pre-trained lan-
guage models (PLMs) have been helpful in identi-
fying the mental health disorder traits from textual
data (Ji et al., 2021; Vajre et al., 2021).

Prior to PLMs, an early study conducted in 2014
as a part of a hackathon event (Coppersmith et al.,
2014) performed a binary classification between
the combinations of control, PTSD and depression
outcomes based on the tweets gathered via Twitter
api (Coppersmith et al., 2015). Following this re-
search, the same dataset has aided other research,
for example, interpreting mental health outcomes
(Yang et al., 2023) and training new PLMs centric
to mental health outcomes (Ji et al., 2021).

The aforementioned studies focused on binary
classification to identify the presence or absence
of depression among Twitter users. Given how
these disorders may affect an individual differently,
identification of PTSD and depression separately
could influence an individual’s journey to recovery
(Finch, 2023). Proper diagnosis allows clinicians
to recommend therapeutic interventions based on
specific conditions (Finch, 2023; Kimberly Hol-
land, Timothy J. Legg, 2019). As such, in this
research, we extend the classification to all cate-
gories of CLPysch 2015 dataset. Additionally, we
will replicate the experiments for detecting depres-
sion and further investigate the instances where
general disorders are a concern.

2 Methodology

We aim to answer two key questions in this paper:
1. How effective are PLMs for tracking multiple
mental health problems? 2. Which method is the
most effective for monitoring general mental health



conditions?
For this study, we used CLPsych2015 dataset (De-
tails in Appendix: A) to answer these questions.
The experiments were run for all users using
Algorithm 1. The number of epochs was set to
10. A single user was taken as their own batch for
training because of the choice of model designs.
Please refer to Section 3 for the model designs.
We used cardiffnlp/twitter-roberta-base (Barbieri
et al., 2020) as our PLM of choice. More details
on Algorithm and PLM can be found in Appendix:
B and C.

Algorithm 1 Training CLPysch 2015 dataset

for epochs (e;) =1to e do
for users (u;) =1 to u do
Pre-process each tweet removing any punc-
tuation, white space, links, retweets and
emoticons
Pass tweet to tokenizer and pre-trained
RoBERTa and extract [C'LS] token
Stack all [C'LS] tokens for user u;
Perform experiment FE (section:3) on
stacked [C'LS] embedding
Two layers of neural networks with tanh()
and softmaz() to compute predicted §
Calculate loss and update weight
end for
Perform accuracy calculation for epoch e;
end for

3 Experimental Designs

We describe two classes of implemented network
models, each made up of 4 experiments. The first
class of models used Long Short Term Memory
(LSTM) and the second class of models were based
on Attention mechanism, which is the engine of
transformer-based models. We trained these model
on the top of the PLM as described in Algorithm 1.

3.1 Long Short Term Memory (LSTM)

In our experiment, we implemented LSTM
(Hochreiter and Schmidhuber, 1997) as one of the
experiment designs. Since the tweets are sequen-
tial with each user having up to 1000 tweets and
there are a differing number of tweets between the
users, LSTM was appropriate as an experimental
design. We implemented four LSTM models with
variations in the number of layers and direction.
The number of hidden layers ranged from 128 to
1024.

3.2 Using attention mechanism

Attention is the core of transformer based mod-
els (Vaswani et al., 2017). Since we are using
RoBERTa for the base model (Barbieri et al., 2020),
we added a multi-headed attention (M H A) layer
of heads ranging from 1 to 16 for our second ex-
periment design. This choice was made to attend
to various parts of the tweet sequence differently.
Four experiments were designed for the attention
based models.

3.2.1 Attention

The idea behind this design was that the [C'LS]|
token would attend to a single tweet ¢; and the
stack of [C'LS] tokens from each user t% would
use a cross-attention between tweets. This would
determine the presence or absence of some mental
health condition (depression or PTSD) for user u;.

3.2.2 Adding temporal information

In this experiment, we added temporal information
in terms of time lapse between the current and
previous tweet as a part of the tweet. The first
tweet ¢1 was converted to t; = 7 First tweet :
” + t1 and every subsequent tweets were converted
tot; = " After x :,” 4+ t;, where x was the time
lapse between the current tweet ¢; and the last tweet
t;—1, adding temporal context to the tweets. These
were then processed in the same fashion as the
attention as described in section 3.2.1.

3.2.3 Two sentence sliding window

For this experiment, we used two sentences ap-
pended together before the tokenization i.e. for
USer u;, by, = t1 +to,to +13,...,tn—1 + 1ty A
sliding window meant that there is a information
linkage between previous and current tweet, cre-
ating a short term attention. The resulting stack
of [CLS] tokens would go through M H A layer
for long term attention across the tweets, similar to
section 3.2.1.

3.24

In this experiment, we used the concept of mo-
mentum () for controlling the flow of information
between ¢; and ¢;_1. For user u;, the tweet ¢; would
convert to o x t; + (1 — a) * t;—1. The value of
« ranged between 0 to 1 and it was initialised at
0.2 1.e. 20% of transfer of momentum from the last
tweet. There was no particular reason of choosing
0.2 and could be randomised since we trained «
while training the weights of the models.

Momentum



4 Evaluation

Given p1, p2 and p3 are probabilities for control,
depression and PTSD respectively, the results were
calculated as such for the mentioned three cases
and presented in Tables 1, 2 and 3 respectively.

Case A. Multinominal classification: In this
case, we performed the identification of control vs
depression vs PTSD users based on the highest
probability i.e. max(p1, p2, p3).

Case B. Depression vs Control: In this case, we
removed the probability p3 from all experimental
results and rescaled the results for p; and ps and
evaluated using the rescaled probabilities. This
was done to compare our model results with the
baseline models.

Case C: Mental health vs Control: In this case,
we added the probability of py and ps from all
experimental results and evaluated using the new
probability. This was done to simulate a scenario
for the presence or absence of any general mental
health condition.

In our experiments, 4 head two-sentence atten-
tion model achieved the best performance in both
metrics for case A (Table: 1). Similarly, the same
model performed best in F1 score for case B (Ta-
ble: 2) and case C (Table: 3). However, recall was
higher for 2 head Temporal, LSTM 2 layer 512
hidden unit and LSTM 2 layer bidirectional 1024
hidden unit for case B with each of them contribut-
ing to 100% recall score (Table: 2). Similar recall
values can also be seen for the same models for case
C along with single head two sentence (Table: 3).
Although these models had a perfect recall score, it
would not generalise well to unseen dataset as per
their corresponding F1 scores. Since we are deal-
ing with mental health conditions, there may be
instances where not identifying mental health users
are more costly than identifying false positives of
the same, where these models might be useful.

The comparison with previous models was possi-
ble only for case B because case A and case C has
not been exploited, and to the best of our knowl-
edge, is novel to our study. Comparing to baseline
models, our best model did not outperform F1 score
of MentalRoBERTa model, but outperformed every
other model, including large language models like
GPT-4 g and MentalLLaMA-chat-13B (Yang et al.,
2024). For a relatively small model compared to
some of these models, our model performed rela-

tively well.

Identification of depression and PTSD separately
resulted in decreased performance (Table: 1), com-
pared to case B where only depression is identified
(Table: 2) and case C, where, general mental health
condition is identified (Table: 3), which is to be
expected of a multinominal classification. Another
possible explanation is the potential overlap of ex-
pressions in tweets from users with depression and
PTSD. Consequently, the classification between
the two groups becomes more challenging com-
pared to the classification of an individual mental
disorder from the control group alone. However,
when these disorders are combined, the result im-
proves significantly as seen from the results in case
C (Table 3). So, if surveillance of general mental
health condition is of interest instead of identifying
individual conditions, we can achieve up to 75.5%
of F1 score.

To answer the key questions of this research,
PLMs may not be effective to identify individ-
ual mental health conditions, with our best model
achieving only a maximum F1 score of 63.5%.
However, when the conditions are combined for
monitoring general mental health traits, the F1
score increases to 75.5%. This means in general,
more than 3 out of 4 mental health patients could
be diagnosed using their social media presence (eg:
tweets). We found appending two tweets and pass-
ing through attention layer can help achieve this.

5 Conclusion

This study demonstrates the potential of pre-trained
language models in detecting a range of mental
health disorders, including depression and PTSD,
from textual data on social media platforms like
Twitter. Through various experimental models, in-
cluding LSTM-based and attention based mecha-
nisms, we were able to assess the effectiveness of
these models in classifying specific and general
mental health conditions. Our results reveal that
attention-based models, particularly two-sentence
sliding window tend to outperform other methods.
The ability to classify specific and general mental
health conditions separately could be crucial for
more accurate diagnosis and treatment recommen-
dations and there is a need for advanced monitoring
systems that enable this. Further, research and opti-
mization of these models could contribute signifi-
cantly to early mental health diagnosis strategies.



Table 1: Performance metrics for control vs depression vs PTSD in multinominal classification setting (Case A)

Heads — F1 Score Recall
Models | 1 2 4 8 16 1 2 4 8 16
Attention 0.411 | 0.438 | 0.595 | 0.362 | 0.362 | 0.451 | 0.46 | 0.59 | 0.397 | 0.397
Temporal 0.29 | 0.31 0.606 | 0.554 | 0.461 | 0.363 | 0.378 | 0.603 | 0.562 | 0.495
Two sentence | 0.222 | 0.434 | 0.635 | 0.457 | 0.542 | 0.333 | 0.449 | 0.637 | 0.494 | 0.553
Momemtum | 0.312 | 0.333 | 0.333 | 0.333 | 0.333 | 0.361 | 0.369 | 0.369 | 0.369 | 0.369

Hidden units — F1 Score Recall
Models | 128 256 512 1024 128 256 512 1024
LSTM 1 layer 0.532 | 0.533 | 0.44 0.345 | 0.535 | 0.541 | 0.451 | 0.382
LSTM 2 layer 0.496 | 0.474 | 0.226 | 0.227 | 0.489 | 0.475 | 0.334 | 0.336
LSTM 1 layer bidirectional | 0.523 | 0.49 0478 | 0.437 | 0.519 | 0494 | 0.479 | 0.434
LSTM 2 layer bidirectional | 0.514 | 0.5 0.231 | 0.259 | 0.513 | 0.515 | 0.338 | 0.338

Table 2: Performance metrics for control vs depression in binary classification setting (Case B)

Heads — F1 Score Recall

Models | 1 2 4 8 16 1 2 4 8 16
Attention 0.37 | 043 | 0.616| 0.303| 0.303| 0.3 0.407| 0.78 | 0.213| 0.213
Temporal 0.157] 0.501| 0.62 | 0.589| 0.604| 0.087| 1.0 0.68 | 0.593| 0.787
Two sentence 0 0.512| 0.655| 0.537| 0.534| 0 0.7 0.76 | 0.82 | 0.66
Momemtum 0.24 | 0.314] 0.314| 0.314| 0.314| 0.167| 0.253| 0.253| 0.253| 0.253
BERT-base 0.628 0.647
MentalBERT 0.626 0.647
MentalRoBERTa 0.697 0.703
GPT-4rg 0.62 -
MentalLLaMA-chat-13B 0.526 -

Hidden units — F1 Score Recall

Models | 128 256 512 1024 | 128 256 512 1024
LSTM 1 layer 0.589 | 0.589 | 0.484 | 0.333 | 0.627 | 0.687 | 0.52 0.26
LSTM 2 layer 0.502 | 0.503 | 0.501 | 0.116 | 0.507 | 0.48 1.0 0.093
LSTM 1 layer bidirectional | 0.545 | 0.533 | 0.497 | 0.396 | 0.547 | 0.56 0.48 0.373
LSTM 2 layer bidirectional | 0.568 | 0.573 | 0.026 | 0.502 | 0.6 0.693 | 0.013 | 1.0

Table 3: Performance metrics for control vs general mental health condition (depression and PTSD) in binary
classification setting (Case C)

Heads — F1 Score Recall
Models | 1 2 4 8 16 1 2 4 8 16
Attention 0.63 0.593 | 0.724 | 0.403 | 0.403 | 0.587 | 0.547 | 0.83 0.277 | 0.277

Temporal 0.212 | 0.667 | 0.716 | 0.732 | 0.676 | 0.12 | 1.0 0.723 | 0.793 | 0.743
Two sentence | 0.667 | 0.654 | 0.755 | 0.672 | 0.729 | 1.0 0.883 | 0.797 | 0.86 | 0.767
Momemtum | 0.347 | 0.449 | 0.449 | 0.449 | 0.449 | 0.257 | 0.37 | 0.37 | 0.37 | 0.37

Hidden units — F1 Score Recall
Models | 128 256 512 1024 | 128 256 512 1024
LSTM 1 layer 0.684 | 0.689 | 0.59 0.431 | 0.707 | 0.733 | 0.567 | 0.337
LSTM 2 layer 0.608 | 0.587 | 0.667 | 0.138 | 0.6 0.53 1.0 0.093
LSTM 1 layer bidirectional | 0.664 | 0.636 | 0.593 | 0.588 | 0.653 | 0.64 0.56 0.573
LSTM 2 layer bidirectional | 0.667 | 0.663 | 0.039 | 0.668 | 0.697 | 0.733 | 0.02 1.0




Limitations

One of the limitations of the study is that only last
1000 tweets (if more than 1000 tweets present) per
user were considered for this research due to com-
putational restraints. For most of the experiments,
we used a single A100 80GB GPU to train the
models. Each experiment took 10-12 days (on av-
erage) to complete (approximately one epoch per
day). While a second A100 80GB GPU was ob-
tained at the tail end of training the models, most
of the training was done using only a single A100
80GB GPU. Further, the GPU server was shared
between various projects as well as the lack of re-
sources to add more GPU servers meant that not
all tweets could be processed. The reliance on
the processing of tweets sequentially further meant
that each epoch was much longer, since batching
was not possible. This caused each model to run
around 10-12 days, hence resulting in limited num-
ber of experiments. Further, only a single dataset
was used, which could bias the results. In addi-
tion, the tweets were extracted a decade ago, which
means the newer tweets would not have been col-
lected. The vocabulary in which humans express
sentiments perhaps changed in the last decade and
those were not captured. Additionally, the collected
tweets are only a sub-sample of the much larger
cohort of mental health users who are not consid-
ered in this study. Even while focusing on this
cohort itself, there is a lack of evidence to affirm
the presence or absence of mental health conditions
between the Twitter users. Finally, our study aims
to develop a model for assisting researchers and
clinicians for detection of mental health conditions
using social context for non-clinical use. However,
it does not replace clinical diagnoses which is es-
sential for the detection and treatment of mental
health issues.
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any white spaces, retweets, mentions, URLSs, punc-
tuations and emoticons. For each user u;, their
individual tweets t1, to, ..., t, were tokenized and
passed through a pre-trained RoOBERTa model. The
output was a tensor containing the embedding of
the tweet ;. The 768 dimension [C'LS| token,
which contains the classification information of the
entire sentence (Devlin et al., 2018), was extracted
for each tweet. For each user, these [C'LS| to-
kens were then stacked to form the tensor of shape
tpui X 768, where t,u; was the number of tweets
for user u;. Further experiments were performed
using these stacked tensors as explained in section
3. The output of each experiment was then con-
nected to two fully connected layers, with tanh()
as the activation function on both layers. The first
layer converted the output from 768 dimensions
to 100 dimensions and the second layer converted
from 100 dimensions to 3 dimensions. The output
of the second fully connected layer was passed to
softmax function, given by, o(x;) = %, to
convert the results into probabilities. The final out-
put was the category (control, depression or PTSD)

with the highest probability i.e. max(o(z;)).

C RoBERTa for base embeddings

We used a Twitter-based fine-tuned model of
RoBERTa called cardiffnlp/twitter-roberta-base
(Barbieri et al., 2020) for the base embeddings as
our PLM. The embeddings were extracted using
transformer library (Wolf et al., 2019). The small
memory size of RoOBERTa and its pre-training on
Twitter data made it an appropriate choice for this
study. There was an expectancy that the Twitter
vocabulary was present in the PLM of choice since
it was trained on Twitter data, thus providing appro-
priate token embeddings. For this study, since we
were interested in embedding rather than the senti-
ment analysis, which was the intended use of this
PLM, the [C'LS] token of each tweet’s embedding
was extracted using this PLM.
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