
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LIPSCHITZ-GUIDED MONTE CARLO TREE SEARCH
WITH KNOWLEDGE TRANSFER ACROSS SEQUENTIAL
TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Monte Carlo Tree Search (MCTS) has proven highly effective in solving complex
planning tasks by balancing exploration and exploitation using Upper Confidence
Bound for Trees (UCT). However, existing works have not considered MCTS-
based lifelong planning facing a sequence of MDPs – e.g., each MDP with varying
transition probabilities and rewards from previous ones – throughout the operational
lifetime. This paper presents LiZero for Lipschitz lifelong planning using MCTS.
We propose a novel concept of adaptive UCT (aUCT) to transfer knowledge from
previous tasks to the exploration/exploitation of a new task, depending on both the
Lipschitz continuity between tasks and the confidence of knowledge in Monte Carlo
action sampling. We analyze LiZero’s acceleration factor in terms of improved
sampling efficiency and also develop efficient algorithms to compute aUCT in an
online fashion by both data-driven and model-based approaches, whose sampling
complexity and error bounds are also characterized. Numerical results show that
LiZero significantly outperforms existing MCTS and lifelong learning baselines in
terms of much faster convergence (3∼4x). Our results highlight the potential of
LiZero to advance decision-making and planning in dynamic environments.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) has demonstrated state-of-the-art performance in solving many
challenging planning tasks, from playing the game of Go Silver et al. (2016) and chess to logistic
planning Silver et al. (2017). It performs look-ahead searches based on Monte Carlo sampling of
the actions to balance efficient exploration and optimized exploitation in the large search space.
Recent efforts have focused on developing MCTS algorithms for real-world domains that require the
elimination of certain standard assumptions. Examples include MuZero Schrittwieser et al. (2020b)
that leverages the decoding of hidden states to avoid requiring the knowledge of the game dynamics;
and MAzero Liu et al. (2024) that performs multi-agent search through decentralized execution.
Existing work have not considered MCTS with lifelong task-to-task variations, by retaining and
transferring prior knowledge to bootstrap lifelong learning across a continuous stream of tasks.

We consider MCTS-based lifelong planning under task-to-task variation. An agent faces a series of
changing planning tasks – e.g., with varying transition probabilities and rewards – which are drawn
sequentially throughout the operational lifetime. Transferring knowledge from prior experience to
continually adapt Monte Carlo sampling of the actions and thus speed up searches in new tasks
is a key question in this setting. We note that although continual and lifelong planning has been
studied in reinforcement learning (RL) context, e.g., learning models of the a task sequence of distinct
stationary environments Xie et al. (2020), identifying reusable skills Lu et al. (2020), or estimating
Bayesian sampling posteriors Fu et al. (2022), such prior works do not apply to MCTS. Monte Carlo
action sampling in MCTS relies on Upper Confidence Tree (UCT) or Predictor Upper Confidence
Tree (pUCT) Auger et al. (2013); Matsuzaki (2018) to balance exploration and exploitation in large
search spaces. To the best of our knowledge, there has not been existing work analyzing the transfer
of knowledge from past MCTS searches to new tasks, thus enabling adaptive UCT/pUCT rules in
lifelong MCTS.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This paper proposes LiZero for Lipschitz lifelong planning using MCTS. We quantify a novel concept
that the amount of knowledge transferable from a source task to the UCT/pUCT rule of a new task
depends on both the similarity between the tasks as well as the confidence of the knowledge. More
precisely, by defining a distance metric between two MDPs, we refine the concentration argument
and drive a new adaptive UCT bound (denoted as aUCT in this paper) for lifelong MCTS. The aUCT
is shown to consist of two components – relating to (i) the Lipschitz continuity between the two tasks
and (ii) the confidence of knowledge due to the number of samples in Monte Carlo action sampling.
Our results enable the development of a novel LiZero algorithm that makes use of prior experience to
run an adaptive MCTS by simulating/traversing from the root node and selecting actions according to
the aUCT rule, until reaching a leaf node. We also analyze aUCT’s acceleration factor in terms of
improved sampling efficiency due to cross-task transfer. It is shown that smaller task distance and
higher confidence can both lead to higher acceleration in aUCT.

To support the practical deployment of LiZero in lifelong planning, we need efficient solutions
to compute aUCT in an online fashion. To this end, we develop practical algorithms to estimate
various terms in aUCT, and especially the distance metric between two MDPs, from either available
state-action samples using a data-driven approach or a parameterized distance using a model-based
(deep learning) approach. We provide rigorous analysis on the sampling complexity of the data-driven
approach, to ensure arbitrarily small errors with high probability, by modeling a sequence of policy
update process by a filtration – i.e., an increasing sequence of σ-algebras. For the model-based
approach, we obtain an upper bound using a parameterized distance of the neural network models.
These results enable effective LiZero applications to open world tasks. We evaluate LiZero on a series
of learning tasks with varying transition probabilities and rewards. LiZero is shown to significantly
outperform MCTS and lifelong RL baselines (e.g., Winands (2024); Kocsis & Szepesvári (2006);
Cheng et al.; Schrittwieser et al. (2020a); Brafman & Tennenholtz (2002); Lecarpentier et al. (2021a))
in terms of performance. faster convergence to higher optimal rewards. Using the knowledge of only
a few source tasks, LiZero achieves 3∼4x speedup with about 31% higher early reward in the first
half of the learning process.

Our key contributions are as follows. First, we study theoretically the transfer of past experience
in MCTS and develop a novel aUCT rule, depending on both Lipschitz continuity between tasks
and the confidence of knowledge in Monte Carlo action sampling. It is proven to provide positive
acceleration in MCTS due to cross-task transfer. Second, we develop LiZero for lifelong MCTS
planning, with efficient methods for online estimation of aUCT and analytical error bounds. Finally,
LiZero achieves significant speed-up over MCTS and lifelong RL baselines in lifelong planning.

2 BACKGROUND

Monte Carlo Tree Search (MCTS) Kocsis & Szepesvári (2006); Silver et al. (2016); Schrittwieser et al.
(2020b) is a heuristic algorithm for solving problems modeled as Markov Decision Processes (MDPs).
It dynamically balances exploration and exploitation by expanding a search tree, simulating action
outcomes, and updating value estimates accordingly. An MDP is typically defined as ⟨S,A, R, P ⟩,
where S and A are the state and action spaces, Ra

s is the reward, and P denotes the transition
dynamics.

In the MCTS framework, Upper Confidence Bound for Trees (UCT) Coulom (2006) and its variant,
Predictor UCT (pUCT) Matsuzaki (2018); Auger et al. (2013), are widely used to balance exploration
and exploitation during node selection. While effective under static assumptions, they perform
suboptimally in dynamic, a task sequence of distinct stationary environments where state transitions
and rewards change over time Pourshamsaei & Nobakhti (2024); Hernandez-Leal et al. (2017);
Goldberg & Matarić (2003). In this paper, we consider MCTS- based lifelong planning, where an
agent faces a sequence of distinct MDPs – e.g., with varying transition probabilities and reward – and
requires the development of new adaptive UCT bounds.

Lifelong reinforcement learning (RL) Lecarpentier et al. (2021b); Xie et al. (2020); Fu et al. (2022);
Lu et al. (2020); Auger et al. (2013) addresses learning a sequence of tasks from unknown MDPs in
an online manner. Each sampled MDP is treated as a standalone RL problem where the agent learns
and adapts its policy π to maximize expected return Da Silva et al. (2018); Hawasly & Ramamoorthy
(2013); Abel et al. (2018). We can reasonably believe that the knowledge gained in similar MDPs can
be reused. While prior work explores task modeling Xie et al. (2020), skill reuse Lu et al. (2020), and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Bayesian transfer Fu et al. (2022), these methods do not extend naturally to lifelong MCTS, which
requires adaptive UCT-style bounds to enable knowledge transfer and efficient planning across a
sequence of distinct tasks (MDPs).

3 OUR PROPOSED SOLUTION

3.1 DERIVING ADAPTIVE UPPER CONFIDENCE BOUND (AUCT)

To derive the proposed aUCT rule, we consider a set of m past known MDPsM1, . . . ,Mm and
their learned search policies π1, . . . πm. Let S and A be their state and action spaces, respectively1,
Ni(s, a) be the visit count of MDPMi to state-action pair (s ∈ S, a ∈ A), Wi(s, a) to denote its
sampled return, and QNi

Mi
(s, a) = Wi(s, a)/Ni(s, a) be the learned estimate for the Q-value of MDP

Mi. Our goal is to apply these knowledge toward learning a new MDP, denoted byM. To this end,
we derive a new Lipschitz upper confidence bound forM, which utilizes and transfers the knowledge
from past MDPsM1, . . . ,MN , thus obtaining an improved Monte Carlo action sampling strategy
that limits the tree search inM to a smaller subset of sampled actions. We use N(s, a) to denote
the visit count of the new MDP to (s ∈ S, a ∈ A), W (s, a) to denote the sampled return, and thus
QN

M(s, a) = W (s, a)/N(s, a) to denote its current Q-value estimate.

Our key idea in this paper is that an improved upper confidence bound for the new MDPM can be
obtained by (i) analyzing the Lipschitz continuity between the past and new MDPs with respect to
the upper confidence bounds and (ii) taking into account the confidence and aleatory uncertainty
of the learned Q-value estimates to determine to what extent the learned knowledge from eachMi

is pertinent. Intuitively, the more similarM andMi are and the more samples (and thus higher
confidence) we have in the learned Q-value estimates, the less exploration we would need to perform
to solveM through MCTS. Our analysis will lead to an improved upper confidence bound that guides
the MCTS on the new MDPM over a much smaller subset of action samples, thus significantly
improving search performance. We start by introducing a definition of the distance between two
given MDPs,M = ⟨R,P ⟩, M′ = ⟨R′, P ′⟩, with reward functions R,R′ and state transitions P, P ′,
respectively. We choose a positive scaling factor κ > 0 to combine the distances for transition
probabilities and rewards. Proofs of all theorems and corollaries are presented in the appendix.
Definition 3.1. Given two MDPsM = ⟨R,P ⟩, M′ = ⟨R′, P ′⟩, and a distribution for sampling the
state transitions U : S ×A× S ′ → [0, 1], we define the pseudometric between the MDPs as:

d(M,M′) = ∆R+ κ ·∆P = E(s,a,s′)∼U
[
|Ra

s −R′a
s |+ κ|P a

ss′ − P ′
ss′

a|
]
.

Noted that we write d(M,M′) = ∆R+κ·∆P with ∆R ∈ [0, Rmax] and ∆P ∈ [0, 1](total-variation
distance), so d ∈ [0, Rmax] + κ. The normalized advantage ∆M

(s,a) :=
Q∗

M (s,a∗)−Q∗
M (s,a)

Rmax/(1−γ) ∈ [0, 1] κ

is a constant used to remove the mismatch in units between ∆R and ∆P , the detailed derivation is
given in Eq. 18.

Here d(M,M′) is our definition of distance between two MDPs,M andM′. We choose U to be a
uniform distribution for sampling the state transitions in this paper. In Section 4, we discuss practical
algorithms to estimate the distance metric between two MDPs, from either available state-action
samples using a data-driven approach or a parameterized distance using a model-based (deep learning)
approach. The sampling complexity and error bounds are also analyzed.

Next, we prove the main result of this paper and show that the upper confidence bounds ofM and
M′ are Lipschitz continuous with respect to distance d(M,M′). We obtain a new upper confidence
bound for M, by transfering the knowledge from the learned Q-value estimates QN ′

M′(s, a) =
W ′(s, a)/N ′(s, a) of MDP M′. The bound also depends on the confidence of learned Q-value
estimates, relating to the visit counts N(s, a) and N ′(s, a).
Theorem 3.2 (Lipschitz aUCT Rule). Consider two MDPs M and M ′ with visit count N,N ′ and
corresponding estimate Q-values QN

M (s, a), QN ′

M ′(s, a), respectively. With probability at least (1− δ)
for some positive δ > 0, we have∣∣∣QN

M(s, a)−QN ′

M′(s, a)
∣∣∣ ≤ L · d(M,M′) + P (N,N ′) (1)

1Without loss of generality, we assume that the MDPs have the same state and action spaces. Otherwise, we
can consider the extended MDPs defined by the union of their state and action spaces.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where L = 1/(1− γ)(From Eqn 18) is a Lipschitz constant, d(M,M′) is the distance between
MDPs, and P (N,N ′) is given by

P (N,N ′) =
2Rmax

1− γ

√
ln(2/δ)

2 ·min(N,N ′)
(2)

In the theorem above, we show that the estimate Q-values between two MDPs are bounded by
two terms, i.e., a Lipschitz continuity term depending on the distance d(M,M′) between the two
environments and a confidence term depending on the number N,N ′ of samples used to estimate the
Q-values. The Lipschitz continuity term measures how much the learned knowledge of source MDP
M is pertinent to the new MDPM′, while the confidence terms P (N,N ′) quantifies the sampling
bias arising from statistical uncertainty due to limited sampling in MCTS. We note that as the number
of samples N goes to infinity, we have QN

M(s, a)→ Q∗
M(s, a) in Theorem 3.2, approaching the true

Q-value Q∗
M(s, a) of the new MDP. Our theorem effectively provides an upper confidence bound

for the true Q-value of the new MDP, based on knowledge transfer from the source MDP. We also
note that as both numbers N,N ′ go to infinity, the confidence term becomes P (N,N ′)→ 0. Our
theorem recovers the Lipschitz lifelong RL Lecarpentier et al. (2021b) as a special case of our results,
for the true Q-values of the two MDPs.

We apply Theorem 3.2 to MCTS-based lifelong planning with a sequence of distinct m tasks,
M1, . . . ,Mm. Our goal is to obtain an improved bound on the true Q-value of the new taskM
based on knowledge transfer. To this end, we independently apply the knowledge from each past
MDP, i.e., QNi

Mi
(s, a) = Wi(s, a)/Ni(s, a), to the new MDP. By taking the minimum of these bounds

and making N → ∞, it provides a tightest upper bound on the true Q-value Q∗
M(s, a) of the new

MDP, which is defined as our aUCT bound, as it adaptively transfers knowledge from past tasks to
the new tasks in MCTS-based lifelong planning. The result is summarized in the following corollary.

Corollary 3.3 (aUCT bound in lifelong planning). Given MDPsM1, . . . ,Mm, the new MDP’s
true Q-value is bounded by Q∗

M(s, a) ≤ UaUCT with probability at least (1− δ). The aUCT bound
UaUCT is given by

UaUCT(s, a) ≜ min
1≤i≤m

[
QNi

Mi
(s, a) + L · d(M,Mi) +

2Rmax

1− γ

√
ln(2/δ)

2Ni(s, a)

]
(3)

Obtaining this corollary is straightforward from Theorem 3.2 by taking N → ∞ and considering
the tightest bound of all knowledge transfers. In the context of MCTS-based lifelong planning, the
more knowledge we have from solving past tasks, the more likely we can easily plan a new task, as
the aUCT bound UaUCT(s, a) is taken over the minimum of all past tasks. The confidence of past
knowledge, i.e., the statistical uncertainty due to sampling number Ni, also affects the knowledge
transfer to the new task.

3.2 OUR PROPOSED LIZERO ALGORITHM USING AUCT

We use the derived aUCT to design a highly efficient LiZero algorithm for MCTS-based lifelong plan-
ning. The LiZero algorithm transfers knowledge from past known tasks by computing UaUCT(s, a) in
Corollary 3.3. It requires an efficient estimate of the distance d(M,Mi) (as defined in Definition 3.1)
between the source MDPs and the new (target) MDP. We will present practical algorithms for such
distance estimates in the next section and present an analysis of the sampling complexity and error
bounds. We will first introduce our LiZero algorithm in this section. We note that, during MCTS,
direct exploration/search in the new taskM also produces new knowledge and leads to improved
UCT bound of M. Therefore, our proposed LiZero combines both knowledge transfer through
UaUCT(s, a) and knowledge from direct exploration/search inM.

The search in our proposed LiZero algorithm is divided into three stages, repeated for a certain
number of simulations. First, each simulation starts from the internal root state and finishes when
the simulation reaches a leaf node. Let QN

M(s, a) = W (s, a)/N(s, a) be the current estimate of the
new MDP and N(s) =

∑
a∈A N(s, a) be the visit count to state s ∈ S. For each simulated time

step, LiZero chooses an action a by maximizing a combined upper confidence bound based on aUCT,
i.e.,Since both terms are valid upper bounds on Q∗(s, a), their minimum remains an admissible upper

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

bound, preserving optimism. We ensure sufficient exploration by standard UCB tie-breaking and a
per-edge visit floor.

a = argmax
a

min

[
W (s, a)

N(s, a)
+ C

√
lnN(s)

N(s, a)
, UaUCT(s, a)

]
In practice, we can also use the maximum possible return Rmax/(1 − γ) as an initial value of
the search. Next, at the final time step of the simulation, the reward and state are computed by a
dynamics function. A new node, corresponding to the leaf state, is then added to the search tree.
Finally, at the end of the simulation, the statistics along the trajectory are updated. Let G be the
accumulative (discounted) reward for state-action (s, a) from the simulation. We update the statistics
by:QN+1

M (s, a) :=
N(s,a)·QN

M(s,a)+G
N(s,a)+1 , N(s, a) := N(s, a) + 1.

No negative transfer. By construction, LiZero always selects a∗ Therefore, if the transferred
bound UaUCT(s, a) is loose (e.g., when tasks are dissimilar or Lipschitz regularity does not hold),
the minimum simply reduces to the standard UCT confidence term, and LiZero behaves identically to
vanilla UCT. In particular, Theorem 3.4 shows that the sample complexity of LiZero is never worse
than that of UCT (Γ ≥ 1), and equals it (Γ = 1) when no useful transfer is available.

Intuitively, at the start of task M’s MCTS, there are not sufficient samples available, and thus
UaUCT(s, a) serves as a tighter upper confidence bound than that resulted from the Monte Carlo
actions sampling inM. As more samples are obtained during the search process, the standard UCT
bound is expected to become tighter than UaUCT(s, a). Using both bounds will ensure efficient
knowledge transfer and task-specific search. The pseudocode of LiZero is provided in Appendix A.2.

For the proposed LiZero algorithm, we prove that it can result in accelerated convergence in MCTS.
More precisely, we analyze the sampling complexity for the learned Q-value estimate QN

M(s, a) to
converge to the true value Q∗

M(s, a), and demonstrate a strictly positive acceleration factor, compared
to the standard UCT. The results are summarized in the following theorem.
Theorem 3.4. To ensure the convergence in a finite state-action space, max(s,a) |QN

M(s, a) −
Q∗

M(s, a)| ≤ ϵ with probability 1− δ, the number of samples required by standard UCT is

Õ

(
|S| · |A|

(1− γ)3ϵ2
ln

1

δ

)
, (4)

while the proposed LiZero algorithm requires:Õ
(

1
Γ ·

|S|·|A|
(1−γ)3ϵ2 ln

1
δ

)
. where Γ > 1 is an acceleration

factor given by Γ =

∑
(s,a)∈S1∪S0

1

(∆M
(s,a)

)2∑
(s,a)∈S1

(1)+
∑

(s,a)∈S0

1

(∆M
(s,a)

)2

, and S1 = {(s, a) | ∃i : UaUCT(s, a) <

Q∗
M(s, a∗)} is a state-action set where UaUCT of action a is lower than the optimal return of a∗ in

state s; and ∆M
(s,a) ∝ [Q∗

M(s, a∗)−Q∗
M(s, a)] is a normalized advantage in the range of [0, 1].

The theorem shows that LiZero achieves a strictly improved acceleration Γ > 1 with a reduced
sampling complexity (by 1/Γ), in terms of ensuring convergence to the optimal estimates, i.e.,
max(s,a) |QN

M(s, a)−Q∗
M(s, a)| ≤ ϵ with probability 1− δ. Since the normalized advantage ∆M

(s,a)

is in [0, 1], we have 1/∆M
(s,a) ≥ 1. It follows that Γ > 1 whenever S1 ̸= ∅; when S1 = ∅, LiZero

reduces to UCT and Γ = 1. More precisely, LiZero achieves higher acceleration when (i) our aUCT
makes more actions a less favorable, as UaUCT(s, a) < Q∗

M(s, a∗) implies that the sub-optimality
of action a in s can be more easily determined due to aUCT; or (ii) aUCT helps establish tighter
bounds in cases with a smaller advantage, which naturally requires more samples to distinguish the
optimal actions – since Γ increases as the normalized advantage becomes smaller for (s, a) ∈ S1,
while being larger for (s, a) ∈ S0. These explain LiZero’s ability to achieve much higher acceleration
and lower sampling complexity, resulted from significantly reduced search spaces. We will evaluate
this acceleration/speedup through experiments in Section 5.

4 ESTIMATING AUCT IN PRACTICE

To deploy LiZero in practice, we propose two approaches for estimating aUCT, and in particular,
the distance dM,Mi between two MDPS. Our first approach leverages trajectory samples drawn

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

from MCTS policies by modeling a sequence of distict policies as a filtration – i.e., an increasing
sequence of σ-algebra, while our second approach learns neural network approximations of the
MDPs. Analysis of sampling complexity and error bounds are provided as theorems in this section.

Sample-based Distance Estimate. During MCTS, transition samples are collected from the search
to train a search policy π. It is easy to see that we can leverage these transition samples to estimate
distance d(M,M′) between two MDPs, as long as we address the bias arising from gap between
search policy π and desired sampling distribution U in the distance definition d(M,M′). It also
allows us to obtain a consistent estimate of MDP distance, without depending on the search policy
that is updated during training. We note that this bias can be addressed by importance sampling.

Let ∆X(s, a) = ∆Ra
s + κ∆P a

s be the distance metric for a given state-action pair (s, a). We can
rewrite the distance as d(M,M′) = E(s,a)∼U [∆X(s, a)]. We denote pU (s, a) as the probability (or
density) of sampling (s, a) according to distribution U . Importance sampling implies:

E(s,a)∼U [∆X(s, a)] = E(s,a)∼π

[
pU (s, a)

π(s, a)
·∆X(s, a)

]
, (5)

which can be readily computed from the collected transition samples, following the search policy
π(s, a). Therefore, for a given set of samples {(si, ai), ∀i = 1, . . . , n} collected from a search policy
π(s, a), we can estimate the distance by the empirical mean:

d̂1 =
1

n

n∑
i=1

wi∆X(si, ai), with wi =
U(si, ai)
π(si, ai)

(6)

where wi is the importance sampling weight.

As long as the state-action pairs with π(s, a) > 0 cover the support of U , this estimator satisfies
E[d̂∞] = d(M,M′), meaning it is unbiased. Let α be the ”coverage” of policy π(s, a), i.e.
π(s, a) ≥ α > 0, and let pmax

U be the maximum desired sampling probability. We summarize
this result in the following theorem and state the sampling complexity for estimator d̂1 to ϵ-converge
to d(M,M′).

In our tabular gridworld experiments, both the state and action spaces are finite. We instantiate the
reference distribution U in Definition 3.1 as the uniform distribution over state–action pairs,U(s, a) =

1
|S| |A| . The importance weights in LiZero-P are then given by wi =

U(si,ai)
π(si,ai)

, where π denotes the
empirical tree policy estimated from visit counts under UCT-style exploration. In the finite gridworlds,
every action at a visited state has a strictly positive lower bound on π(s, a), so the weights {wi} are
almost surely bounded and we observe no variance explosion in practice. For larger or continuous
domains, standard techniques such as self-normalized importance sampling and weight clipping can
be incorporated without changing the theoretical analysis.
Theorem 4.1 (Sampling Complexity under Stationarity). Assume that for any (s, a), the reward
plus transition difference is bounded, i.e., ∆X(s, a) ∈ [0, b], and that there exists α such that
π(s, a) ≥ α > 0. When n independent samples are used to estimate d̂1, we have

Pr{|d̂1 − d(M,M′)| ≤ ϵ} ≥ 1− δ (7)

for any δ ∈ (0, 1), if the number of samples satisfy n ≥ 1
2ϵ2 b

2
(

pmax
U
α

)2
· ln
(
2
δ

)
Thus, we obtain a

convergence guarantee in the sense of arbitrarily high probability 1− δ and arbitrarily small error ϵ,
for estimating d(M,M′) using d̂1. d̂1 is unbiased and ensures convergence to the true distance as
the number of samples is sufficiently large.

We note that in many practical settings, the search policy π would not stick to a stationary distribution.
In contrast, it is continuously updated in each iteration, resulting in a sequence of distinct policies
over time, i.e., π1, π2, . . . , πk. Thus, the transition samples (sk, ak)’s we obtain at each step k for
estimating the distance d(M,M′) are indeed drawn from a different πk. We cannot assume that the
samples follow a stationary distribution (nor that {∆Xw

k } are i.i.d.) in importance sampling. we
model the sequence of distinct policy updates as a filtration – i.e., an increasing sequence of σ-algebra.
In particular, we make the following assumption: at the k-th sampling step, the environment is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

forcibly reset to a predetermined policy πk or independently draws a state from an external memory.
This assumption is reasonable, in many episodic learning scenarios, the environment is inherently
divided into episodes: at the beginning of each episode, the state is reset to some initial distribution
(e.g., the opening state in Atari games). This naturally results in the “reset” assumption.

In this setup, the policy πk at step k is determined by information at step k−1 or earlier. Consequently,
once πk is fixed, the distribution (marginal) of ∆Xw

k = pU (sk,ak)
πk(sk,ak)

∆X(sk, ak) is also fixed. Therefore,
we can establish the filtration {Fk, k = 1, 2, . . .} as follows:

Fk−1 = σ{π1, ..., πk, (s1, a1), ..., (sk−1, ak−1)}, (8)
where σ{·} denotes the smallest σ-algebra generated by the random elements. Thus, we obtain:

E[∆Xk|Fk−1] = E(sk,ak)∼πk

[
pU (sk, ak)

πk(sk, ak)
·∆X(sk, ak)

]
= E(sk,ak)∼U [∆X(s, a)] = d(M,M′)

(9)
This allows us to obtain another empirical estimator d̂2 using the filtration model. We analyze the
sampling complexity of d̂2 and summarise the results in the following theorem.
Theorem 4.2 (Sampling Complexity under task-to-task variation). Under the same conditions as
Theorem 4.1 when n independent samples are used to estimate d̂2, we have Pr{|d̂2 − d(M,M′)| ≤
ϵ} ≥ 1− δ for any δ ∈ (0, 1), if the number of samples satisfy n ≥ 2

ϵ2 b
2
(

pmax
U
α

)2
· ln
(
2
δ

)
.

It implies that more samples are needed, considering the task-to-task variation of the policy update
process for the distance estimate. We approximate the filtration by resetting episodes and re-sampling
initial states from a replay buffer at task boundaries.

NN-based Distance Estimate. We propose an alternative approach to first approximate the dy-
namics of MDPsM andM′ using two neural networks and then estimate d(M,M′) based on the
parameterized distance between the neural networks. To this end, we need to establish a bound
on d(M,M′) using the distance between their neural network parameters. We use a neural net-
work Ψϕ : S × A → ∆(S) to model the MDP dynamics. Many model-based learning algorithms,
such as PILCO Deisenroth & Rasmussen (2011),MBPO Janner et al. (2019),PETS Chua et al.
(2018),MuZero Schrittwieser et al. (2020b), can be employed to learn the models ofM andM′. Let
ϕ be the neural network parameters of MDPM and ϕ′ be the neural network parameters of MDP
M′. We define a distance in the parameter space: d̂para = ρ(ϕ, ϕ′) ≥ 0, where ρ is a distance or
divergence measure in the parameter space, such as the ℓ2-norm or certain kernel distances. Intuitively,
if ϕ and ϕ′ are very close, the two neural networks are similar in fitting the dynamics of the respective
MDPs. It suggests that the two MDPs should have a small distance. To provide a more rigorous
characterization of this concept, we present the following theorem, which demonstrates that under
proper assumptions, the distance d̂para based on neural network parameters can serve as an upper
bound for the desired d(M,M′). Let κ = Rmaxγ/(1− γ) be a constant.
Theorem 4.3. If the neural networks modelingM andM′ satisfy the Lipschitz condition, i.e., there
exists a constant L > 0 such that ∀(s, a), ||Ψϕ(s, a) − Ψϕ′(s, a)||1 ≤ L · ρ(ϕ, ϕ′), then we have:
d(M,M′) ≤ (1 + κ)Ld̂para.

The theorem indicates that by learning neural networks to model the MDP dynamics, we can estimate
the distance d(M,M′) by estimating the distance between the neural network parameters. This
parameterized distance can be computed for event continuous action and state spaces.

5 EVALUATIONS

Our experiments evaluate LiZero on a series of ten learning tasks with varying transition probabilities
and rewards. We demonstrate LiZero’s ability to transfer past knowledge in MCTS-based planning,
resulting in significant convergence speedup (3∼4x) and early reward improvement (about 31%
average improvement during the first half of learning process) in lifelong planning problems. All
experiments are conducted on a Linux machine with AMD EPYC 7513 32-Core Processor CPU and
an NVIDIA RTX A6000 GPU, implemented in python3. All source codes are made available in the
supplementary material.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0
20

0
40

0
60

0
80

0
10

00

epoch

2

4

6

re
w

ar
d LRMax

RMax
MCTS-R
MCTS-O
LiZero-N
LiZero-P
LiZero-U

(a) Task 1

0
20

0
40

0
60

0
80

0
10

00

epoch

2

4

6

re
w

ar
d LRMax

RMax
MCTS-R
MCTS-O
LiZero-N
LiZero-P
LiZero-U

(b) Task 2

0
20

0
40

0
60

0
80

0
10

00

epoch

2

4

6

re
w

ar
d LRMax

RMax
MCTS-R
MCTS-O
LiZero-N
LiZero-P
LiZero-U

(c) Task 6

0
20

0
40

0
60

0
80

0
10

00

epoch

2

4

6

re
w

ar
d LRMax

RMax
MCTS-R
MCTS-O
LiZero-N
LiZero-P
LiZero-U

(d) Task 10

Figure 1: Comparing LiZero with MCTS and lifelong RL baselines. We demonstrate the convergence
of different algorithms on representative Tasks 1, 2, 6, and 10, in a sequence of distinct ten tasks. In
Task 1, since no prior knowledge is yet available, our LiZero and other MCTS baselines show similar
convergence speeds and optimal rewards. From Task 2 to Task 10, as more knowledge from past
tasks gets transferred to the new task by LiZero, it outperforms all baselines with more significantly
improved convergence speed. In Task 10 with maximum past knowledge, LiZero demonstrates the
largest improvement in convergence speed and optimal reward.

Name Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task10 Total

LiZero-U 4.83±0.05 5.98±0.10 5.99±0.07 5.94±0.05 6.08±0.07 6.05±0.16 6.01±0.11 6.03±0.05 6.04±0.04 6.03±0.09 58.98
LiZero-P 4.65±0.06 5.89±0.11 5.90±0.12 5.90±0.03 5.62±0.19 5.68±0.22 5.76±0.12 5.87±0.03 5.78±0.06 5.79±0.20 56.84
LiZero-N 4.64±0.08 5.56±0.07 5.56±0.07 5.52±0.05 5.52±0.08 5.48±0.06 5.50±0.09 5.45±0.06 5.50±0.06 5.48±0.05 54.21

MCTS-R 4.51±0.07 4.43±0.08 4.32±0.11 4.24±0.05 4.18±0.07 4.24±0.10 4.25±0.03 4.47±0.06 4.34±0.03 4.39±0.08 43.37
MCTS-O 4.52±0.06 4.87±0.08 4.57±0.04 4.16±0.03 4.78±0.05 4.91±0.06 4.04±0.03 3.70±0.05 3.02±0.07 2.96±0.06 41.53

pUCT 4.66±0.04 4.71±0.06 4.69±0.13 4.77±0.09 4.74±0.04 4.87±0.05 4.94±0.06 4.72±0.05 4.86±0.07 4.77±0.03 47.73

RMax 1.02±0.02 1.05±0.01 1.01±0.02 1.03±0.01 1.04±0.01 1.05±0.01 1.03±0.03 1.04±0.02 1.03±0.02 1.03±0.01 10.33
LRMax 1.05±0.01 1.05±0.02 1.04±0.02 1.06±0.03 1.05±0.01 1.06±0.02 1.04±0.01 1.06±0.03 1.05±0.01 1.04±0.01 10.50

Table 1: The table summarizes the rewards and standard deviations obtained in sequential tasks. It
shows that LiZero achieves about 31% early reward improvement on average, compared with MCTS
baselines (including two versions of MCTS with UCT Winands (2024); Kocsis & Szepesvári (2006);
Cheng et al. and one with pUCT similar to MuZero Schrittwieser et al. (2020a)) and lifelong RL
baselines (including RMax Brafman & Tennenholtz (2002) and LRMax Lecarpentier et al. (2021a)).
MCTS-R and MCTS-O demonstrate similar level of performance, both better than lifelong RL and
slightly below pUCT. LiZero algorithms outperform MCTS baselines by about 31% early reward
improvement on average. With more accurate distance estimates – i.e., from Lizero-N to LiZero-P
and LiZerio-U – we observe further improvement due to better knowledge transfer that comes with
more accurate aUCT.

60% 70% 80%
Percentage of Optimal Reward Achieved

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f E
po

ch
s

LiZero-U
LiZero-P
LiZero-N
MCTS-R
MCTS-O
RMax
LRMax

Figure 2: LiZero shows a comfortable speedup
of 3∼4x, compared with MCTS and lifelong RL
baselines, to achieve the same level of optimal
rewards with higher sample efficiency.

In the evaluation, we consider some state-
of-the-art baselines using MCTS and lifelong
RL. In particular, we consider two versions of
MCTS algorithms that leverage UCT Winands
(2024); Kocsis & Szepesvári (2006); Cheng
et al.: MCTS-R denotes a version that restarts
the search from scratch for each new task, and
MCTS-O denotes a version that is oblivious to
the sequence of distinct task dynamics and con-
tinues to build upon the search tree from the
past. We also consider state-of-the-art MCTS
using pUCT, similar to MuZero and related al-
gorithms Schrittwieser et al. (2020a). We have
two lifelong RL algorithms: RMax Brafman &
Tennenholtz (2002) and LRMax Lecarpentier
et al. (2021a), which exploits a similar Lipschitz
continuity in RL but does not consider MCTS using upper confidence bounds. We evaluated three
versions of LiZero using different methods to estimate aUCT by computing task distances, as pre-
sented in Section 4. LiZero-U employs a direct distance estimate based on Definition 3.1; LiZero-P is
the data-driven distance estimater d̂2 using samples following the search policy; and LiZero-N is the
neural-network based estimator d̂para using parameter distances.

The experimental environment we used is a variation of the ”tight” task by Abel et al. Abel et al.
(2018). It generates a sequence of ten learning tasks. Each task consists of a 25× 25 grid world, with
the initial state located at the center, and four possible actions: up, down, left, and right. The three

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

cells in the top-right corner and one cell in the bottom-left corner are designated as goal cells. For
each task, the reward for the goal cells is randomly chosen from the range [0.9, 1]. The remaining
cells will randomly generate interference rewards within the range [0, 0.1]. Its state transition matrix
selects its own slip probability (acting differently from the chosen one) within the range [0, 0.1]. This
ensures that the sequence of tasks has varying reward and transition probabilities. Each task is for
1,000 epochs. These operations are repeated multiple times to narrow the confidence interval.

Figure 1 shows the convergence of different algorithms on representative Tasks 1, 2, 6, and 10, in a
sequence of ten distinct tasks. As tasks are drawn sequentially, LiZero-U, LiZero-P, and LiZero-N
algorithms converge more rapidly than the MCTS and lifelong RL baselines. This speedup becomes
evident as early as the second task (Task 2) – while similar convergences are observed in Task 1 as no
prior knowledge is yet available. From Task 2 to Task 10, as more knowledge from past tasks gets
transferred to the new task by LiZero, it outperforms all baselines in significantly more improved
convergence speed. In Task 10 with maximum past knowledge, LiZero outperforms all baselines in
convergence speed and optimal reward. MCTS-O (which is oblivious to changing task dynamics)
exhibits worse performance than MCTS-R (which restarts from scratch).

In Table 1, we summarize the average rewards (and their standard deviations) obtained in sequential
tasks by different algorithms during their first 500 epochs (i.e., first half of the learning process).
LiZero algorithms achieves about 31% early reward improvement on average. As for MCTS baselines
with UCT, MCTS-R shows similar reward across different tasks, while MCTS-O demonstrates higher
volatility – due to its reliance on how task dynamics evolve. pUCT achieves higher performance
due to the use of improved probabilistic UCT similar to MuZero. All MCTS baselines show better
results than lifelong RL algorithms (i.e., RMax and LRMax), which are known to be less sample
efficient and require more epochs for exploration/exploitation. With more accurate distance estimates
– i.e., from Lizero-N to LiZero-P and to LiZero-U – we observe further improved results due to better
knowledge transfer that comes with more accurate aUCT calculations.

0
50

0
10

00
15

00

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
w

ar
d

LiZero-N
Deep MCTS

(a) Task 1

0
50

0
10

00
15

00

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
w

ar
d

LiZero-N
Deep MCTS

(b) Task 2

0
50

0
10

00
15

00

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
w

ar
d

LiZero-N
Deep MCTS

(c) Task 6

0
50

0
10

00
15

00

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
w

ar
d

LiZero-N
Deep MCTS

(d) Task 10

Figure 3: Performance of LiZero-N and Deep MCTS on a continuous-state MuJoCo Point Maze
sequence.Each panel shows the normalized return versus planning epochs for Tasks 1, 2, 6, and 10.On
the first task LiZero-N performs similarly to Deep MCTS, while on later tasks it converges faster and
achieves higher early returns, demonstrating that aUCT-based transfer remains effective in continuous
MDPs and that its benefits grow as more tasks are learned.

To demonstrate that the proposed aUCT transfer is not limited to discrete gridworlds, we further
evaluate LiZero-N in a continuous state-space environment, the MuJoCo Point Maze. The environ-
ment consists of a point mass with two degrees of freedom (x, y) that is force-actuated in Cartesian
coordinates and must reach a target goal position inside a closed maze. We construct a sequence of 10
tasks by randomly modifying the maze parameters and goal locations. Each task is solved by running
MCTS for 2,000 planning epochs. We compare LiZero-N with the same Deep MCTS baseline used
in the gridworld experiments. Figure 3 reports the normalized returns averaged over multiple runs.

To evaluate the speedup of LiZero, Figure 2 shows the average number of epochs needed by different
algorithms to achieve 60%, 70%, and 80% of the optimal reward, respectively. We note that LiZero
shows a comfortable speedup of 3∼4x, compared to MCTS and lifelong RL baselines, while RL
baselines are much less sample-efficient than MCTS-based planning, in general. We do not go beyond
80% in this plot since some baselines are never able to achieve more than 80% of the optimal reward
that LiZero obtains. The results validate the acceleration as characterized by Γ in Theorem 3.4.

Ablation Study. Our ablation study considers the impact of distance estimator on performance.
Figure 4 shows the distance estimators in LiZero-U, LiZero-P, and LiZero-N (each with decreasing
accuracy) across the sequence of tasks, while for the purpose of ablation study, MCTS-R can be
viewed as an algorithm without distance estimator. Comparing the performance of these algorithms in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 1 and Figure 2, we see that the superior performance of LiZero is indeed resulted from the use
of aUCT in MCTS – The tighter aUCT bounds we use, the higher performance we can achieve. Using
no distance estimator and thus only UCT (in MCTS-R) leads to the lowest performance. Further, as
tasks are drawn, the distance estimates decrease quickly, and by the third task, it is already very small,
implying accurate aUCT calculation for knowledge transfer.

6 CONCLUSIONS

0 2 4 6 8
Task Sequence

0

5

10

15

20

D
is

ta
nc

e
Es

tim
at

es Rmax
1

LiZero-U
LiZero-P
LiZero-N

Figure 4: Our ablation study comparing differ-
ent distance estimators in LiZero-U, LiZero-P, and
LiZero-N, while MCTS-R can be viewed as a base-
line without distance estimator. The relevant per-
formance of these algorithms are provided in Ta-
ble 1 and Figure 2 and thus not repeated here. The
superior performance of LiZero is indeed resulted
from the use of aUCT in MCTS. The tighter aUCT
bounds, the higher performance we can obtain.

We study theoretically the transfer of past knowl-
edge in MCTS-based lifelong planning and de-
velop a novel aUCT rule, depending on both
Lipschitz continuity between tasks and the con-
fidence of knowledge in Monte Carlo action
sampling. The proposed aUCT is proven to sig-
nificantly accelerate MCTS and enable a new
lifelong MCTS algorithm: LiZero. We present
efficient methods for online estimation of aUCT
and analyze the sampling complexity and error
bounds. LiZero is evaluated on a sequence of
distinct tasks with varying transition probabil-
ities and rewards. It outperforms MCTS and
lifelong RL baselines with 3∼4x speed-up and
about 31% higher early reward.

Limitations: The derivation of Theorem 3.2
considers varying transition probabilities and re-
wards, while assuming the same state and action
spaces. In this case, we could consider the union
of state and action spaces, but better approaches
may be needed. Further, our acceleration analysis requires that the optimal Q-function has a bounded
advantage gap to compute the acceleration factor Γ. This bound may be loose for practical problems,
leading to underestimation of acceleration factor Γ.

REFERENCES

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In International Conference on Machine Learning, pp.
20–29. PMLR, 2018.

David Auger, Adrien Couetoux, and Olivier Teytaud. Continuous upper confidence trees with
polynomial exploration–consistency. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013,
Proceedings, Part I 13, pp. 194–209. Springer, 2013.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Scott Cheng, Mahmut Kandemir, and Ding-Yong Hong. Speculative monte-carlo tree search. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Felipe Leno Da Silva, Matthew E Taylor, and Anna Helena Reali Costa. Autonomously reusing
knowledge in multiagent reinforcement learning. In IJCAI, pp. 5487–5493, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Haotian Fu, Shangqun Yu, Michael Littman, and George Konidaris. Model-based lifelong reinforce-
ment learning with bayesian exploration. Advances in Neural Information Processing Systems, 35:
32369–32382, 2022.

Dani Goldberg and Maja J Matarić. Maximizing reward in a non-stationary mobile robot environment.
Autonomous Agents and Multi-Agent Systems, 6:287–316, 2003.

Majd Hawasly and Subramanian Ramamoorthy. Lifelong learning of structure in the space of policies.
In 2013 AAAI Spring Symposium Series, 2013.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz De Cote. A sur-
vey of learning in multiagent environments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183, 2017.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, and Michael L
Littman. Lipschitz lifelong reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 8270–8278, 2021a.

Erwan Lecarpentier, David Abel, Kavosh Asadi, Yuu Jinnai, Emmanuel Rachelson, and Michael L.
Littman. Lipschitz lifelong reinforcement learning, 2021b. URL https://arxiv.org/abs/
2001.05411.

Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, and Chongjie Zhang. Efficient multi-agent
reinforcement learning by planning. arXiv preprint arXiv:2405.11778, 2024.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Reset-free lifelong learning with
skill-space planning. arXiv preprint arXiv:2012.03548, 2020.

Kiminori Matsuzaki. Empirical analysis of puct algorithm with evaluation functions of different
quality. In 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp.
142–147. IEEE, 2018.

Hossein Pourshamsaei and Amin Nobakhti. Predictive reinforcement learning in non-stationary
environments using weighted mixture policy. Applied Soft Computing, 153:111305, 2024.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, December 2020a. ISSN 1476-4687. doi: 10.1038/s41586-020-03051-4. URL
http://dx.doi.org/10.1038/s41586-020-03051-4.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020b.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

11

https://arxiv.org/abs/2001.05411
https://arxiv.org/abs/2001.05411
http://dx.doi.org/10.1038/s41586-020-03051-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mark HM Winands. Monte-carlo tree search. In Encyclopedia of computer graphics and games, pp.
1179–1184. Springer, 2024.

Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst lifelong non-
stationarity. arXiv preprint arXiv:2006.10701, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL

THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors did not use Large Language Models for research ideation, derivations, proofs, experi-
mental design, data analysis, or writing of the manuscript. No LLM contributed content that would
qualify as authorship or a significant contribution under the conference policy.

IMPACT STATEMENT

This paper proposes a novel framework for applying Monte Carlo Tree Search (MCTS) in lifelong
learning settings, addressing the challenges posed by non-stationary environments and dynamic game
dynamics. By introducing the adaptive Upper Confidence Bound for Trees (aUCT) and leveraging
insights from previous MDPs (Markov Decision Processes), our work significantly enhances the
efficiency and adaptability of decision-making algorithms across evolving tasks.

The broader societal implications of this research include its potential to improve AI applications in
robotics, automated systems, and other domains requiring dynamic decision-making under uncertainty.
For instance, this framework could be used in autonomous systems to adaptively respond to changing
environments, thereby improving safety and reliability. At the same time, it is crucial to acknowledge
and mitigate potential risks, such as unintended biases or over-reliance on prior knowledge that may
not fully represent novel situations.

Ethical considerations for this work focus on its use in high-stakes applications, such as healthcare,
finance, or defense, where decision-making under uncertainty could have significant consequences.
Developers and practitioners should implement safeguards to ensure responsible deployment, includ-
ing comprehensive testing in diverse scenarios and establishing clear boundaries for its use.

By advancing the state of the art in continual learning and decision-making, this research contributes
to the development of more adaptable and intelligent AI systems while highlighting the importance
of ethical and responsible innovation in AI technologies.

A.1 PROOF OF THEOREM 3.2

Proof. Proof of Theorem 3.2 Since in the MCTS UCB algorithm, the estimated Q-values are obtained
through multiple simulations, we need to analyze how the differences in simulation results between
two MDPs affect the estimated Q-values.

However, due to the randomness involved in the simulation process of the two MDPs:

• Transition randomness: Due to different transition probabilities, the two MDPs may move
to different next states even when starting from the same state and action.

• Action selection randomness: When using the UCB algorithm, action selection depends
on the current statistical information, which in turn relies on the past simulation results.

The randomness mentioned above makes it impossible for us to compare two independent random
simulation processes directly.

To eliminate the impact of randomness, we need to construct a coupled simulation process for the
two MDPs in the same probability space, allowing for a direct comparison between them. Then we
will incorporate the additional errors caused by randomness into the analysis as error terms. For this
purpose, we present the following assumptions.

Assumption A.1. Let us temporarily assume that the actions selected in each simulation are the same
for the two MDPs.

• Initial action consistency: The simulation starts from the same states

• Action selection consistency: The same action a is chosen in each state.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Note: This is a strong assumption and may not hold in practice. We will discuss its impact later.

Thus, we can obtain the difference in cumulative rewards between the two MDPs in a single simulation
as:

∆G = GM −GM ′ =

T∑
t=0

γt(R(sMt , at)−R′(sM
′

t , at)) (10)

Where sMt and sM
′

t are the states of the two MDPs at step t, and at is the action selected at step t.

So we can get

∣∣∣QN
M (s, a)−QN ′

M ′(s, a)
∣∣∣ =

∣∣∣∣∣∣ 1N
N∑
i=1

GM,i −
1

N ′

N ′∑
i=1

GM,i

∣∣∣∣∣∣ ≤ ∆̄G =

∣∣∣∣∣ 1n
n∑

i=1

∆Gi

∣∣∣∣∣ (11)

where n = min{N,N ′} To estimate the expectation and variance of ∆G, we need to analyze how
the differences in the state sequences affect the cumulative rewards.

We present several settings for the state differences.

• Probability of state difference: At each time step t, the probability that the states of the
two MDPs differ is denoted as pt.

• Initial state is the same: p0 = 0.

• State difference propagation: Due to differences in transition probabilities, state differ-
ences may accumulate in subsequent time steps.

Since the probability of state differences occurring at each step is difficult to calculate precisely, we
can use the total variation distance to estimate the probability of transitioning to different states. We
present the definition of the total variation distance between the transition probabilities of the two
MDPs and a recursive method for calculating the probability of state differences.

Definition A.2. Under action at, starting from state st, the total variation distance between the
transition probabilities of the two MDPs is:

DTV (P, P
′) =

1

2

∑
s′

|P (s′|st, at)− P ′(s′|st, at)| (12)

Thus, starting from the same state st and action at, the probability that the two MDPs transition to
different next states is at most DTV (P, P

′) ≤ ∆P
2 .

Thus, the probability of state differences occurring can be recursively expressed as:

pt+1 ≤ pt + (1− pt) ·DTV (P, P
′) ≤ pt +

∆P

2
(13)

So

pt ≤ t · ∆P

2
(14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Thus, at each time step t, the expected difference in cumulative rewards is:

E[|∆G|] = E[
T∑

t=0

γt(R(sMt , at)−R′(sM
′

t , at))]

=

T∑
t=0

γt(E[R(sMt , at)−R′(sMt , at)]︸ ︷︷ ︸
The impact of reward function differences

+ E[R′(sMt , at)−R′(sM
′

t , at)]︸ ︷︷ ︸
Reward differences caused by state differences

)

≤
T∑

t=0

γt(∆R+ 2Rmax · pt)

=
∆R

1− γ
+

T∑
t=0

γt · 2Rmax · t ·
∆P

2

=
∆R

1− γ
+Rmax∆P

T∑
t=0

tγt

=
∆R

1− γ
+Rmax∆P · γ

(1− γ)2

(15)

To estimate the variance of the cumulative reward difference, since the cumulative reward is bounded,
its variance is also finite. We can easily obtain

|∆G| ≤ Gmax =
2Rmax

1− γ
(16)

According to Hoeffding:

P (|∆̄G− E[∆̄G]| ≥ ϵ) ≤ 2 exp(− 2nϵ2

G2
max

) (17)

Thus, with probability at least 1− δ, we have:

|Q̂n
M (s, a)− Q̂n

M ′(s, a)| ≤ E[|∆Ḡ|] +Gmax

√
ln(2/δ)

2n

=
∆R

1− γ
+Rmax∆P · γ

(1− γ)2
+

2Rmax

1− γ

√
ln(2/δ)

2n

=
1

1− γ
(∆R+

Rmaxγ

1− γ
∆P) +

2Rmax

1− γ

√
ln(2/δ)

2n

= L(∆R+ κ∆P) + L2

(18)

A.2 PROOF OF THEOREM 3.4

Proof. Proof of Theorem 3.4 First, we consider the case of a single MDP and assume that we have a
”universal” upper bound U(s, a) ≥ Q∗

M (s, a).

Lemma A.3. Since U(s, a) ≥ Q∗
M holds for all (s, a), and initially Q(s, a) ≤ U(s, a), for any

update, Q(s, a) maintains Q(s, a) ≤ U(s, a) and Q(s, a) ≥ (a non-negative expected estimate).

The above two points illustrate Since we update using Q(s, a) = min{Q̂(s, a), U(s, a)} And since
U(s, a) ≥ Q∗(s, a), during all sampling processes, if Q̂(s, a) overestimates Q∗(s, a) significantly,
it will still be truncated by U(s, a), ensuring that Q(s, a) ≤ U(s, a). When Q̂(s, a) gradually
approaches Q∗(s, a), it will no longer be truncated. This does not hinder the convergence of Q to Q∗.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Theorem A.4 (Convergence in a Single MDP). If there are infinitely many samples for each state s
and its available actions a (i.e., every branch in the MCTS search tree is ”continuously” expanded),
then the Q(s, a) generated by the above update formula almost surely converges to Q∗

M (s, a).

Now we aim to demonstrate that after completing certain MDPs (tasks) M̄1, M̄2, . . . , M̄m, and then
switching to a new MDP M , the algorithm achieves faster convergence.

First, we analyze the classic scenario without upper bounds. In a finite state-action space, to achieve
the desired outcome with high probability 1− δ:

max
(s,a)∈S×A

|Qn(s, a)−Q∗
M (s, a)| ≤ ϵ (19)

The standard UCT/UCB theory typically provides a time complexity of Õ
(

|S||A|
(1−γ)3ϵ2 ln

1
δ

)
. To prove

this theorem, we just need to analyze the acceleration factor Γ, comparing the sampling complexity
of our aUCT and standard UCT.

More specifically, if we examine each specific (s, a), the analysis often resembles that of multi-armed

bandits: for ”suboptimal” (s, a), approximately Õ

(
1

(∆M
(s,a)

)2
ln 1

δ

)
samples are required. Where

∆M
(s,a) = Q∗

M (s, a∗)−Q∗
M (s, a) is the value gap between the action and the optimal action. Summing

up the exploration costs for all state-action pairs gives a total magnitude of
∑

(s,a)
1

(∆M
(s,a)

)2
.

Now we introduce the case with upper bounds and analyze how to reduce the number of samples
across different MDPs.

To quantitatively represent this acceleration, we divide the state-action pairs (s, a) into two groups:

• S1 : Upper bounds are sufficiently tight and are truncated to be lower than the optimal action
from the very beginning.

S1 =
{
(s, a)|∃i : UM̄i

(s, a) < Q0
M (s, a)

}
(20)

• S0 : The upper bounds are not ”tight enough,” i.e.,

S0 = remaining actions (21)

For (s, a) ∈ S1:

We treat each sampling as a multi-armed bandit. Let the true mean of the optimal arm be µ∗. For a
certain arm j, its true mean is known to satisfy µj ≤ Uj < µ∗.

Even if we truncate µ̂n(j) at Uj , the UCB algorithm’s ”optimistic estimate” for this arm at step n is
still:

Qn(j) = min {µ̂n(j), Uj}+ c

√
ln(n)

Nj(n)
(22)

Uj + c

√
ln(n)

Nj(n)
< µ∗ (23)

Let ∆ = µ∗ − Uj . As long as: √
ln(n)

Nj(n)
≤ ∆

2c
(24)

From the above, it can be ensured that Qn(j) cannot exceed µ∗ −∆/2. So

Nj(n) ≥
4c2 ln(n)

∆2
(25)

Where we obtain a sampling time complexity of Õ(lnn).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For (s, a) ∈ S0, these (s, a) cannot be pruned by ”truncation.” They still require multiple samples,
as in classic UCT, to determine whether they are truly optimal. For any (s, a) ∈ S0, we still need

approximately O

(
1

(∆M
(s,a)

)2
ln 1

δ

)
samples to distinguish that it is not as good as (s, a∗). Thus, the

sampling complexity of our algorithm is:

XaUCT =
∑

(s,a)∈S1

Õ (lnn) +
∑

(s,a)∈S0

Õ

(
1

(∆M
(s,a))

2
ln

1

δ

)
, (26)

Using the fact that Õ(lnn) ∼ Õ(ln 1
δ), we can rewrite this as

XaUCT =
∑

(s,a)∈S1

Õ

(
ln

1

δ

)
+

∑
(s,a)∈S0

Õ

(
1

(∆M
(s,a))

2
ln

1

δ

)
. (27)

In contrast, the sampling complexity of the standard UCT can be obtained using the same analysis,
i.e.,

XUCT =
∑

(s,a)∈S0∪S1

Õ

(
1

(∆M
(s,a))

2
ln

1

δ

)
. (28)

Comparing the order bounds from Equation (28) and Equation (27), we can find the acceleration
factor Γ as

Γ =

∑
(s,a)∈S1∪S0

1
(∆M

(s,a)
)2∑

(s,a)∈S1
(1) +

∑
(s,a)∈S0

1
(∆M

(s,a)
)2

, (29)

which is the desired result in the theorem.

A.3 PROOF OF THEOREM 4.1

Proof. Proof of Theorem 4.1 First, we need to establish unbiasedness and boundedness. For unbi-
asedness, we can derive:

E[Xi] = E(s,a)∼π[
U(s, a)
π(s, a)

·∆X(s, a)] = E(s,a)∼U [∆X(s, a)] = d(M,M ′) (30)

Therefore, E[d̂U] = d(M,M ′), meaning d̂U is an unbiased estimator.

wi =
U(si, ai)
π(si, ai)

≤ Umax

α
(31)

Where Umax = max(s,a) U(s, a) = 1
|S|·|A| . So we can get:

Xi = wi∆X(si, ai) ≤ (
Umax

α
)b (32)

So we can get Xi ∈ [0, C] where C = Umax

α b.

Based on the above analysis, we have X̄N = 1
N

∑N
i=1 Xi = d̂U , µ = E[Xi] = d(M,M ′). According

to Hoeffding’s inequality, for X̄N ∈ [0, C], we have:

Pr{|X̄N − µ| ≥ ϵ} ≤ 2 exp(−2Nϵ2

C2
) (33)

To achieve a confidence level of δ, it requires:

2 exp(−2Nϵ2

C2
) ≤ δ ⇔ exp(−2Nϵ2

C2
) ≤ δ

2
⇔ −2Nϵ2

C2
≤ ln

δ

2
⇔ 2Nϵ2

C2
≥ ln

2

δ
⇔ N ≥ C2

2ϵ2
ln

2

δ
(34)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We get if fulfilled:

N ≥ 1

2ϵ2
(
Umax

α
b)2 ln

2

δ
(35)

There is then a high probability error upper bound:

Pr{|d̂U − d(M,M ′)| ≤ ϵ} ≥ 1− δ (36)

A.4 PROOF OF THEOREM 4.2

Proof. Proof of Theorem 4.2 Constructing a martingale difference, let:

Sn :=

n∑
k=1

(Xk − d(M,M ′)), Yk := Xk − E[Xk|Fk−1] (37)

According to the martingale condition in formula 9, we know that Yk = Xk − d(M,M ′), and
Sn =

∑n
k=1 Yk satisfies E[Yk|Fk−1] = 0. Thus, {Sn,Fn} is a martingale process.

Since πk(s, a) ≥ α ⇒ wk ≤ Umax

α , and ∆X(s, a) ≤ b ⇒ Xk = wk∆X(sk, ak) ≤ Umax

α b =: C.
Therefore, we have:

|Yk| ≤ max{Xk, d(M,M ′)} ≤ C (38)
According to the Azuma-Hoeffding inequality for bounded martingale differences, we have:

Pr{|Sn| ≥ t} ≤ 2 exp(− t2

2NC2
) (39)

Let t = Nϵ, then |Sn| ≥ t is equivalent to |
∑n

k=1 Xk −Nd(M,M ′)| ≥ Nϵ, that is:

|d̂(n)U − d(M,M ′)| ≥ ϵ (40)

So:

Pr{|d̂(N)
U − d(M,M ′)| ≥ ϵ} ≤ 2 exp(−Nϵ2

2C2
) (41)

Thus, as long as N ≥ 2C2

ϵ2 ln 2
δ , we have Pr{|d̂(N)

U − d(M,M ′)| ≥ ϵ} ≤ δ.

A.5 PROOF OF THEOREM 4.3

Proof. Proof of Theorem 4.3 We decompose dU .

dU (M,Mi) = E(s,a)∼U [|Ra
s −Ra,(i)

s |︸ ︷︷ ︸
Reward difference

+κ
∑
s′

|P a
ss′ − P

a,(i)
ss′ |︸ ︷︷ ︸

transition difference

]

≃ E(s,a)∼U [|Ra
s −Ra,(i)

s |+ κ||Ψϕ(s, a)−Ψϕi(s, a)||1]
≤ E(s,a)∼U [L3ρ(ϕ, ϕi) + κL3ρ(ϕ, ϕi)]

≤ L3ρ(ϕ, ϕi) + κL3ρ(ϕ, ϕi)

= (1 + κ)L3ρ(ϕ, ϕi)

= (1 + κ)L3d̂para(M,Mi)

(42)

B PSEUDO-CODE

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 UMCTS

Require: {M1, . . . ,MM},U , κ, L, L(i)
2 , γ, Rmax, C, T

1: for i = 1 to M do
2: Repeat sampling (s, a) from the uniform distribution U to update R and P .
3: for j = 1 to M do
4: d(Mi,Mj)← E(s,a,s′)∼U

[
|Ra

s −R
a

s |+ κ |P a
ss′ − P

a

ss′ |
]

5: end for
6: Initialize root node s0, set N(·), N(·, ·),W (·, ·) to 0
7: for t = 1 to T do
8: Selection:
9: Set current node s← s0

10: while child nodes of s are fully expanded do
11: Choose a = argmax

a

(
Q(s, a)

)
// using Eq. (*) below

12: s← child node after action a
13: end while
14: Expansion:
15: Expand one non-visited action anew at s, sample s′ from environment or model
16: Create new child node s′, set N(s′, ·) = 0, W (s′, ·) = 0
17: Simulation:
18: Perform a (light) rollout or default policy from s′ to terminal or horizon
19: Receive cumulative reward G
20: Backpropagation:
21: Traverse back from s′ to s0 along visited path
22: for all visited state-action pairs (s̃, ã) do
23: N(s̃) ← N(s̃) + 1
24: N(s̃, ã) ← N(s̃, ã) + 1
25: W (s̃, ã) ← W (s̃, ã) +G
26: // Update Q(s̃, ã) with UMCTS bound:
27: UM̄(s̃, ã)← Q∗

M̄(s̃, ã) + L · d(M,M̄) + L
(i)
2

28: U(s̃, ã)← min
{

Rmax

1−γ , UM̄(s̃, ã), . . .
}

29: Q(s̃, ã)← min
{W (s̃, ã)

N(s̃, ã)
+ C

√
lnN(s̃)

N(s̃, ã)
, U(s̃, ã)

}
(∗)

30: end for
31: end for
32: end for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 UMCTS with Importance Sampling
Require: Tasks {M1, . . . ,MM}, each partially known; Uniform distribution U(s, a);Lipschitz

constants L,L(i)
2 ; Discount factor γ, maximum reward Rmax; Exploration constant C; Number

of search iterations T ;A (default) policy π used in Simulation for importance sampling;
1: Function DISTANCE(M,M̄, π):
2: ∆X(s, a) ≜ ∆Ra

s + κ∆P a
s

3: return E(s,a)∼π

[
U(s, a)
π(s, a)

·∆X(s, a)

]
4: // For each task Mi

5: for i = 1 to M do
6: Initialize root node s0, set N(·) = 0, N(·, ·) = 0, W (·, ·) = 0
7: (Optionally maintain a buffer Di for storing samples (s,a))
8: for t = 1 to T do
9: Selection:

10: s ← s0
11: while all actions from s are fully expanded and s not terminal do
12: a ← argmax

a

(
Q(s, a)

)
// UCB or UMCTS criterion

13: s ← child node after action a
14: end while
15: Expansion:
16: if s not terminal then
17: Choose one unvisited action anew at s
18: Sample next state s′ ∼ Pi(· | s, anew) // from environment or model
19: Create child node s′, set N(s′, ·) = 0, W (s′, ·) = 0
20: end if
21: Simulation:
22: Initialize cumulative reward G← 0
23: ssim ← s′

24: while ssim is not terminal do
25: Pick action asim by policy π(· | ssim)
26: Observe reward rsim = Ri(ssim, asim)
27: Observe next state snext ∼ Pi(· | ssim, asim)
28: G← G+ rsim
29: // Update or record increments for Ra

s , P
a
s,s′

30: ∆Ra
ssim , ∆P a

ssim ← (computed from new sample)
31: // Optionally store (ssim, asim) in Di for importance sampling
32: ssim ← snext
33: end while
34: Backpropagation:
35: Traverse from s′ back to s0 along visited path
36: for all visited pairs (s̃, ã) do
37: N(s̃) ← N(s̃) + 1
38: N(s̃, ã) ← N(s̃, ã) + 1
39: W (s̃, ã) ← W (s̃, ã) +G
40: /* Use the Lipschitz bound with distance estimation */
41: d(Mi,M̄) ← Distance

(
Mi,M̄, π

)
42: UM̄(s̃, ã) ← Q∗

M̄(s̃, ã) + L · d(Mi,M̄) + L
(i)
2

43: U(s̃, ã) ← min
{Rmax

1− γ
, UM̄(s̃, ã), . . .

}
44: /* UMCTS update rule */

45: Q(s̃, ã) ← min
{W (s̃, ã)

N(s̃, ã)
+ C

√
lnN(s̃)

N(s̃, ã)
, U(s̃, ã)

}
(∗)

46: end for
47: end for
48: end for

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 3 UMCTS with Neural Network Environment Model
Require: MDPs {M1, . . . ,MM}, each with trained neural network parameters {ϕ1, . . . , ϕM};

A new MDP M (partially known), with neural network Ψϕ : S × A → ∆(S); A distance
function ρ(ϕ, ϕi) ≥ 0 on parameter space (e.g., ℓ2-norm); Define d̂para(M,Mi) = ρ(ϕ, ϕi);
Lipschitz constants L,L

(i)
2 , discount factor γ, Rmax, exploration constant C, iterations T ; A

default (simulation) policy π for rollouts

1: // For each task M (with parameter ϕ) run UMCTS
2: Initialize root node s0, counters N(·) = 0, N(·, ·) = 0, W (·, ·) = 0
3: for t = 1 to T do
4: Selection:
5: s← s0
6: while all actions from s are expanded and s not terminal do
7: a ← argmax

a

(
Q(s, a)

)
8: s ← child node after action a
9: end while

10: Expansion:
11: if s not terminal then
12: choose an unvisited action anew
13: sample s′ ∼ Ψϕ(· | s, anew) // neural net predicts next state distribution
14: create child node s’
15: N(s′, ·)← 0, W (s′, ·)← 0
16: end if
17: Simulation:
18: G← 0
19: ssim ← s′

20: while ssim not terminal do
21: asim ← sample from π(· | ssim)
22: // observe reward (possibly from real env or approximated by a learned reward model)
23: rsim = R(ssim, asim)
24: snext ∼ Ψϕ(· | ssim, asim)
25: G ← G+ rsim
26: /* update ϕ via gradient (e.g. supervised/unsupervised RL objective) */
27: ϕ ← ϕ− η∇ϕL

(
ϕ; (ssim, asim, snext)

)
28: ssim ← snext
29: end while
30: Backpropagation:
31: traverse from s′ back to s0
32: for all visited state-action pairs (s̃, ã) do
33: N(s̃) ← N(s̃) + 1
34: N(s̃, ã) ← N(s̃, ã) + 1
35: W (s̃, ã) ← W (s̃, ã) +G
36: // parametric distance to previously trained model ϕi

37: d̂para(M,Mi) ≜ ρ(ϕ, ϕi)
38: // Lipschitz-based upper bound
39: UM̄(s̃, ã) ← Q∗

M̄(s̃, ã) + L · d̂para(M,M̄) + L
(i)
2

40: U(s̃, ã) ← min
{

Rmax

1−γ , UM̄(s̃, ã), . . .
}

41: // UMCTS update rule

42: Q(s̃, ã) ← min
{W (s̃, ã)

N(s̃, ã)
+ C

√
lnN(s̃)

N(s̃, ã)
, U(s̃, ã)

}
(∗)

43: end for
44: end for

21

	Introduction
	Background
	Our Proposed Solution
	Deriving adaptive Upper Confidence Bound (aUCT)
	Our Proposed LiZero Algorithm Using aUCT

	Estimating aUCT in Practice
	Evaluations
	Conclusions
	Appendix / supplemental material
	Proof of Theorem 3.2
	Proof of Theorem 3.4
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Pseudo-code

