

SEEING THROUGH WORDS: CONTROLLING VISUAL RETRIEVAL QUALITY WITH LANGUAGE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

012 Text-to-image retrieval is a fundamental task in vision–language learning, yet
 013 in real-world scenarios it is often challenged by short and underspecified user
 014 queries. Such queries are typically only one or two words long, making them
 015 semantically ambiguous, prone to collisions across diverse visual interpretations,
 016 and lacking explicit control over the quality of retrieved images. To address these
 017 issues, we propose a new paradigm of *quality-controllable retrieval*, which en-
 018 riches short queries with contextual details while incorporating explicit notions
 019 of image quality. Our key idea is to leverage a generative large language model
 020 as a query completion function, extending underspecified queries into descrip-
 021 tive forms that capture fine-grained visual attributes such as pose, scene, and aes-
 022 thetics. We introduce a training framework that conditions query completion on
 023 discretized quality levels, derived from relevance and aesthetic scoring models,
 024 so that query enrichment is not only semantically meaningful but also quality-
 025 aware. The resulting system provides three key advantages: ① *flexibility*, as it is
 026 compatible with any pretrained vision–language model without modification; ②
 027 *transparency*, since enriched queries are explicitly interpretable by users; and ③
 028 *controllability*, enabling retrieval results to be steered toward user-preferred qual-
 029 ity levels. Extensive experiments demonstrate that our proposed approach signif-
 030 icantly improves retrieval results and provides effective quality control, bridging
 the gap between the expressive capacity of modern vision–language models and
 the underspecified nature of short user queries.

1 INTRODUCTION

035 Text-to-image retrieval (T2IR) aims to return the most relevant images from a gallery given a textual
 036 query. Recent progress in this task has been largely driven by vision–language models (VLMs)
 037 (Radford et al., 2021; Jia et al., 2021; Yu et al., 2022; Li et al., 2022; Yang et al., 2022; Li et al.,
 038 2023; Yang et al., 2024; Lu et al., 2024), which learn joint representations of text and images through
 039 large-scale pretraining on web-scale image–text pairs (Schuhmann et al., 2021; 2024; Liu et al.,
 040 2023a). Such models significantly narrow the semantic gap between modalities and achieve strong
 041 alignment across diverse benchmarks (Ilharco et al., 2021; Singh et al., 2022; Gao et al., 2022; Khan
 042 & Fu, 2023; Wang et al., 2024; Li et al., 2024).

043 Despite these advances, retrieval performance often degrades in realistic scenarios where user
 044 queries are very short (typically just one or two words, e.g., “a dog”). Short queries encode only
 045 limited semantics, which results in large and ambiguous search subspaces and less discriminative
 046 results. This issue becomes more pronounced in large-scale galleries, where underspecified queries
 047 yield many candidate matches and cause semantic collisions among visually diverse results.

048 Another limitation of existing retrieval systems is their singular focus on semantic alignment. Naïve
 049 retrieval approaches simply return the top- k images with the highest similarity scores, overlook-
 050 ing other critical aspects of user satisfaction such as aesthetics, interestingness, or popularity. In
 051 practice, *retrieval quality* is context-dependent: art students may prefer visually inspiring images,
 052 architects may seek unique and creative references, and shoppers may favor popular or visually
 053 appealing products. However, conventional systems lack mechanisms for steering retrieval toward
 these quality dimensions.

To address these limitations, we introduce the task of *quality-controllable retrieval* (QCR). Formally, given a frozen VLM and a short textual query, the objective is to retrieve images that not only align semantically but also satisfy user-specified quality requirements. This setting is feasible because short queries naturally span a broad subspace that contains images of varying quality levels. With appropriate conditioning, this subspace can be partitioned into perceptually distinct regions, enabling fine-grained quality-aware retrieval.

In this work, we define retrieval quality along two widely applicable dimensions: *relevance* (semantic consistency) (Cherti et al., 2023) and *aesthetics* (visual appeal) (Yi et al., 2023). For each image in the gallery, we construct auxiliary annotations consisting of a textual description, a relevance score, and an aesthetic score. We discretize these continuous scores into categorical quality levels (e.g., Low, Medium, High) and associate each description with its corresponding quality condition.

The central challenge is how to steer retrieval results toward specific quality levels given only a short query. We propose a simple yet effective solution: *quality-conditioned query completion* (QC²). QC² enriches short queries with quality-aware details by leveraging a generative large language model (LLM). Trained on the quality-augmented dataset, the LLM learns to append appropriate descriptive phrases that capture both semantic and quality-related attributes. Conditioning on different quality levels guides retrieval toward the desired regions of the search space. This is particularly valuable because, in practice, users often do not know how to formulate queries that precisely reflect their preference or may not be aware of what constitutes “high” or “low” quality within the dataset. By learning from how textual descriptions vary across quality scores, our approach bridges this gap and enables more controllable retrieval through query completion. To summarize, our key contributions are summarized as follows:

- *Problem*: we introduce quality-controllable retrieval, a new setting where retrieval can be explicitly conditioned on user-defined quality requirements.
- *Methodology*: we propose QC², a query completion framework that leverages LLMs to enrich short queries with quality-aware descriptive details.
- *Validation*: we conduct extensive experiments to show that QC² effectively steers retrieval outcomes according to quality preferences and is readily adaptable to multiple VLMs.

2 PRELIMINARIES

2.1 MOTIVATION

We study the problem of text-to-image retrieval, where the goal is to return the desired images from a large gallery given a set of natural language queries. Specifically, let $\mathcal{Q} := \{Q_1, \dots, Q_m\}$ denote a collection of m text queries and $\mathcal{I} := \{I_1, \dots, I_n\}$ an image gallery of size n . We consider a state-of-the-art VLM as the retrieval backbone, equipped with a text encoder $g : \mathcal{Q} \rightarrow \mathbb{R}^d$ and an image encoder $f : \mathcal{I} \rightarrow \mathbb{R}^d$, both producing d -dimensional normalized embeddings. Given a query set \mathcal{Q} , the system returns the top- η relevant images according to

$$\mathcal{X} := \text{sort}(f(\mathcal{I}), g(\mathcal{Q}), \eta), \quad (1)$$

where $\mathcal{X} \subseteq \mathcal{I}$ denotes the top- η matches of queries \mathcal{Q} . The sort function typically operates on the similarity scores $\mathbf{S} \in \mathbb{R}^{m \times n}$ with $S_{ij} := g(Q_i)^\top f(I_j)$.

Although modern VLMs achieve strong cross-modal alignment, retrieval performance deteriorates in realistic scenarios where user queries are usually very short (typically just one or two words, e.g., “a dog”). Given such short queries, naive retrieval system faces several challenges: ① *Semantic ambiguity*: a few words can refer to a wide range of possible images, leading to a large and diffuse search subspace with less discriminative retrieval results. ② *Semantic collisions*: short queries tend to yield similar similarity scores for visually diverse images (e.g., realistic vs. cartoon dogs). These collisions confuse ranking and are particularly problematic in large-scale galleries where many candidate images satisfy the vague query. ③ *Lack of quality control*: the quality of retrieved images is not explicitly enforced during retrieval. At best, one can apply post-retrieval filtering, but the system itself provides no mechanism to ensure that high-quality results consistently appear among the top matches. These issues highlight a fundamental gap between the expressive capacity of modern VLMs and the underspecified nature of user queries, motivating the need for enriched query representations and controllable retrieval mechanisms.

108 2.2 PROBLEM SETTING
109

110 To address the above limitations, we propose to enrich short queries with additional descriptive
111 details that potentially capture more distinguishable attributes of images. Formally, let h denote a
112 query completion function that maps \mathcal{Q} to enriched queries $h(\mathcal{Q})$. Retrieval is then performed as

$$113 \quad \tilde{\mathcal{X}} := \text{sort}(f(\mathcal{I}), g(h(\mathcal{Q})), \eta), \quad (2)$$

115 where $h(\mathcal{Q})$ augments the short queries with contextual details. The enriched queries are expected
116 to capture not only object categories but also additional information such as pose, scene, action, and
117 fine-grained attributes. To be effective, the completion function should *be aware of* the retrieval
118 gallery, so that it generates meaningful context rather than irrelevant or hallucinated content.

119 To achieve this, we implement h using a generative large language model (LLM). However, simply
120 training the LLM on image descriptions is insufficient, since it cannot guarantee that retrieval results
121 satisfy user expectations of quality. Instead, we partition the textual descriptions into non-overlapped
122 quality levels \mathcal{C} that reflect different image quality categories. We then finetune the LLM with these
123 quality levels, enabling it to generate query completions conditioned on quality preferences. This
124 yields the following *quality-controllable retrieval* (QCR) formulation:

$$125 \quad \tilde{\mathcal{X}} := \text{sort}(f(\mathcal{I}), g(\text{LLM}(\mathcal{Q}; \mathcal{C})), \eta), \quad (3)$$

127 where $\text{LLM}(\mathcal{Q}; \mathcal{C})$ expands the short queries based on the specified quality constraint \mathcal{C} . The extended
128 queries thus steer retrieval toward images that align with the desired quality criteria.

129 This approach offers several practical benefits: ① *Flexibility*: it requires no modification to pre-
130 trained VLMs and remains compatible with any VLMs; ② *Transparency*: the generated query com-
131 pletions are human-readable, allowing users to review and select preferred options. ③ *Controllabil-
132 ity*: the LLM can produce different query completions with different quality conditions \mathcal{C} , enabling
133 explicit quality control during retrieval.

134 2.3 THEORECTICAL ANALYSIS
135

136 Before implementing the completion function, we justify why enriching short queries may help to
137 improve retrieval. Let $\mathcal{Q}^+ = \{Q_1^+, \dots, Q_m^+\} := h(\mathcal{Q})$ denote the extended queries by h , where
138 $Q_i^+ := Q_i + \text{suffix}_i$, $\forall i \in \{1, \dots, m\}$, and suffix_i denotes additional descriptive details appended
139 to query Q_i . Let $\mathbf{C} \in \mathbb{R}^{n \times d}$ be the image embedding matrix with rows $\mathbf{c}_j := f(I_j) \in \mathbb{R}^d$, $\forall j \in$
140 $\{1, \dots, n\}$, and $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times d}$ be two sets of text embeddings with a strict one-to-one pairing of
141 rows, with rows $\mathbf{a}_i := g(Q_i) \in \mathbb{R}^d$ and $\mathbf{b}_i := g(Q_i^+) \in \mathbb{R}^d$, $\forall i \in \{1, \dots, m\}$. Let $r := \text{rank}(\mathbf{A})$
142 be the rank of \mathbf{A} , $\sigma_r(\mathbf{A})$ be the smallest nonzero singular value of \mathbf{A} , and $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^\top$ denote its
143 singular value decomposition (SVD). We then partition the right singular vectors as $\mathbf{V} = [\mathbf{V}_S \ \mathbf{V}_\perp]$,
144 where $\mathbf{V}_S \in \mathbb{R}^{d \times r}$ and $\mathbf{V}_\perp \in \mathbb{R}^{d \times (d-r)}$ satisfy $\text{span}(\mathbf{V}_S) = \mathcal{R}(\mathbf{A})$ and $\text{span}(\mathbf{V}_\perp) = \mathcal{R}(\mathbf{A})^\perp$, with
145 $\mathcal{R}(\mathbf{A}) := \text{span}\{\mathbf{a}_1^\top, \dots, \mathbf{a}_m^\top\} \subseteq \mathbb{R}^d$ the row space of \mathbf{A} .
146

147 **Definition 1.** We define a perturbation matrix $\Delta := \mathbf{B} - \mathbf{A} \in \mathbb{R}^{m \times d}$, score matrices $\mathbf{S}_A :=$
148 $\mathbf{AC}^\top \in \mathbb{R}^{m \times n}$ and $\mathbf{S}_B := \mathbf{BC}^\top \in \mathbb{R}^{m \times n}$ for the queries \mathcal{Q} and \mathcal{Q}^+ , $\mathbf{A}_S := \mathbf{AV}_S$, $\Delta_S := \Delta\mathbf{V}_S$,
149 $\Delta_\perp := \Delta\mathbf{V}_\perp$, $\mathbf{C}_S := \mathbf{CV}_S$, $\mathbf{C}_\perp := \mathbf{CV}_\perp$, $\mathbf{X} := (\mathbf{A}_S + \Delta_S)\mathbf{C}_S^\top$, $\mathbf{Y} := \Delta_\perp\mathbf{C}_\perp^\top$, $\mathcal{U} := \text{col}(\mathbf{X})$,
150 and $\mathbf{P} := \mathbf{P}_X$ as the orthogonal projector onto \mathcal{U} .

151 **Proposition 1.** Assume that: i) $\|\Delta\|_2 < \sigma_r(\mathbf{A})$; ii) there exists $I \subseteq \{1, \dots, n\}$ with $|I| = r$ such
152 that the columns \mathbf{X}_I form a basis of \mathcal{U} ; iii) $\|\mathbf{X}_I^\top \mathbf{P} \mathbf{Y}_I\|_2 < 1$; and iv) there exists disjoint index set
153 $K \subseteq \{1, \dots, n\} \setminus I$ such that $k := \text{rank}((\mathbf{I} - \mathbf{P}_{\mathbf{Z}_I})\mathbf{Z}_K) \geq 1$, where $\mathbf{Z} := (\mathbf{I} - \mathbf{P})\mathbf{Y}$, $\mathbf{Z}_I := \mathbf{Z}_{:,I}$,
154 and $\mathbf{Z}_K := \mathbf{Z}_{:,K}$. Then, $\text{rank}(\mathbf{S}_B) \geq r + k > r = \text{rank}(\mathbf{S}_A)$.
155

157 **Remark 1.** We decompose Δ into two parts: one (Δ_S) that lies in the original row space of \mathbf{A} ,
158 and another (Δ_\perp) that introduces directions outside this space. Assumption (i) ensures the in-span
159 perturbation Δ_S is not too large (controlled by $\sigma_r(\mathbf{A})$) so the original r query directions in \mathbf{A} are
160 not destroyed by completion. Assumption (ii) asserts that we can select r columns from \mathbf{X} that
161 span \mathcal{U} . This fixes a stable r -dimensional basis for the existing subspace. Assumption (iii) claims
162 that adding the projected perturbation $\mathbf{P} \mathbf{Y}_I$ does not reduce the independence of these r columns.

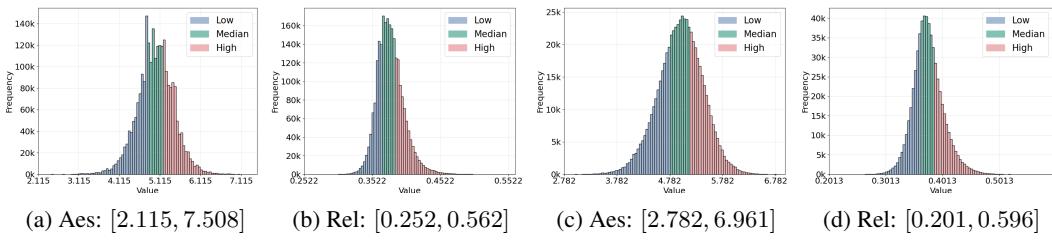


Figure 1: Aesthetic and relevance score distributions of Flickr2.4M in (a) and (b), and of MS-COCO in (c) and (d). It is worth noting that the numbers of high-quality and low-quality images are limited, which leads to the average scores of any two random sets being very close.

Thus the original r -dimensional structure is preserved. Assumption (iv) requires that there exist $k \geq 1$ columns outside I whose orthogonal components (after removing projections onto both \mathcal{U} and $\text{col}(\mathbf{Z}_I)$) are linearly independent. These contribute k genuinely new directions in \mathcal{U}^\perp . Together, these assumptions ensure that the rank of \mathbf{S}_B contains at least the r preserved dimensions from \mathcal{U} plus the k fresh orthogonal ones. Consequently, \mathbf{S}_B can express more independent scoring patterns and has the ability to potentially make finer-grained distinctions.

3 QUALITY-CONDITIONED QUERY COMPLETION

This section first provides the definition of quality, and then shows how to construct the training data, and finally illustrates how to implement and train the query completion function LLM.

3.1 QUALITY DEFINITION

For the proposed QCR task, we require a clear notion of *quality*. In this work, we characterize quality along two primary dimensions: ① *Relevance*, which measures the semantic consistency between textual queries and their corresponding images; and ② *Aesthetics*, which reflects the visual appeal or attractiveness of retrieved images. Note that our framework is inherently flexible, permitting the incorporation of arbitrary quality metric, provided that corresponding and reliable scoring models are available and applicable to general image datasets. Other notions of quality, such as *interestingness* (Gygli et al., 2013; Abdullahu & Grabner, 2024) can also be adopted in a similar manner and are left for future exploration. To facilitate user control over retrieved results, we discretize the quality dimensions into non-overlapping conditions. Specifically, we define \mathcal{C}^R for relevance and \mathcal{C}^A for aesthetics, each partitioned into perceptually distinct and user-friendly levels. For example, both can be represented as $\mathcal{C}^R, \mathcal{C}^A := \{\text{Low}, \text{Medium}, \text{High}\}$.

3.2 DATA GENERATION

To ensure the completion function LLM can perceive the retrieval gallery, we construct an augmented training dataset for each gallery \mathcal{I} . The dataset integrates three complementary components: textual descriptions $\mathcal{T} = \{T_i\}_{i=1}^n$ of images, relevance scores $\mathbf{s}^r \in \mathbb{R}^n$, and aesthetic scores $\mathbf{s}^a \in \mathbb{R}^n$.

Textual Descriptions. For each image I_i , we generate a textual description T_i using an image caption model $\text{CAP}(\cdot)$, i.e., $T_i = \text{CAP}(I_i), \forall i \in \{1, \dots, n\}$. In our experiments, we utilize strong pretrained captioning models without additional fine-tuning for description generation. Each T_i is a concise sentence summarizing the main content of the image.

Aesthetic Scores. We assign an aesthetic score s_i^a to each image I_i using an aesthetic evaluation model $\text{EV}_A(\cdot)$, i.e., $s_i^a = \text{EV}_A(I_i), \forall i \in \{1, \dots, n\}$. The aesthetic scores represent the visual quality of the images, with higher scores indicating greater visual appeal.

Relevance Scores. For each image-description pair $\{I_i, T_i\}$, we compute a relevance score using a pretrained VLM. Specifically, we extract the image feature $f(I_i)$ and text feature $g(T_i)$, then calculate their cosine similarity as their relevance score, i.e., $s_i^r = \cos(f(I_i), g(T_i)), \forall i \in \{1, \dots, n\}$.

Table 1: Query completions with their retrieved images and quality scores on MS-COCO

Rel: Low , Aes: Low	Rel: Median , Aes: Median	Rel: High , Aes: High
<i>a train that is sitting on the tracks in gravel</i> Aes 4.715, Rel 0.347	<i>a train sitting on the tracks with black smoke coming out of it</i> Aes 4.818, Rel 0.382	<i>a train is traveling near some water and houses</i> Aes 5.935, Rel 0.394
<i>a bird standing on the ground near some leaves</i> Aes 4.616, Rel 0.346	<i>a bird flying above some brown water</i> Aes 5.079, Rel 0.374	<i>a bird flying across some water at the beach</i> Aes 5.120, Rel 0.386
<i>a teddy bear wearing eye glasses and laying on a bed</i> Aes 4.788, Rel 0.359	<i>a teddy bear that is sitting on a tree</i> Aes 5.649, Rel 0.388	<i>a teddy bear sitting on a wall next to an old stone house</i> Aes 5.818, Rel 0.437

3.3 TRAINING FRAMEWORK

Score Discretization. To simulate quality-controlled retrieval, we discretize the continuous quality scores of images into categorical levels that are more intuitive for users. Given a score vector \mathbf{r} (either aesthetics s^a or relevance s^r), each score r_i is mapped into one of three descriptive levels by partitioning the score distribution into three percentiles:¹:

$$l(r_i) = \begin{cases} \text{Low}, & r_i \leq \text{perc}(\mathbf{r}, p_1), \\ \text{High}, & r_i > \text{perc}(\mathbf{r}, p_2), \\ \text{Median}, & \text{otherwise}. \end{cases} \quad (4)$$

Here, r_i is the score of the i -th sample and $\text{perc}(\mathbf{r}, p)$ calculates the $p\%$ percentile of \mathbf{r} as

$$\text{perc}(\mathbf{r}, p) = \tilde{\mathbf{r}}[\lfloor \xi \rfloor] + (\xi - \lfloor \xi \rfloor) \cdot (\tilde{\mathbf{r}}[\lfloor \xi \rfloor + 1] - \tilde{\mathbf{r}}[\lfloor \xi \rfloor]), \quad (5)$$

where $\xi = \frac{p}{100} \cdot (n - 1)$, $\tilde{\mathbf{r}}$ is the sorted version of \mathbf{r} , and $\lfloor \cdot \rfloor$ is the floor function. Figure 1 illustrates the distributions of aesthetics and relevance scores and their discretized partitions.

Instruction Design. We train the completion function LLM on the augmented training set $\mathcal{D} = \{\mathcal{T}, s^a, s^r\}$. The discretized quality levels serve as explicit conditions within instructions, enabling

¹Our framework is general and supports arbitrary numbers of levels depending on the desired granularity. In Table 5, Sec. 4.5, we provide an example with five quality levels.

270 Table 2: Query completions with their retrieved images and quality scores on Flickr2.4M
271

Aes: Low , Rel: Low	Aes: Median , Rel: Median	Aes: High , Rel: High
<i>a chair with wires on it</i> Aes 4.019, Rel 0.362	<i>a chair with red and black ropes on it</i> Aes 4.847, Rel 0.379	<i>a chair on a stage in a field</i> Aes 5.257, Rel 0.387
<i>a cell phone with wires attached to it</i> Aes 4.531, Rel 0.362	<i>a cell phone with an acoustic guitar on it</i> Aes 5.035, Rel 0.390	<i>a cell phone on a tripod in front of a waterfall in yellowstone national park</i> Aes 5.441, Rel 0.429

297 LLM to generate quality-aware query completions. For each image I_i , we design a concise instruction
298 P_i of the form:

299 "Relevance: $l(s_i^r)$, Aesthetic: $l(s_i^a)$, Query: "

300 where $l(s_i^r)$ and $l(s_i^a)$ represent the categorical quality levels defined in Eq. (4). During training,
301 this instruction provides a lightweight yet effective mechanism to condition query generation on
302 specified quality preferences.

303 **Model Training.** To stimulate the quality control process during model training, we use the de-
304 scriptive levels $l(s_i^r)$ and $l(s_i^a)$ of image I_i as the quality conditions, which are incorporated into the
305 instruction P_i . We then concatenate instructions P_i with the textual description T_i for each image
306 I_i , and then train the completion model LLM with the standard autoregressive next-token prediction
307 loss. In this way, LLM learns to generate query completions that are not only semantically relevant
308 but also controllable according to the given quality constraints.

309 **Inference Strategy.** During the inference stage, we concatenate a similar instruction with each test-
310 ing query. To simulate user preferences, we evaluate various relevance-aesthetic combinations, such
311 as "low relevance, low aesthetic" and "high relevance, high aesthetic". Then the model generates
312 completed queries based on the instructions, testing queries, and specified quality conditions. For
313 efficient similarity search on large-scale galleries, we utilize the FAISS library (Johnson et al., 2019)
314 to identify the nearest images for the queries.

316 4 EXPERIMENTS

317 4.1 EXPERIMENTAL SETTINGS

318 **Datasets.** We evaluate our method on two image datasets: one with real textual descriptions and
319 one without. For the image-only one, we construct a large dataset sourced from the Openverse
320 website (Openverse, 2025). We refer to this dataset as Flickr2.4M, which contains over 2.4
321 million CC0-licensed images randomly selected from the Flickr subset of Openverse. For image

324 Table 3: Retrieval quality of various methods on Flickr2.4M. CoCa and Blip2 are used to generate
 325 textual descriptions; **L** (Low), **M** (Median), and **H** (High) indicate the quality conditions; and Ctrl
 326 specifies whether the method enables controllable retrieval over quality. For both average relevance
 327 (Ave Rel) and average aesthetics (Ave Aes), higher values indicate better retrieval quality.
 328

329 330 Quality	331 332 VLM	333 334 Aes Cond Rel Cond	335 336 L			337 338 M			339 340 H			341 342 Ctrl ?
			L	M	H	L	M	H	L	M	H	
343 344 Prefix	345 346 --	347 348 Ave Aes	4.735	4.735	4.735	4.735	4.735	4.735	4.735	4.735	4.735	349 350 ×
			0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	
351 352 LLaMA3	353 354 --	355 356 Ave Aes	4.730	4.822	4.831	4.823	4.837	4.784	4.798	4.722	4.842	357 358 ×
			0.351	0.351	0.351	0.353	0.351	0.350	0.354	0.354	0.352	
359 360 GPT-4o	361 362 --	363 364 Ave Aes	4.359	4.651	4.728	4.712	4.668	4.791	4.791	4.816	5.056	365 366 ×
			0.378	0.361	0.357	0.358	0.360	0.356	0.361	0.357	0.361	
367 368 PT	369 370 --	371 372 Ave Aes	4.776	4.556	4.722	4.811	4.781	4.757	4.693	4.751	4.746	373 374 ×
			0.345	0.346	0.349	0.349	0.346	0.348	0.345	0.350	0.350	
375 376 FT	377 378 CoCa	379 380 Ave Aes	4.756	4.834	4.777	4.838	4.863	4.882	4.821	4.905	4.770	381 382 ×
			0.365	0.368	0.364	0.363	0.369	0.368	0.365	0.364	0.365	
383 384 Ours	385 386 CoCa	387 388 Ave Aes	4.458	4.615	4.530	4.934	4.852	4.841	5.222	5.170	5.270	389 390 √
			0.355	0.366	0.391	0.354	0.360	0.386	0.353	0.368	0.390	
391 392 FT	393 394 Blip2	395 396 Ave Aes	4.795	4.871	4.890	4.894	4.844	4.856	4.901	4.847	4.888	397 398 ×
			0.370	0.368	0.367	0.367	0.371	0.366	0.367	0.371	0.369	
399 400 Ours	401 402 Blip2	403 404 Ave Aes	4.541	4.523	4.455	4.940	4.906	4.922	5.309	5.222	5.191	405 406 √
			0.353	0.370	0.397	0.354	0.366	0.396	0.355	0.372	0.390	

348
 349 datasets with real textual descriptions, we adopt the widely-used MS-COCO dataset for experiments,
 350 which includes both images and human-annotated descriptions. Specifically, we utilize the training
 351 subset of MS-COCO, which consists of 118,287 samples, each sample containing one image and five
 352 corresponding descriptions. In total, approximately 0.6 million descriptions are used for training.
 353

354 **Model Selection.** For the backbone of our method, we evaluate two different LLMs: GPT2-1.5B
 355 (Radford et al., 2019) and Qwen2.5-0.5B (Yang et al., 2024). Other LLMs can be validated similarly
 356 and we leave them for future study. We implement the caption models $\text{CAP}(\cdot)$ using a pretrained
 357 CoCa (Yu et al., 2022) and a pretrained Blip2 (Li et al., 2023) model, respectively. For feature
 358 extraction, we adopt a pretrained VLM OpenCLIP (ViT-H-14-quickgelu) (Cherti et al., 2023; Ilharco
 359 et al., 2021). The relevance score is computed as the cosine similarity between the features of
 360 each image-description pair. The aesthetic evaluation model $\text{EV}_A(\cdot)$ is realized using a pretrained
 361 aesthetic predictor (Schuhmann, 2022).

362 **Implementation Details.** All experiments are conducted on a node with 8 NVIDIA A100 GPUs.
 363 For GPT2-1.5B (Radford et al., 2019), we set the learning rate, warmup steps, number of epochs,
 364 and batch size to $2e-3$, 100, 50, 150, respectively. For Qwen2.5-0.5B (Yang et al., 2024), these
 365 hyperparameters are set to $2e-5$, 100, 30, and 80, respectively. For score discretization, we set $p_1 =$
 366 33 and $p_2 = 66$ to divide the score distribution into three evenly spaced percentiles (examples of five-
 367 level cases are also considered). Note that we only train LLM for query completion, while the quality
 368 evaluation model $\text{EV}_A(\cdot)$, the caption models $\text{CAP}(\cdot)$, and the retrieval model VLM are all pretrained
 369 without additional fine-tuning. Since the pretrained caption models may occasionally generate non-
 370 English characters, we clean these characters directly before training to prevent potential issues for
 371 query completion. Before training, we prepend a start token to the instructions and append an end
 372 token to the descriptions. The training loss is computed only on the tokens of the descriptions and
 373 the end tokens, while excluding those of the instructions.

374 **Evaluation Strategy.** For performance evaluation, we use the 80 class names from MS-COCO dataset
 375 as query objectives. These include common objects such as trains, cars, and animals, as well as more
 376 specific categories like teddy bear, fire hydrant, and toothbrush. Based on the capitalization of each
 377 class name, we prepend either "a" or "an" to form the input queries. Since we focus on controlling
 378 the quality of retrieved images, we use aesthetic and relevance scores as the evaluation metrics. We
 379 calculate and report the average aesthetic and relevance scores of the retrieved images across all

378 Table 4: Retrieval quality of various methods on MS-COCO, where **L** (Low), **M** (Median), and **H** (High) indicate the quality conditions for retrieval, and Ctrl specifies whether the method enables
 379 controllable retrieval over image quality. For both average relevance (Ave Rel) and average aesthetics (Ave Aes), higher values indicate better retrieval quality.
 380
 381

383 Quality	Aes Cond 384 Rel Cond	385 L			386 M			387 H			388 Ctrl ?
		389 L	390 M	391 H	392 L	393 M	394 H	395 L	396 M	397 H	
388 Prefix	Ave Aes	4.817	4.817	4.817	4.817	4.817	4.817	4.817	4.817	4.817	389 \times
	Ave Rel	0.349	0.349	0.349	0.349	0.349	0.349	0.349	0.349	0.349	\times
388 LLaMA3	Ave Aes	4.903	4.891	4.855	4.916	4.875	4.880	4.871	4.858	4.911	\times
	Ave Rel	0.348	0.349	0.347	0.348	0.349	0.347	0.348	0.350	0.344	
388 GPT-4o	Ave Aes	4.673	4.754	4.686	4.782	4.808	4.880	4.838	5.075	5.048	\times
	Ave Rel	0.371	0.357	0.354	0.360	0.358	0.350	0.359	0.352	0.351	
388 PT	Ave Aes	4.819	4.793	4.789	4.829	4.810	4.828	4.794	4.826	4.820	\times
	Ave Rel	0.343	0.340	0.344	0.348	0.339	0.344	0.346	0.343	0.340	
388 FT	Ave Aes	4.925	4.845	4.848	4.882	4.934	4.990	4.849	4.941	4.929	\times
	Ave Rel	0.370	0.367	0.366	0.368	0.368	0.365	0.371	0.371	0.367	
388 FT-CoCa	Ave Aes	4.878	4.852	4.859	4.902	4.858	4.941	4.952	4.961	4.944	\times
	Ave Rel	0.346	0.351	0.356	0.349	0.350	0.354	0.345	0.352	0.352	
388 FT-Blip2	Ave Aes	4.828	4.815	4.785	4.932	4.894	4.893	5.034	4.948	4.933	\times
	Ave Rel	0.350	0.352	0.356	0.344	0.351	0.353	0.345	0.351	0.347	
400 Ours	Ave Aes	4.811	4.790	4.773	4.911	4.873	4.862	5.016	4.983	5.024	\checkmark
	Ave Rel	0.356	0.370	0.382	0.354	0.370	0.387	0.352	0.365	0.387	

402
 403 input queries as the final evaluation performance. We also test the results using the recall metric for
 404 further validation, which can be seen in the appendix.
 405

406 407 4.2 QUALITATIVE VALIDATION

408 We first perform qualitative analysis to validate whether our approach effectively achieves quality
 409 control in retrieval. In Tables 1 and 2, we present three retrieved images per query, along with their
 410 corresponding completed queries and quality scores under three different quality conditions. As
 411 shown, our method generates distinct query completions for different quality conditions. From left
 412 to right, as the quality level improves, both aesthetic and relevance scores increase accordingly. This
 413 demonstrates that our proposed method effectively controls the quality of the retrieved images. Due
 414 to space limitations, we provide more qualitative results in the Appendix A.5.
 415

416 417 4.3 QUANTITATIVE VALIDATION

418 Since no existing retrieval methods are directly applicable to the proposed QCR task, we design
 419 the following baselines for quantitative comparison: a) *Prefix*: using the input query prefix di-
 420 rectly without query completion; b) *PT (Pretrained)*: using a pretrained LLM for query completion
 421 without finetuning; c) *FT (Finetuned)*: finetuning a pretrained LLM on textual descriptions while
 422 conditioning on randomly generated quality scores; and d) *general-purpose LLMs*, including pre-
 423 trained LLaMA-3 (LLaMA-3-8B-Instruct) and GPT-4o (via API). Tables 3 and 4 report the retrieval
 424 performance of the baseline models and our proposed method with Qwen2.5 on the two datasets,
 425 respectively. The key observations are summarized as follows: ① Prefix-only retrieval yields unsat-
 426 isfactory quality performance, highlighting the necessity of query completion. ② Pretrained models
 427 for query completion degrade retrieval quality, performing worse than using only the query prefix
 428 in most cases. This is because these pretrained models tend to generate irrelevant words, negatively
 429 impacting retrieval performance. ③ Finetuning on textual descriptions improves both relevance and
 430 aesthetics compared to prefix-only and pretrained models. However, models finetuned on randomly
 431 assigned scores fail to effectively control the quality of retrieved images. ④ Our method not only
 432 enhances retrieval under high-quality conditions but also excels in quality control, demonstrating
 433 strong adaptability regardless of whether it is trained on real or generated captions.

Table 5: Results with five quality levels.

M	Relevance (Red → Red)				
	VL	L	M	H	VH
VL	4.597	4.507	4.610	4.529	4.445
	0.355	0.364	0.375	0.382	0.397
L	4.805	4.765	4.825	4.729	4.761
	0.353	0.366	0.369	0.380	0.392
M	4.909	4.961	4.878	4.889	4.901
	0.355	0.3642	0.370	0.3754	0.390
H	5.028	4.967	5.045	4.952	5.009
	0.355	0.365	0.370	0.374	0.387
VH	5.282	5.153	5.263	5.245	5.121
	0.355	0.363	0.371	0.378	0.389

4.4 DATASET DEPENDENCE

To achieve quality control in retrieval, the model should be tailored to the specific dataset, as different datasets exhibit varying quality characteristics. To illustrate this, we conduct cross-dataset retrieval experiments. Specifically, we evaluate retrieval quality on MS-COCO using queries completed by the model finetuned on Flickr2.4M. In Table 4, we assess FT-CoCa and FT-Blip2, which are finetuned on descriptions generated by CoCa and Blip2, respectively. The results indicate that both models achieve higher aesthetic scores as quality conditions improve, suggesting that aesthetically relevant semantic cues may be universal across natural images. Nevertheless, they consistently exhibit low relevance across all quality conditions. This limitation stems from the dataset mismatch between the query completion and image retrieval stages, since the two datasets encode different semantic information. See Appendix A.2 for additional analysis and results.

4.5 FURTHER VALIDATION

Table 5 presents the results on the Flickr2.4M dataset across five quality levels: VL (Very-Low), L (Low), M (Median), H (High), and VH (Very-High). As shown, our method effectively enables fine-grained control over the quality of retrieved images, adhering to more nuanced descriptive constraints. We also compare against a post-retrieval filtering baseline that first retrieves images based on relevance and then re-ranks the results by aesthetic scores. The comparison results are listed Table 6. As shown, this two-stage strategy is unreliable for short queries, which typically offer vague representations and limited descriptive cues. As a result, the initial retrieval set tends to be semantically broad and aesthetically subpar, leaving little room for the re-ranking step to improve. While increasing k can surface images with higher aesthetic quality, it typically comes at the cost of reduced semantic relevance, illustrating a trade-off between these two dimensions. In contrast, our method performs quality control during the query stage, which inherently guides retrieval toward the desired quality level. This quality-aware conditioning cannot be achieved by the two-step baseline, which lacks knowledge of the dataset’s quality distribution and operates in a detached, post-hoc manner. See Appendix A.5 for more experimental results.

5 CONCLUSION

We presented a quality-controllable retrieval framework to address the limitations of short and underspecified text queries in text-to-image retrieval. Our approach enriches queries using a generative language model conditioned on discretized quality levels, enabling retrieval that is both semantically expressive and aligned with user preferences. Extensive experiments demonstrate that our method effectively improves and controls retrieval quality, serving as a flexible augmentation to existing VLMs while improving quality control in retrieval. Future work will extend our method to other dimensions of quality beyond relevance and aesthetics, such as interestingness, diversity, or user personalization. We hope this work inspires further research on integrating controllable language-based query enrichment with large-scale multimodal retrieval systems.

Table 6: Comparison with post-retrieval filtering, where the *rerank* method first retrieves the top- k images based on relevance and then reorders the candidates by aesthetic scores to identify the best result.

	k	1	2	3	5	10
Rerank	Aes	4.735	4.947	5.014	5.198	5.313
	Rel	0.350	0.348	0.347	0.345	0.341
LLaMA3	Aes	4.842	5.071	5.154	5.298	5.377
	Rel	0.352	0.349	0.347	0.342	0.337
GPT-4o	Aes	5.056	5.205	5.293	5.393	5.518
	Rel	0.361	0.356	0.353	0.349	0.343
Ours	Aes	5.236	5.320	5.364	5.432	5.533
	Rel	0.387	0.385	0.381	0.376	0.366

486
487

STATEMENTS

488
489

ETHICS STATEMENT

490
491
492
493
494
495
496
497

This work investigates large language models for query completion in text-to-image retrieval, where image quality information is integrated into the training process. The study relies on publicly available datasets and does not involve human subjects, private information, or sensitive content. We acknowledge that retrieval models may inherit biases present in the underlying vision–language datasets; however, our approach does not introduce new data collection and instead focuses on methodological contributions. The models and results are intended solely for academic research, and no harmful or deceptive applications are pursued. We adhere to the ICLR Code of Ethics and confirm that this research complies with principles of fairness, transparency, and responsible use.

498
499

REPRODUCIBILITY STATEMENT

500
501
502
503
504

We are committed to ensuring the reproducibility of our work. All code and pretrained checkpoints used in our experiments will be released upon acceptance. Theoretical results are stated with all necessary assumptions in the main text, and their complete proofs are provided in the appendix. Experimental settings are included in the main body and supplementary materials. Together, these resources are intended to enable full replication and verification of our results.

505

506

REFERENCES

507
508
509

Fitim Abdullahu and Helmut Grabner. Commonly interesting images, 2024. URL <https://arxiv.org/abs/2409.16736>.

510
511
512
513
514

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.

515
516
517

Ziv Bar-Yossef and Naama Kraus. Context-sensitive query auto-completion. In *Proceedings of the 20th International Conference on World Wide Web*, WWW ’11, pp. 107–116. Association for Computing Machinery, 2011.

518
519
520
521
522
523
524

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Advances in Neural Information Processing Systems*, pp. 1877–1901, 2020.

525
526
527

Fei Cai, Maarten De Rijke, et al. A survey of query auto completion in information retrieval. *Foundations and Trends® in Information Retrieval*, 10(4):273–363, 2016.

528
529
530
531

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive language-image learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2818–2829, 2023.

532
533
534

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint*, 2018.

535
536
537
538

Yuting Gao, Jinfeng Liu, Zihan Xu, Jun Zhang, Ke Li, and Chunhua Shen. Pyramidclip: hierarchical feature alignment for vision-language model pretraining. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, 2022.

539

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and Ahmad Al-Dahle et al. The llama 3 herd of models, 2024.

540 Michael Gygli, Helmut Grabner, Hayko Riemenschneider, Fabian Nater, and Luc Van Gool. The
 541 interestingness of images. In *Proceedings of the IEEE international conference on computer*
 542 *vision*, pp. 1633–1640, 2013.

543

544 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
 545 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
 546 Farhadi, and Ludwig Schmidt. Openclip, July 2021.

547

548 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 549 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 550 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
 551 PMLR, 2021.

552

553 Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. *IEEE*
 554 *Transactions on Big Data*, 7(3):535–547, 2019.

555

556 Zaid Khan and Yun Fu. Contrastive alignment of vision to language through parameter-efficient
 557 transfer learning. *arXiv preprint*, 2023.

558

559 Dong-Ho Lee, Zhiqiang Hu, and Roy Ka-Wei Lee. Improving text auto-completion with next phrase
 560 prediction. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, pp.
 561 4434–4438. Association for Computational Linguistics, 2021.

562

563 Yibin Lei, Yu Cao, Tianyi Zhou, Tao Shen, and Andrew Yates. Corpus-steered query expansion with
 564 large language models. In *Proceedings of the 18th Conference of the European Chapter of the*
 565 *Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 393–401. Association
 566 for Computational Linguistics, 2024.

567

568 Jinhao Li, Haopeng Li, Sarah Monazam Erfani, Lei Feng, James Bailey, and Feng Liu. Visual-text
 569 cross alignment: Refining the similarity score in vision-language models. In *Forty-first Interna-*
 570 *tional Conference on Machine Learning*, 2024.

571

572 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 573 training for unified vision-language understanding and generation. In *International conference on*
 574 *machine learning*, pp. 12888–12900. PMLR, 2022.

575

576 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 577 pre-training with frozen image encoders and large language models. In *International conference*
 578 *on machine learning*, pp. 19730–19742. PMLR, 2023.

579

580 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In A. Oh,
 581 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural*
 582 *Information Processing Systems*, volume 36, pp. 34892–34916. Curran Associates, Inc., 2023a.

583

584 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 585 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 586 cessing. *ACM Computing Surveys*, 55(9):1–35, 2023b.

587

588 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 589 Shiyi Cao, Yuxian Gu, Dacheng Li, Xiuyu Li, Yunhao Fang, Yukang Chen, Cheng-Yu Hsieh,
 590 De-An Huang, An-Chieh Cheng, Vishwesh Nath, Jinyi Hu, Sifei Liu, Ranjay Krishna, Daguang
 591 Xu, Xiaolong Wang, Pavlo Molchanov, Jan Kautz, Hongxu Yin, Song Han, and Yao Lu. Nvila:
 592 Efficient frontier visual language models, 2024.

593

594 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 595 Zhuoshu Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-
 596 vl: Towards real-world vision-language understanding, 2024.

597

598 Mayug Maniparambil, Raiymbek Akshulakov, Yasser Abdelaziz Dahou Djilali, Mohamed El Amine
 599 Seddik, Sanath Narayan, Karttikeya Mangalam, and Noel E. O’Connor. Do vision and language
 600 encoders represent the world similarly? In *2024 IEEE/CVF Conference on Computer Vision and*
 601 *Pattern Recognition (CVPR)*, pp. 14334–14343, 2024.

594 Bhaskar Mitra and Nick Craswell. Query auto-completion for rare prefixes. In *Proceedings of*
 595 *the 24th ACM International on Conference on Information and Knowledge Management*, CIKM
 596 '15, pp. 1755–1758. Association for Computing Machinery, 2015. ISBN 9781450337946. doi:
 597 10.1145/2806416.2806599.

598 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, and Lama Ahmad et al. Gpt-4 technical
 599 report, 2024.

600 Openverse. Openverse: Openly licensed images, audio and more. <https://openverse.org/>,
 601 2025.

602 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 603 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

604 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 605 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 606 models from natural language supervision. In *International conference on machine learning*, pp.
 607 8748–8763. PMLR, 2021.

608 Christoph Schuhmann. Improved aesthetic predictor: Clip + mlp aesthetic score predictor. <https://github.com/christophschuhmann/improved-aesthetic-predictor>,
 609 2022.

610 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 611 Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
 612 clip-filtered 400 million image-text pairs. *arXiv preprint arXiv*, 2021.

613 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 614 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
 615 Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
 616 Laion-5b: an open large-scale dataset for training next generation image-text models. In *Proceed-
 617 ings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22,
 618 Red Hook, NY, USA, 2024.

619 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Mar-
 620 cus Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model.
 621 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 622 15638–15650, 2022.

623 Andy Sun, Tianqi Zheng, Aakash Kolekar, Rohit Patki, Hossein Khazaei, Xuan Guo, George Cai,
 624 David Liu, Ruirui Li, Yupin Huang, Dante Everaert, Hanqing Lu, Garima Patel, and Monica
 625 Cheng. A product-aware query auto-completion framework for e-commerce search via retrieval-
 626 augmented generation method. *SIGIR 2024 Workshop on Information Retrieval's Role in RAG
 627 Systems (IR-RAG)*, 2024.

628 Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models.
 629 In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*,
 630 pp. 9414–9423. Association for Computational Linguistics, December 2023.

631 Xiyao Wang, Juhai Chen, Zhaoyang Wang, Yuhang Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou,
 632 Tom Goldstein, Parminder Bhatia, Furong Huang, et al. Enhancing visual-language modality
 633 alignment in large vision language models via self-improvement. *arXiv preprint*, 2024.

634 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 635 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 636 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 637 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 638 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu,
 639 Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint*, 2024.

640 Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
 641 Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning.
 642 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 643 15671–15680, 2022.

648 Ran Yi, Haoyuan Tian, Zhihao Gu, Yu-Kun Lai, and Paul L Rosin. Towards artistic image aesthetics
649 assessment: a large-scale dataset and a new method. In *Proceedings of the IEEE/CVF Conference*
650 *on Computer Vision and Pattern Recognition*, pp. 22388–22397, 2023.

651 Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
652 Coca: Contrastive captioners are image-text foundation models. *arXiv preprint*, 2022.

653 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
654 A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024.

655 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
656 Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
657 Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
658 Ji-Rong Wen. A survey of large language models, 2024.

659 Hongyi Zhu, Jia-Hong Huang, Stevan Rudinac, and Evangelos Kanoulas. Enhancing interactive
660 image retrieval with query rewriting using large language models and vision language models. In
661 *Proceedings of the 2024 International Conference on Multimedia Retrieval*, pp. 978–987, 2024.

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 RELATED WORK**
705706 **A.1.1 VISION-LANGUAGE MODELS**
707

708 Vision-language models (VLMs) have become the de facto foundation for image-text tasks, demon-
709 strating exceptional potential across a variety of applications (Alayrac et al., 2022; Liu et al., 2024;
710 Zhang et al., 2024; Manipambil et al., 2024). Pioneering work such as CLIP (Radford et al.,
711 2021) and ALIGN (Jia et al., 2021) learn directly from raw texts about images by aligning them in
712 a shared embedding space. CoCa (Yu et al., 2022) combines contrastive loss with captioning loss to
713 train an image-text encoder-decoder model, effectively integrating capabilities from both contrastive
714 and generative approaches. Blip2 (Li et al., 2023) bridges the modality gap with a lightweight Q-
715 Former to improve pretraining efficiency. In this paper, we adopt joint-embedding VLMs like CLIP
716 as foundation models for text-to-image retrieval. Instead of fine-tuning the VLMs on target datasets,
717 we keep them frozen and focus on refining textual queries to achieve both quality improvement and
718 control over the retrieved images. Improving existing VLMs for retrieval quality control is orthogo-
719 nal to our approach and represents a promising direction for our future research.
720

721 **A.1.2 LARGE LANGUAGE MODELS**
722

723 Large language models (LLMs) are a class of foundation models designed to process, understand,
724 and generate natural language at scale (Devlin, 2018; Radford et al., 2019; Brown et al., 2020). With
725 fine-tuning and prompting, these models excel across a variety of tasks, including text generation,
726 summarization, reasoning, translation, and coding (Liu et al., 2023b; Zhao et al., 2024). Notable
727 examples, such as LLaMA3 (Grattafiori et al., 2024), GPT-4o (OpenAI et al., 2024), and Qwen2.5
728 (Yang et al., 2024), contain billions of parameters and are trained on extensive textual datasets.
729 The large-scale pretraining enables them to capture complex contextual, semantic, and syntactic
730 relationships in natural language. To tackle the proposed QCRR task, we utilize pretrained LLMs
731 for query modification. By integrating quality information as conditions, the LLMs autonomously
732 learn to generate quality-aware details for query extension. This provides users with multiple visible
733 query suggestions, allowing them to explore diverse retrieval results.
734

735 **A.1.3 TEXT-TO-IMAGE RETRIEVAL**
736

737 Text-to-image retrieval aims to identify the most relevant images from a database given a natu-
738 ral language query. It plays a critical role in applications such as visual search, e-commerce, and
739 content-based recommendation. Recent advances in VLMs (Radford et al., 2021; Gao et al., 2022;
740 Li et al., 2022; Yu et al., 2022; Jia et al., 2021) have significantly improved performance on this
741 task by learning powerful cross-modal representations. These models map images and texts into
742 a shared embedding space, typically through contrastive learning on web-scaled image-text pairs.
743 However, existing retrieval systems are primarily optimized to return the top-k images that are se-
744 mantically aligned with the input query. They overlook other crucial dimensions—such as aesthetic
745 appeal, interestingness, or popularity—that strongly affect user satisfaction in practical scenarios.
746 In this work, we advocate for incorporating quality control into retrieval. By allowing users to ex-
747 plicitly influence the quality attributes of the returned results, we enable a more personalized and
748 controllable search experience, moving beyond simple semantic matching toward a more adaptive,
749 user-centric paradigm.
750

751 **A.1.4 QUERY COMPLETION**
752

753 Query completion (QC) aims to extend user short inputs, referred to as *query prefixes*, by generating
754 longer and more informative *query completions*. It is a widely used technique that helps users
755 better articulate their intent and resolve potential query ambiguity. Traditional QC methods rely
756 on factors such as user profiles, query libraries, and prior search history to extend prefixes into
757 query completions, which limits their applicability to unforeseen prefixes (Bar-Yossef & Kraus,
758 2011; Mitra & Craswell, 2015; Cai et al., 2016). Recently, several generative approaches have been
759 proposed for query completion with arbitrary prefixes, primarily for text generation and document
760 retrieval tasks (Lee et al., 2021; Wang et al., 2023; Lei et al., 2024). QC-based methods for text-to-
761 image retrieval remain scarce, with only a few related works. Zhu et al. (Zhu et al., 2024) enhance
762

756 interactive image retrieval through query rewriting based on user relevance feedback, while Sun *et* 757 *al.* (Sun et al., 2024) leverage LLMs to generate product-aware query completions. However, these 758 approaches primarily focus on query suggestion and refinement rather than achieving control over 759 the quality of retrieved images. In contrast, we tailor query completion to enhance retrieval quality, 760 making the first attempt to adapt it to a given search corpus for quality-controllable retrieval.

762 A.2 ANALYSIS OF DATASET DEPENDENCY

764 Our work focuses on text-to-image retrieval, where the goal is to retrieve relevant images from a 765 fixed dataset based on a textual query. This task is inherently dataset-dependent, as the retrieval 766 process relies entirely on the available images within the dataset. Therefore, the query is crucial in 767 this task: the more specific and detailed the query, the easier the retrieval system can match it to the 768 corresponding image. Conversely, short or vague queries make it significantly more difficult for the 769 system to identify the intended image. That's why our proposed query completion method aims to 770 enrich the original short queries with more specific, quality-aware details. We'd like to emphasize 771 that these details are not randomly generated. Instead, they are learned directly from the dataset 772 itself (by fine-tuning the LLM to fit the captions). As a result, the completed queries remain dataset- 773 dependent and contextually relevant. The additional details are not unnecessary, as they provide 774 essential guidance to the retrieval system, helping it to more accurately identify images with desired 775 quality (as demonstrated by our experimental results).

777 A.3 ANALYSIS OF SCORE DIFFERENCES

779 In Tables 1 and 2, the quality scores across low, medium, and high conditions may appear close for 780 a single query. This is expected due to dataset limitations. As shown in Figure 2, the similarity 781 scores across both Flickr2.4M and MS-COCO are not uniformly distributed, and images with ex- 782 tremely low or high scores are rare. For instance, on Flickr2.4M, the similarity scores range from 783 0.252 to 0.562, and the entire span across the whole dataset is only about 0.3 (where the extreme 784 values correspond to two images from different classes). When retrieving images for a single query, 785 the available results often fall within a narrower score range (much smaller than 0.3) because the 786 dataset lacks images at both ends of the quality spectrum (sparsely distributed). For example, if all 787 images retrieved from the query “a dog” have aesthetic scores between 3.8 and 4.7 (due to dataset 788 limitations), even under the “High” condition, the best available image might score 4.7—which lies 789 in a low range (given the whole range : [2.782, 6.961]). But it is still higher than the score of 3.8 790 under the “Low” condition. Thus, the method is still effectively ranking and retrieving better images 791 within the constraints of the dataset.

792 Despite this dataset-level constraint that limits the score differences, our method demonstrates effec- 793 tive ranking ability and a consistent, meaningful trend. As shown from left to right in Tables 1 and 794 2, both the retrieved image scores and their visual appeal improve progressively as the quality con- 795 dition increases. This pattern is further supported by quantitative results in Tables 3 and 4, where the 796 average quality scores clearly increase across the low, median, and high conditions. This behavior 797 cannot be reproduced by baseline methods that lack quality consideration in retrieval.

798 A.4 PROOF OF PROPOSITION 1

800 **Lemma 1.** *If $\text{rank}(\mathbf{X}_I) = r$ and $\mathbf{I}_r + \mathbf{X}_I^\dagger \mathbf{P} \mathbf{Y}_I$ is invertible, then*

$$802 \text{rank}(\mathbf{X}_I + \mathbf{P} \mathbf{Y}_I) = r.$$

805 *Proof of Lemma 1.* Since $\text{col}(\mathbf{X}_I) = \mathcal{U}$, we have $\mathbf{P} = \mathbf{X}_I \mathbf{X}_I^\dagger$. Hence

$$808 \mathbf{X}_I + \mathbf{P} \mathbf{Y}_I = \mathbf{X}_I + \mathbf{X}_I \mathbf{X}_I^\dagger \mathbf{P} \mathbf{Y}_I = \mathbf{X}_I (\mathbf{I}_r + \mathbf{X}_I^\dagger \mathbf{P} \mathbf{Y}_I).$$

809 As \mathbf{X}_I has rank r and the factor in parentheses is invertible, the product has rank r . \square

810 *Proof of Proposition 1.* Since right-multiplication by the orthogonal matrix $\mathbf{V} = [\mathbf{V}_S \ \mathbf{V}_\perp]$ is rank-
 811 preserving, we analyze the following matrices:

$$\begin{aligned} 812 \quad \mathbf{A}' &:= \mathbf{A}\mathbf{V} = \mathbf{A}[\mathbf{V}_S \ \mathbf{V}_\perp] = [\mathbf{A}\mathbf{V}_S \ \mathbf{A}\mathbf{V}_\perp] = [\mathbf{A}_S \ \mathbf{0}], \\ 813 \quad \mathbf{\Delta}' &:= \mathbf{\Delta}\mathbf{V} = \mathbf{\Delta}[\mathbf{V}_S \ \mathbf{V}_\perp] = [\mathbf{\Delta}\mathbf{V}_S \ \mathbf{\Delta}\mathbf{V}_\perp] = [\mathbf{\Delta}_S \ \mathbf{\Delta}_\perp], \\ 814 \quad \mathbf{B}' &:= \mathbf{B}\mathbf{V} = (\mathbf{A} + \mathbf{\Delta})\mathbf{V} = \mathbf{A}\mathbf{V} + \mathbf{\Delta}\mathbf{V} = \mathbf{A}' + \mathbf{\Delta}' = [\mathbf{A}_S + \mathbf{\Delta}_S \ \mathbf{\Delta}_\perp], \\ 815 \quad \mathbf{C}' &:= \mathbf{C}\mathbf{V} = \mathbf{C}[\mathbf{V}_S \ \mathbf{V}_\perp] = [\mathbf{C}\mathbf{V}_S \ \mathbf{C}\mathbf{V}_\perp] = [\mathbf{C}_S \ \mathbf{C}_\perp]. \\ 816 \end{aligned} \quad (6)$$

817 Then, for the score matrices, we have:

$$\begin{aligned} 818 \quad \mathbf{S}_A &= \mathbf{A}\mathbf{C}^\top = (\mathbf{A}\mathbf{V})(\mathbf{C}\mathbf{V})^\top = \mathbf{A}'\mathbf{C}'^\top = [\mathbf{A}_S \ \mathbf{0}] \begin{bmatrix} \mathbf{C}_S^\top \\ \mathbf{C}_\perp^\top \end{bmatrix} = \mathbf{A}_S \mathbf{C}_S^\top, \\ 819 \quad \mathbf{S}_B &= \mathbf{B}\mathbf{C}^\top = \mathbf{B}'\mathbf{C}'^\top = [\mathbf{A}_S + \mathbf{\Delta}_S \ \mathbf{\Delta}_\perp] \begin{bmatrix} \mathbf{C}_S^\top \\ \mathbf{C}_\perp^\top \end{bmatrix} = (\mathbf{A}_S + \mathbf{\Delta}_S)\mathbf{C}_S^\top + \mathbf{\Delta}_\perp\mathbf{C}_\perp^\top =: \mathbf{X} + \mathbf{Y}. \\ 820 \end{aligned} \quad (7)$$

821 By the SVD construction, \mathbf{A}_S has full column rank r and $\sigma_{\min}(\mathbf{A}_S) = \sigma_r(\mathbf{A}) > 0$. Since $\mathbf{\Delta}_S =$
 822 $\mathbf{\Delta}\mathbf{V}_S$ and \mathbf{V}_S is orthogonal (i.e., $\|\mathbf{V}_S\|_2 = 1$), it follows that

$$823 \quad \|\mathbf{\Delta}_S\|_2 \leq \|\mathbf{\Delta}\|_2. \quad (8)$$

824 Given that $\|\mathbf{\Delta}_S\|_2 \leq \|\mathbf{\Delta}\|_2 < \sigma_r(\mathbf{A}) = \sigma_{\min}(\mathbf{A}_S)$, the standard minimum-singular-value pertur-
 825 bation argument (or Weyl’s inequality in spectral norm form) yields that $\mathbf{A}_S + \mathbf{\Delta}_S$ remains full
 826 column rank r . Since left multiplication by a full-column-rank matrix does not change rank, it
 827 follows that:

$$\begin{aligned} 828 \quad \text{rank}(\mathbf{X}) &= \text{rank}((\mathbf{A}_S + \mathbf{\Delta}_S)\mathbf{C}_S^\top) = \text{rank}(\mathbf{C}_S^\top) = \text{rank}(\mathbf{C}_S), \\ 829 \quad \text{rank}(\mathbf{S}_A) &= \text{rank}(\mathbf{A}_S\mathbf{C}_S^\top) = \text{rank}(\mathbf{C}_S) = \text{rank}(\mathbf{X}). \\ 830 \end{aligned} \quad (9)$$

831 Consider the linear operator

$$832 \quad \mathbf{T} = \begin{bmatrix} \mathbf{P} \\ (\mathbf{I} - \mathbf{P}_{\mathbf{Z}_I})(\mathbf{I} - \mathbf{P}) \end{bmatrix}. \quad (10)$$

833 Since left multiplication cannot increase rank,

$$834 \quad \text{rank}(\mathbf{S}_B) \geq \text{rank}(\mathbf{T}\mathbf{S}_B) \geq \text{rank}((\mathbf{T}\mathbf{S}_B)_{:,I \cup K}). \quad (11)$$

835 Now

$$836 \quad \mathbf{T}\mathbf{S}_B = \begin{bmatrix} \mathbf{X} + \mathbf{PY} \\ (\mathbf{I} - \mathbf{P}_{\mathbf{Z}_I})\mathbf{Z} \end{bmatrix}. \quad (12)$$

837 Restricting to $I \cup K$ gives the block form

$$838 \quad (\mathbf{T}\mathbf{S}_B)_{:,I \cup K} = \begin{bmatrix} \mathbf{X}_I + \mathbf{PY}_I & \mathbf{X}_K + \mathbf{PY}_K \\ \mathbf{0} & (\mathbf{I} - \mathbf{P}_{\mathbf{Z}_I})\mathbf{Z}_K \end{bmatrix}. \quad (13)$$

839 By the lemma, the top-left block has rank r . By assumption (4), the bottom-right block has rank
 840 $k \geq 1$. Thus block-triangular rank additivity yields

$$841 \quad \text{rank}((\mathbf{T}\mathbf{S}_B)_{:,I \cup K}) \geq r + k. \quad (14)$$

842 Therefore

$$843 \quad \text{rank}(\mathbf{S}_B) \geq r + k > r = \text{rank}(\mathbf{S}_A). \quad (15)$$

844 \square

845 A.5 ADDITIONAL EXPERIMENTAL RESULTS

846 Recall metrics such as R@1, R@5, and R@10 are standard in retrieval evaluation. However, it’s
 847 important to note that recall is also derived from similarity—that is, images are ranked by similarity,
 848 and recall is computed based on their rank positions. Thus, recall metrics and similarity scores are
 849 inherently connected, especially when comparing methods built on the same retrieval backbone. To
 850 provide a complementary view of effectiveness, we conduct additional experiments on MS-COCO
 851 using R@1, R@5, and R@10 for evaluation. The results are shown in Table 10.

852 In addition, Table 8 presents the quantitative results on MS-COCO datasets using GPT2 as the back-
 853 bone. Tables 7-9 provide more qualitative results on the two datasets.

864
 865 Table 7: Retrieval quality of various methods on Flickr2 .4M. CoCa and Blip2 are used to generate
 866 textual descriptions; **L** (Low), **M** (Median), and **H** (High) indicate the quality conditions; and Ctrl
 867 specifies whether the method enables controllable retrieval over quality. For both average relevance
 868 (Ave Rel) and average aesthetics (Ave Aes), higher values indicate better retrieval quality.

869 870 Quality	871 872 VLM	873 874 Aes Cond Rel Cond	875 876 L			877 878 M			879 880 H			881 882 Ctrl ?
			883 884 L	885 886 M	887 888 H	889 890 L	891 892 M	893 894 H				
895 Prefix	896 897 --	Ave Aes	4.735	4.735	4.735	4.735	4.735	4.735	4.735	4.735	4.735	×
		Ave Rel	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	0.350	
898 LLaMA3	899 900 --	Ave Aes	4.730	4.822	4.831	4.823	4.837	4.784	4.798	4.722	4.842	×
		Ave Rel	0.351	0.351	0.351	0.353	0.351	0.350	0.354	0.354	0.352	
901 GPT-4o	902 903 --	Ave Aes	4.359	4.651	4.728	4.712	4.668	4.791	4.791	4.816	5.056	×
		Ave Rel	0.378	0.361	0.357	0.358	0.360	0.356	0.361	0.357	0.361	
904 PT	905 906 --	Ave Aes	4.681	4.639	4.673	4.688	4.504	4.654	4.610	4.556	4.692	×
		Ave Rel	0.351	0.344	0.350	0.350	0.346	0.347	0.349	0.352	0.352	
907 FT	908 909 CoCa	Ave Aes	4.848	4.818	4.864	4.847	4.827	4.876	4.829	4.896	4.853	×
		Ave Rel	0.366	0.365	0.367	0.365	0.363	0.366	0.367	0.366	0.368	
910 Ours	911 912 CoCa	Ave Aes	4.646	4.674	4.632	4.878	4.921	4.894	5.182	5.095	5.124	√
		Ave Rel	0.354	0.372	0.382	0.355	0.369	0.386	0.357	0.366	0.385	
913 FT	914 915 Blip2	Ave Aes	4.838	4.674	4.744	4.592	4.599	4.772	4.727	4.749	4.818	×
		Ave Rel	0.369	0.360	0.369	0.365	0.362	0.365	0.373	0.359	0.368	
916 Ours	917 918 Blip2	Ave Aes	4.528	4.560	4.470	4.948	4.946	4.885	5.266	5.160	5.236	√
		Ave Rel	0.355	0.374	0.393	0.354	0.374	0.391	0.354	0.367	0.387	

888
 889 Table 8: Retrieval quality of various methods (GPT2) on MS-COCO, where **L** (Low), **M** (Median),
 890 and **H** (High) indicate the quality conditions for retrieval, and Ctrl specifies whether the method
 891 enables controllable retrieval over image quality. For both average relevance (Ave Rel) and average
 892 aesthetics (Ave Aes), higher values indicate better retrieval quality.

893 894 Quality	895 896 Aes Cond Rel Cond	897 898 L			899 900 M			901 902 H			903 904 Ctrl ?	
		905 906 L	907 908 M	909 910 H	911 912 L	913 914 M	915 916 H	917 918 L	919 920 M	921 922 H		
923 Prefix	924 925 Ave Aes	4.817	4.817	4.817	4.817	4.817	4.817	4.817	4.817	4.817	4.817	×
		0.349	0.349	0.349	0.349	0.349	0.349	0.349	0.349	0.349	0.349	
926 LLaMA3	927 928 Ave Aes	4.903	4.891	4.855	4.916	4.875	4.880	4.871	4.858	4.911	4.911	×
		0.348	0.349	0.347	0.348	0.349	0.347	0.348	0.350	0.344	0.344	
929 GPT-4o	930 931 Ave Aes	4.673	4.754	4.686	4.782	4.808	4.880	4.838	5.075	5.048	5.048	×
		0.371	0.357	0.354	0.360	0.358	0.350	0.359	0.352	0.351	0.351	
932 PT	933 934 Ave Aes	4.742	4.731	4.855	4.821	4.775	4.854	4.830	4.726	4.847	4.847	×
		0.347	0.345	0.350	0.349	0.344	0.345	0.351	0.347	0.344	0.344	
935 FT	936 937 Ave Aes	4.785	4.820	4.866	4.813	4.852	4.888	4.833	4.919	4.960	4.960	×
		0.369	0.369	0.373	0.373	0.369	0.373	0.367	0.376	0.372	0.372	
938 FT-CoCa	939 940 Ave Aes	4.890	4.889	4.793	4.885	4.939	4.903	4.950	5.004	4.898	4.898	×
		0.347	0.348	0.356	0.346	0.349	0.352	0.347	0.349	0.351	0.351	
941 FT-Blip2	942 943 Ave Aes	4.776	4.883	4.824	4.914	4.968	4.873	5.039	4.967	5.053	5.053	×
		0.349	0.351	0.352	0.344	0.349	0.350	0.343	0.349	0.349	0.349	
944 Ours	945 946 Ave Aes	4.896	4.809	4.719	4.973	4.879	4.916	5.017	5.020	5.109	5.109	√
		0.354	0.365	0.385	0.356	0.368	0.387	0.353	0.368	0.391	0.391	

A.6 LIMITATION

In rare cases, the completed queries may not align with the semantics of the query prefixes. This occurs when the query completion model generates a sentence referencing different objects. Additionally, the relevance and aesthetic quality of the retrieved images depend on the reliability of the

918
919
920 Table 9: Retrieval quality with five quality levels on CoCa.
921
922
923
924
925
926
927
928
929
930
931
932

\mathcal{M}	VL	Relevance (Red \rightarrow Red)				
		L	M	H	VH	
Aesthetics (Green \leftarrow Green)	VL	4.581 0.355	4.551 0.364	4.559 0.372	4.579 0.376	4.507 0.382
	L	4.870 0.357	4.792 0.363	4.784 0.370	4.748 0.376	4.718 0.383
	M	4.882 0.356	4.954 0.366	4.863 0.371	4.849 0.377	4.820 0.381
	H	5.054 0.355	5.048 0.362	5.005 0.371	5.019 0.370	4.998 0.381
	VH	5.159 0.352	5.166 0.366	5.161 0.369	5.135 0.373	5.084 0.386

933 Table 10: Comparison with post-retrieval filtering
934

	R@1	R@5	R@10
Finetuned	0.8500	0.8875	0.9125
F-CoCa	0.8375	0.9375	0.9750
F-Blip2	0.7375	0.8750	0.9250
ours	0.8750	0.9625	0.9750

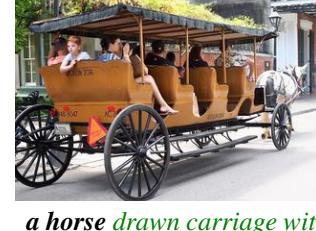
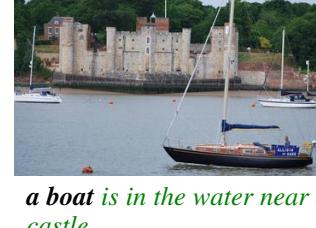
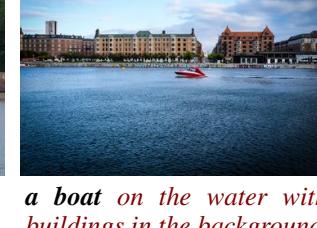
941
942 VLMs and aesthetic evaluation models. If these models are not sufficiently reliable, retrieval per-
943 formance can be significantly affected. Refer to Table 14 for examples of such cases. As mentioned
944 before, the model needs to perceive image quality within the datasets to achieve quality control in
945 retrieval. However, the retrieval datasets may sometimes lack the granularity needed to differentiate
946 between high-quality and low-quality images. In some instances, the retrieval database may not
947 contain high-quality or low-quality images that match specific queries.

948 A.7 THE USE OF LARGE LANGUAGE MODELS (LLMs)
949

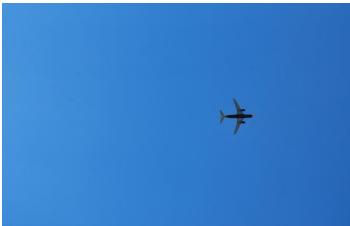
950 In preparing this paper, large language models were used only as writing assistants for grammar
951 checking and minor sentence rephrasing. All technical aspects of the work, including the design,
952 implementation, and verification of experiments and analyses, were carried out by the authors.

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 11: Query completions with their retrieved images and quality scores on Flickr2.4M

Rel: Low , Aes: Low	Rel: Median , Aes: Median	Rel: High , Aes: High
 <i>a bowl of soup with meat and vegetables in it</i> Aes 4.648, Rel 0.343	 <i>a bowl on display</i> Aes 4.980, Rel 0.379	 <i>a bowl with flowers on it</i> Aes 5.386, Rel 0.387
 <i>a train on a track next to a grassy field</i> Aes 4.585, Rel 0.369	 <i>a train station with people waiting to board a bus</i> Aes 4.910, Rel 0.380	 <i>a train in the desert</i> Aes 5.488, Rel 0.391
 <i>a horse drawn carriage on a dirt road</i> Aes 4.718, Rel 0.357	 <i>a horse drawn carriage with people on it</i> Aes 5.023, Rel 0.3773	 <i>a horse is grazing in a field under a cloudy sky</i> Aes 5.207, Rel 0.390
 <i>a truck is parked in front of a building</i> Aes 4.800, Rel 0.331	 <i>a truck is parked under a bridge</i> Aes 5.070, Rel 0.370	 <i>a truck is parked in front of the Washington Monument</i> Aes 5.335, Rel 0.389
 <i>a boat docked in the water next to other boats</i> Aes 3.814, Rel 0.358	 <i>a boat is in the water near a castle</i> Aes 4.839, Rel 0.371	 <i>a boat on the water with buildings in the background</i> Aes 5.113, Rel 0.396

1026
1027
10281029 Table 12: Query completions with their retrieved images and quality scores on MS-COCO
1030

1031	Rel: Low , Aes: Low	Rel: Median , Aes: Median	Rel: High , Aes: High
1032			
1033	<i>an aeroplane flying in the air with a big blue sky behind it</i> Aes 4.536, Rel 0.354	<i>an aeroplane flying high on a clear sky</i> Aes 4.739, Rel 0.360	<i>Query: an aeroplane flying over the beach and two guys standing on it</i> Aes 5.516, Rel 0.425
1034			
1035	<i>a fire hydrant stands in front of a bald eagle wall mural</i> Aes 4.991, Rel 0.355	<i>a fire hydrant sitting in front of a sign for a cafe</i> Aes 5.511, Rel 0.368	<i>a fire hydrant is painted to look like a dalmatian</i> Aes 5.799, Rel 0.447
1036			
1037	<i>a toilet with a raised lid in some lavatory</i> Aes 4.457, Rel 0.361	<i>a toilet and sink in a small bathroom with a seat up</i> Aes 4.502, Rel 0.372	<i>a toilet is sitting outside with a sign on it</i> Aes 5.264, Rel 0.394
1038			
1039	<i>a sheep is standing on a white fence</i> Aes 4.557, Rel 0.358	<i>a sheep and baby sheep standing in a field</i> Aes 5.014, Rel 0.378	<i>a sheep dog herding sheep through a grass field</i> Aes 5.213, Rel 0.388
1040			
1041			
1042			
1043			
1044			
1045			
1046			
1047			
1048			
1049			
1050			
1051			
1052			
1053			
1054			
1055			
1056			
1057			
1058			
1059			
1060			
1061			
1062			
1063			
1064			
1065			
1066			
1067			
1068			
1069			
1070			
1071			
1072			
1073			
1074			
1075			
1076			
1077			
1078			
1079			

1080

1081

1082

1083

1084

1085

1086

1087

Table 13: Query completions with their retrieved images and quality scores on MS-COCO

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Rel: Low , Aes: Low	Rel: Median , Aes: Median	Rel: High , Aes: High
<i>a wine glass next to a plate with some fish and veggies on it</i> Aes 4.790, Rel 0.350	<i>a wine glass next to a plate with some meat and vegetables on it</i> Aes 5.209, Rel 0.376	<i>a wine glass and three clocks all set at different times</i> Aes 5.555, Rel 0.417
<i>a toothbrush on a table with a bunch of scissors</i> Aes 4.149, Rel 0.345	<i>a toothbrush that is on down on the counter</i> Aes 4.837, Rel 0.370	<i>a toothbrush with a smiley face sitting on a sink</i> Aes 5.184, Rel 0.412
<i>a backpack and a line of supplies laying out</i> Aes 3.937, Rel 0.355	<i>a backpack some water rocks and plants</i> Aes 5.130, Rel 0.374	<i>a backpack with rollers is sitting unattended in the middle of this forested dirt road</i> Aes 5.231, Rel 0.470

1134

1135

1136

1137

1138

1139

Table 14: Some bad retrieval cases on the two datasets

Rel: Low, Aes: Low	Rel: Median, Aes: Median	Rel: High, Aes: High
<i>a toilet sits next to a shower an sink</i> Aes 4.192, Rel 0.361	<i>a toilet with a wooden seat on top of it</i> Aes 5.226, Rel 0.371	<i>a toilet in between two trash cans</i> Aes 5.551, Rel 0.434
<i>an apple phone and some other type of machine</i> Aes 3.586, Rel 0.361	<i>an apple and other fruit are sitting together</i> Aes 5.007, Rel 0.373	<i>an apple with a knife stuck into it dripping blood</i> Aes 5.484, Rel 0.395
<i>an orange and blue bath- room with a tub sink and toilet</i> Aes 4.187, Rel 0.357	<i>an orange cat with its eyes closed sitting next to books</i> Aes 4.434, Rel 0.359	<i>an orange and black fire hydrant sitting close to a curb</i> Aes 5.603, Rel 0.393
<i>a clock on the wall of a room</i> Aes 4.578, Rel 0.355	<i>a clock tower with a statue in front of it</i> Aes 5.187, Rel 0.376	<i>a clock tower with a cross on top</i> Aes 5.425, Rel 0.388