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ABSTRACT

Text-to-image retrieval is a fundamental task in vision-language learning, yet
in real-world scenarios it is often challenged by short and underspecified user
queries. Such queries are typically only one or two words long, making them
semantically ambiguous, prone to collisions across diverse visual interpretations,
and lacking explicit control over the quality of retrieved images. To address these
issues, we propose a new paradigm of quality-controllable retrieval, which en-
riches short queries with contextual details while incorporating explicit notions
of image quality. Our key idea is to leverage a generative large language model
as a query completion function, extending underspecified queries into descrip-
tive forms that capture fine-grained visual attributes such as pose, scene, and aes-
thetics. We introduce a training framework that conditions query completion on
discretized quality levels, derived from relevance and aesthetic scoring models,
so that query enrichment is not only semantically meaningful but also quality-
aware. The resulting system provides three key advantages: @ flexibility, as it is
compatible with any pretrained vision—language model without modification; @
transparency, since enriched queries are explicitly interpretable by users; and @
controllability, enabling retrieval results to be steered toward user-preferred qual-
ity levels. Extensive experiments demonstrate that our proposed approach signif-
icantly improves retrieval results and provides effective quality control, bridging
the gap between the expressive capacity of modern vision—-language models and
the underspecified nature of short user queries.

1 INTRODUCTION

Text-to-image retrieval (T2IR) aims to return the most relevant images from a gallerty given a textual
query. Recent progress in this task has been largely driven by vision-language models (VLMs)
(Radford et al., 2021; Jia et al., 2021; Yu et al., 2022; Li et al., 2022; Yang et al., 2022; Li et al.,
2023; Yang et al., 2024; Lu et al., 2024), which learn joint representations of text and images through
large-scale pretraining on web-scale image—text pairs (Schuhmann et al., 2021; 2024; Liu et al.,
2023a). Such models significantly narrow the semantic gap between modalities and achieve strong
alignment across diverse benchmarks (Ilharco et al., 2021; Singh et al., 2022; Gao et al., 2022; Khan
& Fu, 2023; Wang et al., 2024; Li et al., 2024).

Despite these advances, retrieval performance often degrades in realistic scenarios where user
queries are very short (typically just one or two words, e.g., “a dog”). Short queries encode only
limited semantics, which results in large and ambiguous search subspaces and less discriminative
results. This issue becomes more pronounced in large-scale galleries, where underspecified queries
yield many candidate matches and cause semantic collisions among visually diverse results.

Another limitation of existing retrieval systems is their singular focus on semantic alignment. Naive
retrieval approaches simply return the top-k images with the highest similarity scores, overlook-
ing other critical aspects of user satisfaction such as aesthetics, interestingness, or popularity. In
practice, retrieval quality is context-dependent: art students may prefer visually inspiring images,
architects may seek unique and creative references, and shoppers may favor popular or visually
appealing products. However, conventional systems lack mechanisms for steering retrieval toward
these quality dimensions.
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To address these limitations, we introduce the task of quality-controllable retrieval (QCR). For-
mally, given a frozen VLM and a short textual query, the objective is to retrieve images that not
only align semantically but also satisfy user-specified quality requirements. This setting is feasible
because short queries naturally span a broad subspace that contains images of varying quality levels.
With appropriate conditioning, this subspace can be partitioned into perceptually distinct regions,
enabling fine-grained quality-aware retrieval.

In this work, we define retrieval quality along two widely applicable dimensions: relevance (seman-
tic consistency) (Cherti et al., 2023) and aesthetics (visual appeal) (Yi et al., 2023). For each image
in the gallery, we construct auxiliary annotations consisting of a textual description, a relevance
score, and an aesthetic score. We discretize these continuous scores into categorical quality levels
(e.g., Low, Medium, High) and associate each description with its corresponding quality condition.

The central challenge is how to steer retrieval results toward specific quality levels given only a short
query. We propose a simple yet effective solution: quality-conditioned query completion (QC?).
QC? enriches short queries with quality-aware details by leveraging a generative large language
model (LLM). Trained on the quality-augmented dataset, the LLM learns to append appropriate de-
scriptive phrases that capture both semantic and quality-related attributes. Conditioning on different
quality levels guides retrieval toward the desired regions of the search space. This is particularly
valuable because, in practice, users often do not know how to formulate queries that precisely re-
flect their preference or may not be aware of what constitutes “high” or “low” quality within the
dataset. By learning from how textual descriptions vary across quality scores, our approach bridges
this gap and enables more controllable retrieval through query completion. To summarize, our key
contributions are summarized as follows:

* Problem: we introduce quality-controllable retrieval, a new setting where retrieval can be
explicitly conditioned on user-defined quality requirements.

 Methodology: we propose QC?, a query completion framework that leverages LLMs to
enrich short queries with quality-aware descriptive details.

* Validation: we conduct extensive experiments to show that QC? effectively steers retrieval
outcomes according to quality preferences and is readily adaptable to multiple VLMs.

2 PRELIMINARIES

2.1 MOTIVATION

We study the problem of text-to-image retrieval, where the goal is to return the desired images from
a large gallery given a set of natural language queries. Specifically, let Q = {Q1, ..., @} denote
a collection of m text queries and Z := {Iy,...,I,} an image gallery of size n. We consider a
state-of-the-art VLM as the retrieval backbone, equipped with a text encoder g : @ — R and an
image encoder f : T — R%, both producing d-dimensional normalized embeddings. Given a query
set Q, the system returns the top-7 relevant images according to

X = sort (f(Z), 9(Q), n), (D
where X' C 7 denotes the top-n matches of queries Q. The sort function typically operates on the
similarity scores § € R™*™ with S;; == g(Q;) " f(I;).

Although modern VLMs achieve strong cross-modal alignment, retrieval performance deteriorates
in realistic scenarios where user queries are usually very short (typically just one or two words, e.g.,
“a dog”). Given such short queries, naive retrieval system faces several challenges: @ Semantic
ambiguity: a few words can refer to a wide range of possible images, leading to a large and diffuse
search subspace with less discriminative retrieval results. @ Semantic collisions: short queries tend
to yield similar similarity scores for visually diverse images (e.g., realistic vs. cartoon dogs). These
collisions confuse ranking and are particularly problematic in large-scale galleries where many can-
didate images satisfy the vague query. ® Lack of quality control: the quality of retrieved images
is not explicitly enforced during retrieval. At best, one can apply post-retrieval filtering, but the
system itself provides no mechanism to ensure that high-quality results consistently appear among
the top matches. These issues highlight a fundamental gap between the expressive capacity of mod-
ern VLMs and the underspecified nature of user queries, motivating the need for enriched query
representations and controllable retrieval mechanisms.
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2.2 PROBLEM SETTING

To address the above limitations, we propose to enrich short queries with additional descriptive
details that potentially capture more distinguishable attributes of images. Formally, let A denote a
query completion function that maps Q to enriched queries h(Q). Retrieval is then performed as

X = sort (£(Z), g(h(Q)), n), 2)

where h(Q) augments the short queries with contextual details. The enriched queries are expected
to capture not only object categories but also additional information such as pose, scene, action, and
fine-grained attributes. To be effective, the completion function should be aware of the retrieval
gallery, so that it generates meaningful context rather than irrelevant or hallucinated content.

To achieve this, we implement h using a generative large language model (LLM). However, simply
training the LLM on image descriptions is insufficient, since it cannot guarantee that retrieval results
satisfy user expectations of quality. Instead, we partition the textual descriptions into non-overlapped
quality levels C that reflect different image quality categories. We then finetune the LLM with these
quality levels, enabling it to generate query completions conditioned on quality preferences. This
yields the following quality-controllable retrieval (QCR) formulation:

X = sort (f(2), g(LLM(Q; C)), 1), 3

where LLM(Q; C) expands the short queries based on the specified quality constraint C. The extended
queries thus steer retrieval toward images that align with the desired quality criteria.

This approach offers several practical benefits: @ Flexibility: it requires no modification to pre-
trained VLMs and remains compatible with any VLMs; @ Transparency: the generated query com-
pletions are human-readable, allowing users to review and select preferred options. ® Controllabil-
ity: the LLM can produce different query completions with different quality conditions C, enabling
explicit quality control during retrieval.

2.3 THEORECTICAL ANALYSIS

Before implementing the completion function, we justify why enriching short queries may help to
improve retrieval. Let QF = {Q7,...,Q;}} = h(Q) denote the extended queries by h, where
Qj = Q; + suffix;, Vi € {1,...,m}, and suffix; denotes additional descriptive details appended
to query Q;. Let C € R"*? be the image embedding matrix with rows ¢; := f(I;) € RY, Vj €
{1,...,n}, and A, B € R™*% be two sets of text embeddings with a strict one-to-one pairing of
rows, with rows a; = ¢g(Q;) € R? and b; == g(Q}) € RY, Vi € {1,...,m}. Let r := rank(A)
be the rank of A, 0,.(A) be the smallest nonzero singular value of A, and A = U >V denote its
singular value decomposition (SVD). We then partition the right singular vectors as V' = [ Vs V| ] ,
where Vg € R¥" and V| € R?*(?=7) gatisfy span(Vs) = R(A) and span(V, ) = R(A)*, with
R(A) :=span{a;,...,a} C R the row space of A.

Definition 1. We define a perturbation matrix A = B — A € R™*%, score matrices S, =
ACT e R™*" gnd Sg == BC'T € R™*™ for the queries Q and QF, Ag = AVs, Ag = AV,
A =AV,,Cs =CVs,C, =CV,, X = (AS + As)cg, Y = AJ_CI, U = CO](X),
and P := Px as the orthogonal projector onto U.

Proposition 1. Assume that: i) | A2 < 0,(A); ii) there exists I C {1,...,n} with |I| = r such
that the columns X form a basis of U iii) ||X}r PYi|2 < 1; and iv) there exists disjoint index set

K C{1,...,n}\I such that k := rank((I—PZI)ZK) > 1, where Z := (I— P)Y, Z; := Z.1,
and Zy = Z. k. Then, rank(Sg) > r+k > r = rank(Sa).

Remark 1. We decompose A into two parts: one (Ag) that lies in the original row space of A,
and another (A ) that introduces directions outside this space. Assumption (i) ensures the in-span
perturbation A g is not too large (controlled by o,.(A)) so the original r query directions in A are
not destroyed by completion. Assumption (ii) asserts that we can select r columns from X that
span U. This fixes a stable r-dimensional basis for the existing subspace. Assumption (iii) claims
that adding the projected perturbation PY; does not reduce the independence of these r columns.
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Figure 1: Aesthetic and relevance score distributions of Flickr2.4M in (a) and (b), and of
MS-COCO in (c) and (d). It is worth noting that the numbers of high-quality and low-quality images
are limited, which leads to the average scores of any two random sets being very close.

Thus the original r-dimensional structure is preserved. Assumption (iv) requires that there exist
k > 1 columns outside I whose orthogonal components (after removing projections onto both ¢/ and
col(Zr)) are linearly independent. These contribute k genuinely new directions in 2/*. Together,
these assumptions ensure that the rank of Sp contains at least the r preserved dimensions from
plus the & fresh orthogonal ones. Consequently, Sp can express more independent scoring patterns
and has the ability to potentially make finer-grained distinctions.

3  QUALITY-CONDITIONED QUERY COMPLETION

This section first provides the definition of quality, and then shows how to construct the training
data, and finally illustrates how to implement and train the query completion function LLM.

3.1 QUALITY DEFINITION

For the proposed QCR task, we require a clear notion of guality. In this work, we characterize qual-
ity along two primary dimensions: @ Relevance, which measures the semantic consistency between
textual queries and their corresponding images; and @ Aesthetics, which reflects the visual appeal
or attractiveness of retrieved images. Note that our framework is inherently flexible, permitting the
incorporation of arbitrary quality metric, provided that corresponding and reliable scoring models
are available and applicable to general image datasets. Other notions of quality, such as interest-
ingness (Gygli et al., 2013; Abdullahu & Grabner, 2024) can also be adopted in a similar manner
and are left for future exploration. To facilitate user control over retrieved results, we discretize the
quality dimensions into non-overlapping conditions. Specifically, we define C* for relevance and
C4 for aesthetics, each partitioned into perceptually distinct and user-friendly levels. For example,
both can be represented as C*,C* = {Low,Medium, High}.

3.2 DATA GENERATION

To ensure the completion function LLM can perceive the retrieval gallery, we construct an augmented
training dataset for each gallery Z. The dataset integrates three complementary components: textual
descriptions 7 = {T;}"_; of images, relevance scores s” € R, and aesthetic scores s* € R™.

Textual Descriptions. For each image I;, we generate a textual description 7; using an image
caption model CAP(-), i.e., T; = CAP([;),Vi € {1,...,n}. In our experiments, we utilize strong
pretrained captioning models without additional fine-tuning for description generation. Each T; is a
concise sentence summarizing the main content of the image.

Aesthetic Scores. We assign an aesthetic score s{ to each image I; using an aesthetic evaluation
model EV4(+), i.e., s¢ =EV4([;),Vi € {1,...,n}. The aesthetic scores represent the visual quality
of the images, with higher scores indicating greater visual appeal.

Relevance Scores. For each image-description pair {;, T;}, we compute a relevance score using a
pretrained VLM. Specifically, we extract the image feature f(I;) and text feature g(T;), then calcu-
late their cosine similarity as their relevance score, i.e., s = cos(f(1;), g(T3)), Vi € {1,...,n}.
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Table 1: Query completions with their retrieved images and quality scores on MS—-COCO

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

a train that is sitting on the atrain sitting on the tracks with a train is traveling near
tracks in gravel black smoke coming out of it some water and houses

Aes 4.715, Rel 0.347 Aes 4.818, Rel 0.382 Aes 5.935, Rel 0.394

a bird standli;g on the a bird flying above some  a bird flying across some
ground near some leaves brown water water at the beach
Aes 4.616, Rel 0.346 Aes 5.079, Rel 0.374 Aes 5.120, Rel 0.386

>

a tddy bear wearing eye ateddy bear that is sitting on  a teddy bear sitting on a wall
glasses and laying on a bed  a tree next to an old stone house
Aes 4.788, Rel 0.359 Aes 5.649, Rel 0.388 Aes 5.818, Rel 0.437

3.3 TRAINING FRAMEWORK

Score Discretization. To simulate quality-controlled retrieval, we discretize the continuous quality
scores of images into categorical levels that are more intuitive for users. Given a score vector r
(either aesthetics s or relevance s”), each score r; is mapped into one of three descriptive levels by
partitioning the score distribution into three percentiles:':
Low, L S Perc("'v pl)a
I(r;) = < High, r; > perc(r, p2), 4)
Median, otherwise.

Here, r; is the score of the i-th sample and perc(r, p) calculates the p% percentile of r as

perc(r,p) = 7{[&]] + (£ — [&)) - (FIl&] + 1] = 7[L¢]]), ©)

where { = 155 - (n—1), 7 is the sorted version of r, and |-] is the floor function. Figure 1 illustrates
the distributions of aesthetics and relevance scores and their discretized partitions.

Instruction Design. We train the completion function LLM on the augmented training set D =
{T, s%, s"}. The discretized quality levels serve as explicit conditions within instructions, enabling

'Our framework is general and supports arbitrary numbers of levels depending on the desired granularity.
In Table 5, Sec. 4.5, we provide an example with five quality levels.
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Table 2: Query completions with their retrieved images and quality scores on Flickr2.4M

Aes: Low, Rel: Low Aes: Median, Rel: Median Aes: High, Rel: High

a chair with red and black
ropes on it

Aes 4.019, Rel 0.362 Aes 4.847,Rel 0.379 Aes 5.257, Rel 0.387

a chair with wires on it a chair on a stage in a field

a cell phone on a tripod in
front of a waterfall in yellow-
stone national park

Aes 4.531, Rel 0.362 Aes 5.035, Rel 0.390 Aes 5.441, Rel 0.429

a cell phone with wires at-  a cell phone with an acous-
tached to it tic guitar on it

LLM to generate quality-aware query completions. For each image I;, we design a concise instruction
P; of the form:

"Relevance: [(s]), Aesthetic: [(s]), Query: "

where [(s) and I(s?) represent the categorical quality levels defined in Eq. (4). During training,
this instruction provides a lightweight yet effective mechanism to condition query generation on
specified quality preferences.

Model Training. To stimulate the quality control process during model training, we use the de-
scriptive levels [(s]) and [(s?) of image I; as the quality conditions, which are incorporated into the
instruction P;. We then concatenate instructions P; with the textual description T} for each image
I;, and then train the completion model LLM with the standard autoregressive next-token prediction
loss. In this way, LLM learns to generate query completions that are not only semantically relevant
but also controllable according to the given quality constraints.

Inference Strategy. During the inference stage, we concatenate a similar instruction with each test-
ing query. To simulate user preferences, we evaluate various relevance-aesthetic combinations, such
as “low relevance, low aesthetic” and “high relevance, high aesthetic”. Then the model generates
completed queries based on the instructions, testing queries, and specified quality conditions. For
efficient similarity search on large-scale galleries, we utilize the FAISS library (Johnson et al., 2019)
to identify the nearest images for the queries.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on two image datasets: one with real textual descriptions and
one without. For the image-only one, we construct a large dataset sourced from the Openverse
website (Openverse, 2025). We refer to this dataset as F1lickr2.4M, which contains over 2.4
million CCO-licensed images randomly selected from the Flickr subset of Openverse. For image
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Table 3: Retrieval quality of various methods on F1ickr2.4M. CoCa and Blip2 are used to gener-
ate textual descriptions; L (Low), M (Median), and H (High) indicate the quality conditions; and Ctrl
specifies whether the method enables controllable retrieval over quality. For both average relevance

(Ave Rel) and average aesthetics (Ave Aes), higher values indicate better retrieval quality.

. Aes Cond L L L M M M H H H
Quality | VLM | p i cond | 1 M H L M H L M g |Cul?
Prefix | AveAes [4735 4735 4735|4735 4735 4735(4735 4735 4735|
AveRel |0.350 0.350 0.350|0.350 0.350 0.350 | 0.350 0.350 0.350

LLaMA3 | __ |AveAes [4730 4.822 4831|4823 4.837 4784|4798 4722 4842
AveRel |0.351 0351 0.351]0.353 0351 0.350 | 0.354 0.354 0.352

GPTao | __ |AveAes |4.359 4.651 4728|4712 4.668 4791|4791 4816 5056|
AveRel |0.378 0361 0.357]0.358 0360 0.356 | 0.361 0.357 0.361

T | AveAes [4776 4.556 4722|4811 4781 4757|4693 4751 4746 |
AveRel |0.345 0346 0.349 0349 0346 0.348 | 0.345 0.350 0.350

T CoCa | AveAes [4756 4.834 4777|4838 4.863 4.882 4821 4905 4770|
AveRel |0.365 0.368 0.364|0.363 0.369 0.368|0.365 0.364 0.365

o CoCa | AveAes | 4458 4615 453014934 4850 484115222 5170 5270|
urs -1 AveRel |0.355 0.366 0.391 |0.354 0.360 0.386|0.353 0.368 0.390

T Bliny | Ave Aes |4.795 4871 4.800|4.804 4844 4.856|4.901 4847 4.888|
P= 1 AveRel [0.370 0.368 0.367 |0.367 0.371 0.366 | 0.367 0.371 0.369

our Blipy | Ave Aes | 4.541 4523 445514940 4906 4922|5309 5222 5191
urs P AveRel |0.353 0370 0.397]0.354 0366 0.396|0.355 0.372 0.390

datasets with real textual descriptions, we adopt the widely-used MS—COCO dataset for experiments,
which includes both images and human-annotated descriptions. Specifically, we utilize the training
subset of MS—-COCO, which consists of 118, 287 samples, each sample containing one image and five
corresponding descriptions. In total, approximately 0.6 million descriptions are used for training.

Model Selection. For the backbone of our method, we evaluate two different LLMs: GPT2-1.5B
(Radford et al., 2019) and Qwen2.5-0.5B (Yang et al., 2024). Other LLMs can be validated similarly
and we leave them for future study. We implement the caption models CAP(-) using a pretrained
CoCa (Yu et al., 2022) and a pretrained Blip2 (Li et al., 2023) model, respectively. For feature
extraction, we adopt a pretrained VLM OpenCLIP (ViT-H-14-quickgelu) (Cherti et al., 2023; Ilharco
et al.,, 2021). The relevance score is computed as the cosine similarity between the features of
each image-description pair. The aesthetic evaluation model EV 4(-) is realized using a pretrained
aesthetic predictor (Schuhmann, 2022).

Implementation Details. All experiments are conducted on a node with 8 NVIDIA A100 GPUs.
For GPT2-1.5B (Radford et al., 2019), we set the learning rate, warmup steps, number of epochs,
and batch size to 2e — 3, 100, 50, 150, respectively. For Qwen2.5-0.5B (Yang et al., 2024), these
hyperparameters are set to 2e — 5, 100, 30, and 80, respectively. For score discretization, we set p; =
33 and p2 = 66 to divide the score distribution into three evenly spaced percentiles (examples of five-
level cases are also considered). Note that we only train LLM for query completion, while the quality
evaluation model EV 4 (), the caption models CAP(-), and the retrieval model VLM are all pretrained
without additional fine-tuning. Since the pretrained caption models may occasionally generate non-
English characters, we clean these characters directly before training to prevent potential issues for
query completion. Before training, we prepend a start token to the instructions and append an end
token to the descriptions. The training loss is computed only on the tokens of the descriptions and
the end tokens, while excluding those of the instructions.

Evalution Strategy. For performance evaluation, we use the 80 class names from MS—-COCO dataset
as query objectives. These include common objects such as trains, cars, and animals, as well as more
specific categories like teddy bear, fire hydrant, and toothbrush. Based on the capitalization of each
class name, we prepend either ”a” or “an” to form the input queries. Since we focus on controlling
the quality of retrieved images, we use aesthetic and relevance scores as the evaluation metrics. We

calculate and report the average aesthetic and relevance scores of the retrieved images across all
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Table 4: Retrieval quality of various methods on MS—-COCO, where L (Low), M (Median), and H
(High) indicate the quality conditions for retrieval, and Ctrl specifies whether the method enables
controllable retrieval over image quality. For both average relevance (Ave Rel) and average aesthet-
ics (Ave Aes), higher values indicate better retrieval quality.

. Aes Cond L L L M M M H H H
Quality | pelCond | L M H L M H L M g |Cul?
Prefi Ave Aes | 4817 4817 4817|4817 4817 4817|4817 4817 4817
rehix AveRel | 0349 0349 0349 | 0349 0349 0.349 | 0349 0349 0.349
LLaMA3 | AveAes | 4903 4891 4855|4916 4.875 4.880 | 4871 4858 4911 |

AveRel | 0348 0349 0347|0348 0349 0347 | 0348 0350 0.344
GPTo | AveAes | 4673 4754 4686|4782 4808 4.880 | 4.838 5075 5048 |
AveRel | 0371 0357 0354|0360 0358 0.350 | 0359 0352 0.351
PT Ave Aes | 4819 4793 4780 | 4829 4810 4828|4794 4826 4820 |
AveRel | 0343 0340 0344 | 0348 0339 0344 | 0346 0343 0.340
T Ave Aes | 4925 4.845 4.848 | 4.882 4934 4990 | 4849 4941 4929 |
AveRel | 0370 0367 0366|0368 0368 0.365 | 0371 0371 0.367
FT.CoCa | AveAcs | 4878 4852 4859 | 4902 4.858 4941 [4.952 4961 4.944|
AveRel | 0346 0351 0356|0349 0350 0354 | 0345 0352 0.352
FLBliop | AveAes | 4828 4815 4785|4932 4.894 4893|5034 4948 4933 |

P= | AveRel | 0350 0352 0356|0344 0351 0353|0345 0351 0.347
Ours AveAes | 4811 4790 4773|4911 4873 4862|5016 4983 5024 |

‘ AveRel | 0356 0370 0382|0354 0370 0.387 | 0352 0365 0.387

input queries as the final evaluation performance. We also test the results using the recall metric for
further validation, which can be seen in the appendix.

4.2 QUALITATIVE VALIDATION

We first perform qualitative analysis to validate whether our approach effectively achieves quality
control in retrieval. In Tables 1 and 2, we present three retrieved images per query, along with their
corresponding completed queries and quality scores under three different quality conditions. As
shown, our method generates distinct query completions for different quality conditions. From left
to right, as the quality level improves, both aesthetic and relevance scores increase accordingly. This
demonstrates that our proposed method effectively controls the quality of the retrieved images. Due
to space limitations, we provide more qualitative results in the Appendix A.5.

4.3 QUANTITATIVE VALIDATION

Since no existing retrieval methods are directly applicable to the proposed QCR task, we design
the following baselines for quantitative comparison: a) Prefix: using the input query prefix di-
rectly without query completion; b) PT (Pretrained): using a pretrained LLM for query completion
without finetuning; ¢) FT (Finetuned): finetuning a pretrained LLM on textual descriptions while
conditioning on randomly generated quality scores; and d) general-purpose LLMs, including pre-
trained LLaMA-3 (LLaMA-3-8B-Instruct) and GPT-40 (via API). Tables 3 and 4 report the retrieval
performance of the baseline models and our proposed method with Qwen2.5 on the two datasets,
respectively. The key observations are summarized as follows: @ Prefix-only retrieval yields unsat-
isfactory quality performance, highlighting the necessity of query completion. @ Pretrained models
for query completion degrade retrieval quality, performing worse than using only the query prefix
in most cases. This is because these pretrained models tend to generate irrelevant words, negatively
impacting retrieval performance. ® Finetuning on textual descriptions improves both relevance and
aesthetics compared to prefix-only and pretrained models. However, models finetuned on randomly
assigned scores fail to effectively control the quality of retrieved images. @ Our method not only
enhances retrieval under high-quality conditions but also excels in quality control, demonstrating
strong adaptability regardless of whether it is trained on real or generated captions.
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Table 5: Results with five quality levels. Table 6: Comparison with post-retrieval filtering,
where the rerank method first retrieves the top-k im-
M Relevance (Red — Red) ages based on relevance and then reorders the candi-
VL L M H VH dates by aesthetic scores to identify the best result.
-~ VL, 4.597 4.507 4.610 4.529 4.445
5 0.355 0.364 0.375 0.382 0.397 | k| 1 2 3 5 10
S 4.805 4.765 4.825 4.729 4.761 Rerank Aes | 4.735 4.947 5.014 5.198 5.313
+ L0353 0366 0369 0380 0.392 Rel | 0.350 0.348 0.347 0.345 0.341
M 4.909 4961 4.878 4.889 4.901 LLaMA3 Aes | 4.842 5.071 5.154 5298 5.377
<) 0.355 0.3642 0.370 0.3754 0.390 Rel | 0.352 0.349 0.347 0.342 0.337
§ . 5.028 4.967 5.045 4.952 5.009 GPT-40 Aes | 5.056 5205 5293 5.393 5.518
2 0.355 0.365 0.370 0.374 0.387 Rel | 0.361 0.356 0.353 0.349 0.343
g Aes
< Ours
0.355 0.363 0.371 0.378 0.389 Rel | 0.387 0.385 0.381 0.376 0.366

4.4 DATASET DEPENDENCE

To achieve quality control in retrieval, the model should be tailored to the specific dataset, as dif-
ferent datasets exhibit varying quality characteristics. To illustrate this, we conduct cross-dataset
retrieval experiments. Specifically, we evaluate retrieval quality on MS—COCO using queries com-
pleted by the model finetuned on Flickr2.4M. In Table 4, we assess FT-CoCa and FT-Blip2,
which are finetuned on descriptions generated by CoCa and Blip2, respectively. The results indi-
cate that both models achieve higher aesthetic scores as quality conditions improve, suggesting that
aesthetically relevant semantic cues may be universal across natural images. Nevertheless, they con-
sistently exhibit low relevance across all quality conditions. This limitation stems from the dataset
mismatch between the query completion and image retrieval stages, since the two datasets encode
different semantic information. See Appendix A.2 for additional analysis and results.

4.5 FURTHER VALIDATION

Table 5 presents the results on the F1ickr?2 . 4M dataset across five quality levels: VL (Very-Low),
L (Low), M (Median), H (High), and VH (Very-High). As shown, our method effectively enables
fine-grained control over the quality of retrieved images, adhering to more nuanced descriptive con-
straints. We also compare against a post-retrieval filtering baseline that first retrieves images based
on relevance and then re-ranks the results by aesthetic scores. The comparison results are listed
Table 6. As shown, this two-stage strategy is unreliable for short queries, which typically offer
vague representations and limited descriptive cues. As a result, the initial retrieval set tends to be
semantically broad and aesthetically subpar, leaving little room for the re-ranking step to improve.
While increasing k can surface images with higher aesthetic quality, it typically comes at the cost of
reduced semantic relevance, illustrating a trade-off between these two dimensions. In contrast, our
method performs quality control during the query stage, which inherently guides retrieval toward
the desired quality level. This quality-aware conditioning cannot be achieved by the two-step base-
line, which lacks knowledge of the dataset’s quality distribution and operates in a detached, post-hoc
manner. See Appendix A.5 for more experimental results.

5 CONCLUSION

We presented a quality-controllable retrieval framework to address the limitations of short and un-
derspecified text queries in text-to-image retrieval. Our approach enriches queries using a generative
language model conditioned on discretized quality levels, enabling retrieval that is both semantically
expressive and aligned with user preferences. Extensive experiments demonstrate that our method
effectively improves and controls retrieval quality, serving as a flexible augmentation to existing
VLMs while improving quality control in retrieval. Future work will extend our method to other
dimensions of quality beyond relevance and aesthetics, such as interestingness, diversity, or user
personalization. We hope this work inspires further research on integrating controllable language-
based query enrichment with large-scale multimodal retrieval systems.
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STATEMENTS

ETHICS STATEMENT

This work investigates large language models for query completion in text-to-image retrieval, where
image quality information is integrated into the training process. The study relies on publicly avail-
able datasets and does not involve human subjects, private information, or sensitive content. We
acknowledge that retrieval models may inherit biases present in the underlying vision—language
datasets; however, our approach does not introduce new data collection and instead focuses on
methodological contributions. The models and results are intended solely for academic research,
and no harmful or deceptive applications are pursued. We adhere to the ICLR Code of Ethics and
confirm that this research complies with principles of fairness, transparency, and responsible use.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All code and pretrained checkpoints
used in our experiments will be released upon acceptance. Theoretical results are stated with all
necessary assumptions in the main text, and their complete proofs are provided in the appendix.
Experimental settings are included in the main body and supplementary materials. Together, these
resources are intended to enable full replication and verification of our results.
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A APPENDIX

A.1 RELATED WORK

A.1.1 VISION-LANGUAGE MODELS

Vision-language models (VLMs) have become the de facto foundation for image-text tasks, demon-
strating exceptional potential across a variety of applications (Alayrac et al., 2022; Liu et al., 2024;
Zhang et al., 2024; Maniparambil et al., 2024). Pioneering work such as CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) learn directly from raw texts about images by aligning them in
a shared embedding space. CoCa (Yu et al., 2022) combines contrastive loss with captioning loss to
train an image-text encoder-decoder model, effectively integrating capabilities from both contrastive
and generative approaches. Blip2 (Li et al., 2023) bridges the modality gap with a lightweight Q-
Former to improve pretraining efficiency. In this paper, we adopt joint-embedding VLMs like CLIP
as foundation models for text-to-image retrieval. Instead of fine-tuning the VLMs on target datasets,
we keep them frozen and focus on refining textual queries to achieve both quality improvement and
control over the retrieved images. Improving existing VLMs for retrieval quality control is orthogo-
nal to our approach and represents a promising direction for our future research.

A.1.2 LARGE LANGUAGE MODELS

Large language models (LLMs) are a class of foundation models designed to process, understand,
and generate natural language at scale (Devlin, 2018; Radford et al., 2019; Brown et al., 2020). With
fine-tuning and prompting, these models excel across a variety of tasks, including text generation,
summarization, reasoning, translation, and coding (Liu et al., 2023b; Zhao et al., 2024). Notable
examples, such as LLaMA3 (Grattafiori et al., 2024), GPT-40 (OpenAl et al., 2024), and Qwen2.5
(Yang et al., 2024), contain billions of parameters and are trained on extensive textual datasets.
The large-scale pretraining enables them to capture complex contextual, semantic, and syntactic
relationships in natural language. To tackle the proposed QCRR task, we utilize pretrained LLMs
for query modification. By integrating quality information as conditions, the LLMs autonomously
learn to generate quality-aware details for query extension. This provides users with multiple visible
query suggestions, allowing them to explore diverse retrieval results.

A.1.3 TEXT-TO-IMAGE RETRIEVAL

Text-to-image retrieval aims to identify the most relevant images from a database given a natu-
ral language query. It plays a critical role in applications such as visual search, e-commerce, and
content-based recommendation. Recent advances in VLMs (Radford et al., 2021; Gao et al., 2022;
Li et al., 2022; Yu et al., 2022; Jia et al., 2021) have significantly improved performance on this
task by learning powerful cross-modal representations. These models map images and texts into
a shared embedding space, typically through contrastive learning on web-scaled image-text pairs.
However, existing retrieval systems are primarily optimized to return the top-k images that are se-
mantically aligned with the input query. They overlook other crucial dimensions—such as aesthetic
appeal, interestingness, or popularity—that strongly affect user satisfaction in practical scenarios.
In this work, we advocate for incorporating quality control into retrieval. By allowing users to ex-
plicitly influence the quality attributes of the returned results, we enable a more personalized and
controllable search experience, moving beyond simple semantic matching toward a more adaptive,
user-centric paradigm.

A.1.4 QUERY COMPLETION

Query completion (QC) aims to extend user short inputs, referred to as query prefixes, by generating
longer and more informative query completions. It is a widely used technique that helps users
better articulate their intent and resolve potential query ambiguity. Traditional QC methods rely
on factors such as user profiles, query libraries, and prior search history to extend prefixes into
query completions, which limits their applicability to unforeseen prefixes (Bar-Yossef & Kraus,
2011; Mitra & Craswell, 2015; Cai et al., 2016). Recently, several generative approaches have been
proposed for query completion with arbitrary prefixes, primarily for text generation and document
retrieval tasks (Lee et al., 2021; Wang et al., 2023; Lei et al., 2024). QC-based methods for text-to-
image retrieval remain scarce, with only a few related works. Zhu et al. (Zhu et al., 2024) enhance
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interactive image retrieval through query rewriting based on user relevance feedback, while Sun et
al. (Sun et al., 2024) leverage LLMs to generate product-aware query completions. However, these
approaches primarily focus on query suggestion and refinement rather than achieving control over
the quality of retrieved images. In contrast, we tailor query completion to enhance retrieval quality,
making the first attempt to adapt it to a given search corpus for quality-controllable retrieval.

A.2 ANALYSIS OF DATASET DEPENDENCY

Our work focuses on text-to-image retrieval, where the goal is to retrieve relevant images from a
fixed dataset based on a textual query. This task is inherently dataset-dependent, as the retrieval
process relies entirely on the available images within the dataset. Therefore, the query is crucial in
this task: the more specific and detailed the query, the easier the retrieval system can match it to the
corresponding image. Conversely, short or vague queries make it significantly more difficult for the
system to identify the intended image. That’s why our proposed query completion method aims to
enrich the original short queries with more specific, quality-aware details. We’d like to emphasize
that these details are not randomly generated. Instead, they are learned directly from the dataset
itself (by fine-tuning the LLM to fit the captions). As a result, the completed queries remain dataset-
dependent and contextually relevant. The additional details are not unnecessary, as they provide
essential guidance to the retrieval system, helping it to more accurately identify images with desired
quality (as demonstrated by our experimental results).

A.3 ANALYSIS OF SCORE DIFFERENCES

In Tables 1 and 2, the quality scores across low, medium, and high conditions may appear close for
a single query. This is expected due to dataset limitations. As shown in Figure 2, the similarity
scores across both Flickr2.4M and MS-COCO are not uniformly distributed, and images with ex-
tremely low or high scores are rare. For instance, on Flickr2.4M, the similarity scores range from
0.252 to 0.562, and the entire span across the whole dataset is only about 0.3 (where the extreme
values correspond to two images from different classes). When retrieving images for a single query,
the available results often fall within a narrower score range (much smaller than 0.3) because the
dataset lacks images at both ends of the quality spectrum (sparsely distributed). For example, if all
images retrieved from the query “a dog” have aesthetic scores between 3.8 and 4.7 (due to dataset
limitations), even under the “High” condition, the best available image might score 4.7—which lies
in a low range (given the whole range : [2.782, 6.961]). But it is still higher than the score of 3.8
under the “Low” condition. Thus, the method is still effectively ranking and retrieving better images
within the constraints of the dataset.

Despite this dataset-level constraint that limits the score differences, our method demonstrates effec-
tive ranking ability and a consistent, meaningful trend. As shown from left to right in Tables 1 and
2, both the retrieved image scores and their visual appeal improve progressively as the quality con-
dition increases. This pattern is further supported by quantitative results in Tables 3 and 4, where the
average quality scores clearly increase across the low, median, and high conditions. This behavior
cannot be reproduced by baseline methods that lack quality consideration in retrieval.

A.4 PROOF OF PROPOSITION 1
Lemma 1. [frank(X;) =rand I, + X}LPY[ is invertible, then

rank(X; + PY;) =

Proof of Lemma 1. Since col(X) = U, we have P = XIX}. Hence
X, + PY; = X; + X; X|PY; = X,(I, + X PY}).

As X7 has rank r and the factor in parentheses is invertible, the product has rank r. [
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Proof of Proposition 1. Since right-multiplication by the orthogonal matrix V' = [Vs V|| is rank-
preserving, we analyze the following matrices:

A = AV = A[Vs V] =[AVs AV,]=[As 0], (6)
A/ =AV = A[VS VL] = [AVS AVL] = [AS Al],
B =BV =(A+A)V =AV+AV =A' + A’ = [As+ As A_],
C' =CV = C[VS VL] = [CVS CVL] = [CS CL].
Then, for the score matrices, we have:
T
Sa= ACT = (AV)(CV)T = A'C'T = [As 0] [gﬂ _ AsCY. )
i
CT
Sp=BC" =B'C'" =[As+ As A]] [CST
1
By the SVD construction, Ag has full column rank 7 and oyin(As) = 0,.(A) > 0. Since Ag =
AVg and Vg is orthogonal (i.e., | Vs||2 = 1), it follows that
[As]2 < |A]2. (8)
Given that || Ag|l2 < ||All2 < 0+(A) = omin(Ag), the standard minimum-singular-value pertur-

bation argument (or_ Weyl’s inequality in spectral norm form) yields that Ag + Ag remains full
column rank r. Since left multiplication by a full-column-rank matrix does not change rank, it

follows that:

} =(As+As5)Cd +A,C] ==X +Y.

rank(X) = rank((As + As)Cg) = rank(C4 ) = rank(Cs), )
rank(S,4) = rank(AsCJ{) = rank(Cg) = rank(X).
Consider the linear operator
P
T= . 10
t—pari-p) (o
Since left multiplication cannot increase rank,
rank(Sp) > rank(TSp) > rank((TS’B):JUK). (11)
Now X 1+ PY
+
TS = . 12
B [(I 7 Pz,)Z} (12)

Restricting to U K gives the block form

(TS5)

X;+PY; Xy -+ PY;
I T K K:l. (13)

LIUK = |: 0 (I_PZI)ZK

By the lemma, the top-left block has rank r. By assumption (4), the bottom-right block has rank
k > 1. Thus block-triangular rank additivity yields

rank((TSB):JUK) > r+k. (14)

Therefore
rank(Sp) > r+k > r =rank(S,). (15)
O

A.5 ADDITIONAL EXPERIMENTAL RESULTS

Recall metrics such as R@1, R@5, and R@10 are standard in retrieval evaluation. However, it’s
important to note that recall is also derived from similarity—that is, images are ranked by similarity,
and recall is computed based on their rank positions. Thus, recall metrics and similarity scores are
inherently connected, especially when comparing methods built on the same retrieval backbone. To
provide a complementary view of effectiveness, we conduct additional experiments on MS-COCO
using R@1, R@5, and R@10 for evaluation. The results are shown in Table 10.

In addition, Table 8 presents the quantitative results on MS—COCO datasets using GPT?2 as the back-
bone. Tables 7-9 provide more qualitative results on the two datasets.
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Table 7: Retrieval quality of various methods on F1ickr2.4M. CoCa and Blip2 are used to gener-
ate textual descriptions; L (Low), M (Median), and H (High) indicate the quality conditions; and Ctrl
specifies whether the method enables controllable retrieval over quality. For both average relevance
(Ave Rel) and average aesthetics (Ave Aes), higher values indicate better retrieval quality.

. Aes Cond L L L M M M H H H
)
Quality | VLM | p ol cond | L M H L M H L M g |Cul?
Ave Aes | 4.735 4.735 4735 4.735 4735 4.735|4.735 4.735 4.735
Prefix —— X

Ave Rel |0.350 0.350 0.350 | 0.350 0.350 0.350 | 0.350 0.350 0.350

LLaMA3 | —— Ave Aes | 4.730 4.822 4.831 | 4.823 4.837 4.784 | 4798 4.722 4.842 »
AveRel |0.351 0.351 0.351]0.353 0.351 0.350 | 0.354 0.354 0.352

GPT-40 | Ave Aes |4.359 4.651 4.728 |4.712 4.668 4.791|4.791 4.816 5.056 y
Ave Rel |0.378 0.361 0.357 | 0.358 0.360 0.356 | 0.361 0.357 0.361

PT | AveAes |4.681 4.639 4.673|4.688 4.504 4.654|4.610 4.556 4.692 y
Ave Rel |0.351 0.344 0.350 | 0.350 0.346 0.347 | 0.349 0.352 0.352

FT CoCa Ave Aes | 4.848 4.818 4.864 | 4.847 4.827 4.876|4.829 4.896 4.853 »
Ave Rel |0.366 0.365 0.367 | 0.365 0.363 0.366 | 0.367 0.366 0.368

Ours CoCa Ave Aes | 4.646 4.674 4.632 | 4.878 4.921 4.894|5.182 5.095 5.124 v
‘ Ave Rel |0.354 0.372 0.382]0.355 0.369 0.386 | 0.357 0.366 0.385

Ave Aes | 4.838 4.674 4.744 | 4592 4.599 4.772|4.727 4.749 4.818

T BIip2 | AveRel | 0.369 0360 0369|0365 0362 0365|0373 0359 0368 | *
Ous | Blips |AveAss [4528 4560 4470|4948 4946 4885|5266 5160 5236 |
urs P2 | AveRel |0.355 0374 0.393|0.354 0374 0.391|0.354 0367 0.387

Table 8: Retrieval quality of various methods (GPT2) on MS—-COCO, where L (Low), M (Median),
and H (High) indicate the quality conditions for retrieval, and Ctrl specifies whether the method
enables controllable retrieval over image quality. For both average relevance (Ave Rel) and average
aesthetics (Ave Aes), higher values indicate better retrieval quality.

. Aes Cond L L L M M M H H H
)
Quality | pelCond | L M H L M H L M g | Cul?

Ave Aes | 4817 4817 4817 | 4817 4.817 4.817 | 4817 4817 4.817

Prefix AveRel | 0349 0349 0349 | 0.349 0349 0349 | 0.349 0.349 0.349

LLaMA3 Ave Aes | 4903 4.891 4.855| 4916 4.875 4.880 | 4871 4.858 4911 «
Ave Rel 0.348 0.349 0.347 | 0.348 0.349 0.347 | 0.348 0.350 0.344

GPT-4 Ave Aes | 4.673 4754 4.686 | 4782 4.808 4.880 | 4.838 5.075 5.048 y
© | AveRel 0.371 0.357 0.354 | 0.360 0.358 0.350 | 0.359 0.352 0.351

Ave Aes | 4742 4731 4.855 | 4.821 4775 4.854 | 4830 4.726 4.847

PT Ave Rel 0.347 0.345 0.350 | 0.349 0.344 0.345 | 0.351 0.347 0.344

Ave Aes | 4785 4.820 4.866 | 4.813 4.852 4.888 | 4.833 4919 4.960

FT Ave Rel 0.369 0.369 0.373 | 0.373 0369 0.373 | 0.367 0.376 0.372

FT-CoC Ave Aes | 4890 4.880 4.793 | 4.885 4.939 4903 | 4950 5.004 4.898 y
SO 1 Ave Rel 0.347 0.348 0.356 | 0.346 0.349 0.352 | 0.347 0.349 0.351

Ave Aes | 4776 4.883 4.824 | 4914 4968 4.873 | 5.039 4.967 5.053

FEBUP2 | AveRel | 0349 0351 0352 | 0344 0349 0350 | 0.343 0349 0.349

Ours Ave Aes | 4896 4.809 4.719 | 4973 4.879 40916 | 5.017 5.020 5.109 N
Ave Rel 0.354 0.365 0.385 | 0.356 0.368 0.387 | 0.353 0.368 0.391

A.6  LIMITATION
In rare cases, the completed queries may not align with the semantics of the query prefixes. This

occurs when the query completion model generates a sentence referencing different objects. Addi-
tionally, the relevance and aesthetic quality of the retrieved images depend on the reliability of the

17
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Table 9: Retrieval quality with five quality levels on CoCa.

M Relevance (Red — Red)
VL L M H VH
. VI, 4.581 4.551 4.559 4.579 4.507
§ 0.355 0.364 0.372 0.376 0.382
S N 4.870 4.792 4.784 4.748 4.718
1 0357 0363 0370 0376 0383
iy 4.882 4.954 4.863 4.849 4.820
&) 0.356 0.366 0.371 0.377 0.381
é 0 5.054 5.048 5.005 5.019 4.998
2 0.355 0.362 0.371 0.370 0.381
Z
0.352 0.366 0.369 0.373 0.386
Table 10: Comparison with post-retrieval filtering
| Rel R@5 R@10
Finetuned 0.8500 0.8875 0.9125
F-CoCa 0.8375 0.9375 0.9750
F-Blip2 0.7375 0.8750 0.9250
ours 0.8750 0.9625 0.9750

VLMs and aesthetic evaluation models. If these models are not sufficiently reliable, retrieval per-
formance can be significantly affected. Refer to Table 14 for examples of such cases. As mentioned
before, the model needs to percieve image quality within the datasets to achieve quality control in
retrieval. However, the retrieval datasets may sometimes lack the granularity needed to differentiate
between high-quality and low-quality images. In some instances, the retrieval database may not
contain high-quality or low-quality images that match specific queries.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)
In preparing this paper, large language models were used only as writing assistants for grammar

checking and minor sentence rephrasing. All technical aspects of the work, including the design,
implementation, and verification of experiments and analyses, were carried out by the authors.

18
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Table 11: Query completions with their retrieved images and quality scores on F1ickr2.4M

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

> / |
anov‘:(;e% bi::lijn ?;lth mear- 4 bowl on display a bowl with flowers on it

Aes 4.648, Rel 0.343 Aes 4.980, Rel 0.379 Aes 5.386, Rel 0.387

a train on a track next to a a train station with peole
grassy field waiting to board a bus
Aes 4.585, Rel 0.369 Aes 4.910, Rel 0.380 Aes 5.488, Rel 0.391

e ey

a train in the desert

a hofse drawn cdr;;iaée onra a horse drawn carriage with — a horse is grazing in a field
dirt road people on it under a cloudy sky
Aes 4.718, Rel 0.357 Aes 5.023, Rel 0.3773 Aes 5.207, Rel 0.390

L e £ S iilcheval WIS 5 VTS LT3

e e A
a truck is parked in front of a truck is parked under a a truck is parked in front of
a building bridge the washington monument

Aes 4.800, Rel 0.331 Aes 5.070,Rel 0.370 Aes 5.335, Rel 0.389

a boat docked in the water a boat is in the water near a  a boat on the water with
next to other boats castle buildings in the background
Aes 3.814, Rel 0.358 Aes 4.839, Rel 0.371 Aes 5.113, Rel 0.396
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Table 12: Query completions with their retrieved images and quality scores on MS—COCO

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

J—

T ———

Query: an aeroplane flying
over the beach and two guys
standing on it

an aeroplane flying in the
air with a big blue sky be-

an aeroplane flying high on

hind it a clear sky

Aes 4.536, Rel 0.354 Aes 4.739, Rel 0.360 Aes 5.516, Rel 0.425
i

NRURBEREE Huna

ng

a fire hydrant stands in front » a fire hydrant sitting in front  a fire hydrant is painted to
of a bald eagle wall mural of a sign for a cafe look like a dalmation
Aes 4.991, Rel 0.355 Aes 5.511, Rel 0.368 Aes 5.799, Rel 0.447

a toilet with a raised lid in  a toilet and siﬁk in a small a toilet is sitting outside with
some lavatory bathroom with a seat up a sign on it
Aes 4.457, Rel 0.361 Aes 4.502, Rel 0.372 Aes 5.264, Rel 0.394

a sheep is standing on a a sheep and baby sheep a sheep dog herding sheep
white fence standing in a field through a grass field
Aes 4.557, Rel 0.358 Aes 5.014, Rel 0.378 Aes 5.213, Rel 0.388
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Table 13: Query completions with their retrieved images and quality scores on MS—-COCO

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

B

a wine glass next to a plate a wine glass next to a plate  a wine glass and three
with some fish and veggies with some meat and vegeta- clocks all set at different
on it bles on it times

Aes 4.790, Rel 0.350 Aes 5.209, Rel 0.376 Aes 5.555, Rel 0.417

a toothbrush on a table with a toothbrush that is on down  a toothbrush with a smiley
a bunch of scissors on the counter face sitting on a sink
Aes 4.149, Rel 0.345 Aes 4.837, Rel 0.370 Aes 5.184, Rel 0.412

] THROCE

| et T8 |
A p

a backpack with rollers is sit-
ting unattended in the middle
of this forested dirt road

Aes 3.937, Rel 0.355 Aes 5.130, Rel 0.374 Aes 5.231, Rel 0.470

a backpack and a line of a backpack some water
supplies laying out rocks and plants
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Table 14: Some bad retrieval cases on the two datasets

Rel: Low, Aes: Low Rel: Median, Aes: Median  Rel: High, Aes: High

A

a toilet sits next to & shower  a toilet with a wooeﬁ seat  a toilet in between 0 trash
an sink on top of it cans
Aes 4.192, Rel 0.361 Aes 5.226, Rel 0.371 Aes 5.551, Rel 0.434

E_ =y

an apple phone and some  an apple and other fruit are  an apple with a knife stuck
other type of machine sitting together into it dripping blood
Aes 3.586, Rel 0.361 Aes 5.007, Rel 0.373 Aes 5.484, Rel 0.395

N

n orange and blue bath- o
a ang: . . an orange cat with its eyes  an orange and black fire hy-
room with a tub sink and toi- s .5,
let closed sitting next to books drant sitting close to a curb

Aes 4.187, Rel 0.357 Aes 4.434, Rel 0.359 Aes 5.603, Rel 0.393

= ' B T g B :‘.

g

=

a clock tower with a statue  aclock tower with a cross on
a clock on the wall of a room . .

in front of it top
Aes 4.578, Rel 0.355 Aes 5.187, Rel 0.376 Aes 5.425, Rel 0.388
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