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ABSTRACT

Text-to-image retrieval is a fundamental task in vision–language learning, yet
in real-world scenarios it is often challenged by short and underspecified user
queries. Such queries are typically only one or two words long, making them
semantically ambiguous, prone to collisions across diverse visual interpretations,
and lacking explicit control over the quality of retrieved images. To address these
issues, we propose a new paradigm of quality-controllable retrieval, which en-
riches short queries with contextual details while incorporating explicit notions
of image quality. Our key idea is to leverage a generative large language model
as a query completion function, extending underspecified queries into descrip-
tive forms that capture fine-grained visual attributes such as pose, scene, and aes-
thetics. We introduce a training framework that conditions query completion on
discretized quality levels, derived from relevance and aesthetic scoring models,
so that query enrichment is not only semantically meaningful but also quality-
aware. The resulting system provides three key advantages: ① flexibility, as it is
compatible with any pretrained vision–language model without modification; ②
transparency, since enriched queries are explicitly interpretable by users; and ③
controllability, enabling retrieval results to be steered toward user-preferred qual-
ity levels. Extensive experiments demonstrate that our proposed approach signif-
icantly improves retrieval results and provides effective quality control, bridging
the gap between the expressive capacity of modern vision–language models and
the underspecified nature of short user queries.

1 INTRODUCTION

Text-to-image retrieval (T2IR) aims to return the most relevant images from a gallerty given a textual
query. Recent progress in this task has been largely driven by vision–language models (VLMs)
(Radford et al., 2021; Jia et al., 2021; Yu et al., 2022; Li et al., 2022; Yang et al., 2022; Li et al.,
2023; Yang et al., 2024; Lu et al., 2024), which learn joint representations of text and images through
large-scale pretraining on web-scale image–text pairs (Schuhmann et al., 2021; 2024; Liu et al.,
2023a). Such models significantly narrow the semantic gap between modalities and achieve strong
alignment across diverse benchmarks (Ilharco et al., 2021; Singh et al., 2022; Gao et al., 2022; Khan
& Fu, 2023; Wang et al., 2024; Li et al., 2024).

Despite these advances, retrieval performance often degrades in realistic scenarios where user
queries are very short (typically just one or two words, e.g., “a dog”). Short queries encode only
limited semantics, which results in large and ambiguous search subspaces and less discriminative
results. This issue becomes more pronounced in large-scale galleries, where underspecified queries
yield many candidate matches and cause semantic collisions among visually diverse results.

Another limitation of existing retrieval systems is their singular focus on semantic alignment. Naı̈ve
retrieval approaches simply return the top-k images with the highest similarity scores, overlook-
ing other critical aspects of user satisfaction such as aesthetics, interestingness, or popularity. In
practice, retrieval quality is context-dependent: art students may prefer visually inspiring images,
architects may seek unique and creative references, and shoppers may favor popular or visually
appealing products. However, conventional systems lack mechanisms for steering retrieval toward
these quality dimensions.

1
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To address these limitations, we introduce the task of quality-controllable retrieval (QCR). For-
mally, given a frozen VLM and a short textual query, the objective is to retrieve images that not
only align semantically but also satisfy user-specified quality requirements. This setting is feasible
because short queries naturally span a broad subspace that contains images of varying quality levels.
With appropriate conditioning, this subspace can be partitioned into perceptually distinct regions,
enabling fine-grained quality-aware retrieval.

In this work, we define retrieval quality along two widely applicable dimensions: relevance (seman-
tic consistency) (Cherti et al., 2023) and aesthetics (visual appeal) (Yi et al., 2023). For each image
in the gallery, we construct auxiliary annotations consisting of a textual description, a relevance
score, and an aesthetic score. We discretize these continuous scores into categorical quality levels
(e.g., Low, Medium, High) and associate each description with its corresponding quality condition.

The central challenge is how to steer retrieval results toward specific quality levels given only a short
query. We propose a simple yet effective solution: quality-conditioned query completion (QC2).
QC2 enriches short queries with quality-aware details by leveraging a generative large language
model (LLM). Trained on the quality-augmented dataset, the LLM learns to append appropriate de-
scriptive phrases that capture both semantic and quality-related attributes. Conditioning on different
quality levels guides retrieval toward the desired regions of the search space. This is particularly
valuable because, in practice, users often do not know how to formulate queries that precisely re-
flect their preference or may not be aware of what constitutes “high” or “low” quality within the
dataset. By learning from how textual descriptions vary across quality scores, our approach bridges
this gap and enables more controllable retrieval through query completion. To summarize, our key
contributions are summarized as follows:

• Problem: we introduce quality-controllable retrieval, a new setting where retrieval can be
explicitly conditioned on user-defined quality requirements.

• Methodology: we propose QC2, a query completion framework that leverages LLMs to
enrich short queries with quality-aware descriptive details.

• Validation: we conduct extensive experiments to show that QC2 effectively steers retrieval
outcomes according to quality preferences and is readily adaptable to multiple VLMs.

2 PRELIMINARIES

2.1 MOTIVATION

We study the problem of text-to-image retrieval, where the goal is to return the desired images from
a large gallery given a set of natural language queries. Specifically, let Q := {Q1, . . . , Qm} denote
a collection of m text queries and I := {I1, . . . , In} an image gallery of size n. We consider a
state-of-the-art VLM as the retrieval backbone, equipped with a text encoder g : Q → Rd and an
image encoder f : I → Rd, both producing d-dimensional normalized embeddings. Given a query
set Q, the system returns the top-η relevant images according to

X := sort (f(I), g(Q), η) , (1)
where X ⊆ I denotes the top-η matches of queries Q. The sort function typically operates on the
similarity scores S ∈ Rm×n with Sij := g(Qi)

⊤f(Ij).

Although modern VLMs achieve strong cross-modal alignment, retrieval performance deteriorates
in realistic scenarios where user queries are usually very short (typically just one or two words, e.g.,
“a dog”). Given such short queries, naive retrieval system faces several challenges: ① Semantic
ambiguity: a few words can refer to a wide range of possible images, leading to a large and diffuse
search subspace with less discriminative retrieval results. ② Semantic collisions: short queries tend
to yield similar similarity scores for visually diverse images (e.g., realistic vs. cartoon dogs). These
collisions confuse ranking and are particularly problematic in large-scale galleries where many can-
didate images satisfy the vague query. ③ Lack of quality control: the quality of retrieved images
is not explicitly enforced during retrieval. At best, one can apply post-retrieval filtering, but the
system itself provides no mechanism to ensure that high-quality results consistently appear among
the top matches. These issues highlight a fundamental gap between the expressive capacity of mod-
ern VLMs and the underspecified nature of user queries, motivating the need for enriched query
representations and controllable retrieval mechanisms.
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2.2 PROBLEM SETTING

To address the above limitations, we propose to enrich short queries with additional descriptive
details that potentially capture more distinguishable attributes of images. Formally, let h denote a
query completion function that maps Q to enriched queries h(Q). Retrieval is then performed as

X̃ := sort (f(I), g(h(Q)), η) , (2)

where h(Q) augments the short queries with contextual details. The enriched queries are expected
to capture not only object categories but also additional information such as pose, scene, action, and
fine-grained attributes. To be effective, the completion function should be aware of the retrieval
gallery, so that it generates meaningful context rather than irrelevant or hallucinated content.

To achieve this, we implement h using a generative large language model (LLM). However, simply
training the LLM on image descriptions is insufficient, since it cannot guarantee that retrieval results
satisfy user expectations of quality. Instead, we partition the textual descriptions into non-overlapped
quality levels C that reflect different image quality categories. We then finetune the LLM with these
quality levels, enabling it to generate query completions conditioned on quality preferences. This
yields the following quality-controllable retrieval (QCR) formulation:

X̃ := sort (f(I), g(LLM(Q ; C)), η) , (3)

where LLM(Q; C) expands the short queries based on the specified quality constraint C. The extended
queries thus steer retrieval toward images that align with the desired quality criteria.

This approach offers several practical benefits: ① Flexibility: it requires no modification to pre-
trained VLMs and remains compatible with any VLMs; ② Transparency: the generated query com-
pletions are human-readable, allowing users to review and select preferred options. ③ Controllabil-
ity: the LLM can produce different query completions with different quality conditions C, enabling
explicit quality control during retrieval.

2.3 THEORECTICAL ANALYSIS

Before implementing the completion function, we justify why enriching short queries may help to
improve retrieval. Let Q+ = {Q+

1 , . . . , Q
+
m} := h(Q) denote the extended queries by h, where

Q+
i := Qi + suffixi, ∀i ∈ {1, . . . ,m}, and suffixi denotes additional descriptive details appended

to query Qi. Let C ∈ Rn×d be the image embedding matrix with rows cj := f(Ij) ∈ Rd, ∀j ∈
{1, . . . , n}, and A,B ∈ Rm×d be two sets of text embeddings with a strict one-to-one pairing of
rows, with rows ai := g(Qi) ∈ Rd and bi := g(Q+

i ) ∈ Rd, ∀i ∈ {1, . . . ,m}. Let r := rank(A)
be the rank of A, σr(A) be the smallest nonzero singular value of A, and A = UΣV ⊤ denote its
singular value decomposition (SVD). We then partition the right singular vectors as V =

[
VS V⊥

]
,

where VS ∈ Rd×r and V⊥ ∈ Rd×(d−r) satisfy span(VS) = R(A) and span(V⊥) = R(A)⊥, with
R(A) := span{a⊤

1 , . . . ,a
⊤
m} ⊆ Rd the row space of A.

Definition 1. We define a perturbation matrix ∆ := B − A ∈ Rm×d, score matrices SA :=
AC⊤ ∈ Rm×n and SB := BC⊤ ∈ Rm×n for the queries Q and Q+, AS := AVS , ∆S := ∆VS ,
∆⊥ := ∆V⊥, CS := CVS , C⊥ := CV⊥, X := (AS +∆S)C

⊤
S , Y := ∆⊥C

⊤
⊥ , U := col(X),

and P := PX as the orthogonal projector onto U .

Proposition 1. Assume that: i) ∥∆∥2 < σr(A); ii) there exists I ⊆ {1, . . . , n} with |I| = r such
that the columns XI form a basis of U ; iii) ∥X†

I P YI∥2 < 1; and iv) there exists disjoint index set

K ⊆ {1, . . . , n}\I such that k := rank
(
(I−PZI

)ZK

)
≥ 1, where Z := (I−P )Y , ZI := Z:,I ,

and ZK := Z:,K . Then, rank(SB) ≥ r + k > r = rank(SA).

Remark 1. We decompose ∆ into two parts: one (∆S) that lies in the original row space of A,
and another (∆⊥) that introduces directions outside this space. Assumption (i) ensures the in-span
perturbation ∆S is not too large (controlled by σr(A)) so the original r query directions in A are
not destroyed by completion. Assumption (ii) asserts that we can select r columns from X that
span U . This fixes a stable r-dimensional basis for the existing subspace. Assumption (iii) claims
that adding the projected perturbation PYI does not reduce the independence of these r columns.

3
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(a) Aes: [2.115, 7.508] (b) Rel: [0.252, 0.562] (c) Aes: [2.782, 6.961] (d) Rel: [0.201, 0.596]

Figure 1: Aesthetic and relevance score distributions of Flickr2.4M in (a) and (b), and of
MS-COCO in (c) and (d). It is worth noting that the numbers of high-quality and low-quality images
are limited, which leads to the average scores of any two random sets being very close.

Thus the original r-dimensional structure is preserved. Assumption (iv) requires that there exist
k ≥ 1 columns outside I whose orthogonal components (after removing projections onto both U and
col(ZI)) are linearly independent. These contribute k genuinely new directions in U⊥. Together,
these assumptions ensure that the rank of SB contains at least the r preserved dimensions from U
plus the k fresh orthogonal ones. Consequently, SB can express more independent scoring patterns
and has the ability to potentially make finer-grained distinctions.

3 QUALITY-CONDITIONED QUERY COMPLETION

This section first provides the definition of quality, and then shows how to construct the training
data, and finally illustrates how to implement and train the query completion function LLM.

3.1 QUALITY DEFINITION

For the proposed QCR task, we require a clear notion of quality. In this work, we characterize qual-
ity along two primary dimensions: ① Relevance, which measures the semantic consistency between
textual queries and their corresponding images; and ② Aesthetics, which reflects the visual appeal
or attractiveness of retrieved images. Note that our framework is inherently flexible, permitting the
incorporation of arbitrary quality metric, provided that corresponding and reliable scoring models
are available and applicable to general image datasets. Other notions of quality, such as interest-
ingness (Gygli et al., 2013; Abdullahu & Grabner, 2024) can also be adopted in a similar manner
and are left for future exploration. To facilitate user control over retrieved results, we discretize the
quality dimensions into non-overlapping conditions. Specifically, we define CR for relevance and
CA for aesthetics, each partitioned into perceptually distinct and user-friendly levels. For example,
both can be represented as CR, CA := {Low,Medium,High}.

3.2 DATA GENERATION

To ensure the completion function LLM can perceive the retrieval gallery, we construct an augmented
training dataset for each gallery I. The dataset integrates three complementary components: textual
descriptions T = {Ti}ni=1 of images, relevance scores sr ∈ Rn, and aesthetic scores sa ∈ Rn.

Textual Descriptions. For each image Ii, we generate a textual description Ti using an image
caption model CAP(·), i.e., Ti = CAP(Ii), ∀i ∈ {1, . . . , n}. In our experiments, we utilize strong
pretrained captioning models without additional fine-tuning for description generation. Each Ti is a
concise sentence summarizing the main content of the image.

Aesthetic Scores. We assign an aesthetic score sai to each image Ii using an aesthetic evaluation
model EVA(·), i.e., sai = EVA(Ii), ∀i ∈ {1, . . . , n}. The aesthetic scores represent the visual quality
of the images, with higher scores indicating greater visual appeal.

Relevance Scores. For each image-description pair {Ii, Ti}, we compute a relevance score using a
pretrained VLM. Specifically, we extract the image feature f(Ii) and text feature g(Ti), then calcu-
late their cosine similarity as their relevance score, i.e., sri = cos(f(Ii), g(Ti)), ∀i ∈ {1, . . . , n}.

4
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Table 1: Query completions with their retrieved images and quality scores on MS-COCO

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

a train that is sitting on the
tracks in gravel

a train sitting on the tracks with
black smoke coming out of it

a train is traveling near
some water and houses

Aes 4.715, Rel 0.347 Aes 4.818, Rel 0.382 Aes 5.935, Rel 0.394

a bird standing on the
ground near some leaves

a bird flying above some
brown water

a bird flying across some
water at the beach

Aes 4.616, Rel 0.346 Aes 5.079, Rel 0.374 Aes 5.120, Rel 0.386

a teddy bear wearing eye
glasses and laying on a bed

a teddy bear that is sitting on
a tree

a teddy bear sitting on a wall
next to an old stone house

Aes 4.788, Rel 0.359 Aes 5.649, Rel 0.388 Aes 5.818, Rel 0.437

3.3 TRAINING FRAMEWORK

Score Discretization. To simulate quality-controlled retrieval, we discretize the continuous quality
scores of images into categorical levels that are more intuitive for users. Given a score vector r
(either aesthetics sa or relevance sr), each score ri is mapped into one of three descriptive levels by
partitioning the score distribution into three percentiles:1:

l(ri) =


Low, ri ≤ perc(r, p1),

High, ri > perc(r, p2),

Median, otherwise.
(4)

Here, ri is the score of the i-th sample and perc(r, p) calculates the p% percentile of r as

perc(r, p) = r̃[⌊ξ⌋] + (ξ − ⌊ξ⌋) ·
(
r̃[⌊ξ⌋+ 1]− r̃[⌊ξ⌋]

)
, (5)

where ξ = p
100 · (n−1), r̃ is the sorted version of r, and ⌊·⌋ is the floor function. Figure 1 illustrates

the distributions of aesthetics and relevance scores and their discretized partitions.

Instruction Design. We train the completion function LLM on the augmented training set D =
{T , sa, sr}. The discretized quality levels serve as explicit conditions within instructions, enabling

1Our framework is general and supports arbitrary numbers of levels depending on the desired granularity.
In Table 5, Sec. 4.5, we provide an example with five quality levels.
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Table 2: Query completions with their retrieved images and quality scores on Flickr2.4M

Aes: Low, Rel: Low Aes: Median, Rel: Median Aes: High, Rel: High

a chair with wires on it a chair with red and black
ropes on it a chair on a stage in a field

Aes 4.019, Rel 0.362 Aes 4.847, Rel 0.379 Aes 5.257, Rel 0.387

a cell phone with wires at-
tached to it

a cell phone with an acous-
tic guitar on it

a cell phone on a tripod in
front of a waterfall in yellow-
stone national park

Aes 4.531, Rel 0.362 Aes 5.035, Rel 0.390 Aes 5.441, Rel 0.429

LLM to generate quality-aware query completions. For each image Ii, we design a concise instruction
Pi of the form:

"Relevance: l(sri ), Aesthetic: l(sai ), Query: "

where l(sri ) and l(sai ) represent the categorical quality levels defined in Eq. (4). During training,
this instruction provides a lightweight yet effective mechanism to condition query generation on
specified quality preferences.

Model Training. To stimulate the quality control process during model training, we use the de-
scriptive levels l(sri ) and l(sai ) of image Ii as the quality conditions, which are incorporated into the
instruction Pi. We then concatenate instructions Pi with the textual description Ti for each image
Ii, and then train the completion model LLM with the standard autoregressive next-token prediction
loss. In this way, LLM learns to generate query completions that are not only semantically relevant
but also controllable according to the given quality constraints.

Inference Strategy. During the inference stage, we concatenate a similar instruction with each test-
ing query. To simulate user preferences, we evaluate various relevance-aesthetic combinations, such
as “low relevance, low aesthetic” and “high relevance, high aesthetic”. Then the model generates
completed queries based on the instructions, testing queries, and specified quality conditions. For
efficient similarity search on large-scale galleries, we utilize the FAISS library (Johnson et al., 2019)
to identify the nearest images for the queries.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate our method on two image datasets: one with real textual descriptions and
one without. For the image-only one, we construct a large dataset sourced from the Openverse
website (Openverse, 2025). We refer to this dataset as Flickr2.4M, which contains over 2.4
million CC0-licensed images randomly selected from the Flickr subset of Openverse. For image

6
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Table 3: Retrieval quality of various methods on Flickr2.4M. CoCa and Blip2 are used to gener-
ate textual descriptions; L (Low), M (Median), and H (High) indicate the quality conditions; and Ctrl
specifies whether the method enables controllable retrieval over quality. For both average relevance
(Ave Rel) and average aesthetics (Ave Aes), higher values indicate better retrieval quality.

Quality VLM Aes Cond L L L M M M H H H Ctrl ?Rel Cond L M H L M H L M H

Prefix −− Ave Aes 4.735 4.735 4.735 4.735 4.735 4.735 4.735 4.735 4.735 ×Ave Rel 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350

LLaMA3 −− Ave Aes 4.730 4.822 4.831 4.823 4.837 4.784 4.798 4.722 4.842 ×Ave Rel 0.351 0.351 0.351 0.353 0.351 0.350 0.354 0.354 0.352

GPT-4o −− Ave Aes 4.359 4.651 4.728 4.712 4.668 4.791 4.791 4.816 5.056 ×Ave Rel 0.378 0.361 0.357 0.358 0.360 0.356 0.361 0.357 0.361

PT −− Ave Aes 4.776 4.556 4.722 4.811 4.781 4.757 4.693 4.751 4.746 ×Ave Rel 0.345 0.346 0.349 0.349 0.346 0.348 0.345 0.350 0.350

FT CoCa Ave Aes 4.756 4.834 4.777 4.838 4.863 4.882 4.821 4.905 4.770 ×Ave Rel 0.365 0.368 0.364 0.363 0.369 0.368 0.365 0.364 0.365

Ours CoCa Ave Aes 4.458 4.615 4.530 4.934 4.852 4.841 5.222 5.170 5.270 √
Ave Rel 0.355 0.366 0.391 0.354 0.360 0.386 0.353 0.368 0.390

FT Blip2 Ave Aes 4.795 4.871 4.890 4.894 4.844 4.856 4.901 4.847 4.888 ×Ave Rel 0.370 0.368 0.367 0.367 0.371 0.366 0.367 0.371 0.369

Ours Blip2 Ave Aes 4.541 4.523 4.455 4.940 4.906 4.922 5.309 5.222 5.191 √
Ave Rel 0.353 0.370 0.397 0.354 0.366 0.396 0.355 0.372 0.390

datasets with real textual descriptions, we adopt the widely-used MS-COCO dataset for experiments,
which includes both images and human-annotated descriptions. Specifically, we utilize the training
subset of MS-COCO, which consists of 118, 287 samples, each sample containing one image and five
corresponding descriptions. In total, approximately 0.6 million descriptions are used for training.

Model Selection. For the backbone of our method, we evaluate two different LLMs: GPT2-1.5B
(Radford et al., 2019) and Qwen2.5-0.5B (Yang et al., 2024). Other LLMs can be validated similarly
and we leave them for future study. We implement the caption models CAP(·) using a pretrained
CoCa (Yu et al., 2022) and a pretrained Blip2 (Li et al., 2023) model, respectively. For feature
extraction, we adopt a pretrained VLM OpenCLIP (ViT-H-14-quickgelu) (Cherti et al., 2023; Ilharco
et al., 2021). The relevance score is computed as the cosine similarity between the features of
each image-description pair. The aesthetic evaluation model EVA(·) is realized using a pretrained
aesthetic predictor (Schuhmann, 2022).

Implementation Details. All experiments are conducted on a node with 8 NVIDIA A100 GPUs.
For GPT2-1.5B (Radford et al., 2019), we set the learning rate, warmup steps, number of epochs,
and batch size to 2e − 3, 100, 50, 150, respectively. For Qwen2.5-0.5B (Yang et al., 2024), these
hyperparameters are set to 2e−5, 100, 30, and 80, respectively. For score discretization, we set p1 =
33 and p2 = 66 to divide the score distribution into three evenly spaced percentiles (examples of five-
level cases are also considered). Note that we only train LLM for query completion, while the quality
evaluation model EVA(·), the caption models CAP(·), and the retrieval model VLM are all pretrained
without additional fine-tuning. Since the pretrained caption models may occasionally generate non-
English characters, we clean these characters directly before training to prevent potential issues for
query completion. Before training, we prepend a start token to the instructions and append an end
token to the descriptions. The training loss is computed only on the tokens of the descriptions and
the end tokens, while excluding those of the instructions.

Evalution Strategy. For performance evaluation, we use the 80 class names from MS-COCO dataset
as query objectives. These include common objects such as trains, cars, and animals, as well as more
specific categories like teddy bear, fire hydrant, and toothbrush. Based on the capitalization of each
class name, we prepend either ”a” or ”an” to form the input queries. Since we focus on controlling
the quality of retrieved images, we use aesthetic and relevance scores as the evaluation metrics. We
calculate and report the average aesthetic and relevance scores of the retrieved images across all

7
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Table 4: Retrieval quality of various methods on MS-COCO, where L (Low), M (Median), and H
(High) indicate the quality conditions for retrieval, and Ctrl specifies whether the method enables
controllable retrieval over image quality. For both average relevance (Ave Rel) and average aesthet-
ics (Ave Aes), higher values indicate better retrieval quality.

Quality Aes Cond L L L M M M H H H Ctrl ?Rel Cond L M H L M H L M H

Prefix Ave Aes 4.817 4.817 4.817 4.817 4.817 4.817 4.817 4.817 4.817 ×Ave Rel 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349

LLaMA3 Ave Aes 4.903 4.891 4.855 4.916 4.875 4.880 4.871 4.858 4.911 ×Ave Rel 0.348 0.349 0.347 0.348 0.349 0.347 0.348 0.350 0.344

GPT-4o Ave Aes 4.673 4.754 4.686 4.782 4.808 4.880 4.838 5.075 5.048 ×Ave Rel 0.371 0.357 0.354 0.360 0.358 0.350 0.359 0.352 0.351

PT Ave Aes 4.819 4.793 4.789 4.829 4.810 4.828 4.794 4.826 4.820 ×Ave Rel 0.343 0.340 0.344 0.348 0.339 0.344 0.346 0.343 0.340

FT Ave Aes 4.925 4.845 4.848 4.882 4.934 4.990 4.849 4.941 4.929 ×Ave Rel 0.370 0.367 0.366 0.368 0.368 0.365 0.371 0.371 0.367

FT-CoCa Ave Aes 4.878 4.852 4.859 4.902 4.858 4.941 4.952 4.961 4.944 ×Ave Rel 0.346 0.351 0.356 0.349 0.350 0.354 0.345 0.352 0.352

FT-Blip2 Ave Aes 4.828 4.815 4.785 4.932 4.894 4.893 5.034 4.948 4.933 ×Ave Rel 0.350 0.352 0.356 0.344 0.351 0.353 0.345 0.351 0.347

Ours Ave Aes 4.811 4.790 4.773 4.911 4.873 4.862 5.016 4.983 5.024 √
Ave Rel 0.356 0.370 0.382 0.354 0.370 0.387 0.352 0.365 0.387

input queries as the final evaluation performance. We also test the results using the recall metric for
further validation, which can be seen in the appendix.

4.2 QUALITATIVE VALIDATION

We first perform qualitative analysis to validate whether our approach effectively achieves quality
control in retrieval. In Tables 1 and 2, we present three retrieved images per query, along with their
corresponding completed queries and quality scores under three different quality conditions. As
shown, our method generates distinct query completions for different quality conditions. From left
to right, as the quality level improves, both aesthetic and relevance scores increase accordingly. This
demonstrates that our proposed method effectively controls the quality of the retrieved images. Due
to space limitations, we provide more qualitative results in the Appendix A.5.

4.3 QUANTITATIVE VALIDATION

Since no existing retrieval methods are directly applicable to the proposed QCR task, we design
the following baselines for quantitative comparison: a) Prefix: using the input query prefix di-
rectly without query completion; b) PT (Pretrained): using a pretrained LLM for query completion
without finetuning; c) FT (Finetuned): finetuning a pretrained LLM on textual descriptions while
conditioning on randomly generated quality scores; and d) general-purpose LLMs, including pre-
trained LLaMA-3 (LLaMA-3-8B-Instruct) and GPT-4o (via API). Tables 3 and 4 report the retrieval
performance of the baseline models and our proposed method with Qwen2.5 on the two datasets,
respectively. The key observations are summarized as follows: ① Prefix-only retrieval yields unsat-
isfactory quality performance, highlighting the necessity of query completion. ② Pretrained models
for query completion degrade retrieval quality, performing worse than using only the query prefix
in most cases. This is because these pretrained models tend to generate irrelevant words, negatively
impacting retrieval performance. ③ Finetuning on textual descriptions improves both relevance and
aesthetics compared to prefix-only and pretrained models. However, models finetuned on randomly
assigned scores fail to effectively control the quality of retrieved images. ④ Our method not only
enhances retrieval under high-quality conditions but also excels in quality control, demonstrating
strong adaptability regardless of whether it is trained on real or generated captions.
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Table 5: Results with five quality levels.

M Relevance (Red→ Red)
VL L M H VH

A
es

th
et

ic
s

(G
re

en
←

G
re

en
) VL

4.597 4.507 4.610 4.529 4.445
0.355 0.364 0.375 0.382 0.397

L
4.805 4.765 4.825 4.729 4.761
0.353 0.366 0.369 0.380 0.392

M
4.909 4.961 4.878 4.889 4.901
0.355 0.3642 0.370 0.3754 0.390

H
5.028 4.967 5.045 4.952 5.009
0.355 0.365 0.370 0.374 0.387

VH
5.282 5.153 5.263 5.245 5.121
0.355 0.363 0.371 0.378 0.389

Table 6: Comparison with post-retrieval filtering,
where the rerank method first retrieves the top-k im-
ages based on relevance and then reorders the candi-
dates by aesthetic scores to identify the best result.

k 1 2 3 5 10

Rerank Aes 4.735 4.947 5.014 5.198 5.313
Rel 0.350 0.348 0.347 0.345 0.341

LLaMA3 Aes 4.842 5.071 5.154 5.298 5.377
Rel 0.352 0.349 0.347 0.342 0.337

GPT-4o Aes 5.056 5.205 5.293 5.393 5.518
Rel 0.361 0.356 0.353 0.349 0.343

Ours Aes 5.236 5.320 5.364 5.432 5.533
Rel 0.387 0.385 0.381 0.376 0.366

4.4 DATASET DEPENDENCE

To achieve quality control in retrieval, the model should be tailored to the specific dataset, as dif-
ferent datasets exhibit varying quality characteristics. To illustrate this, we conduct cross-dataset
retrieval experiments. Specifically, we evaluate retrieval quality on MS-COCO using queries com-
pleted by the model finetuned on Flickr2.4M. In Table 4, we assess FT-CoCa and FT-Blip2,
which are finetuned on descriptions generated by CoCa and Blip2, respectively. The results indi-
cate that both models achieve higher aesthetic scores as quality conditions improve, suggesting that
aesthetically relevant semantic cues may be universal across natural images. Nevertheless, they con-
sistently exhibit low relevance across all quality conditions. This limitation stems from the dataset
mismatch between the query completion and image retrieval stages, since the two datasets encode
different semantic information. See Appendix A.2 for additional analysis and results.

4.5 FURTHER VALIDATION

Table 5 presents the results on the Flickr2.4M dataset across five quality levels: VL (Very-Low),
L (Low), M (Median), H (High), and VH (Very-High). As shown, our method effectively enables
fine-grained control over the quality of retrieved images, adhering to more nuanced descriptive con-
straints. We also compare against a post-retrieval filtering baseline that first retrieves images based
on relevance and then re-ranks the results by aesthetic scores. The comparison results are listed
Table 6. As shown, this two-stage strategy is unreliable for short queries, which typically offer
vague representations and limited descriptive cues. As a result, the initial retrieval set tends to be
semantically broad and aesthetically subpar, leaving little room for the re-ranking step to improve.
While increasing k can surface images with higher aesthetic quality, it typically comes at the cost of
reduced semantic relevance, illustrating a trade-off between these two dimensions. In contrast, our
method performs quality control during the query stage, which inherently guides retrieval toward
the desired quality level. This quality-aware conditioning cannot be achieved by the two-step base-
line, which lacks knowledge of the dataset’s quality distribution and operates in a detached, post-hoc
manner. See Appendix A.5 for more experimental results.

5 CONCLUSION

We presented a quality-controllable retrieval framework to address the limitations of short and un-
derspecified text queries in text-to-image retrieval. Our approach enriches queries using a generative
language model conditioned on discretized quality levels, enabling retrieval that is both semantically
expressive and aligned with user preferences. Extensive experiments demonstrate that our method
effectively improves and controls retrieval quality, serving as a flexible augmentation to existing
VLMs while improving quality control in retrieval. Future work will extend our method to other
dimensions of quality beyond relevance and aesthetics, such as interestingness, diversity, or user
personalization. We hope this work inspires further research on integrating controllable language-
based query enrichment with large-scale multimodal retrieval systems.
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STATEMENTS

ETHICS STATEMENT

This work investigates large language models for query completion in text-to-image retrieval, where
image quality information is integrated into the training process. The study relies on publicly avail-
able datasets and does not involve human subjects, private information, or sensitive content. We
acknowledge that retrieval models may inherit biases present in the underlying vision–language
datasets; however, our approach does not introduce new data collection and instead focuses on
methodological contributions. The models and results are intended solely for academic research,
and no harmful or deceptive applications are pursued. We adhere to the ICLR Code of Ethics and
confirm that this research complies with principles of fairness, transparency, and responsible use.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. All code and pretrained checkpoints
used in our experiments will be released upon acceptance. Theoretical results are stated with all
necessary assumptions in the main text, and their complete proofs are provided in the appendix.
Experimental settings are included in the main body and supplementary materials. Together, these
resources are intended to enable full replication and verification of our results.
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A APPENDIX

A.1 RELATED WORK

A.1.1 VISION-LANGUAGE MODELS

Vision-language models (VLMs) have become the de facto foundation for image-text tasks, demon-
strating exceptional potential across a variety of applications (Alayrac et al., 2022; Liu et al., 2024;
Zhang et al., 2024; Maniparambil et al., 2024). Pioneering work such as CLIP (Radford et al.,
2021) and ALIGN (Jia et al., 2021) learn directly from raw texts about images by aligning them in
a shared embedding space. CoCa (Yu et al., 2022) combines contrastive loss with captioning loss to
train an image-text encoder-decoder model, effectively integrating capabilities from both contrastive
and generative approaches. Blip2 (Li et al., 2023) bridges the modality gap with a lightweight Q-
Former to improve pretraining efficiency. In this paper, we adopt joint-embedding VLMs like CLIP
as foundation models for text-to-image retrieval. Instead of fine-tuning the VLMs on target datasets,
we keep them frozen and focus on refining textual queries to achieve both quality improvement and
control over the retrieved images. Improving existing VLMs for retrieval quality control is orthogo-
nal to our approach and represents a promising direction for our future research.

A.1.2 LARGE LANGUAGE MODELS

Large language models (LLMs) are a class of foundation models designed to process, understand,
and generate natural language at scale (Devlin, 2018; Radford et al., 2019; Brown et al., 2020). With
fine-tuning and prompting, these models excel across a variety of tasks, including text generation,
summarization, reasoning, translation, and coding (Liu et al., 2023b; Zhao et al., 2024). Notable
examples, such as LLaMA3 (Grattafiori et al., 2024), GPT-4o (OpenAI et al., 2024), and Qwen2.5
(Yang et al., 2024), contain billions of parameters and are trained on extensive textual datasets.
The large-scale pretraining enables them to capture complex contextual, semantic, and syntactic
relationships in natural language. To tackle the proposed QCRR task, we utilize pretrained LLMs
for query modification. By integrating quality information as conditions, the LLMs autonomously
learn to generate quality-aware details for query extension. This provides users with multiple visible
query suggestions, allowing them to explore diverse retrieval results.

A.1.3 TEXT-TO-IMAGE RETRIEVAL

Text-to-image retrieval aims to identify the most relevant images from a database given a natu-
ral language query. It plays a critical role in applications such as visual search, e-commerce, and
content-based recommendation. Recent advances in VLMs (Radford et al., 2021; Gao et al., 2022;
Li et al., 2022; Yu et al., 2022; Jia et al., 2021) have significantly improved performance on this
task by learning powerful cross-modal representations. These models map images and texts into
a shared embedding space, typically through contrastive learning on web-scaled image-text pairs.
However, existing retrieval systems are primarily optimized to return the top-k images that are se-
mantically aligned with the input query. They overlook other crucial dimensions—such as aesthetic
appeal, interestingness, or popularity—that strongly affect user satisfaction in practical scenarios.
In this work, we advocate for incorporating quality control into retrieval. By allowing users to ex-
plicitly influence the quality attributes of the returned results, we enable a more personalized and
controllable search experience, moving beyond simple semantic matching toward a more adaptive,
user-centric paradigm.

A.1.4 QUERY COMPLETION

Query completion (QC) aims to extend user short inputs, referred to as query prefixes, by generating
longer and more informative query completions. It is a widely used technique that helps users
better articulate their intent and resolve potential query ambiguity. Traditional QC methods rely
on factors such as user profiles, query libraries, and prior search history to extend prefixes into
query completions, which limits their applicability to unforeseen prefixes (Bar-Yossef & Kraus,
2011; Mitra & Craswell, 2015; Cai et al., 2016). Recently, several generative approaches have been
proposed for query completion with arbitrary prefixes, primarily for text generation and document
retrieval tasks (Lee et al., 2021; Wang et al., 2023; Lei et al., 2024). QC-based methods for text-to-
image retrieval remain scarce, with only a few related works. Zhu et al. (Zhu et al., 2024) enhance
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interactive image retrieval through query rewriting based on user relevance feedback, while Sun et
al. (Sun et al., 2024) leverage LLMs to generate product-aware query completions. However, these
approaches primarily focus on query suggestion and refinement rather than achieving control over
the quality of retrieved images. In contrast, we tailor query completion to enhance retrieval quality,
making the first attempt to adapt it to a given search corpus for quality-controllable retrieval.

A.2 ANALYSIS OF DATASET DEPENDENCY

Our work focuses on text-to-image retrieval, where the goal is to retrieve relevant images from a
fixed dataset based on a textual query. This task is inherently dataset-dependent, as the retrieval
process relies entirely on the available images within the dataset. Therefore, the query is crucial in
this task: the more specific and detailed the query, the easier the retrieval system can match it to the
corresponding image. Conversely, short or vague queries make it significantly more difficult for the
system to identify the intended image. That’s why our proposed query completion method aims to
enrich the original short queries with more specific, quality-aware details. We’d like to emphasize
that these details are not randomly generated. Instead, they are learned directly from the dataset
itself (by fine-tuning the LLM to fit the captions). As a result, the completed queries remain dataset-
dependent and contextually relevant. The additional details are not unnecessary, as they provide
essential guidance to the retrieval system, helping it to more accurately identify images with desired
quality (as demonstrated by our experimental results).

A.3 ANALYSIS OF SCORE DIFFERENCES

In Tables 1 and 2, the quality scores across low, medium, and high conditions may appear close for
a single query. This is expected due to dataset limitations. As shown in Figure 2, the similarity
scores across both Flickr2.4M and MS-COCO are not uniformly distributed, and images with ex-
tremely low or high scores are rare. For instance, on Flickr2.4M, the similarity scores range from
0.252 to 0.562, and the entire span across the whole dataset is only about 0.3 (where the extreme
values correspond to two images from different classes). When retrieving images for a single query,
the available results often fall within a narrower score range (much smaller than 0.3) because the
dataset lacks images at both ends of the quality spectrum (sparsely distributed). For example, if all
images retrieved from the query “a dog” have aesthetic scores between 3.8 and 4.7 (due to dataset
limitations), even under the “High” condition, the best available image might score 4.7—which lies
in a low range (given the whole range : [2.782, 6.961]). But it is still higher than the score of 3.8
under the “Low” condition. Thus, the method is still effectively ranking and retrieving better images
within the constraints of the dataset.

Despite this dataset-level constraint that limits the score differences, our method demonstrates effec-
tive ranking ability and a consistent, meaningful trend. As shown from left to right in Tables 1 and
2, both the retrieved image scores and their visual appeal improve progressively as the quality con-
dition increases. This pattern is further supported by quantitative results in Tables 3 and 4, where the
average quality scores clearly increase across the low, median, and high conditions. This behavior
cannot be reproduced by baseline methods that lack quality consideration in retrieval.

A.4 PROOF OF PROPOSITION 1

Lemma 1. If rank(XI) = r and Ir +X†
IPYI is invertible, then

rank(XI + PYI) = r.

Proof of Lemma 1. Since col(XI) = U , we have P = XIX
†
I . Hence

XI + PYI = XI +XIX
†
IPYI = XI(Ir +X†

IPYI).

As XI has rank r and the factor in parentheses is invertible, the product has rank r.
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Proof of Proposition 1. Since right-multiplication by the orthogonal matrix V = [VS V⊥] is rank-
preserving, we analyze the following matrices:

A′ := AV = A[VS V⊥] = [AVS AV⊥] = [AS 0], (6)

∆′ := ∆V = ∆[VS V⊥] = [∆VS ∆V⊥] = [∆S ∆⊥],

B′ := BV = (A+∆)V = AV +∆V = A′ +∆′ = [AS +∆S ∆⊥],

C ′ := CV = C[VS V⊥] = [CVS CV⊥] = [CS C⊥].

Then, for the score matrices, we have:

SA = AC⊤ = (AV )(CV )⊤ = A′C ′⊤ = [AS 0]

[
C⊤

S

C⊤
⊥

]
= ASC

⊤
S , (7)

SB = BC⊤ = B′C ′⊤ = [AS +∆S ∆⊥]

[
C⊤

S

C⊤
⊥

]
= (AS +∆S)C

⊤
S +∆⊥C

⊤
⊥ =: X + Y .

By the SVD construction, AS has full column rank r and σmin(AS) = σr(A) > 0. Since ∆S =
∆VS and VS is orthogonal (i.e., ∥VS∥2 = 1), it follows that

∥∆S∥2 ≤ ∥∆∥2. (8)

Given that ∥∆S∥2 ≤ ∥∆∥2 < σr(A) = σmin(AS), the standard minimum-singular-value pertur-
bation argument (or Weyl’s inequality in spectral norm form) yields that AS + ∆S remains full
column rank r. Since left multiplication by a full-column-rank matrix does not change rank, it
follows that:

rank(X) = rank
(
(AS +∆S)C

⊤
S

)
= rank(C⊤

S ) = rank(CS), (9)

rank(SA) = rank(ASC
⊤
S ) = rank(CS) = rank(X).

Consider the linear operator

T =

[
P

(I − PZI
)(I − P )

]
. (10)

Since left multiplication cannot increase rank,

rank(SB) ≥ rank(TSB) ≥ rank
(
(TSB):,I∪K

)
. (11)

Now

TSB =

[
X + PY

(I − PZI
)Z

]
. (12)

Restricting to I ∪K gives the block form(
TSB

)
:,I∪K

=

[
XI + PYI XK + PYK

0 (I − PZI
)ZK

]
. (13)

By the lemma, the top-left block has rank r. By assumption (4), the bottom-right block has rank
k ≥ 1. Thus block-triangular rank additivity yields

rank
(
(TSB):,I∪K

)
≥ r + k. (14)

Therefore
rank(SB) ≥ r + k > r = rank(SA). (15)

A.5 ADDITIONAL EXPERIMENTAL RESULTS

Recall metrics such as R@1, R@5, and R@10 are standard in retrieval evaluation. However, it’s
important to note that recall is also derived from similarity—that is, images are ranked by similarity,
and recall is computed based on their rank positions. Thus, recall metrics and similarity scores are
inherently connected, especially when comparing methods built on the same retrieval backbone. To
provide a complementary view of effectiveness, we conduct additional experiments on MS-COCO
using R@1, R@5, and R@10 for evaluation. The results are shown in Table 10.

In addition, Table 8 presents the quantitative results on MS-COCO datasets using GPT2 as the back-
bone. Tables 7-9 provide more qualitative results on the two datasets.
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Table 7: Retrieval quality of various methods on Flickr2.4M. CoCa and Blip2 are used to gener-
ate textual descriptions; L (Low), M (Median), and H (High) indicate the quality conditions; and Ctrl
specifies whether the method enables controllable retrieval over quality. For both average relevance
(Ave Rel) and average aesthetics (Ave Aes), higher values indicate better retrieval quality.

Quality VLM Aes Cond L L L M M M H H H Ctrl ?Rel Cond L M H L M H L M H

Prefix −− Ave Aes 4.735 4.735 4.735 4.735 4.735 4.735 4.735 4.735 4.735 ×Ave Rel 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350 0.350

LLaMA3 −− Ave Aes 4.730 4.822 4.831 4.823 4.837 4.784 4.798 4.722 4.842 ×Ave Rel 0.351 0.351 0.351 0.353 0.351 0.350 0.354 0.354 0.352

GPT-4o −− Ave Aes 4.359 4.651 4.728 4.712 4.668 4.791 4.791 4.816 5.056 ×Ave Rel 0.378 0.361 0.357 0.358 0.360 0.356 0.361 0.357 0.361

PT −− Ave Aes 4.681 4.639 4.673 4.688 4.504 4.654 4.610 4.556 4.692 ×Ave Rel 0.351 0.344 0.350 0.350 0.346 0.347 0.349 0.352 0.352

FT CoCa Ave Aes 4.848 4.818 4.864 4.847 4.827 4.876 4.829 4.896 4.853 ×Ave Rel 0.366 0.365 0.367 0.365 0.363 0.366 0.367 0.366 0.368

Ours CoCa Ave Aes 4.646 4.674 4.632 4.878 4.921 4.894 5.182 5.095 5.124 √
Ave Rel 0.354 0.372 0.382 0.355 0.369 0.386 0.357 0.366 0.385

FT Blip2 Ave Aes 4.838 4.674 4.744 4.592 4.599 4.772 4.727 4.749 4.818 ×Ave Rel 0.369 0.360 0.369 0.365 0.362 0.365 0.373 0.359 0.368

Ours Blip2 Ave Aes 4.528 4.560 4.470 4.948 4.946 4.885 5.266 5.160 5.236 √
Ave Rel 0.355 0.374 0.393 0.354 0.374 0.391 0.354 0.367 0.387

Table 8: Retrieval quality of various methods (GPT2) on MS-COCO, where L (Low), M (Median),
and H (High) indicate the quality conditions for retrieval, and Ctrl specifies whether the method
enables controllable retrieval over image quality. For both average relevance (Ave Rel) and average
aesthetics (Ave Aes), higher values indicate better retrieval quality.

Quality Aes Cond L L L M M M H H H Ctrl ?Rel Cond L M H L M H L M H

Prefix Ave Aes 4.817 4.817 4.817 4.817 4.817 4.817 4.817 4.817 4.817 ×Ave Rel 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349 0.349

LLaMA3 Ave Aes 4.903 4.891 4.855 4.916 4.875 4.880 4.871 4.858 4.911 ×Ave Rel 0.348 0.349 0.347 0.348 0.349 0.347 0.348 0.350 0.344

GPT-4o Ave Aes 4.673 4.754 4.686 4.782 4.808 4.880 4.838 5.075 5.048 ×Ave Rel 0.371 0.357 0.354 0.360 0.358 0.350 0.359 0.352 0.351

PT Ave Aes 4.742 4.731 4.855 4.821 4.775 4.854 4.830 4.726 4.847 ×Ave Rel 0.347 0.345 0.350 0.349 0.344 0.345 0.351 0.347 0.344

FT Ave Aes 4.785 4.820 4.866 4.813 4.852 4.888 4.833 4.919 4.960 ×Ave Rel 0.369 0.369 0.373 0.373 0.369 0.373 0.367 0.376 0.372

FT-CoCa Ave Aes 4.890 4.889 4.793 4.885 4.939 4.903 4.950 5.004 4.898 ×Ave Rel 0.347 0.348 0.356 0.346 0.349 0.352 0.347 0.349 0.351

FT-Blip2 Ave Aes 4.776 4.883 4.824 4.914 4.968 4.873 5.039 4.967 5.053 ×Ave Rel 0.349 0.351 0.352 0.344 0.349 0.350 0.343 0.349 0.349

Ours Ave Aes 4.896 4.809 4.719 4.973 4.879 4.916 5.017 5.020 5.109 √
Ave Rel 0.354 0.365 0.385 0.356 0.368 0.387 0.353 0.368 0.391

A.6 LIMITATION

In rare cases, the completed queries may not align with the semantics of the query prefixes. This
occurs when the query completion model generates a sentence referencing different objects. Addi-
tionally, the relevance and aesthetic quality of the retrieved images depend on the reliability of the
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Table 9: Retrieval quality with five quality levels on CoCa.

M Relevance (Red→ Red)
VL L M H VH

A
es

th
et

ic
s

(G
re

en
←

G
re

en
) VL

4.581 4.551 4.559 4.579 4.507
0.355 0.364 0.372 0.376 0.382

L
4.870 4.792 4.784 4.748 4.718
0.357 0.363 0.370 0.376 0.383

M
4.882 4.954 4.863 4.849 4.820
0.356 0.366 0.371 0.377 0.381

H
5.054 5.048 5.005 5.019 4.998
0.355 0.362 0.371 0.370 0.381

VH
5.159 5.166 5.161 5.135 5.084
0.352 0.366 0.369 0.373 0.386

Table 10: Comparison with post-retrieval filtering

R@1 R@5 R@10

Finetuned 0.8500 0.8875 0.9125
F-CoCa 0.8375 0.9375 0.9750
F-Blip2 0.7375 0.8750 0.9250
ours 0.8750 0.9625 0.9750

VLMs and aesthetic evaluation models. If these models are not sufficiently reliable, retrieval per-
formance can be significantly affected. Refer to Table 14 for examples of such cases. As mentioned
before, the model needs to percieve image quality within the datasets to achieve quality control in
retrieval. However, the retrieval datasets may sometimes lack the granularity needed to differentiate
between high-quality and low-quality images. In some instances, the retrieval database may not
contain high-quality or low-quality images that match specific queries.

A.7 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this paper, large language models were used only as writing assistants for grammar
checking and minor sentence rephrasing. All technical aspects of the work, including the design,
implementation, and verification of experiments and analyses, were carried out by the authors.
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Table 11: Query completions with their retrieved images and quality scores on Flickr2.4M

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

a bowl of soup with meat
and vegetables in it a bowl on display a bowl with flowers on it

Aes 4.648, Rel 0.343 Aes 4.980, Rel 0.379 Aes 5.386, Rel 0.387

a train on a track next to a
grassy field

a train station with people
waiting to board a bus a train in the desert

Aes 4.585, Rel 0.369 Aes 4.910, Rel 0.380 Aes 5.488, Rel 0.391

a horse drawn carriage on a
dirt road

a horse drawn carriage with
people on it

a horse is grazing in a field
under a cloudy sky

Aes 4.718, Rel 0.357 Aes 5.023, Rel 0.3773 Aes 5.207, Rel 0.390

a truck is parked in front of
a building

a truck is parked under a
bridge

a truck is parked in front of
the washington monument

Aes 4.800, Rel 0.331 Aes 5.070, Rel 0.370 Aes 5.335, Rel 0.389

a boat docked in the water
next to other boats

a boat is in the water near a
castle

a boat on the water with
buildings in the background

Aes 3.814, Rel 0.358 Aes 4.839, Rel 0.371 Aes 5.113, Rel 0.396
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Table 12: Query completions with their retrieved images and quality scores on MS-COCO

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

an aeroplane flying in the
air with a big blue sky be-
hind it

an aeroplane flying high on
a clear sky

Query: an aeroplane flying
over the beach and two guys
standing on it

Aes 4.536, Rel 0.354 Aes 4.739, Rel 0.360 Aes 5.516, Rel 0.425

a fire hydrant stands in front
of a bald eagle wall mural

a fire hydrant sitting in front
of a sign for a cafe

a fire hydrant is painted to
look like a dalmation

Aes 4.991, Rel 0.355 Aes 5.511, Rel 0.368 Aes 5.799, Rel 0.447

a toilet with a raised lid in
some lavatory

a toilet and sink in a small
bathroom with a seat up

a toilet is sitting outside with
a sign on it

Aes 4.457, Rel 0.361 Aes 4.502, Rel 0.372 Aes 5.264, Rel 0.394

a sheep is standing on a
white fence

a sheep and baby sheep
standing in a field

a sheep dog herding sheep
through a grass field

Aes 4.557, Rel 0.358 Aes 5.014, Rel 0.378 Aes 5.213, Rel 0.388
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Table 13: Query completions with their retrieved images and quality scores on MS-COCO

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

a wine glass next to a plate
with some fish and veggies
on it

a wine glass next to a plate
with some meat and vegeta-
bles on it

a wine glass and three
clocks all set at different
times

Aes 4.790, Rel 0.350 Aes 5.209, Rel 0.376 Aes 5.555, Rel 0.417

a toothbrush on a table with
a bunch of scissors

a toothbrush that is on down
on the counter

a toothbrush with a smiley
face sitting on a sink

Aes 4.149, Rel 0.345 Aes 4.837, Rel 0.370 Aes 5.184, Rel 0.412

a backpack and a line of
supplies laying out

a backpack some water
rocks and plants

a backpack with rollers is sit-
ting unattended in the middle
of this forested dirt road

Aes 3.937, Rel 0.355 Aes 5.130, Rel 0.374 Aes 5.231, Rel 0.470
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Table 14: Some bad retrieval cases on the two datasets

Rel: Low, Aes: Low Rel: Median, Aes: Median Rel: High, Aes: High

a toilet sits next to a shower
an sink

a toilet with a wooden seat
on top of it

a toilet in between two trash
cans

Aes 4.192, Rel 0.361 Aes 5.226, Rel 0.371 Aes 5.551, Rel 0.434

an apple phone and some
other type of machine

an apple and other fruit are
sitting together

an apple with a knife stuck
into it dripping blood

Aes 3.586, Rel 0.361 Aes 5.007, Rel 0.373 Aes 5.484, Rel 0.395

an orange and blue bath-
room with a tub sink and toi-
let

an orange cat with its eyes
closed sitting next to books

an orange and black fire hy-
drant sitting close to a curb

Aes 4.187, Rel 0.357 Aes 4.434, Rel 0.359 Aes 5.603, Rel 0.393

a clock on the wall of a room a clock tower with a statue
in front of it

a clock tower with a cross on
top

Aes 4.578, Rel 0.355 Aes 5.187, Rel 0.376 Aes 5.425, Rel 0.388

22


	Introduction
	Preliminaries
	Motivation
	Problem Setting
	Theorectical Analysis

	Quality-Conditioned Query Completion
	Quality Definition
	Data Generation
	Training Framework

	Experiments
	Experimental Settings
	Qualitative Validation
	Quantitative Validation
	Dataset Dependence
	Further Validation

	Conclusion
	Appendix
	Related Work
	Vision-Language Models
	Large Language Models
	Text-To-Image Retrieval
	Query Completion

	Analysis of Dataset Dependency
	Analysis of Score Differences
	Proof of Proposition 1
	Additional Experimental Results
	Limitation
	The Use of Large Language Models (LLMs)


