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Abstract—This work introduces Disentangled Diffusion Policy
(DisDP), an Imitation Learning (IL) method that enhances
robustness. Robot policies have to be robust against different
perturbations, including sensor noise, complete sensor dropout
and environmental variations. Existing IL methods struggle
to generalize under such conditions, as they typically assume
consistent, noise-free inputs. To address this limitation, DisDP
structures sensors into shared and private representations, pre-
serving global features while retaining details from individual
sensors. Additionally, Disentangled Behavior Cloning (DisBC)
is introduced, a disentangled Behavior Cloning (BC) policy,
to demonstrate the general applicance of disentanglement for
IL. This structured representation improves resilience against
sensor dropouts and perturbations. Evaluations on The Colos-
seum and Libero benchmarks demonstrate that disentangled
policies achieve better performance in general and exhibit greater
robustness to perturbations compared to their baseline policies.

I. INTRODUCTION

For large-scale deployment, robots must be robust to per-
turbations such as environmental variations, sensor noise, and
unavailability of sensors at test time that were available dur-
ing training (sens. While environmental robustness has been
explored [27], sensor dropout remains understudied. Existing
methods often fail on complex, multi-view benchmarks [32, 9],
exposing a critical vulnerability in current IL-based policies.
To address this, we propose Disentangled Diffusion Policy
(DisDP), a method that disentangles sensor modalities into
shared and private embeddings. While integrating multiple
sensors improves robustness to noisy or unreliable inputs [17,
31, 33, 21, 13], such setups are prone to calibration errors,
occlusion, and failures. Most approaches assume fully reliable
inputs [33, 29], limiting robustness to dropout.

This work focuses on vision-based IL and resilience to
missing or noisy camera inputs (Figure 1). IL is widely used
for acquiring complex behaviors [1, 25], with recent multi-task
methods showing strong performance [26, 30, 31, 9, 29, 28, 4,
6]. Despite the progress, most IL methods rely on latent spaces
not designed for degraded input, making them vulnerable
to sensor failures. We propose a disentangled representation
approach for IL, separating inputs into shared and private em-
beddings to improve robustness and interoperability. We apply
this to both a diffusion policy [28, 29] and a Transformer-based
BC model [23], showing improved performance and reduced
degradation under noisy and incomplete sensing.

II. RELATED WORK

a) Robustness in Behavior Learning: Behavior learn-
ing suffers from generalization issues, often resulting in
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Fig. 1: Robotic policies rely on multiple sensory inputs,
making them vulnerable to failures. This work explores how
disentangling sensory data into shared and private embeddings
improves robustness under sensor dropouts.

performance degradation in unfamiliar environments due to
overfitting and limited adaptability [41, 5, 12, 15, 40]. To
address this, various methods have been proposed to improve
robustness under modality dropout [26, 39, 20, 37, 10, 2].One
line of work focuses on estimating missing modalities. For
example, SMIL [22] uses Bayesian meta-learning with varia-
tional inference, while CCM [16] applies self-supervision to
filter and reconstruct corrupted inputs. However, these methods
do not address complete sensory failure.

Several approaches handle missing or irrelevant modalities
to enhance robustness. Masking methods suppress irrelevant
modalities [32, 9], while MIL [8] masks before policy cre-
ation without addressing sensor failures. Hierarchical methods
like Nexus [35] average embeddings, limiting expressiveness,
whereas MUSE [34] uses Product-of-Experts for better inte-
gration. For multi-view cameras, RL-based disentanglement
improves robustness [7]. In contrast, DisDP uses contrastive
disentanglement for imitation learning, tested on Colosseum
and Libero.

b) Multi View Disentanglement: Multi-view disentangle-
ment separates features into shared and private components
across modalities. Orthogonal [38], self-supervised [11, 14],
and information-theoretic methods [18] achieve this via or-
thogonality, contrastive losses, or mutual information. These
approaches improve generalization by isolating task-relevant
features and suppressing noise.

In DisDP, disentanglement techniques discussed above are
extended to the multi-task IL setting, specifically within
diffusion policy frameworks. The approach is designed to
handle complex robotic manipulation tasks, with experiments
conducted on diverse benchmarks. The experiments evaluate
effectiveness under various sensor conditions.



III. METHOD

This work addresses robustness in multi-task IL with mul-
tiple input modalities. Robots are trained to imitate expert
demonstrations collected from multiple cameras across diverse
manipulation tasks. During deployment, these modalities may
become unreliable or unavailable due to occlusion, sensor fail-
ure, or noise. The goal is to develop a framework that robustly
handles partial or degraded inputs under such conditions.

A. Problem Formulation

IL aims to train an agent to perform tasks by learning from
expert demonstrations. Given a dataset of expert trajectories
Dτ = {τ i}Ni=1, where each trajectory

τ i = ((s1,a1), (s2,a2), . . . , (sK ,aK)) (1)

represents a sequence of observed state-action pairs. The
objective is to learn a policy π(a|s) that maps observations
s to actions a while minimizing a distance or divergence to
the observed behavior L (π(a|sk),ak). The exact definition
of the loss L depends on the IL approach. In a multi-modal
IL setting the state information contains multiple modalities,
typically across different sensors. This work includes:
Language instructions Lk provide high-level task annota-
tions. As they are per demonstration, we reuse the same
instruction at each timestep: Lk := Li for sk ∈ τ i.
RGB images Ik = (I
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k ) capture the scene

from C camera viewpoints.
To model sensor noise and availability, we define reliability

masks Mk = (M
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fully reliable input, values in (0, 1) denote partial noise, and
Mk = 0 indicates an unavailable camera. Thus, each state in
the framework is defined as

sk = (Lk, Ik ⊙Mk) ∈ S, (2)

with ⊙ denoting the Hadamard Product and S denoting the
overall state space.

During training, masking is fixed to Mk = 1. At inference,
it introduces noise or modality dropout based on the evaluation
setup. Behavior is not conditioned on raw inputs but on
learned embeddings zk = ϕ(sk), where ϕ encodes sensor
inputs. While individual embeddings can theoretically improve
robustness to modality dropout, learned policies often still rely
on all modalities being present and reliable. In contrast, this
work explicitly learns shared embeddings v across sensors and
private embeddings u per sensor, rather than individual or
unified embeddings.(
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The shared embeddings v(c) contain information that sensor
c shares with other sensors, while the private embeddings u(c)

contain information that is unique to the sensor. This formu-
lation allows the policy to learn a more robust representation
of unreliable sensors. If the sensor c drops out, the private

information u(c) of the sensor is not available, however, the
information that would have been contained in the shared
embedding v(c) is covered by the other sensors.

Recent work on action chunking [42] shows that predicting
action sequences outperforms single-step prediction. Follow-
ing this, the action space is redefined as

āk = (ak,ak+1, . . . ,ak+H) ∈ AH , (4)

where H is the prediction horizon, A denotes the action
space and the sequence of actions (ak,ak+1, . . . ,ak+H) was
observed in any of the demonstrated trajectories τ i.

The final policy is represented as āk ∼ π (āk|ϕ(sk)) and
trained using the dataset

D =
⋃

τ∈Dτ

{(ā, s)|(ā, s) ∈ τ} , (5)

which contains pairs of action sequences and states across
all demonstrated trajectories. Here, the union

⋃
allows for

potentially duplicate entries in the final dataset to maintain
the statistical occurrence of state-action pairs.

B. Disentangled Diffusion Policy

Disentangled Diffusion Policy (DisDP) combines a Trans-
former based encoder-decoder diffusion model [28, 29] with
multi-view disentanglement, as illustrated in Figure 2. In
the first step, every camera input I

(c)
k is embedded using a

separate vision encoder. These vision-embeddings are pro-
cessed through disentanglement branches to obtain a shared
embedding v

(c)
k and a private embedding u

(c)
k .

The shared embeddings capture global, view-consistent fea-
tures, providing robustness when cameras are occluded or
unreliable. The private embeddings retain fine-grained, view-
specific details that enrich the policy when available.

The effective separation of shared and private features is
ensured using a contrastive learning approach based on the
InfoNCE(x,x+,x−) loss [24, 3]. The contrastive learning
loss requires positive x+ and negative samples x− for each
point x. The InfoNCE loss then rewards embeddings that are
close to positive samples while punishing embeddings that are
close to negative samples. For the shared embedding v(c) of
sensor c we obtain the positive samples v

(c)
+ by sampling

shared embeddings of different sensors at the same state.
While negative samples v

(c)
− are sampled from shared embed-

dings of different states. The corresponding disentanglement
loss is defined as

Lshared = Es∈D,c∈C,v(c)∈ϕ(s) InfoNCE(v(c),v
(c)
+ ,v

(c)
− ).

(6)
For the private embedding u(c) of sensor c the positive samples
u
(c)
+ are drawn form the same camera at different states and

the negative samples u
(c)
− are drawn from any other sensor at

any state. The corresponding disentanglement loss is defined
analogously to the shared loss

Lprivate = Es∈D,c∈C,u(c)∈ϕ(s) InfoNCE(u(c),u
(c)
+ ,u

(c)
− ).

(7)
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Fig. 2: Overview of Disentangled Diffusion Policy (DisDP). The model processes multi-view image inputs by separating them
into shared and private representations. Language instructions are encoded with CLIP, and each camera view with ResNet-18,
followed by disentanglement modules that extract shared embeddings across views and private ones per view. These embeddings
are processed by a multimodal transformer encoder and used to condition a denoising transformer decoder for action prediction.
The model is trained using diffusion, multi-view disentanglement, and orthogonality losses to enforce representation separation.
This structured representation enhances robustness to sensor noise, failures, and environmental changes.

Both loss functions can be combined into the disentangle-
ment loss

Ldisent = Lshared + Lprivate, (8)

which ensure maximization of similarity among the shared
representation, minimization of similarity between shared and
private representations and minimization of similarity between
individual private representations.

Apart from the contrastive objective, DisDP adds an orthog-
onality loss

Lortho = Es∈D,c∈C,(v(c),u(c)),∈ϕ(s)⟨v(c),u(c)⟩2, (9)

to further disentangle the shared and private embeddings by
minimizing the squared dot product ⟨·, ·⟩ between them for
each camera.

Together with the diffusion loss [36], this results in the final
loss

L = Ldiffusion + λdisent · Ldistent + λortho · Lortho, (10)

where λdisent and λortho are hyperparameters scaling the
importance of the disentanglement and orthogonality loss.

IV. EVALUATION

This work evaluates four research questions related to
robustness and interpretability, using two state-of-the-art IL
benchmarks: The Colosseum [27] and Libero [19]. Policy
performance is measured as success rate—the percentage of
rollouts that complete the task within a fixed number of steps.

A. Evaluated Approaches

The following three baselines are evaluated: BC, a standard
BC baseline using a Transformer-based encoder-decoder for
action prediction, trained with MSE; BESO-ACT, a diffusion
policy based on BEhavior generation with ScOre-based Dif-
fusion Policies (BESO) [28], using a continuous Stochastic-
Differential Equation (SDE) and the same Transformer as

BC, combined with action chunking [42]; and BESO-ACT-
dropout, improving robustness of BESO-ACT by applying
random modality dropout (10%) during training.

Our contributed methods are DisBC, extending BC with dis-
entangled latent spaces, and DisDP, integrating disentangled
representations in the BESO-ACT architecture.

B. Experimental Setup

The Colosseum: Experiments are conducted on 10 tasks
selected based on strong baseline performance to ensure fair
and meaningful comparison. All methods are trained for 200
epochs in the no-variation setting using identical hyperparam-
eters. Evaluation is performed under camera noise and sensor
dropout conditions, as well as across 8 visual variations: no-
variation, background texture, camera pose, distractor, light
color, object color, table color, and table texture. Each task
includes 100 demonstrations with images from five camera
views. Policies are evaluated using three random seeds, with
25 rollouts per task and a maximum of 300 steps per rollout.

Libero: Policies are evaluated on three categories, exclud-
ing long-horizon tasks due to computational constraints. All
models are trained for 50 epochs using 60% of demonstrations
and identical hyperparameters. Libero provides two camera
views: an agent view (camera 0) and an in-hand view (camera
1). Evaluation includes single-view dropout scenarios. Each
method is tested with three random seeds, 25 rollouts per task,
and a maximum of 260 steps per rollout.

C. Result analysis

RQ1: Does disentanglement affect the performance of
IL policies? As shown in the None rows of Table I and II,
using disentangled shared and private embeddings improves
performance across both benchmarks. RQ2: Do disentangled
latent spaces improve resilience to noisy sensor input
and complete sensor dropout? As shown in the Noisy



View(s) BC DisBC BESO-ACT BESO-ACT- DisDPdropout

None 0.361 ± 0.11 0.540 ± 0.08 0.709 ± 0.03 0.435 ± 0.04 0.896 ± 0.05

0 Noisy 0.160 ± 0.05 0.444 ± 0.04 0.000 ± 0.00 0.020 ± 0.02 0.568 ± 0.11
Masked 0.096 ± 0.01 0.206 ± 0.03 0.068 ± 0.05 0.096 ± 0.01 0.440 ± 0.03

1 Noisy 0.028 ± 0.03 0.496 ± 0.05 0.288 ± 0.07 0.326 ± 0.07 0.500 ± 0.12
Masked 0.120 ± 0.02 0.140 ± 0.03 0.196 ± 0.04 0.168 ± 0.02 0.632 ± 0.04

2 Noisy 0.100 ± 0.02 0.196 ± 0.03 0.008 ± 0.01 0.280 ± 0.01 0.306 ± 0.08
Masked 0.048 ± 0.01 0.228 ± 0.01 0.292 ± 0.03 0.100 ± 0.03 0.420 ± 0.02

3 Noisy 0.130 ± 0.02 0.440 ± 0.02 0.252 ± 0.03 0.210 ± 0.07 0.280 ± 0.04
Masked 0.028 ± 0.02 0.096 ± 0.01 0.040 ± 0.03 0.004 ± 0.00 0.060 ± 0.03

0 1 Noisy 0.020 ± 0.01 0.420 ± 0.01 0.000 ± 0.00 0.020 ± 0.01 0.378 ± 0.05
Masked 0.056 ± 0.01 0.100 ± 0.02 0.028 ± 0.02 0.048 ± 0.01 0.196 ± 0.05

1 2 Noisy 0.080 ± 0.07 0.370 ± 0.02 0.000 ± 0.00 0.186 ± 0.04 0.172 ± 0.04
Masked 0.000 ± 0.00 0.092 ± 0.01 0.070 ± 0.01 0.040 ± 0.02 0.192 ± 0.07

TABLE I: Colosseum dataset evaluation. The numbers in the
column View(s) correspond to the specific camera: 0 left view,
1 right view, 2 wrist view, and 3 front view. Dual camera
dropouts are only reported for 0 1 and 1 2 because other
combinations achieve low success rate for all methods.

rows of Table I, all methods experience performance drops
on Colosseum when adding noise to the camera inputs, but
disentangled methods degrade less and consistently outperform
their baselines. Across both Libero and Colosseum (Table II,
Masked rows in Table I), DisDP achieves the highest perfor-
mance retention under modality dropout, demonstrating that
disentangled representations effectively preserve task-relevant
features despite missing inputs. While DisBC also leverages
shared and private representation separation and improves
robustness over BC, it does not match the adaptability of
DisDP, which benefits from diffusion policies in addition to
disentangled representations.

Masked BC DisBC BESO-ACT BESO-ACT- DisDPdropout

None
Object 0.684 ± 0.00 0.736 ± 0.02 0.752 ± 0.00 0.514 ± 0.05 0.816 ± 0.02
Spatial 0.556 ± 0.00 0.583 ± 0.02 0.580 ± 0.03 0.552 ± 0.04 0.701 ± 0.04
Goal - - 0.576 ± 0.02 0.418 ± 0.05 0.680 ± 0.09

0
Object 0.000 ± 0.00 0.110 ± 0.03 0.204 ± 0.00 0.004 ± 0.00 0.295 ± 0.04
Spatial 0.000 ± 0.00 0.000 ± 0.00 0.028 ± 0.00 0.023 ± 0.00 0.144 ± 0.02
Goal - - 0.084 ± 0.01 0.040 ± 0.00 0.004 ± 0.00

1
Object 0.000 ± 0.00 0.000 ± 0.00 0.012 ± 0.01 0.000 ± 0.00 0.226 ± 0.03
Spatial 0.000 ± 0.00 0.004 ± 0.00 0.004 ± 0.00 0.023 ± 0.04 0.112 ± 0.00
Goal - - 0.012 ± 0.00 0.004 ± 0.00 0.200 ± 0.04

TABLE II: Libero dataset evaluation. The evaluation exam-
ines three task suites—Object, Spatial, and Goal—across three
conditions: normal (all cameras available), agent view camera
masked (0), and in-hand camera masked (1).

RQ3: How resilient are policies to environmental per-
turbations and sensor dropout? The results (Figure 3)
indicate the degradation in performance on environmental
perturbations for all methods. The performance decreases
further when certain camera views are dropped out. Overall,
DisDP demonstrates greater robustness compared to BESO-
ACT, particularly in handling object color, table color, and
background texture variations.

RQ4: Does disentanglement results in more inter-
pretable latent spaces? To investigate the interpretability of
the disentangled latent space, we examine the saliency maps
of the learned shared and private representations in Figure 4,
using the close-box task as an example. In the close-box
task, the shared embeddings capture the box edges, which are
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crucial for task completion and visible across different views.
In contrast, the private embeddings focus on specific details,
such as robot joints and table shadows, which contribute to
task execution, while others capture unique but less relevant
scene elements.

V. CONCLUSION

This work introduced Disentangled Diffusion Policy
(DisDP), a method for improving robustness in IL through
multi-view disentanglement. By structuring sensor inputs into
shared and private representations, DisDP improves resilience
to sensor noise, dropouts, and environmental variations. Eval-
uations on The Colosseum and Libero benchmarks show that
disentangled methods outperform their baselines, even when
all sensors are available. Further experiments under noisy
and missing input conditions confirm that disentanglement
enhances robustness across sensor and environmental shifts.
The separation of shared and private embeddings also enables
Gradient-weighted Class Activation Mapping (Grad-CAM)
visualizations, offering insights into model focus and latent
structure.

While DisDP improves robustness overall, performance
degrades when key camera combinations are missing, espe-
cially with fewer available views reducing the effectiveness
of shared embeddings. Future work will focus on improving
performance with limited modalities, validating the approach
on real-world robots, and extending it to additional sensor
types beyond vision.
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