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ABSTRACT

The pretrain+fine-tune paradigm is foundational for deploying large language
models (LLMs) across various downstream applications. Within this framework,
Low-Rank Adaptation (LoRA) stands out for its parameter-efficient fine-tuning
(PEFT), producing numerous reusable task-specific LoRA adapters. However,
this approach requires explicit task intention selection, posing challenges for au-
tonomous task sensing and switching during inference with multiple existing
LoRA adapters embedded in a single LLM. In this work, we introduce MeteoRA
(Multiple-tasks embedded LoRA), a scalable and efficient framework that reuses
multiple task-specific LoRA adapters into the base LLM via a full-mode Mixture-
of-Experts (MoE) architecture. This framework also includes novel MoE forward
acceleration strategies to address the efficiency challenges of traditional MoE
implementations. Our evaluation, using the LlaMA2-13B and LlaMA3-8B base
models equipped with 28 existing LoRA adapters through MeteoRA, demonstrates
equivalent performance with the traditional PEFT method. Moreover, the LLM
equipped with MeteoRA achieves superior performance in handling composite
tasks, effectively solving ten sequential problems in a single inference pass, thereby
demonstrating the framework’s enhanced capability for timely adapter switching.

1 INTRODUCTION

Large language models (LLMs) have achieved significant advancement in modern intelligent appli-
cations, excelling in tasks from language comprehension to generation within the field of natural
language processing (NLP) (Achiam et al., 2023; Touvron et al., 2023). By applying the fine-tuning
process to pretrained LLMs, these models have demonstrated remarkable efficacy in handling domain-
specific tasks. Examples include converting natural language text into SQL queries (Katsogiannis-
Meimarakis & Koutrika, 2023; Pourreza & Rafiei, 2024), utilizing LLMs as agents in diverse
interactive applications (Song et al., 2023; Chen et al., 2023; Gupta & Kembhavi, 2023), and develop-
ing models tailored for specific domains, such as BloombergGPT (Wu et al., 2023b) for financial
analysis and ChatLaw (Cui et al., 2023) for legal consulting.

This pretrain-fine-tune paradigm has catalyzed the development of several parameter-efficient fine-
tuning (PEFT) methods. Low-Rank Adaptation (LoRA) (Hu et al., 2021) stands out as a noteworthy
exemplar of PEFT, offering efficient fine-tuning by updating only the low-rank matrices while keeping
the rest of base LLM’s parameters unchanged. Once fine-tuned, these matrices, which consist of a
minimal number of parameters, are encapsulated as a LoRA adapter that can be readily deployed
or integrated with the base LLM for enhanced functionality. To improve the capability of handling
multiple tasks simultaneously, the scalability of deploying these fine-tuned LoRA adapters has been
explored. Solutions such as Huggingface PEFT (Mangrulkar et al., 2022), S-LoRA (Sheng et al.,
2023), and other variants have been developed to facilitate the simultaneous serving of numerous
LoRA adapters on a single base LLM, enhancing the model’s adaptability and efficiency in diverse
application environments.

Despite the success of LoRA in the pretrain-fine-tune paradigm, several challenges remain. When
reusing existing LoRA adapters, a primary challenge is the ability of multi-LoRA embedded LLMs to
autonomously and on-demand LoRA selection during inference, a process that should allow LLM to
handle different tasks by activating the appropriate LoRA adapters without explicit user instructions.
Furthermore, managing composite tasks that require timely switching between LoRA adapters
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Figure 1: Our proposed framework provides a full-mode MoE architecture that directly reuses various
off-the-shelf LoRA adapters, enhancing the LLM’s ability to timely and autonomously activate
appropriate adapters for the input. MeteoRA modules could be integrated into all basic linear layers
of both Attention and MLP modules. With the MoE forward acceleration strategies, LLM equipped
with MeteoRA could be capable of addressing tasks across a wide range of domains effectively.

presents difficulties, especially when these tasks involve multiple sub-problems each requiring
specific adapter activation. Current approaches such as Huggingface PEFT and S-LoRA, while
capable of serving multiple existing adapters simultaneously, mainly focus on loading rather than
autonomously activating adapters, thus requiring manual intervention. Similarly, current LoRA
fusion methods such as LoRAHub (Huang et al., 2023) and MoA (Feng et al., 2024), although they
integrate and merge knowledge from various adapters, are not suitably designed to fuse a wide range
of existing LoRA adapters with such a limited MoE framework, and lack the evidence in effectively
managing dynamic adapter switching during inference for composite tasks.

In this paper, we introduce a novel multi-tasks embedded LoRA framework for LLMs to reuse
existing LoRAs with the ability of autonomous task sensing and switching. The framework proposes
a MoE-style module called MeteoRA. Each MeteoRA module provides a trainable Gating network
with MoE forward acceleration strategies (overcome the efficiency issue in naive MoE, especially
when number of experts is much larger than 8) for all LoRAs’ low-rank matrices in the linear layer.
As shown in Figure 1, the MeteoRA module is applicable for all kinds of layers in Transformer-based
LLMs (Q, K, V, and O in attention module and up proj, gating for SiLU (Elfwing et al., 2018),
and down proj in MLP Module). Through fine-tuning all gates with minimal resources, MeteoRA
effectively integrates the existing LoRA adapters into the base LLM model with the ability of
autonomously on-demand LoRA selection, without the requirements of any explicit user or system
instructions. Furthermore, the presence of numerous gates1 enhances the model with a full-mode
MoE architecture, showing the capability of timely LoRA switching, addressing composite tasks with
only two-shot examples as illustrations for all inputs. Our empirical evaluations, which embedded 28
existing LoRA adapters with MeteoRA to LlaMA2-13B-base and LlaMA3-8B-base, highlight the
full-mode MoE capabilities and demonstrate a significant performance maintenance (e.g., MeteoRA
based on LlaMA3-8B achieves only 0.4% accuracy loss when solving multiple-choice tasks.). This
improvement is particularly notable in handling composite tasks, showcasing the efficacy of the
MeteoRA framework. The primary contributions of MeteoRA are summarized as follows:

• Scalable LoRA integration: MeteoRA framework for reusing existing LoRA adapters
advances the LLM’s capability of autonomous on-demand LoRA selection and switching.

• MoE forward acceleration: revealing efficiency issue of MoE and providing the forward
acceleration strategies with new GPU kernel operators to achieve a∼4× speedup in average
while maintaining memory overhead.

• Advanced performance: Evaluation shows superior performance in composite tasks when
applying MeteoRA, thereby extending the practical utility of LLMs incorporating off-the-
shelf LoRA adapters.

1For the LlaMA3-8B model, there are 224 MeteoRA modules in total, with each of the 32 decoder layers
containing 7 gates (Q, K, V, O, up proj, gating, and down proj).
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2 BACKGROUND

Low-Rank adaption. Low-Rank Adaptation (LoRA) (Hu et al., 2021) proposes a method to reduce
the number of trainable parameters required for fine-tuning in downstream tasks. LoRA injects two
trainable low-rank matrices A ∈ Rd×r and B ∈ Rr×h into each basic linear layer’s weight matrix
W ∈ Rd×h of the Transformer-based LLMM. The matrix multiplication of A and B represents the
updates ∆W to the weight matrix W when fine-tuning the model. The LoRA adapter modifies the
forward process of this layer as follows:

o = obase +∆o = xWbase + x∆W = xWbase + ((x×A)×B) (1)

where x ∈ Rd represents the input hidden states for any token, A,B first project it to the low-rank
embedding space Rr and then map it back to the output space Rh. LoRA can be applied to seven
types of linear layers in the Transformer: four in the self-attention module (Wq, Wk, Wv, and Wo)
and three in the MLP module (Wup proj, Wgating, and Wdown proj). Training LoRA adapters is
straightforward. It continues to use the optimization target of causal language modeling to update
LoRA’s parameters while freezing the billions of parameters in the pretrained LLMM.

Multi-task LoRA fusion. LoRA adapter is usually fine-tuned to a specific downstream task. To
enhance the capacity of LLMs in handling multiple tasks, two paradigms are utilized in practice. One
approach is to fuse datasets from different tasks and then fine-tune a single LoRA module on this
combined dataset. However, Ling et al. (2024) points out the difficulty in learning all specialized
knowledge of various domains in one LLM. The other approach leverages existing LoRA adapters
as off-the-shelf components, directly merging these adapters into one base LLM. Current popular
LoRA frameworks, such as PEFT (Mangrulkar et al., 2022) and S-LoRA (Sheng et al., 2023), allow
fusing multiple LoRA adapters. However, these frameworks must explicitly assign the active injected
LoRAs, leaving an obvious disadvantage of lacking autonomous on-demand LoRA selection and
timely LoRA switching during inference. Existing work, such as LoRAHub (Huang et al., 2023),
could combine multiple LoRA adapters without the explicit task intention given by humans. However,
few-shot/in-context learning is required for LoRAHub for every single downstream task.

Mixture-of-Experts. MoE is a machine learning paradigm that enhances model performance and
efficiency by combining predictions from multiple specialized models, or experts. Introduced by
Jacobs et al. (1991), MoE uses a gating network to assign input data to the most relevant experts
dynamically. This approach leverages specialized knowledge from different experts, improving
overall performance on diverse and complex tasks. Recent progress, particularly by Shazeer et al.
(2017), has demonstrated the effectiveness of MoE in large-scale neural networks. By using sparsely-
gated MoEs, where only a subset of experts is activated for each input, computational efficiency is
significantly increased without compromising model capacity. This has proven particularly useful in
scaling Transformer-based architectures for various applications, such as Mixtral (Jiang et al., 2024),
GLaM (Du et al., 2022), DBRX (The Mosaic Research Team, 2024) and Grok-1 (xAI, 2024).

3 THE PROPOSED METEORA

3.1 METEORA ARCHITECTURE

Given a base LLMM and n existing LoRA adapters {L1, L2, · · · , Ln} that have already been fine-
tuned with the distinct tasks {D1, D2, · · · , Dn} onM separately, our objective is to integrate the n
existing LoRA adapters into the baseM via MeteoRA framework, resulting in a LoRA embedded
modelMembed. Figure 1 demonstrates the MeteoRA module complemented to each basic linear layer
in LLM. The reused LoRA adapters are off-the-shelf ones, available from open-source communities
or have been fine-tuned for specific tasks, Each LoRA adapter Li contains a set of low-rank matrices
{Ai, Bi}. MeteoRA furnishes each basic linear layer with a wide MoE architecture to embed the
low-rank matrices provided by n LoRA adapters.

Figure 2 shows the architecture of MeteoRA module. To embed n existing LoRA adapters, MeteoRA
module leverages the MoE architecture by injecting a trainable Gating network G : Rd → Rn

together with n existing pairs of {Ai, Bi} toM. By applying G(x), MeteoRA selects k pairs of
{Ai, Bi} with the top-k highest gated weights for each x. It then proceeds with the forward pass as

3
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Figure 2: The architecture of MeteoRA module with MoE-style LoRA embedding. MeteoRA directly
reuses existing LoRA adapters without fine-tuning and only requires training the Gating network.

follows:

o = obase +∆oI(x) = xWbase + x∆WI(x) = xWbase +
∑

i∈I(x)

wi · ((x×Ai)×Bi) (2)

where I(x) := {i1, i2, .., ik} denotes the top-k LoRAs selected for each token x, which may varies
from one another in every batch, and wi is the normalized weight of the selected LoRA Li. wi could
be calculated as follows:

wi = softmax(Gi(x)) =
exp(Gi(x))∑

j∈I(x)

exp(Gj(x))
(3)

where Gi(x) denotes the unnormalized gated logits for the i-th LoRAs. By doing this, the Gating
network performs as a routing strategy for selecting the appropriate LoRA adapters based on the
layer’s input. Each MeteoRA module contains a Gating network, and the Gating networks from
different MeteoRA modules make decisions based on their own inputs, the selection of LoRA adapters
could be dynamically switched in the forward process of each MeteoRA module through all LLM’s
decoder blocks. MeteoRA also applies top-1 and top-k gating strategies as detailed in Appendix A.1.

3.2 LEARNING ALGORITHM

Training the injected MeteoRA modules adheres to the principles of fine-tuning LLM under autore-
gressive language modeling tasks. Given that n pre-trained LoRA adapters, the training procedure
for MeteoRA needs to maintain the parameters of the base LLMM and the n LoRA adapters fixed.
Since MeteoRA supports top-k experts (LoRAs) selection, we introduce the joint optimization that
combines the loss of autoregressive language modeling Llm and all losses of Gating networks Lgate:

L = Llm + βLgate = argmax
θ

L∑
i=1

(log P(xi | xi−1; θ) + β

B∑
j=1

m∑
k=1

lk,j(h)) (4)

where β is the hyper-parameter, i is the token index, L is the length of the language sequence
represented as tokens, xi represents the token. The loss lk,j is the cross-entropy loss for LoRA
classification in one MeteoRA module. For a baseM contained B decoder blocks with m MeteoRA
modules in each decoder, Lgate sums the loss lk,j(h) based on the corresponding hidden inputs h.

3.3 METEORA FORWARD ACCELERATION

The core component of the MeteoRA module is a MoE architecture that incorporates n existing
LoRA adapters. The classic MoE forward method, called loop-original, employs a for-loop style of
computation that processes only the tokens assigned to the i-th LoRA adapter in the i-th iteration,
leading to inefficiency especially when token-adapter assignments are sparse or when b × s < n
(e.g., during decoding inference phase where s is fixed to 1), and resulting in up to a 10× slowdown
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compared to the single-lora forward in our experiments. To address this, we introduce bmm-
torch method which parallelizes the computation by performing batched matrix multiplications
(BMM) (PyTorch, 2024) for all b× s× k tokens and n adapters at once, represented by:

[∆o1, . . . ,∆obs]︸ ︷︷ ︸
b×s

=
∑
k

[w1, . . . , wbsk]︸ ︷︷ ︸
b×s×k

⊙

(
[x1, . . . ,xbsk]︸ ︷︷ ︸

b×s×k

× [Ai1 , . . . ,Aibsk ]︸ ︷︷ ︸
b×s×k

)
× [Bi1 , . . . ,Bibsk ]︸ ︷︷ ︸

b×s×k


This results in a 4× speedup over loop-original, thus only ∼ 2.5× slower than the single-lora
in most of our experiments (see Section 4.4). However, bmm-torch achieves its great efficiency
by temporarily allocating a b×s×k

n -sized space on the HBM for batched A, B, causing a potential
out-of-memory risk for those tasks when either b or s is quite large. To mitigate this, we further
propose bmm-triton method with a custom GPU kernel implemented in Triton (Tillet et al., 2019) to
resolve this memory issue. In our evaluation, bmm-triton achieves ∼80% performance of bmm-torch
while maintaining the same low memory footprint as loop-original (see Section 4.4). This makes
bmm-triton a more suitable solution for large-scale tasks, effectively balancing computational speed
and memory efficiency. Thus, the two proposed acceleration methods could together boost the
inference in practice, by using bmm-triton in the prefill phase (where the sequence length s varies
based on the input sequence) and bmm-torch in the decoding phase (where the sequence length s = 1).
The details on the design of the bmm-triton kernel are provided in Appendix A.2.

4 EVALUATION

We conduct experiments on individual and composite tasks as detailed in Section 4.1. For our base
models, we use two well-known LLMs, LlaMA2-13B (Touvron et al., 2023) and LlaMA3-8B (Meta,
2024). The code and the models are available2.

4.1 EVALUATION SETTINGS

LoRA tasks and datasets. We select 28 tasks from well-known benchmarks for our experiment.
Specifically, our task set consists of 22 tasks from BigBench (bench authors, 2023), three non-English
to English translation tasks from News-Commentary (Tiedemann, 2012), and three widely utilized
tasks: GSM8K (Cobbe et al., 2021), CNN/DailyMail (See et al., 2017), and Alpaca (Taori et al., 2023).
These 28 tasks span a variety of NLP categories, such as contextual comprehension, conversational
question answering, summarization, translation, mathematics, logical reasoning, and multilingual
challenges. For detailed task descriptions, refer to Appendix A.3.

Metrics. We apply a zero-shot evaluation setting for all tasks, adding brief task descriptions for tasks
such as CNN/DailyMail and the three translation tasks that do not inherently include task descriptions.
As for metrics, we use accuracy for multiple-choice tasks and GSM8K while employing metrics such
as BLEU, ROUGE-1, ROUGE-2, and ROUGE-L for other tasks.

Models. We use LlaMA2-13B and LlaMA3-8B as the base LLMs for LoRA and MeteoRA adaption.
Both LlaMA models are pretrained LLMs and do not include the process of instruction tuning. We
train specific LoRA adapters for each task using their respective training sets. The process of training
LoRA adapters could be offline or dismissed when off-the-shelf LoRA is accessible. Then, the Gating
networks, which embed the adapters in the MeteoRA module, are fine-tuned efficiently based on
the balanced dataset containing 1,000 samples for each task. The Gating networks for 28 tasks take
no more than 10 hours to reach the convergence with 4 H800 training via Accelerate (Gugger et al.,
2022). For scenarios where the training data for the original LoRA adapter is limited, we train Gating
networks using a top-2 strategy, with only 100 and 5 samples accessible per task.

For baseline comparisons, we train one LoRA adapter (i.e., LoRA-F) using a mixed training set from
all 28 tasks, and another LoRA adapter (i.e., LoRA-B) with the balanced dataset designed for training
the Gating network. We also use Huggingface PEFT (short in PEFT) loading all 28 LoRA adapters
(same ones used for MeteoRA) with explicit LoRA activation information during evaluation as a

2The implementation code is accessible at https://github.com/LprG6WVR0e/MeteoRA, and the
two MeteoRA embedded LLMs are available athttps://huggingface.co/hDPQ4gi9BG/MeteoRA_
llama2_13b and https://huggingface.co/hDPQ4gi9BG/MeteoRA_llama3_8b
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Figure 3: Evaluation results on the 28 selected tasks. The results on the left are based on LlaMA2-3B,
while those on the right are based on LlaMA3-8B. The MeteoRA performs similarly on most tasks,
leading to high overlap between the two polygons in the radar graphs. For clarity, we only draw
results from MeteoRA with top-1 strategy in the radar graphs. Detailed results for each individual
task are available in Appendix A.4

reference model. Additionally, we include several LoRA merge methods for comparison, including:
averaging 28 LoRA adapters (referred to as Avg Merge), TIES (Yadav et al., 2024a), DARE (Yu et al.,
2024), Arrow (Ostapenko et al., 2024), and LoraHub (Huang et al., 2023).

All LoRA adapters interact with all seven linear layers in LLaMA’s Decoder layer, configured with
r = 8, α = 16, and a learning rate of 5e − 5. Due to some tasks having small training sets, the
batch size for fine-tuning is set to 4. All our experiments were conducted on a GPU server with five
H800 80G GPUs. Notice that we carefully selected the training hyperparameters for the LoRA-F and
LoRA-B to ensure that their performance on the 28 tasks would not be excessively incomparable.

Composite tasks. To evaluate the model’s ability to sequentially solve composite tasks, we construct
three composite evaluation sets by serially concatenating independent tasks. These evaluation sets,
referred to as composite-3, composite-5, and composite-10, consist of 3, 5, and 10 tasks, respectively,
each containing 200 samples. The samples in each composite-n set can be viewed as a single ”paper
sheet” created by concatenating the n tasks in sequence. During evaluation, the entire ”paper sheet”
is input into the model, which is required to sequentially generate both the task number and the
corresponding answer for each task in the order presented. This setup tests the model’s ability to
handle multiple tasks within a single input, maintaining coherence across the sequence. Temperature
scaling is involved in Gating network. More details refer to Figure 4, Appendix A.5 and A.6.

4.2 MAIN RESULTS

Figures 3 demonstrates the performance of the MeteoRA models, LoRA-F, LoRA-B, 5 LoRA merge
methods, and a reference model PEFT based on LlaMA2-13B and LlaMA3-8B, respectively, across
the selected 28 tasks. Table 1 shows the averaged scores in various matrics for all methods.

The evaluation results indicate that, regardless of the base LLM, the MeteoRA models utilizing the
top-1 strategy achieve performance very close to the reference model PEFT, while no explicit LoRA
activation/deactivation is required in MeteoRA. Although LLMs with both LoRA-F and LoRA-B
reach comparable performance on several certain tasks, they exhibit significantly poorer outcomes on
others. Additionally, MeteoRA employing the top-2 strategy, despite occasionally showing greater
capability loss compared to MeteoRA with top-1 strategy, occasionally outperforms PEFT with
adapters trained directly on the individual tasks. This suggests that the Llm component in the loss
function (Equation 4) becomes influential in these cases, indicating a beneficial mix of LoRA adapters

6
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Table 1: Results of the 28 selected tasks on LlaMA2-13B/LlaMA3-8B base LLMs. T1 and T2
represent the top-1 and top-2 strategies, while the subsequent numbers indicate the number of
accessible samples per task for gate training. Our methods perform the best in most tasks. Notice
that the task linguistics puzzles achieves significantly higher ROUGE scores on LlaMA3-8B base,
disproportionately influencing the average ROUGE scores and resulting in slightly higher averages for
LoRA-B. Excluding this outlier, our methods consistently lead in performance across the evaluation.

Model Accuracy↑ BLEU↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
PEFT (reference) 0.762 / 0.817 35.66 / 45.32 0.340 / 0.341 0.163 / 0.164 0.316 / 0.317

LoRA-F 0.730 / 0.767 41.27 / 42.93 0.318 / 0.327 0.136 / 0.157 0.294 / 0.306
LoRA-B 0.666 / 0.750 37.98 / 38.47 0.314 / 0.343 0.128 / 0.171 0.288 / 0.321

Avg Merge 0.370 / 0.427 19.23 / 39.89 0.231 / 0.200 0.082 / 0.060 0.184 / 0.158
TIES 0.388 / 0.441 47.28 / 34.66 0.195 / 0.199 0.055 / 0.059 0.151 / 0.158

DARE 0.332 / 0.404 46.53 / 36.74 0.192 / 0.188 0.054 / 0.056 0.144 / 0.147
Arrow 0.569 / 0.647 41.03 / 29.93 0.281 / 0.283 0.123 / 0.142 0.234 / 0.242

LoraHub 0.307 / 0.235 13.43 / 10.11 0.158 / 0.141 0.049 / 0.035 0.124 / 0.104

MeteoRA (T1-1k) 0.755 / 0.811 36.73 / 45.64 0.336 / 0.338 0.160 / 0.158 0.313 / 0.314
MeteoRA (T2-1k) 0.748 / 0.806 38.97 / 44.98 0.336 / 0.337 0.161 / 0.158 0.314 / 0.313
MeteoRA (T2-100) 0.758 / 0.783 39.44 / 39.90 0.331 / 0.309 0.159 / 0.139 0.281 / 0.256

MeteoRA (T2-5) 0.740 / 0.773 38.37 / 40.12 0.328 / 0.299 0.156 / 0.131 0.277 / 0.246

Table 2: The evaluation results of composite-n tasks. MeteoRA is marked in color on the left side,
while LoRA-B is in black on the right side. Refer to Appendix A.5 for a detailed explanation.

Metric composite-3 composite-5 composite-10

# Avg Attempt 2.95↓ 3.00 4.63↑ 4.33 8.24↑ 6.07
# Avg Correct 1.49↑ 1.31 2.62↑ 2.42 3.75↑ 2.95

Avg BLEU 15.31↑ 10.55 9.86↑ 9.41 8.85↑ 8.71
Avg ROUGE-1 0.195↑ 0.135 0.221↑ 0.219 0.238↑ 0.161
Avg ROUGE-2 0.052↑ 0.027 0.069↑ 0.063 0.059↑ 0.043
Avg ROUGE-L 0.182↑ 0.128 0.207↓ 0.208 0.209↑ 0.123

from various tasks for future study. For the MeteoRA (T2-100) and MeteoRA (T2-5), although their
performance shows a gap compared to MeteoRA 1k, they still outperform the baseline models on
most metrics. This demonstrates that the Gating network can still learn to effectively utilize existing
LoRA adapters with only a few examples.

4.3 COMPOSTE-N TASKS

The evaluation results for these three tasks are illustrated in Table 2. Notice that only LlaMA3-8B with
the MeteoRA (top-2 strategy) and LoRA-B effectively address these composite-n tasks. Subsequent
discussions will therefore focus exclusively on these two models. Although the MeteoRA model
attempts slightly fewer questions than LoRA-B in composite-3 tasks, it correctly answers a higher
number of multiple-choice questions and achieves superior BLEU and ROUGE scores. As the task
complexity increases to composite-5 and composite-10, MeteoRA outperforms LoRA-B in almost all
metrics. For more details, refer to Appendix A.5.

To further validate the functionality of the Gating network in the MeteoRA block, we display the
LoRA selection patterns in the inference process of a composite-3 sample in Figure 4. With the top-2
strategy, Gating network appropriately assigns greater weight to the corresponding LoRA adapters
for the majority of the tokens, no matter in input or output. At the junctions of two adjacent tasks, the
Gating network correctly performed the timely switching actions of LoRA adapters.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Example 1:\n\n[INST] The following paragraphs each describe a set of five objects arranged in a
fixed order. The statements are logically consistent within each paragraph.\n\nOn a branch, there
are five birds ... rightmost. Which choice is correct?\nchoice: The cardinal is the leftmost.\nchoice:
... choice: The blue jay is the leftmost.\n[/INST]\n\n[INST] Given a short answer along with its
context, select the most appropriate question which has the given short answer as its answer.\n\n

Here is ... editing tesla’s autobiography?\nChoose the appropriate question which has the given
answer. [/INST]\n\n[INST] Q: Can Hulk’s alter ego explain atomic events?\nA: [/INST]\n\n1.
The falcon is the leftmost.\n2. Who was the first to post tesla’s writings?\n3. Yes. Hulk’s alter ego
is Dr. Robert Bruce Banner. Dr. Robert Bruce Banner is a nuclear physicist. Nuclear physics is the
field of physics that studies atomic nuclei and their constituents and interactions.\n\n\nExample 2

:\n\n[INST] The following paragraphs each describe ... 1. Joe finished second.\n2. How long did
the theses take to spread through europe?\n3. No. The maximum width of the English Channel is

150 miles. The minimum width of Iowa is 200 miles.\n\n\nFollowing the example above,
generate answers to the questions below:\n\n[INST] The following paragraphs each describe a
set of seven objects arranged in a fixed order. The statements are logically ... is the second from
the right.\nchoice: The hummingbird is the second from the right.\nchoice: The raven is the
second from the right.\n [/INST]\n\n\n[INST] Given a short answer along with its context, select

... Choose the appropriate question which has the given answer. [/INST]\n\n\n[INST] Q: Could the
main character of "Alice’s Adventures in Wonderland" join a Masonic Lodge?\nA: [/INST]\n\n

1. The quail is the second from the right.\n2. Which of genghis khan’s descendants was responsible
for driving the mamluks from palestine?\n3. No. The main character of "Alice’s Adventures in
Wonderland" is Alice. Women are not allowed to join Masonic Lodges.

logical_deduction question_selection strategyqa other task

18

Example 1

Example 2

Composite task 
input

Model output

Figure 4: An example of composite-3 task. We highlight the statistically dominant LoRA selected
by MeteoRA in token level (decoded to words). The result shows that LLM with MeteoRA could
achieve timely LoRA switching on both phases of input understanding and output generation. The
background color gets darker when Gating network assigns a higher weight value.
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Figure 5: The overall root-of-runtime of four forward pass designs on 28 different Big-Bench subtasks.

4.4 EFFICIENCY

To assess the efficiency of our novel forward pass designs using custom GPU kernel operators, we
truncate batch size×10 samples from each test dataset of all 28 tasks. We evaluate these designs
alongside four variants with the same hyperparameters: the upper-bound single-lora, the baseline
loop-original, and two novel forward acceleration strategies based on bmm: bmm-torch and bmm-
triton, implemented by PyTorch and Triton respectively. Figure 5 displays the histogram of the overall
root-of-runtime metric for each task and design. Additional evaluation is detailed in Appendix A.7.

5 RELATED WORK

Multi-task fusion. Our proposed method falls into the field of LoRA adapter composition for
multi-task fusion. The first category focuses on fusing the entire models. Researchers mainly study
model ensembling and multi-task learning to achieve this goal. Existing works integrate the models
under the setting of shared model architecture (Matena & Raffel, 2022; Jin et al., 2022; Wu et al.,
2023a; Yadav et al., 2024b). Others focus on merging models with various architectures or from
different tasks. Both methods (Stoica et al., 2023; Liu et al., 2022) try to merge models that are
trained for various tasks without additional training. The second category is more concerned with
fusion in terms of the tasks. Ilharco et al. (2022) proposes a model editing method via task vectors.
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Sun et al. (2022) leverage in-context learning with few-shots to enhance the performance of unseen
tasks. However, these methods require multi-task training or prior knowledge for the evaluation tasks.
Our method embeds off-the-shelf LoRA adapters with a Gate network in the MeteoRA module. None
of the examples (zero-shot) are required for all individual tasks.

Fusion under MoE. In the context of pretrain-fine-tune paradigm, PEFT becomes a common sense
for developing Transformer-based LLM downstream applications. Directly fine-tuning on a fused
dataset from various tasks is unable to achieve better performance Ling et al. (2024). Some works
focus on leveraging existing LoRA adapters as off-the-shelf components, integrating them directly
into a base LLM. For example, PEFT (Mangrulkar et al., 2022) and S-LoRA (Sheng et al., 2023)
are frameworks aiming to embed multiple LoRA adapters to one LLM. However, requiring explicit
activation/deactivition during usage. MixLoRA (Li et al., 2024) targets to a resource-efficient sparse
MoE model, fine-tuning MoE on MLP module with the auxiliary load balance loss used in Mixtral
(Jiang et al., 2024). Although MixLoRA supports LoRA adapters for the attention layer, the adapters
are still dense models encompassed with the linear layers in the attention module. Others (Huang
et al., 2023; Yang et al., 2024; Feng et al., 2024; Chen et al., 2024; Wu et al., 2023c) propose LoRA
fusion based on the concept of Mixture-of-experts that enhance the model’s ability for cross-domain
tasks. However, the methods mainly focus on fusing LoRA adapters to the FFN module or Q in
the attention module. Our method could embed all kinds of LoRA adapters. By leveraging the
full-mode MoE architecture, the LLM’s capacity could be boosted with autonomous and timely
LoRA switching, especially for solving composite tasks.

6 LIMITATIONS

LoRA adapter update. Although the Gating network within MeteoRA module is trained separately
among the adapters, it is necessary to retrain or fine-tune the Gating network if some LoRA adapters
are updated. The Gating network is trained using the hidden state as inputs, which are influenced
by LoRA adapters in previous layers. Testing revealed that directly replacing some LoRA adapters
with improved versions did not enhance performance on our test set. However, after retraining
the MeteoRA modules, the LLM equipped with MeteoRA exhibited performance improvements.
Technically, this issue may be related to the domain shift problem, where the Gating network is
applied to another operational field the distribution shift. Employing statistical methods such as
(Li et al., 2020; Krishnan & Tickoo, 2020) may help calibrate the output of the Gating network to
produce more accurate logits and results.

Knowledge fusion tasks. Composite tasks, which involve a broad range of tasks, represent one type
of complexity in terms of the scope of tasks. More challenging are tasks that require knowledge
fusion across domains. To assess the capability of MeteoRA in knowledge fusion task, we construct
a mathematics task by translating problems from GSM8K into a foreign language (e.g., Italian), so
that the LLM with MeteoRA must solve these foreign language GSM8K problems by leveraging
knowledge from both GSM8k LoRA (trained on problems in English) and the foreign language
LoRA (trained for Italian to English translation). Although MeteoRA successfully fuses the two
LoRA adapters to address the math problems in a foreign language, it does not show superior
performance compared to LLM equipped only with the GSM8K LoRA. We hypothesize that the
base LLM’s existing proficiency in the selected foreign language may render the additional adapter
unnecessary. Future efforts could focus on constructing more suitably complex tasks where the
required cross-domain knowledge is not already pre-trained into the base LLM.

MoE efficiency. Sparsely-gated MoE (Shazeer et al., 2017) offers computational efficiency advan-
tages over dense MoE. However, the naive implementation of MoE forward (loop-original), such as
the SparseMoE in Mixtral (Jiang et al., 2024; Wolf et al., 2020), still encounters efficiency issues
when the number of experts increases. In our evaluations, the runtime for inference can be up to t
longer than that of single-lora when embedding 28 LoRA adapters into one LLM. With our proposed
forward acceleration techniques bmm-torch and bmm-triton, we achieve a speedup of∼4× compared
to the loop-original, though this still falls short of the ideal upper bound (single-lora). Technically, it
is extremely difficult to increase the inference speeds for MeteoRA when the number of embedded
LoRA adapters increases. Future work could explore developing new operators in triton or CUDA to
continuously enhance MoE acceleration in terms of memory efficiency.
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7 CONCLUSIONS

This paper presents a framework MeteoRA that achieves scalable multi-task LoRA embedding within
LLMs, enhancing the existing LLMs with a full-mode MoE architecture with forward acceleration
strategies. LLMs equipped with MeteoRA enhance the ability to autonomously select the most
pertinent LoRA adapters to generate appropriate responses. Moreover, its capability for timely
LoRA switching leads to superior performance, particularly in sequentially solving composite tasks.
Future work could explore the transformative potential of MeteoRA in multifaceted problem-solving
scenarios, and inference efficiency by designing more efficient GPU kernel operators.
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Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

George Katsogiannis-Meimarakis and Georgia Koutrika. A survey on deep learning approaches for
text-to-sql. The VLDB Journal, 32(4):905–936, 2023.

Ranganath Krishnan and Omesh Tickoo. Improving model calibration with accuracy versus un-
certainty optimization. Advances in Neural Information Processing Systems, 33:18237–18248,
2020.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and Mingjie
Tang. Mixlora: Enhancing large language models fine-tuning with lora based mixture of experts,
2024.

Zenan Li, Xiaoxing Ma, Chang Xu, Jingwei Xu, Chun Cao, and Jian Lü. Operational calibra-
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A APPENDIX

A.1 TOP-K STRATEGY

Top-1 strategy: When the Gating network is configured to select the LoRA adapter with the
maximum logit, the forward process of MeteoRA as detailed in Equation 2 simplifies to the classical
LoRA forward o = xWbase + (x×Ai)×Bi. Thus, the weight wi calculated by the Gating network
Gi only contributes to the LoRA selection, but does not influence the token generation process,
resulting in it being irrelevant to the loss Llm. Thus, training of Gating networks under the top-1
strategy could utilize the following truncated loss function Ltop−1:

Ltop−1 = argmax
θ

L∑
i=1

B∑
j=1

m∑
k=1

lk,j(h) (5)

Top-k strategy: With the top-k strategy set in the Gating network, MeteoRA computes the normalized
weights wi for the k selected LoRA adapters. These weights participate in the computation of the
losses of both Llm and Lgate as specified in Equation 2. Thus, the parameter updates for the Gating
network derive from the losses associated with both LoRA classification and autoregressive token
generation. Notice that the LoRA classification loss is only influenced by the LoRA adapter with the
highest logit, whereas the backpropagation from the token loss affects the parameters in the Gating
network responsible for all k selected LoRA adapters. Although these remaining k − 1 adapters
lack direct supervision from the LoRA classification loss, the token generation loss contributes to
enhanced robustness and the capacity for LoRA switching during generation.

A.2 DETAILS ON THE TAILORED TRITON KERNEL FOR EFFICIENT METEORA FORWARD

To address the memory copying problem caused by PyTorch indexing, we fuse the two bmm
operations inside a GPU kernel function implemented by Triton, which dynamically indexes the
right pair of LoRA matrix (Ai, Bi) and load them from HBM to SRAM in each parallelized thread.
Therefore, there is no need to explicitly allocate b×s×k pairs of (Ai, Bi) over the original n ones.

Another challenge is that Triton constraints all the dimensions for the matrix operators should be no
less than 16, however, under the MeteoRA settings, this requirement can never be satisfied since the
first operator x is a vector, and also, the LoRA rank size may be less than 16 easily (e.g., in all our
experiments, we fix r = 8). Therefore, it is not that trivial to implement such a kernel, unless using
the simple masking strategy to meet the requirements with over 15× waste of I/O.

Algorithm 1 Pseudo Code for BMM-Triton Kernel Function

1: Prepare blockized X,A′ with their masks M1,M2 before launching the kernel
2: Load X , I , M1, M2 from HBM to SRAM ▷ I is the candidate LoRA index set
3: Load A′, B indexed by I
4: oA′ = X ×A′

5: oA′′ ←
((
oA′ ⊙M1

)
×M2

)
6: oB′ ← oA′′ ×B
7: O ← colsum[oB′] ▷ Compute column-wise sum
8: Store O back from SRAM to HBM

To both obey the dimension constraint and avoid too much waste, for the first bmm of x ∈ R1×d and
A ∈ Rd×r, we use a blocking strategy to split the vector x along the hidden size dimension by m
blocks, where m >= 16. In such case, the first operator becomes a matrix X with shape (m, d

m ),
and also we have to split A along the first dimension to become a more square matrix A′ with shape
( d
m , r×m). Notice that now the output of first bmm: oA′ = X × A′ with shape (m, r×m) has a

relationship with the original one oA = x×A with shape (1, r) as follows:

oA′′ =
((
oA′ ⊙M1

)
×M2

)
oA = colsum[oA′′]

(6)
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where M1 and M2 are two trivial 01 mask matrixs, each sized (m, r×m) and (r×m, r) respectively.
So we can transform back to the right results by three additional negligible dot-product with M1,
matrix-product with M2, and colsum operations for the first bmm. For the second one, instead of
directly using the right result oA, we can delay the colsum operation until we finish the second bmm,
i.e. we use oA′′ with shape (m, r) and B with shape (r, h) to do matrix-product operations to get
the temporary result oB′ with shape (m,h), then apply colsum to get the final LoRA output O with
shape (1, h). Notably, on one hand, we can avoid one more blocking operation for oA since oA′′

already meets the dimension constraint, on the other hand, if r < 16, we can just simply utilize
masking strategy since it is the inner dimension and small enough.

Overall, for the Triton kernel function, we offer the pseudo code as shown in Algorithm 1.
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A.3 INFORMATION ABOUT 28 TASKS

Table 3 shows the detailed information of the 28 selected tasks in the Section 4. The name in
parentheses is the abbreviation of the corresponding task. We use the original training sets from
these tasks to fine-tune the LoRA adapters and Gating networks in MeteoRA modules. To achieve a
balanced fine-tuning across the diverse task spectrum and ensure efficient training, we construct a
balanced dataset by randomly sampling 1,000 samples from each task. This balanced dataset is then
divided into a training set with 25,200 samples (i.e., 900 samples for each task) and a validating set
with 2,800 samples (i.e., 100 samples for each task) for fine-tuning. In terms of the evaluation part,
the performances are evaluated on each task’s original test set.

Table 3: Details about the 28 selected tasks.

Task Name Keywords Description Evaluation Metrics

abstract narrative understanding (AbsNarr) narrative understanding,
multiple choice

Given a narrative, choose the most related proverb. Accuracy

alpaca (ALPACA) instruction-tuning Write appropriate answers according to instruc-
tions.

BLEU, ROUGE

cnn dailymail (CNNDM) summarization Given news articles, write the summarization. ROUGE

contextual parametric knowledge conflicts (ConParaKC) contextual question-
answering, multiple
choice

Answer questions given the contextual informa-
tion.

Accuracy

cs algorithms (CSAlg) algorithms, numerical re-
sponse

Solve two common computer-science tasks. Accuracy

disfl qa (DisflQA) contextual question-
answering, reading
comprehension

Pick the correct answer span from the context given
the disfluent question.

Accuracy

elementary math qa (ElemMath) mathematics Answer multiple choice mathematical word prob-
lems.

Accuracy

epistemic reasoning (EpiReason) logical reasoning, multi-
ple choice

Determine whether one sentence entails the next. Accuracy

formal fallacies syllogisms negation (FormFall) logical reasoning, multi-
ple choice,

Distinguish deductively valid arguments from for-
mal fallacies.

Accuracy

goal step wikihow (GSWiki) causal reasoning, multi-
ple choice

Perform one of three subtasks: step inference, goal
inference, or step ordering.

Accuracy

gsm8k (GSM8K) mathematics Solve the grade school math word problems. Accuracy

language identification (LangID) multilingual, multiple
choice

Given a sentence, select the correct language. Accuracy

linguistics puzzles (LingPuzz) logical reasoning, linguis-
tics

Solve Rosetta Stone-style linguistics puzzles. BLEU, ROUGE

logical deduction (LogDeduc) logical reasoning, multi-
ple choice

Deduce the order of a sequence of objects. Accuracy

news commentary de (NewsDE) multilingual, translation Translate German sentences into English. BLEU

news commentary es (NewsES) multilingual, translation Translate Spanish sentences into English. BLEU

news commentary it (NewsIT) multilingual, translation Translate Italian sentences into English. BLEU

object counting (ObjCount) logical reasoning Questions that involve enumerating objects and
asking the model to count them.

Accuracy

paragraph segmentation (ParaSeg) segmentation, multilin-
gual

Identify the sentences that end a paragraph in a
document.

Accuracy

play dialog same or different (PlayDiag) reading comprehension,
multiple choice

Determine if nearby lines in a Shakespeare play
were spoken by the same individual.

Accuracy

question selection (QuestSel) reading comprehension,
multiple choice

Given an answer along with its context, select the
most appropriate question which has the given an-
swer as its answer.

Accuracy

reasoning about colored objects (ColorReason) reading comprehension,
logical reasoning, multi-
ple choice

Answer extremely simple questions about the col-
ors of objects on a surface.

Accuracy

strategyqa (StratQA) logical reasoning,
context-free question
answering

Answer questions in which the required reasoning
steps are implicit in the question.

BLEU, ROUGE,
Accuracy

topical chat (TopChat) free response Open-domain response generation. BLEU, ROUGE

tracking shuffled objects (TrackObj) logical reasoning, multi-
ple choice

Determine the final positions given initial positions
and a description of a sequence of swaps.

Accuracy

unit conversion (UnitConv) contextual question-
answering, mathematics,
multiple choice

Perform various tasks relating to units, including
identification and conversion.

Accuracy

vitaminc fact verification (VitaFact) truthfulness, reading
comprehension, multiple
choice

Identify whether a claim is True or False based on
the given context.

Accuracy

winowhy (WinoWhy) causal reasoning, multi-
ple choice

Evaluate the reasoning in answering Winograd
Schema Challenge questions.

Accuracy
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A.4 EXPERIMENTAL RESULTS OF 28 TASKS

Table 4, Table 5, Table 6 and Table 7 show the detailed evaluation results of different models on the 28
selected tasks. When drawing Figure 3, for tasks we use BLEU and ROUGE as metrics, we selected
BLEU for news commentary de, news commentary es, and news commentary it, while opting for
ROUGE-L for the remaining tasks.

Table 4: Experimental results for tasks using accuracy as metric (LlaMA2-13B base model).

Task Name PEFT (reference) LoRA-F LoRA-B Avg LoRA TIES DARE Arrow LoraHub MeteoRA (T1-1k) MeteoRA (T2-1k) MeteoRA(T2-100) MeteoRA(T2-5)

AbsNarr 0.863 0.758 0.720 0.562 0.340 0.190 0.788 0.278 0.858 0.860 0.860 0.868
ConParaKC 0.999 0.999 0.994 0.424 0.579 0.554 0.836 0.514 0.999 0.999 0.999 0.998

CSAlg 0.841 0.848 0.818 0.333 0.504 0.572 0.712 0.515 0.841 0.818 0.826 0.826
DisflQA 0.690 0.670 0.573 0.306 0.356 0.307 0.506 0.236 0.679 0.684 0.683 0.661

ElemMath 0.801 0.671 0.375 0.707 0.249 0.212 0.369 0.364 0.794 0.725 0.771 0.718
EpiReason 1.000 1.000 0.995 0.367 0.390 0.367 0.685 0.233 1.000 0.998 1.000 1.000
FormFall 0.999 0.921 0.565 0.510 0.510 0.510 0.961 0.299 0.999 0.996 1.000 0.999
GSWiki 0.906 0.877 0.842 0.639 0.646 0.591 0.839 0.260 0.887 0.872 0.879 0.881
GSM8K 0.458 0.428 0.338 0.062 0.058 0.052 0.252 0.155 0.420 0.439 0.427 0.397
LangID 0.874 0.728 0.542 0.235 0.403 0.283 0.455 0.253 0.872 0.854 0.869 0.848

LogDeduc 0.720 0.653 0.680 0.330 0.360 0.323 0.587 0.473 0.713 0.717 0.720 0.723
ObjCount 0.740 0.690 0.725 0.330 0.285 0.245 0.290 0.180 0.735 0.725 0.740 0.720
ParaSeg 0.214 0.274 0.214 0.047 0.050 0.036 0.178 0.015 0.195 0.182 0.297 0.295
PlayDiag 0.649 0.649 0.650 0.649 0.649 0.649 0.649 0.265 0.649 0.649 0.649 0.649
QuestSel 0.927 0.801 0.794 0.509 0.617 0.506 0.937 0.291 0.937 0.934 0.924 0.934

ColorReason 0.950 0.950 0.950 0.400 0.400 0.393 0.660 0.515 0.930 0.940 0.935 0.810
StratQA 0.731 0.729 0.722 0.367 0.606 0.558 0.707 0.573 0.742 0.722 0.718 0.722
TrackObj 0.188 0.181 0.188 0.191 0.101 0.103 0.181 0.125 0.173 0.192 0.185 0.195
UnitConv 0.755 0.779 0.707 0.358 0.370 0.274 0.534 0.308 0.727 0.735 0.729 0.604
VitaFact 0.899 0.908 0.812 0.171 0.640 0.200 0.817 0.245 0.897 0.897 0.897 0.893

WinoWhy 0.802 0.797 0.767 0.002 0.028 0.038 0.005 0.344 0.797 0.767 0.801 0.795

Average 0.762 0.729 0.665 0.357 0.388 0.332 0.569 0.307 0.754 0.748 0.758 0.740

Table 5: Experimental results for tasks using accuracy as metric (LlaMA3-8B base model).

Task Name PEFT (reference) LORA-F LORA-B Avg LoRA TIES DARE Arrow LoraHub MeteoRA (T1-1k) MeteoRA (T2-1k) MeteoRA(T2-100) MeteoRA(T2-5)

AbsNarr 0.803 0.793 0.790 0.413 0.425 0.335 0.772 0.075 0.787 0.787 0.775 0.768
ConParaKC 0.999 0.999 0.999 0.514 0.594 0.492 0.997 0.219 0.999 0.999 0.976 0.992

CSAlg 0.841 0.841 0.841 0.705 0.686 0.663 0.780 0.602 0.845 0.826 0.826 0.830
DisflQA 0.703 0.680 0.605 0.374 0.396 0.377 0.504 0.197 0.706 0.703 0.686 0.628

ElemMath 0.780 0.777 0.606 0.273 0.308 0.245 0.645 0.106 0.776 0.773 0.751 0.725
EpiReason 1.000 0.996 1.000 0.430 0.450 0.425 0.600 0.170 1.000 1.000 1.000 1.000
FormFall 0.989 0.970 0.628 0.528 0.519 0.520 0.836 0.190 0.987 0.987 0.981 0.977
GSWiki 0.935 0.921 0.923 0.627 0.608 0.574 0.835 0.307 0.932 0.928 0.904 0.896
GSM8K 0.591 0.566 0.548 0.080 0.086 0.108 0.172 0.050 0.555 0.559 0.511 0.491
LangID 0.782 0.749 0.649 0.404 0.412 0.383 0.625 0.192 0.779 0.775 0.759 0.744

LogDeduc 0.760 0.707 0.707 0.403 0.423 0.383 0.627 0.367 0.757 0.753 0.747 0.770
ObjCount 0.880 0.555 0.865 0.060 0.080 0.130 0.005 0.230 0.875 0.850 0.785 0.750
ParaSeg 0.296 0.261 0.244 0.044 0.050 0.045 0.187 0.000 0.295 0.252 0.235 0.234
PlayDiag 0.649 0.632 0.649 0.647 0.650 0.644 0.656 0.092 0.649 0.649 0.580 0.581
QuestSel 0.936 0.911 0.930 0.544 0.506 0.472 0.845 0.247 0.927 0.940 0.892 0.892

ColorReason 0.958 0.945 0.965 0.565 0.595 0.530 0.793 0.238 0.960 0.983 0.915 0.905
StratQA 0.716 0.707 0.718 0.600 0.611 0.538 0.681 0.503 0.659 0.670 0.648 0.611
TrackObj 0.995 0.588 0.664 0.147 0.195 0.136 0.804 0.171 0.993 0.996 0.985 0.985
UnitConv 0.822 0.814 0.780 0.485 0.491 0.410 0.647 0.463 0.820 0.819 0.802 0.786
VitaFact 0.908 0.903 0.839 0.607 0.655 0.541 0.822 0.311 0.907 0.907 0.902 0.890

WinoWhy 0.816 0.797 0.802 0.524 0.516 0.526 0.750 0.203 0.818 0.827 0.788 0.788

Average 0.817 0.767 0.750 0.427 0.441 0.404 0.647 0.235 0.811 0.806 0.783 0.773
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Table 6: Experimental results for tasks using BLEU and ROUGE as metrics (LlaMA2-13B base
model).

Task Name Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

ALPACA

PEFT (reference) 16.03 0.363 0.176 0.340

LoRA-F 23.96 0.302 0.140 0.283
LoRA-B 11.72 0.341 0.157 0.317

Avg LoRA 41.88 0.195 0.084 0.164
TIES 80.34 0.209 0.092 0.175

DARE 78.25 0.228 0.101 0.193
Arrow 24.62 0.271 0.128 0.230

LoraHub 0.00 0.240 0.117 0.206

MeteoRA (T1-1k) 28.83 0.350 0.166 0.329
MeteoRA (T2-1k) 24.12 0.349 0.162 0.327
MeteoRA (T2-100) 39.09 0.332 0.160 0.281

MeteoRA (T2-5) 12.49 0.306 0.140 0.256

CNNDM

PEFT (reference) 7.50 0.228 0.067 0.214

LoRA-F 15.69 0.241 0.076 0.227
LoRA-B 15.65 0.228 0.067 0.214

Avg LoRA 13.08 0.144 0.032 0.104
TIES 13.08 0.147 0.032 0.104

DARE 13.08 0.126 0.031 0.081
Arrow 17.42 0.173 0.043 0.122

LoraHub 4.77 0.141 0.030 0.104

MeteoRA (T1-1k) 7.50 0.229 0.069 0.216
MeteoRA (T2-1k) 5.57 0.230 0.070 0.217
MeteoRA (T2-100) 7.32 0.251 0.070 0.196

MeteoRA (T2-5) 7.77 0.254 0.073 0.199

LingPuzz

PEFT (reference) 46.17 0.716 0.479 0.659

LoRA-F 62.23 0.649 0.365 0.582
LoRA-B 54.91 0.608 0.324 0.541
Avg Lora 36.72 0.531 0.233 0.441

TIES 49.14 0.405 0.117 0.308
DARE 68.87 0.379 0.102 0.285
Arrow 56.23 0.643 0.365 0.562

LoraHub 0.00 0.172 0.057 0.131

MeteoRA (T1-1k) 68.34 0.717 0.478 0.661
MeteoRA (T2-1k) 46.17 0.713 0.476 0.655
MeteoRA (T2-100) 46.17 0.718 0.480 0.646

MeteoRA (T2-5) 57.47 0.716 0.474 0.646

NewsDE

PEFT (reference) 78.25 - - -

LoRA-F 78.25 - - -
LoRA-B 78.25 - - -
Avg Lora 3.38 - - -

TIES 86.48 - - -
DARE 86.48 - - -
Arrow 86.48 - - -

LoraHub 50.09 - - -

MeteoRA (T1-1k) 86.48 - - -
MeteoRA (T2-1k) 86.48 - - -
MeteoRA (T2-100) 86.48 - - -

MeteoRA (T2-5) 86.48 - - -
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Task Name Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

NewsES

PEFT (reference) 70.05 - - -

LoRA-F 57.03 - - -
LoRA-B 81.54 - - -
Avg Lora 2.86 - - -

TIES 70.05 - - -
DARE 46.27 - - -
Arrow 81.54 - - -

LoraHub 0.64 - - -

MeteoRA (T1-1k) 81.54 - - -
MeteoRA (T2-1k) 70.05 - - -
MeteoRA (T2-100) 70.05 - - -

MeteoRA (T2-5) 70.05 - - -

NewsIT

PEFT (reference) 39.04 - - -

LoRA-F 54.90 - - -
LoRA-B 40.08 - - -
Avg Lora 40.20 - - -

TIES 40.08 - - -
DARE 40.20 - - -
Arrow 36.92 - - -

LoraHub 40.08 - - -

MeteoRA (T1-1k) 39.04 - - -
MeteoRA (T2-1k) 39.04 - - -
MeteoRA (T2-100) 39.04 - - -
MeteoRA (T2-1k) 39.04 - - -

StratQA

PEFT (reference) 15.72 0.237 0.064 0.222

LoRA-F 9.71 0.247 0.076 0.238
LoRA-B 11.90 0.249 0.073 0.236
Avg Lora 14.54 0.185 0.050 0.149

TIES 16.62 0.112 0.024 0.088
DARE 16.62 0.123 0.026 0.095
Arrow 13.83 0.218 0.066 0.175

LoraHub 11.50 0.171 0.038 0.128

MeteoRA (T1-1k) 8.74 0.235 0.065 0.221
MeteoRA (T2-1k) 10.03 0.240 0.068 0.226
MeteoRA (T2-100) 13.95 0.222 0.063 0.172

MeteoRA (T2-5) 20.69 0.228 0.067 0.174

TopChat

PEFT (reference) 12.50 0.157 0.027 0.146

LoRA-F 28.39 0.153 0.025 0.142
LoRA-B 9.78 0.143 0.021 0.134
Avg Lora 1.21 0.099 0.010 0.060

TIES 22.45 0.101 0.011 0.078
DARE 22.48 0.103 0.011 0.065
Arrow 11.16 0.099 0.013 0.080

LoraHub 0.35 0.064 0.005 0.051

MeteoRA (T1-1k) 13.44 0.151 0.025 0.141
MeteoRA (T2-1k) 12.35 0.149 0.025 0.140
MeteoRA (T2-100) 13.44 0.132 0.023 0.108

MeteoRA (T2-5) 12.93 0.135 0.024 0.110
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Table 7: Experimental results for tasks using BLEU and ROUGE as metrics (LlaMA3-8B base
model).

Task Name Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

ALPACA

PEFT (reference) 24.72 0.376 0.190 0.353

LoRA-F 31.47 0.284 0.123 0.267
LoRA-B 29.27 0.358 0.175 0.335

Avg LoRA 73.49 0.206 0.089 0.172
TIES 73.49 0.214 0.092 0.181

DARE 73.49 0.230 0.099 0.192
Arrow 12.26 0.222 0.093 0.186

LoraHub 0.00 0.176 0.068 0.151

MeteoRA (T1-1k) 32.34 0.358 0.170 0.335
MeteoRA (T2-1k) 30.08 0.354 0.170 0.332
MeteoRA (T2-100) 31.19 0.317 0.147 0.266

MeteoRA (T2-5) 80.34 0.249 0.103 0.204

CNNDM

PEFT (reference) 11.93 0.231 0.069 0.218

LoRA-F 16.13 0.248 0.080 0.233
LoRA-B 13.27 0.233 0.070 0.218

Avg LoRA 21.07 0.168 0.039 0.121
TIES 18.07 0.154 0.037 0.109

DARE 4.67 0.137 0.032 0.096
Arrow 13.13 0.153 0.037 0.111

LoraHub 15.30 0.087 0.008 0.038

MeteoRA (T1-1k) 11.93 0.233 0.070 0.218
MeteoRA (T2-1k) 11.93 0.232 0.070 0.219
MeteoRA (T2-100) 21.11 0.205 0.054 0.146
MeteoRA (T2-5) 6.52 0.203 0.054 0.143

LingPuzz

PEFT (reference) 44.12 0.785 0.589 0.734

LoRA-F 36.89 0.718 0.488 0.666
LoRA-B 37.10 0.743 0.519 0.689

Avg LoRA 28.87 0.421 0.134 0.331
TIES 34.17 0.432 0.134 0.339

DARE 56.23 0.357 0.113 0.281
Arrow 59.00 0.721 0.505 0.659

LoraHub 39.28 0.245 0.063 0.184

MeteoRA (T1-1k) 41.72 0.695 0.451 0.636
MeteoRA (T2-1k) 41.72 0.696 0.448 0.639
MeteoRA (T2-100) 50.81 0.666 0.408 0.588

MeteoRA (T2-5) 46.17 0.655 0.394 0.580

NewsDE

PEFT (reference) 97.65 - - -

LoRA-F 78.25 - - -
LoRA-B 78.25 - - -

Avg LoRA 63.56 - - -
TIES 46.47 - - -

DARE 36.60 - - -
Arrow 37.36 - - -

LoraHub 11.87 - - -

MeteoRA (T1-1k) 86.48 - - -
MeteoRA (T2-1k) 86.48 - - -
MeteoRA (T2-100) 51.42 - - -

MeteoRA (T2-5) 86.48 - - -

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Task Name Model BLEU ROUGE-1 ROUGE-2 ROUGE-L

NewsES

PEFT (reference) 81.54 - - -

LoRA-F 81.54 - - -
LoRA-B 81.54 - - -

Avg LoRA 31.18 - - -
TIES 30.55 - - -

DARE 17.61 - - -
Arrow 31.82 - - -

LoraHub 0.0 - - -

MeteoRA (T1-1k) 81.54 - - -
MeteoRA (T2-1k) 81.54 - - -
MeteoRA (T2-100) 81.54 - - -

MeteoRA (T2-5) 63.72 - - -

NewsIT

PEFT (reference) 54.90 - - -

LoRA-F 54.90 - - -
LoRA-B 38.54 - - -

Avg LoRA 38.54 - - -
TIES 37.48 - - -

DARE 52.21 - - -
Arrow 38.02 - - -

LoraHub 0.0 - - -

MeteoRA (T1-1k) 54.90 - - -
MeteoRA (T2-1k) 51.83 - - -
MeteoRA (T2-100) 35.22 - - -

MeteoRA (T2-5) 36.78 - - -

StratQA

PEFT (reference) 10.58 0.249 0.077 0.236

LoRA-F 10.44 0.234 0.068 0.223
LoRA-B 10.58 0.243 0.071 0.230

Avg LoRA 38.80 0.112 0.024 0.089
TIES 10.90 0.102 0.022 0.082

DARE 14.78 0.128 0.027 0.100
Arrow 12.19 0.206 0.057 0.165

LoraHub 14.35 0.147 0.033 0.116

MeteoRA (T1-1k) 10.58 0.252 0.076 0.239
MeteoRA (T2-1k) 10.58 0.250 0.077 0.239
MeteoRA (T2-100) 20.56 0.228 0.065 0.174

MeteoRA (T2-5) 11.67 0.213 0.055 0.162

TopChat

PEFT (reference) 39.50 0.151 0.025 0.141

LoRA-F 33.82 0.150 0.024 0.140
LoRA-B 19.22 0.139 0.019 0.131

Avg LoRA 23.59 0.094 0.012 0.078
TIES 26.13 0.092 0.011 0.077

DARE 38.31 0.086 0.008 0.066
Arrow 35.64 0.112 0.016 0.091

LoraHub 0.08 0.049 0.002 0.031

MeteoRA (T1-1k) 45.64 0.152 0.026 0.141
MeteoRA (T2-1k) 45.64 0.152 0.024 0.141
MeteoRA (T2-100) 27.36 0.129 0.021 0.107

MeteoRA (T2-5) 40.86 0.130 0.018 0.109
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A.5 Composite-n EVALUATION RESULTS DETAILS

The task construction method for the composite-n series is similar across different sets. Taking
composite-10 as an example, each sample in this test set can be thought of as a ”test sheet” containing
10 questions presented in sequence. During evaluation, this test sheet is provided as input to the
LLM and ask it to output the answers along with the corresponding question numbers in order. To
ensure that the model is capable of answering these 10 questions, we select 10 tasks from the 28
selected tasks, ensuring diversity in knowledge domains and question formats. Each sample in the
composite-10 task is constructed by randomly sampling one instance from each of the 10 tasks
(without repetition) and concatenating them in sequence. However, given the limited capability of the
instruction following in the zero-shot setting, neither the MeteoRA models nor the models fine-tuned
by LoRA achieve satisfactory results. Hence, we employ a 2-shot setting for evaluation on these
composite-n tasks.

The evaluation metrics used for composite-n tasks are: average number of questions attempted,
average number of multiple-choice questions answered correctly, and average BLEU, ROUGE scores
for non-multiple-choice questions.

Notice that in the composite-n tasks, when calculating the softmax values of the weights for the two
LoRA adapters selected by the Gating network, we introduced a hyperparameter called temperature.
The value of temperature needs to be increased as the number of sub-tasks grows. Specifically, we
set the temperature values to 15, 20, and 30 for the three tasks, respectively.

Tables 8, 9, and 10 present the detailed evaluation results for the composite-3, composite-5, and
composite-10 tasks, respectively. Several important clarifications are necessary for interpreting these
results:

1. The models are required to generate both the corresponding question number and its answer.
Any mismatch between the question number and the answer is therefore considered incorrect.

2. In the evaluation results, some BLEU scores are recorded as 0. This occurs when the model
generates mismatched question numbers and answers or provides extremely insufficient
answers, resulting in an overall 0 BLEU score.

3. For the task strategyqa, which involves answering with either ’yes’ or ’no’ and providing
reasoning steps, the accuracy metric specifically measures the correctness of the ’yes’ or
’no’ response.

4. The reported ROUGE scores refer to the F1-scores.
5. Samples that the lengths exceed to 4,096 tokens are skipped in the evaluation process (we

skip 13 samples in total).

Table 8: The composite-3 evaluation results are presented in details with MeteoRA results on the
left side and LoRA-B results on the right side of each metric column. A dash (’-’) indicates that the
corresponding metric was not applicable or included in the evaluation.

Sub-task Name Accuracy↑ BLEU↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
LogDeduc 0.500↑ 0.430 - - - - - - - -
QuestSel 0.545↓ 0.630 - - - - - - - -
StratQA 0.445↑ 0.250 15.31 10.55 0.195↑ 0.135 0.052↑ 0.027 0.182↑ 0.128
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Table 9: The composite-5 evaluation results are presented in details with MeteoRA results on the
left side and LoRA-B results on the right side of each metric column. A dash (’-’) indicates that the
corresponding metric was not applicable or included in the evaluation.

Sub-task Name Accuracy↑ BLEU↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
LogDeduc 0.500 0.500 - - - - - - - -
QuestSel 0.620↓ 0.770 - - - - - - - -
AbsNarr 0.350↓ 0.460 - - - - - - - -
GSWiki 0.650↑ 0.410 - - - - - - - -
StratQA 0.495↑ 0.275 9.86↑ 9.41 0.221↑ 0.219 0.069↑ 0.063 0.207↓ 0.208

Table 10: The composite-10 evaluation results are presented in details with MeteoRA results on the
left side and LoRA-B results on the right side of each metric column. A dash (’-’) indicates that the
corresponding metric was not applicable or included in the evaluation. Note that the 0.00 BLEU
scores are caused by mismatch and too insufficient answers.

Sub-task Name Accuracy↑ BLEU↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑
LogDeduc 0.500↑ 0.453 - - - - - - - -
QuestSel 0.703↑ 0.688 - - - - - - - -
AbsNarr 0.625↓ 0.672 - - - - - - - -
GSWiki 0.773↑ 0.727 - - - - - - - -

WinoWhy 0.422↑ 0.078 - - - - - - - -
StratQA 0.461↑ 0.211 3.23↑ 0.00 0.225↑ 0.106 0.051↑ 0.025 0.210↑ 0.099
DisflQA 0.266↑ 0.117 - - - - - - - -
NewsDE - - 14.78↑ 14.54 - - - - - -
ALPACA - - 0.00↓ 8.17 0.257↑ 0.187 0.075 0.075 0.241↑ 0.167
LingPuzz - - 17.37↑ 12.14 0.233↑ 0.189 0.052↑ 0.030 0.176↑ 0.103

A.6 FULL CONTENT OF THE ILLUSTARTED composite-n TASK

Below is the full content of a composite-3 task, which includes 2-shot examples, the input (3
problems), and the model generated output, shown in Figure 4.

Example 1:\n\n[INST] The following paragraphs each describe a set of five objects arranged in a
fixed order. The statements are logically consistent within each paragraph.\n\nOn a branch, there
are five birds: a cardinal, a crow, a falcon, a robin, and a blue jay. The robin is to the right of the
cardinal. The cardinal is to the right of the blue jay. The blue jay is the second from the left. The
crow is the rightmost. Which choice is correct?\nchoice: The cardinal is the leftmost.\nchoice:
The crow is the leftmost.\nchoice: The falcon is the leftmost.\nchoice: The robin is the leftmost

.\nchoice: The blue jay is the leftmost.\n[/INST]\n\n[INST] Given a short answer along with its
context, select the most appropriate question which has the given short answer as its answer.\n\n

Here is the short answer followed by the context.\nShort Answer: magazines and journals Context:
Tesla wrote a number of books and articles for magazines and journals. Among his books are My
Inventions: The Autobiography of Nikola Tesla, compiled and edited by Ben Johnston; The
Fantastic Inventions of Nikola Tesla, compiled and edited by David Hatcher Childress; and The
Tesla Papers.\nchoice: Who was the first to post tesla’s writings?\nchoice: Who was in charge of
editing tesla’s autobiography?\nChoose the appropriate question which has the given answer. [/

INST]\n\n[INST] Q: Can Hulk’s alter ego explain atomic events?\nA: [/INST]\n\n1. The falcon
is the leftmost.\n2. Who was the first to post tesla’s writings?\n3. Yes. Hulk’s alter ego is Dr.
Robert Bruce Banner. Dr. Robert Bruce Banner is a nuclear physicist. Nuclear physics is the field
of physics that studies atomic nuclei and their constituents and interactions.\n\n\nExample 2

:\n\n[INST] The following paragraphs each describe a set of three objects arranged in a fixed order.
The statements are logically consistent within each paragraph.\n\nIn a golf tournament, there were
three golfers: Ana, Rob, and Joe. Joe finished above Ana. Rob finished above Joe. Which choice is
correct?\nchoice: Ana finished second.\nchoice: Rob finished second.\nchoice: Joe finished
second.\n[/INST]\n\n[INST] Given a short answer along with its context, select the most
appropriate question which has the given short answer as its answer.\n\nHere is the short answer
followed by the context.\nShort Answer: two months Context: It was not until January 1518 that
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friends of Luther translated the 95 Theses from Latin into German and printed and widely copied
them, making the controversy one of the first in history to be aided by the printing press. Within
two weeks, copies of the theses had spread throughout Germany; within two months, they had
spread throughout Europe.\nchoice: How long did the theses take to spread through europe?\n

choice: How long did it take for the printing of the theses to spread through germany?\nChoose the
appropriate question which has the given answer. [/INST]\n\n[INST] Q: Can Iowa be hidden in
the English Channel?\nA: [/INST]\n\n1. Joe finished second.\n2. How long did the theses take to
spread through europe?\n3. No. The maximum width of the English Channel is 150 miles. The
minimum width of Iowa is 200 miles.\n\n\nFollowing the example above, generate answers to the
questions below:\n\n[INST] The following paragraphs each describe a set of seven objects
arranged in a fixed order. The statements are logically consistent within each paragraph.\n\nOn a
branch, there are seven birds: a cardinal, a blue jay, a robin, a falcon, a quail, a hummingbird, and a
raven. The falcon is to the right of the quail. The robin is to the right of the hummingbird. The
raven is to the left of the quail. The blue jay is the second from the left. The robin is the third from
the left. The cardinal is the third from the right. Which choice is correct?\nchoice: The cardinal is
the second from the right.\nchoice: The blue jay is the second from the right.\nchoice: The robin
is the second from the right.\nchoice: The falcon is the second from the right.\nchoice: The quail
is the second from the right.\nchoice: The hummingbird is the second from the right.\nchoice: The
raven is the second from the right.\n [/INST]\n\n\n[INST] Given a short answer along with its
context, select the most appropriate question which has the given short answer as its answer.\n\n

Here is the short answer followed by the context.\nShort Answer: Ghazan Khan Context: The
invasions of Baghdad, Samarkand, Urgench, Kiev, Vladimir among others caused mass murders,
such as when portions of southern Khuzestan were completely destroyed. His descendant Hulagu
Khan destroyed much of Iran’s northern part and sacked Baghdad although his forces were halted
by the Mamluks of Egypt, but Hulagu’s descendant Ghazan Khan would return to beat the Egyptian
Mamluks right out of Levant, Palestine and even Gaza. According to the works of the Persian
historian Rashid-al-Din Hamadani, the Mongols killed more than 70,000 people in Merv and more
than 190,000 in Nishapur. In 1237 Batu Khan, a grandson of Genghis Khan, launched an invasion
into Kievan Rus’. Over the course of three years, the Mongols destroyed and annihilated all of the
major cities of Eastern Europe with the exceptions of Novgorod and Pskov.\n choice: Which
genghis khan descendant sacked baghdad?\n choice: Which of eastern europe’s big cities survived
the mongol invasion?\n choice: Which of genghis khan’s descendants was responsible for driving
the mamluks from palestine?\nChoose the appropriate question which has the given answer. [/

INST]\n\n\n[INST] Q: Could the main character of ”Alice’s Adventures in Wonderland” join a
Masonic Lodge?\nA: [/INST]\n\n1. The quail is the second from the right.\n2. Which of genghis
khan’s descendants was responsible for driving the mamluks from palestine?\n3. No. The main
character of ”Alice’s Adventures in Wonderland” is Alice. Women are not allowed to join Masonic
Lodges.

logical deduction question selection strategyqa other task
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A.7 EFFICIENCY EVALUATION EXPERIMENTS ON DIFFERENT METEORA FORWARD PASS
IMPLEMENTATIONS

In addition to experiments on our 28 selected tasks, we assess the efficiency of our MeteoRA forward
pass design using randomly-generated pseudo data across various settings, including batch size (b),
sequence length (s), gating weights top-k (k), LoRA rank size (r), number of LoRAs (l), maximum
tokens to generate (g), input hidden dimension (h), and output hidden dimension (hout). Moreover,
here we introduce a new baseline, loop-speedup, which improves upon loop-original by removing
redundant or inefficient operations directly, acting like a strong substitute for the original design.

As depicted in Figures 7 for memory efficiency and 8 for time efficiency, our bmm-torch design
outperforms other implementations, boasting an average speedup of ∼4× over loop-original. How-
ever, its memory usage escalates with longer sequence lengths. In contrast, bmm-triton maintains
a comparable memory footprint to the baselines while retaining 80% of the speedup achieved by
bmm-torch, showcasing a balanced trade-off between time and space, as illustrated in Figure 6 for
overall efficiency.
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(a) Overall Efficiency Part-1

(b) Overall Efficiency Part-2

Figure 6: The overall efficiency evaluation curve displays the averaging runtime × memory footprint
for each newly generated token (unit: ms × GB / token).
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(a) Memory Efficiency Part-1

(b) Memory Efficiency Part-2

Figure 7: The memory efficiency evaluation curve displays the averaging memory footprint for each
newly generated token (unit: GB / token).
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(a) Time Efficiency Part-1

(b) Time Efficiency Part-2

Figure 8: The time efficiency evaluation curve displays the averaging runtime for each newly
generated token (unit: ms / token).
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