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Abstract—This article outlines sampling expansions designed
specifically for adaptive frequency band (AFB) signals. Optimal
sampling of AFB requires changing sampling rates. The proposed
expansion, the Projection Method gives a more computationally
efficient way to sample, transmit, and then reconstruct AFB
signals. The entire system is developed with flexible parameters,
perfect for AFB. To detect changing bandwidth, we use statistical
methods of change-point detection. We propose a two-component
system – using techniques of statistical change point detection as
a front end to detect changing signal bandwidth, and then using
the flexibility built into the Projection system to adjust to the
changing bandwidth.

I. INTRODUCTION

One of the biggest challenges in wireless communication
is energy use. With more and more expectations placed upon
these systems and the effect of increased capability of mi-
crochips, we run into the problem of how to efficiently power
these systems. Our “Age of Information” presents us with new
challenges, and, in particular, with respect to sampling. We
need to develop systems that can communicate information
more efficiently in terms of energy use. Digital circuitry
has provided dramatically enhanced digital signal processing
operation speeds, but there has not been a corresponding
dramatic energy capacity increase in batteries to operate these
circuits; there is no Moore’s Law for batteries. Sampling
theory provides insight on how to best process signals for
these new systems, and remains as timely as it ever was.

This article outlines sampling expansions designed specifi-
cally for adaptive frequency band (AFB) signals. We call this
procedure the Projection Method. It gives a more computa-
tionally efficient way to sample, transmit, and then reconstruct
AFB signals, which require rapidly changing sampling rates.
The entire system is developed with flexible parameters, per-
fect for AFB. But when do you change? We use the statistical
Change-Point Detection methodology to determine when there
has been a change in bandwidth. We propose a two-component
system, using techniques of statistical change-point detection
as a front end to detect changing signal bandwidth, and then
using the flexibility already built into the systems to then adjust
to the changing bandwidth.

II. CHANGE POINT DETECTION

We first construct a sequential change-point detection algo-
rithm that signals an abrupt change in the range of observed

frequencies. We focus on such changes that cause an expansion
of the original bandwidth. That is, based on sequential, real-
time observation of a signal, we are interested in detecting the
moments when its frequencies start exceeding the upper end
of the original bandwidth, its lower end, or both ends. This
represents three types of change-point detection, and we show
how the proposed detection algorithm can be tuned to each
of these scenarios. Furthermore, it is a change-point detection
problem with nuisance parameters because besides the time
of the change, the original pre-change bandwidth, the new
post-change bandwidth, and actually, the signal itself, remain
unknown to the observer.

First, we notice that expansion of the original range of fre-
quencies inevitably causes occurrence of record frequencies,
the highest or the lowest observed to the moment, more often
than it would be expected without change-points. Indeed, only
unexpectedly many record frequencies signal an expansion of
a bandwidth. In other words, if the distribution of very high
or very low frequencies appears consistent with the signal that
has no change-points, there would be no reason to decide that
a change has ever occurred in the signal.

Next, we note that in a sequence of independent and
identically distributed random variables (with a continuous and
unbounded support), the n-th observation is a high record, the
highest value observed so far, with probability pn = 1/n.
That is because all permutations of the first n observations
are equally likely, and therefore, each observation can appear
as record value with the same probability (pn = 1/n for the
detection of a lower-end bandwidth expansion and record low
frequencies, and pn = 2/n for the detection of a bandwidth
expansion in any or both directions).

Although we do not claim that frequencies observed in a
signal have to be independent and identically distributed, we
have no prior information on when the record frequencies may
occur, and p = 1/n (p = 2/n for a two-sided bandwidth
expansion) provides a benchmark that the observed distribu-
tion of record frequencies can be compared with. Essentially,
the proposed change-point detection tools score the observed
occurrences of recent records against the benchmark and signal
a change when records are observed too often, compared with
the completely random sequence of frequencies.

Change-point detection has been studied in statistical sci-
ence literature for at least seven decades. Detailed overviews



of the developed methodologies can be found in [1], [4], [8],
[18], [21]. In particular, for a non-Bayesian (without a prior
distribution) sequential (in real time) change-point detection,
the cumulative-sum, or CUSUM detection algorithms, intro-
duced by [17], proved to be optimal in several ways [13],
[15], [19].

Unlike these classical works, our change-point problem is
nonparametric, because we make no assumptions about the
signal and its pre-change and post-change behavior. Thus, we
need a nonparametric solution such as the one proposed in [2],
which we adapt here to the distribution of record frequencies.

From now on, we focus on one-sided high-frequency de-
tection of bandwidth expansion. Adaptation to the other two
change-point detection problems is straightforward, tracing the
suitable types of records and using the benchmark probability
1/n or 2/n for one-tail or two-tail changes.

Suppose that the distribution, the spectral distribution in
our case, changes from F to G after ν samplings, so that
the frequencies x1, . . . , xν come from distribution F , and
xν+1, . . . from G. Given a change at ν, the probability pkν
of the k-th sampling breaking a record is

pkν =

{
1/k for k ≤ ν,∫∞

−∞ F ν(x)Gk−ν−1(x)g(x)dµ(x) for k > ν,
(1)

where g is the density of G with respect to a reference
measure µ. The integral in (1) represents the probability for the
currently observed frequency to exceed all the pre- and post-
change frequencies observed earlier. When F ≡ G meaning
no change, this integral reduces to 1/k.

Following the general approach of [2], we use the histogram
density estimation to estimate the distributions F and G
for any potential change-point k and substitute the resulting
estimates into the CUSUM process Λn. Then, the algorithm
signals a change (of the intended type) when the CUSUM
process exceeds a detection threshold. For such density esti-
mation, partition the bandwidth into bins or bandwidths and
count Nkm, the number of observed frequencies in the m-
th bandwidth among the first k samplings. Given a change-
point at ν, the distribution functions F (x) and G(x) for x
in the m-th bandwidth are then estimated from the first k
observations as F̂ (x) = ν−1

∑
m′≤m Nνm′ and Ĝ(x) =

(k−ν)−1
∑

m′≤m(Nkm′−Nνm′). Using these estimates in (1),
with µ being the counting measure, yields a nonparametrically
estimated probability of a record value xk,

p̂νk =
∑
m

(∑
m′≤m Nνm′

ν

)ν(∑
m′≤m(Nkm′−Nνm′)

k − ν

)k−ν−1

×
(
Nkm −Nνm

k − ν

)
. (2)

Finally, we apply probabilities (2) to construct the CUSUM
process Λn, that is based on the occurrence of record fre-
quencies, yk = χ{k-th value is a record}. Being indicators,
the sequence yk is Bernoulli, with the parameter changing

according to probabilities (1) that are estimated by (2). The
resulting CUSUM process is

Λn = max
k≤n

n∑
j=k+1

log
p̂
yj

kj(1− p̂kj)
1−yj

(1/j)yj (1− 1/j)1−yj
(3)

= max
k≤n

n∑
j=k+1

{
yj log(jp̂kj) + (1− yj) log

1− p̂kj
1− 1/j

}
.

We can see in (3) how the CUSUM statistic Λn compares
the estimated probabilities of records p̂kj with the correspond-
ing benchmark probabilities (1/j), agreeing with our intuition.
It will signal detection of a change-point when Λn exceeds a
threshold, defining the stopping time

τ = inf{n : Λn ≥ h}.

This threshold h is determined based on the desired condition
on the rate of false alarms or the detection speed, similarly to
the probabilities of Type I and Type II errors in statistical hy-
pothesis testing. With known distributions, and consequently,
known probabilities of records, the CUSUM process Λn has
a negative drift and most values near zero before the change,
and it has a positive drift and an increasing trend after the
change. The post-change expected value of its increments
is the Kullback-Leibler information distance KG,F , in our
case, between the post- and pre-change probabilities of record
values,

KG,F (ν, n) = pνn log(npνn)+ (1− pνn) log{(1− pνn)
n

n−1}.

Then, in order to detect a change after an expected number of k
post-change samplings and n samplings overall, the threshold
h should be set at

h =
∑k

j=1 KG,F (n− k, n− k + j). (4)

Unknown probabilities p0k used in (4) would be replaced by
the probabilities computed given the minimal change in the
frequency bandwidth that we are determined to detect.

As proven in [2], the nonparametric CUSUM process
estimator in (3) has an asymptotic behavior similar to the
process with known pre- and post-change distributions, and
thus, threshold (4) is still valid for our proposed procedure.
Nevertheless, incorporating any additional information should
improve detection sensitivity over the completely nonparamet-
ric scheme.

As an example, suppose that the frequencies occurring in the
signal are uniformly distributed over a certain bandwidth [a, b],
representing a white noise within this range. After a change,
the interval expands by a factor of r > 1 to [a, c], extending the
range of high frequencies and causing more frequent records.
The change-point detection problem becomes parametric. The
post-change probabilities of records will then be equal

pνk =
∫ b

a

(
x−a
b−a

)ν (
x−a
c−a

)k−ν−1
dx
c−a +

∫ c

b

(
x−a
c−a

)k−ν−1
dx
c−a

= 1
k r

k+ 1
k−ν

(
1− rk−ν

)
. (5)

Based on n samplings, parametric estimators of a, b, and
c for each potential change-point k are â = minj≤n xj ,



b̂ = maxj≤k xj , and ĉ = maxj≤n xj , and the CUSUM
process is constructed as in (3), only using probabilities (5)
with estimated parameters â, b̂, and ĉ.

In conclusion, we note that more than one change-point
may occur over an observation of a signal. The algorithm
for detecting multiple change-points is detailed, for example,
in [3]. After detecting the first change-point, we adapt the
bandwidth accordingly and continue sampling from the signal.
Further samplings allow us to refine the estimator of a change-
point location. Then we drop observations that occurred before
the change-point and use the post-change samplings to detect
the next change-point, and so on.

III. ADAPTIVE SAMPLING VIA PROJECTION

The sequential change-point detection algorithm can pro-
vide a near real-time method to determine a change in
bandwidth. To engineer a complete system, a procedure of
signal splitting and a delay in one signal would be needed.
Given that, how can we design a signal sampling method to
adjust to the change in bandwidth? We propose a system that
first windows the signal in the analog domain, and then uses
the Malvar-Coifman-Meyer basis folding system to construct
the system with ON basis elements tailored to the signal
(following the seminal work of Malvar [14] and Coifman and
Meyer [9]). We refer to this as the Projection Method. The
windows decompose the signal into a basis via a continuous-
time inner product operation, computing the basis coefficients
in parallel, preserving orthogonality of any orthonormal sys-
tem between adjacent blocks. Moreover, the windows have
variable partitioning length, roll-off and smoothness, and are
designed to preserve orthogonality of any orthonormal system
between adjacent blocks. We use these to create a basis system,
computing the basis coefficients in parallel. We show how one
can use statistical change point detection to detect changing
bandwidth, and how changing one parameter – window size
– can change the system to optimally adapt to the changing
bandwidth. Moreover, the systems are designed with flexible
parameters that can be tailored to optimize the efficiency of
the processing of a given signal. We develop a system of time-
domain windows, separating a function into parts fk = Wk ·f ,
which maintain orthogonality between signal blocks.

Definition 1 (ON Window System): An ON Window
System is a set of functions {Wk(t)} such that for all k ∈ Z,

(i.) supp(Wk(t)) ⊆ [kT − r, (k + 1)T + r] ,

(ii.) Wk(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,

(iii.) Wk is symmetric about its midpoint ,

(iv.)
∑

[Wk(t)]
2 ≡ 1 ,

(v.) {Ŵk
◦[n]} ∈ l1 . (6)

Conditions (i.) and (ii.) are partition properties, in that
they give an exact snapshot of the input function f on
[kT + r, (k+1)T − r] with smooth roll-off at the edges. Con-
ditions (iii.) and (iv.) are needed to preserve orthogonality
between adjacent blocks. Condition (v.) for the periodization
•◦ is needed for the computation of Fourier coefficients,

and expresses a certain smoothness of the window. Indeed,
let I = T + 2r and let PWΩ denote the Paley-Wiener
space for bandlimit Ω. Let f ∈ PWΩ and let {Wk(t)} be
an ON window system with generating window WI . Then
1
I

∫ T/2−r

−T/2−r
[f ·WI ]

◦(t) exp(−2πint/[I]) dt = f̂ ∗ ŴI [n] .

We generate our systems by translations and dilations of
a given window WI , where supp(WI) = [−T

2 − r, T
2 + r].

Our general window function WI is m-times differentiable,
has supp(WI) = [−T

2 − r, T
2 + r], and has values

WI =

 0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,

ρ(±t) T/2− r < |t| < T/2 + r .
(7)

We solve for ρ(t) by solving the Hermite interpolation problem
(a.) ρ(T/2− r) = 1 ,
(b.) ρ(n)(T/2− r) = 0 , n = 1, 2, . . . ,m ,
(c.) ρ(n)(T/2 + r) = 0 , n = 0, 1, 2, . . . ,m .

with the conditions that ρ ∈ Cm and

[ρ(t)]2 + [ρ(−t)]2 = 1 for t ∈ [±(T2 − r),±(T2 + r)] . (8)

The Cm solution for ρ is given by a theorem of Schoenberg
(see [20], pp. 7-8). The spline S(t) for the Hermite problem
with endpoints −1 and 1 such that S(1) = 1, S(n)(1) = 0,
n = 1, 2, . . . ,m, and S(n)(−1) = 0, n = 0, 1, . . . ,m, is given
by the integral of the function M(t) = (−1)m

∑m
j=0

Ψ(t−tj)
ϕ′(tj)

,
where Ψ is the m+ 1 convolution of characteristic functions,
the knot points are tj = − cos(πjm ), j = 0, 1, . . . ,m, and
ϕ(t) =

∏k
j=0(t − tj). Given these knots, we have to choose

α to fit the knot points. If m is even, the midpoint occurs at
the m/2 knot point. If m is odd, the midpoint occurs at the
midpoint between the m/2 and (m + 1)/2 knot points. Let
ξ = l(t) = r

2 (t − 1), and let α(ξ) = S ◦ l(±ξ) , |ξ| ≤ r .
Let A =

∫ r

−r
α(ζ) dζ. Now, normalize α by letting β(ξ) =

π
2Aα(ξ) , and let Θ(τ) =

∫ τ

−r
β(ξ) dξ , |τ | ≤ r . Define

ρup(τ) = sin(Θ(τ)) , ρdown(τ) = cos(Θ(τ)) . We define our
Cm window WI(t) = ONCm(t) as follows:
0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,
ρup(t+ (T/2 + r)) −T/2− r < t < −T/2 + r ,
ρdown(t− (T/2− r)) T/2− r < t < T/2 + r .

(9)
We translate the window as needed. The resultant windowing
system has variable partitioning length, variable roll-off, and
variable smoothness. With each degree of smoothness, we get
an additional degree of decay in frequency.

We designed the ON windows {Wk(t)} so that they pre-
serve orthogonality of basis elements of overlapping blocks,
using the techniques of Malvar, Meyer, and Coiffman. Because
of the partition properties of these systems, we need only
check the orthogonality of adjacent overlapping blocks. We
can show the following ([7]):

Theorem 1: Let φj be an orthononormal (ON) basis for
L2(R). Then {Ψk,j} = {Wkφ̃j} is also an ON basis.



Given characteristics of the class of input signals, the
choice of basis functions used can be tailored to optimal
representation of the signal or a desired characteristic in the
signal. A direct consequence is ([7]):

Theorem 2: Let {Wk(t)} be ON windows, and let {Ψk,n} =
{Wkφ̃n} be an ON basis that preserves orthogonality between
adjacent windows. Let f ∈ PWΩ and N = N(T,Ω) be such
that ⟨f,Ψk,n⟩ = 0 for all n > N and all k. Then, f(t) ≈
fP(t), where

fP(t) =
∑
k∈Z

[ N∑
n=−N

⟨f,Ψk,n⟩Ψk,n(t)

]
. (10)

Using the original Ω band-limit gives us a lower bound on
the number of non-zero Fourier coefficients Wkφ̃n as follows.
We have n

T ≤ Ω , i.e. , n ≤ T · Ω . So, choose N = ⌈T · Ω⌉,
where ⌈·⌉ denotes the ceiling function. For this fixed value
of N , if bandwidth increases or decreases, simply adjust the
width T of the time window.

We finish by discussing an ON basis that is tailored to work
extremely well is the AFB system – the Modified Gegenbauer
basis. The Gegenbauer polynomials are the symmetric spe-
cialization of the Jacobi polynomials ([16, Chapter 18]). They
are used in a AFB communication system to construct pulses
with narrow widths. The Gegenbauer waveform is used to
modulate data, and has demonstrated superior performance to
classic waveforms, e.g., Gaussian waveforms and the Hermite
systems. We develop a modified Gegenbauer system, and use
it to construct a windowed basis system for AFB signals with
exponentially small error on each block.

We define an ON basis for L2[−T
2 ,

T
2 ] using modified

Gegenbauer functions, constructed from Gegenbauer polyno-
mials. The Gegenbauer polynomials are modified so that they
zero out at the endpoints and normalized to create an ON
system. This then allows AFB signals to be expanded in the
folding method using the modified Gegenbauer system.

The Gegenbauer polynomials Cν
n : C → C are or-

thogonal over (−1, 1) with orthogonality relation given by
[16, Table 18.3.1]

∫ 1

−1
Cν

n(x)C
ν
m(x)w(x; ν)dx = hν

nδn,m,

for ν ∈ (− 1
2 ,∞) \ {0}, where w(x; ν) := (1 − x2)ν−1/2,

hν
n := 21−2νπΓ(2ν+n)

(ν+n)Γ2(ν)n! . Gottlieb and Shu [11] give a detailed
analytic argument showing how Gegenbauers minimize the
Gibbs phenomenon. They have two parameters – truncation
qT and regularization qR – to minimize the Gibbs jump. We
let q = max{qT , qR}, and note that q < 1.

The modified Gegenbauer function Cν
n : [−T

2 ,
T
2 ] ×

(0,∞) → R are defined by

Cν
n(t;T ) :=

√
2w

(
2t
T ; ν

)
Thν

n

Cν
n

(
2t

T

)
. (11)

These functions form an ON basis for L2[−T
2 ,

T
2 ] with ν ∈

( 12 ,∞), namely
∫ T/2

−T/2
Cν
n(t;T )Cν

m(t;T )dt = δm,n. Note that
we exclude the parameters ν ∈ (− 1

2 ,
1
2 ] in order to keep the

endpoints ±T
2 in the domain of integration. By using w(x; ν)

and hν
n one has

Cν
n(t;T ) =

22ν−1/2Γ(ν)

T ν

√
(n+ ν)n!

πΓ(2ν + n)

×
((

T
2

)2 − t2
)ν/2−1/4

Cν
n

(
2t

T

)
. (12)

The modified Gegenbauer system zeros out at the endpoints,
which allows us to use it to create the windowed ON basis
{Ψk,n} = {Wk Cν

n(t;T )
⋏}, where we window with ONCm ,

and define the folded basis elements Cν
n(t;T )

⋏ by

0 |t| ≥ T/2 + r
Cν
n(t;T ) |t| ≤ T/2

−Cν
n(−T − t;T ) −T/2− r < t < −T/2
Cν
n(T − t;T ) T/2 < t < T/2 + r .

(13)

We close by computing the error in each window EkP

in terms of the modified Gegenbauer system. This system
minimizes the Gibbs phenomenon, giving the point values of
a piecewise smooth signal with essentially the same accuracy
as a smooth approximation. Moreover, in [11], we also get a
decay parameter q < 1. Let σ ∈ N be the smoothness param-
eter, and assume Wk is Cσ , and so Ŵk(ω) = O(1/(ω)σ+2).
Now approximate the signal f with the windowed ON basis
{Ψk,n} = {WkCν

n(t;T )
⋏}, where we window with ONCσ .

Let q < 1 be the decay parameter. Then, the error EkP on a
given block is

sup

∣∣∣∣(f(t) ·Wk)−
[ N∑
n=−N

⟨f,Ψn,k⟩Ψn,k(t)

]
Wk(t)

∣∣∣∣(14)

≤ sup

[ ∑
|n|>N

∣∣∣∣⟨f,Ψn,k⟩Ψn,k(t)

∣∣∣∣]Wk(t) ≤
∑

|n|>N

elog(q)N

nσ+2
.

Since q < 1, elog(q)N decays exponentially as N increases.
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