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ABSTRACT

Monte Carlo Tree Search (MCTS) has proven highly effective in solving complex
planning tasks by balancing exploration and exploitation using Upper Confidence
Bound for Trees (UCT). However, existing works have not considered MCTS-
based lifelong planning facing a sequence of MDPs — e.g., each MDP with varying
transition probabilities and rewards from previous ones — throughout the operational
lifetime. This paper presents LiZero for Lipschitz lifelong planning using MCTS.
We propose a novel concept of adaptive UCT (aUCT) to transfer knowledge from
previous tasks to the exploration/exploitation of a new task, depending on both the
Lipschitz continuity between tasks and the confidence of knowledge in Monte Carlo
action sampling. We analyze LiZero’s acceleration factor in terms of improved
sampling efficiency and also develop efficient algorithms to compute aUCT in an
online fashion by both data-driven and model-based approaches, whose sampling
complexity and error bounds are also characterized. Numerical results show that
LiZero significantly outperforms existing MCTS and lifelong learning baselines in
terms of much faster convergence (3~4x). Our results highlight the potential of
LiZero to advance decision-making and planning in dynamic environments.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) has demonstrated state-of-the-art performance in solving many
challenging planning tasks, from playing the game of Go|Silver et al.|(2016) and chess to logistic
planning Silver et al.| (2017). It performs look-ahead searches based on Monte Carlo sampling of
the actions to balance efficient exploration and optimized exploitation in the large search space.
Recent efforts have focused on developing MCTS algorithms for real-world domains that require the
elimination of certain standard assumptions. Examples include MuZero |Schrittwieser et al.| (2020b)
that leverages the decoding of hidden states to avoid requiring the knowledge of the game dynamics;
and MAzero Liu et al.| (2024) that performs multi-agent search through decentralized execution.
Existing work have not considered MCTS with lifelong task-to-task variations, by retaining and
transferring prior knowledge to bootstrap lifelong learning across a continuous stream of tasks.

We consider MCTS-based lifelong planning under task-to-task variation. An agent faces a series of
changing planning tasks — e.g., with varying transition probabilities and rewards — which are drawn
sequentially throughout the operational lifetime. Transferring knowledge from prior experience to
continually adapt Monte Carlo sampling of the actions and thus speed up searches in new tasks
is a key question in this setting. We note that although continual and lifelong planning has been
studied in reinforcement learning (RL) context, e.g., learning models of the a task sequence of distinct
stationary environments |Xie et al.[(2020), identifying reusable skills|Lu et al.| (2020), or estimating
Bayesian sampling posteriors [Fu et al.|(2022), such prior works do not apply to MCTS. Monte Carlo
action sampling in MCTS relies on Upper Confidence Tree (UCT) or Predictor Upper Confidence
Tree (pUCT) Auger et al.|(2013)); Matsuzaki| (2018)) to balance exploration and exploitation in large
search spaces. To the best of our knowledge, there has not been existing work analyzing the transfer
of knowledge from past MCTS searches to new tasks, thus enabling adaptive UCT/pUCT rules in
lifelong MCTS.
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This paper proposes LiZero for Lipschitz lifelong planning using MCTS. We quantify a novel concept
that the amount of knowledge transferable from a source task to the UCT/pUCT rule of a new task
depends on both the similarity between the tasks as well as the confidence of the knowledge. More
precisely, by defining a distance metric between two MDPs, we refine the concentration argument
and drive a new adaptive UCT bound (denoted as aUCT in this paper) for lifelong MCTS. The aUCT
is shown to consist of two components — relating to (i) the Lipschitz continuity between the two tasks
and (ii) the confidence of knowledge due to the number of samples in Monte Carlo action sampling.
Our results enable the development of a novel LiZero algorithm that makes use of prior experience to
run an adaptive MCTS by simulating/traversing from the root node and selecting actions according to
the aUCT rule, until reaching a leaf node. We also analyze aUCT’s acceleration factor in terms of
improved sampling efficiency due to cross-task transfer. It is shown that smaller task distance and
higher confidence can both lead to higher acceleration in aUCT.

To support the practical deployment of LiZero in lifelong planning, we need efficient solutions
to compute aUCT in an online fashion. To this end, we develop practical algorithms to estimate
various terms in aUCT, and especially the distance metric between two MDPs, from either available
state-action samples using a data-driven approach or a parameterized distance using a model-based
(deep learning) approach. We provide rigorous analysis on the sampling complexity of the data-driven
approach, to ensure arbitrarily small errors with high probability, by modeling a sequence of policy
update process by a filtration — i.e., an increasing sequence of o-algebras. For the model-based
approach, we obtain an upper bound using a parameterized distance of the neural network models.
These results enable effective LiZero applications to open world tasks. We evaluate LiZero on a series
of learning tasks with varying transition probabilities and rewards. LiZero is shown to significantly
outperform MCTS and lifelong RL baselines (e.g., [Winands|(2024); Kocsis & Szepesvari (2006);
Cheng et al.;[Schrittwieser et al.|(2020a)); Brafman & Tennenholtz| (2002); Lecarpentier et al.|(2021al))
in terms of performance. faster convergence to higher optimal rewards. Using the knowledge of only
a few source tasks, LiZero achieves 3~4x speedup with about 31% higher early reward in the first
half of the learning process.

Our key contributions are as follows. First, we study theoretically the transfer of past experience
in MCTS and develop a novel aUCT rule, depending on both Lipschitz continuity between tasks
and the confidence of knowledge in Monte Carlo action sampling. It is proven to provide positive
acceleration in MCTS due to cross-task transfer. Second, we develop LiZero for lifelong MCTS
planning, with efficient methods for online estimation of aUCT and analytical error bounds. Finally,
LiZero achieves significant speed-up over MCTS and lifelong RL baselines in lifelong planning.

2 BACKGROUND

Monte Carlo Tree Search (MCTS) Kocsis & Szepesvari|(2006]); [Silver et al.|(2016); Schrittwieser et al.
(2020b) is a heuristic algorithm for solving problems modeled as Markov Decision Processes (MDPs).
It dynamically balances exploration and exploitation by expanding a search tree, simulating action
outcomes, and updating value estimates accordingly. An MDP is typically defined as (S, A, R, P),
where S and A are the state and action spaces, R? is the reward, and P denotes the transition
dynamics.

In the MCTS framework, Upper Confidence Bound for Trees (UCT) |Coulom!| (2006) and its variant,
Predictor UCT (pUCT) Matsuzaki|(2018); |Auger et al. (2013)), are widely used to balance exploration
and exploitation during node selection. While effective under static assumptions, they perform
suboptimally in dynamic, a task sequence of distinct stationary environments where state transitions
and rewards change over time |Pourshamsaei & Nobakhti| (2024); |Hernandez-Leal et al.| (2017);
Goldberg & Mataric| (2003). In this paper, we consider MCTS- based lifelong planning, where an
agent faces a sequence of distinct MDPs — e.g., with varying transition probabilities and reward — and
requires the development of new adaptive UCT bounds.

Lifelong reinforcement learning (RL) Lecarpentier et al.|(2021b)); Xie et al.|(2020); Fu et al.| (2022);
Lu et al.| (2020); /Auger et al.|(2013)) addresses learning a sequence of tasks from unknown MDPs in
an online manner. Each sampled MDP is treated as a standalone RL problem where the agent learns
and adapts its policy 7 to maximize expected return Da Silva et al.| (2018)); Hawasly & Ramamoorthy
(2013)); |Abel et al.[(2018)). We can reasonably believe that the knowledge gained in similar MDPs can
be reused. While prior work explores task modeling | Xie et al.| (2020), skill reuse |Lu et al.| (2020), and
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Bayesian transfer [Fu et al.|(2022), these methods do not extend naturally to lifelong MCTS, which
requires adaptive UCT-style bounds to enable knowledge transfer and efficient planning across a
sequence of distinct tasks (MDPs).

3 OUR PROPOSED SOLUTION

3.1 DERIVING ADAPTIVE UPPER CONFIDENCE BOUND (AUCT)

To derive the proposed aUCT rule, we consider a set of m past known MDPs My, ..., M,, and
their learned search policies 71, . . . T,,,. Let S and A be their state and action spaces, respectivel
N; (s, a) be the visit count of MDP M to state-action pair (s € S,a € A), W;(s,a) to denote its
sampled return, and Q%} (s,a) = W;(s,a)/N;(s, a) be the learned estimate for the Q-value of MDP
M. Our goal is to apply these knowledge toward learning a new MDP, denoted by M. To this end,
we derive a new Lipschitz upper confidence bound for M, which utilizes and transfers the knowledge
from past MDPs M, ..., My, thus obtaining an improved Monte Carlo action sampling strategy
that limits the tree search in M to a smaller subset of sampled actions. We use N (s, a) to denote
the visit count of the new MDP to (s € S,a € A), W (s, a) to denote the sampled return, and thus
QN (s,a) = W(s,a)/N(s,a) to denote its current Q-value estimate.

Our key idea in this paper is that an improved upper confidence bound for the new MDP M can be
obtained by (i) analyzing the Lipschitz continuity between the past and new MDPs with respect to
the upper confidence bounds and (ii) taking into account the confidence and aleatory uncertainty
of the learned Q-value estimates to determine to what extent the learned knowledge from each M,
is pertinent. Intuitively, the more similar M and M, are and the more samples (and thus higher
confidence) we have in the learned Q-value estimates, the less exploration we would need to perform
to solve M through MCTS. Our analysis will lead to an improved upper confidence bound that guides
the MCTS on the new MDP M over a much smaller subset of action samples, thus significantly
improving search performance. We start by introducing a definition of the distance between two
given MDPs, M = (R, P), M’ = (R’, P}, with reward functions R, R’ and state transitions P, P’,
respectively. We choose a positive scaling factor > 0 to combine the distances for transition
probabilities and rewards. Proofs of all theorems and corollaries are presented in the appendix.

Definition 3.1. Given two MDPs M = (R, P), M’ = (R’, P'), and a distribution for sampling the
state transitions i : S x A x &’ — [0, 1], we define the pseudometric between the MDPs as:

dM,M') = AR+ k- AP =E (54 5)u [|RE — R + K|P%, — PL].

Noted that we write d(M, M’) = AR+x-AP with Ag € [0, Rinax] and Ap € [0, 1](total-variation

distance), so d € [0, Rpmax] + . The normalized advantage Aé‘g’a) = % € [0,1]

Here d(M, M) is our definition of distance between two MDPs, M and M’. We choose U to be a
uniform distribution for sampling the state transitions in this paper. In Section[d] we discuss practical
algorithms to estimate the distance metric between two MDPs, from either available state-action
samples using a data-driven approach or a parameterized distance using a model-based (deep learning)
approach. The sampling complexity and error bounds are also analyzed.

Next, we prove the main result of this paper and show that the upper confidence bounds of M and
M’ are Lipschitz continuous with respect to distance d(M, M'). We obtain a new upper confidence

bound for M, by transfering the knowledge from the learned Q-value estimates Q%{,(s, a) =
W'(s,a)/N’(s,a) of MDP M’. The bound also depends on the confidence of learned Q-value
estimates, relating to the visit counts N (s,a) and N'(s, a).

Theorem 3.2 (Lipschitz aUCT Rule). Consider two MDPs M and M’ with visit count N, N’ and
corresponding estimate Q-values QY (s, a), QY (s, a), respectively. With probability at least (1 — &)
for some positive 6 > 0, we have

QY (s,a) — QN (s,a)| < L-d(M, M') + P(N,N") (1)

'Without loss of generality, we assume that the MDPs have the same state and action spaces. Otherwise, we
can consider the extended MDPs defined by the union of their state and action spaces.
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where L = 1/(1 — ~)(From Egn is a Lipschitz constant, d(M, M) is the distance between
MDPs, and P(N, N') is given by

2R max In(2/6)

P(N,N') =
(N, N) 1—~ \ 2-min(N,N’)

(@)

In the theorem above, we show that the estimate Q-values between two MDPs are bounded by
two terms, i.e., a Lipschitz continuity term depending on the distance d(M, M’) between the two
environments and a confidence term depending on the number N, N’ of samples used to estimate the
Q-values. The Lipschitz continuity term measures how much the learned knowledge of source MDP
M is pertinent to the new MDP M’, while the confidence terms P(N, N') quantifies the sampling
bias arising from statistical uncertainty due to limited sampling in MCTS. We note that as the number
of samples IV goes to infinity, we have Q¥ (s, a) — Q% (s, a) in Theorem 3.2, approaching the true
Q-value Q% (s, a) of the new MDP. Our theorem effectively provides an upper confidence bound
for the true Q-value of the new MDP, based on knowledge transfer from the source MDP. We also
note that as both numbers N, N’ go to infinity, the confidence term becomes P(N, N') — 0. Our
theorem recovers the Lipschitz lifelong RL |Lecarpentier et al.|(2021b) as a special case of our results,
for the true Q-values of the two MDPs.

We apply Theorem 3.2 to MCTS-based lifelong planning with a sequence of distinct m tasks,
My, ..., M,,. Our goal is to obtain an improved bound on the true Q-value of the new task M
based on knowledge transfer. To this end, we independently apply the knowledge from each past
MDP, i.e., Q% (s,a) = W;(s,a)/N;(s,a), to the new MDP. By taking the minimum of these bounds
and making N — oo, it provides a tightest upper bound on the true Q-value Q% (s, ) of the new
MDP, which is defined as our aUCT bound, as it adaptively transfers knowledge from past tasks to
the new tasks in MCTS-based lifelong planning. The result is summarized in the following corollary.

Corollary 3.3 (aUCT bound in lifelong planning). Given MDPs M, ..., M,,, the new MDP’s
true Q-value is bounded by Q0 (s, a) < Uyuct with probability at least (1 — §). The aUCT bound
U.ucr is given by

3

Uavcr(s,a) = o Qi (s,0) + L - d(M, M;) + 1—~ \[ 2N;i(s,a)

Obtaining this corollary is straightforward from Theorem 3.2 by taking N — oo and considering
the tightest bound of all knowledge transfers. In the context of MCTS-based lifelong planning, the
more knowledge we have from solving past tasks, the more likely we can easily plan a new task, as
the aUCT bound U,ucr(s, a) is taken over the minimum of all past tasks. The confidence of past
knowledge, i.e., the statistical uncertainty due to sampling number N;, also affects the knowledge
transfer to the new task.

3.2 OUR PROPOSED LIZERO ALGORITHM USING AUCT

We use the derived aUCT to design a highly efficient LiZero algorithm for MCTS-based lifelong plan-
ning. The LiZero algorithm transfers knowledge from past known tasks by computing U,ycr(s, @) in
Corollary 3.3. It requires an efficient estimate of the distance d(M, M) (as defined in Definition 3.1)
between the source MDPs and the new (target) MDP. We will present practical algorithms for such
distance estimates in the next section and present an analysis of the sampling complexity and error
bounds. We will first introduce our LiZero algorithm in this section. We note that, during MCTS,
direct exploration/search in the new task M also produces new knowledge and leads to improved
UCT bound of M. Therefore, our proposed LiZero combines both knowledge transfer through
Uauct(s,a) and knowledge from direct exploration/search in M.

The search in our proposed LiZero algorithm is divided into three stages, repeated for a certain
number of simulations. First, each simulation starts from the internal root state and finishes when
the simulation reaches a leaf node. Let QY (s,a) = W (s, a)/N (s, a) be the current estimate of the
new MDP and N(s) = >, 4, N(s, a) be the visit count to state s € S. For each simulated time
step, LiZero chooses an action a by maximizing a combined upper confidence bound based on aUCT,
i.e.,Since both terms are valid upper bounds on Q* (s, @), their minimum remains an admissible upper
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bound, preserving optimism. We ensure sufficient exploration by standard UCB tie-breaking and a
per-edge visit floor.

In N(s)

W (s, a) L ),UaUCT(Sa a)]

N(s,a) N(s,a

a = arg max min l
a

In practice, we can also use the maximum possible return Ry,.x/(1 — 7) as an initial value of
the search. Next, at the final time step of the simulation, the reward and state are computed by a
dynamics function. A new node, corresponding to the leaf state, is then added to the search tree.
Finally, at the end of the simulation, the statistics along the trajectory are updated. Let G be the
accumulative (discounted) reward for state-action (s, a) from the simulation. We update the statistics

N
by: QN (5,0) = HEQLUBDIE N (5 q) = N(s,a) + 1.

Intuitively, at the start of task M’s MCTS, there are not sufficient samples available, and thus
Uaucr(s,a) serves as a tighter upper confidence bound than that resulted from the Monte Carlo
actions sampling in M. As more samples are obtained during the search process, the standard UCT
bound is expected to become tighter than U,ycr(s, a). Using both bounds will ensure efficient
knowledge transfer and task-specific search. The pseudocode of LiZero is provided in Appendix A.2.

For the proposed LiZero algorithm, we prove that it can result in accelerated convergence in MCTS.
More precisely, we analyze the sampling complexity for the learned Q-value estimate Qj\v/l (s,a) to
converge to the true value Q% (s, ), and demonstrate a strictly positive acceleration factor, compared
to the standard UCT. The results are summarized in the following theorem.

Theorem 3.4. To ensure the convergence in a finite state-action space, maxs q) \Q%(s, a) —
Q' (s,a)| < ewith probability 1 — §, the number of samples required by standard UCT is

5 (IS[AL 1
0] <(1 e In 5 4
while the proposed LiZero algorithm requires:O~ (% . (El;{l)’?e‘z In %) where I' > 1 is an acceleration

1
Z(s,a)eleJSo 7@(\4

. ASE .
factor given by T' = SN GV IS S ZAJ\/II — and 8 = {(s,a) | Ji : Usucr(s,a) <
' ()

Q% (s,a*)} is a state-action set where U,ucr of action a is lower than the optimal return of a* in
state s; and A{\;a) x [@h(5,0") — Q3\,(5,a)] is a normalized advantage in the range of [0, 1].

The theorem shows that LiZero achieves a strictly improved acceleration I' > 1 with a reduced
sampling complexity (by 1/T"), in terms of ensuring convergence to the optimal estimates, i.e.,

max(s o) |QN;(s,a) — Q3(s,a)| < e with probability 1 — 4. Since the normalized advantage Af\:a)

is in [0, 1], we have 1/A{‘S’fa) > 1. It follows that I' > 1 whenever S; # 0; when S; = 0, LiZero
reduces to UCT and I = 1. More precisely, LiZero achieves higher acceleration when (i) our aUCT
makes more actions a less favorable, as U,ucr(s, a) < Q% (s, a*) implies that the sub-optimality
of action a in s can be more easily determined due to aUCT; or (ii) aUCT helps establish tighter
bounds in cases with a smaller advantage, which naturally requires more samples to distinguish the
optimal actions — since I increases as the normalized advantage becomes smaller for (s,a) € Sy,
while being larger for (s, a) € Sp. These explain LiZero’s ability to achieve much higher acceleration
and lower sampling complexity, resulted from significantly reduced search spaces. We will evaluate
this acceleration/speedup through experiments in Section 5]

4  ESTIMATING AUCT IN PRACTICE

To deploy LiZero in practice, we propose two approaches for estimating aUCT, and in particular,
the distance daq,aq, between two MDPS. Our first approach leverages trajectory samples drawn
from MCTS policies by modeling a sequence of distict policies as a filtration — i.e., an increasing
sequence of o-algebra, while our second approach learns neural network approximations of the
MDPs. Analysis of sampling complexity and error bounds are provided as theorems in this section.
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Sample-based Distance Estimate. During MCTS, transition samples are collected from the search
to train a search policy 7. It is easy to see that we can leverage these transition samples to estimate
distance d(M, M') between two MDPs, as long as we address the bias arising from gap between
search policy 7 and desired sampling distribution I/ in the distance definition d(M, M’). Tt also
allows us to obtain a consistent estimate of MDP distance, without depending on the search policy
that is updated during training. We note that this bias can be addressed by importance sampling.

Let AX(s,a) = AR? + kAP? be the distance metric for a given state-action pair (s, a). We can
rewrite the distance as d(M, M") = E(; 4)~u/[AX (s, a)]. We denote py(s, a) as the probability (or
density) of sampling (s, a) according to distribution /. Importance sampling implies:

pu(s,a)

7(s,a)
which can be readily computed from the collected transition samples, following the search policy
7 (s, a). Therefore, for a given set of samples {(s;,a;), Vi = 1,...,n} collected from a search policy
m(s,a), we can estimate the distance by the empirical mean:

E(sa)y~u [AX(s,a)] = E(s,a)~m |: -AX(s,a)|, (5)

R n u Z z
= ZwiAX(si,ai), with w; = M 6)

where w; is the importance sampling weight.

As long as the state-action pairs with w(s,a) > 0 cover the support of U, this estimator satisfies
Elds] = d(M,M’), meaning it is unbiased. Let a be the “coverage” of policy 7 (s, a), i.e.
7(s,a) > o > 0, and let p3** be the maximum desired sampling probability. We summarize
this result in the following theorem and state the sampling complexity for estimator dy to e-converge
to d(M, M).

Theorem 4.1 (Sampling Complexity under Stationarity). Assume that for any (s, a), the reward
plus transition difference is bounded, i.e., AX(s,a) € [0,b], and that there exists o such that
m(s,a) > «a > 0. When n independent samples are used to estimate (jl, we have

Pr{|d, —dM, M) < e} >1-6 (7)

m ax

for any § € (0, 1), if the number of samples satisfy n > 5 62 ( ) -In ( ) Thus, we obtain a

convergence guarantee in the sense of arbitrarily high probab1l1ty 1 — 4 and arbitrarily small error e,

for estimating d(M, M) using dy. dy is unbiased and ensures convergence to the true distance as
the number of samples is sufficiently large.

We note that in many practical settings, the search policy m would not stick to a stationary distribution.
In contrast, it is continuously updated in each iteration, resulting in a sequence of distinct policies
over time, i.e., 71, T2, ..., 7. Thus, the transition samples (s, ax)’s we obtain at each step k for
estimating the distance d(M, M) are indeed drawn from a different 7. We cannot assume that the
samples follow a stationary distribution (nor that {AX;*} are i.i.d.) in importance sampling. we
model the sequence of distinct policy updates as a filtration —i.e., an increasing sequence of o-algebra.
In particular, we make the following assumption: at the k-th sampling step, the environment is
forcibly reset to a predetermined policy 7 or independently draws a state from an external memory.
This assumption is reasonable, in many episodic learning scenarios, the environment is inherently
divided into episodes: at the beginning of each episode, the state is reset to some initial distribution
(e.g., the opening state in Atari games). This naturally results in the “reset” assumption.

In this setup, the policy 7, at step k is determined by information at step k— 1 or earlier. Consequently,

once 7y, is fixed, the distribution (marginal) of A X" = B2kl “ (2:2:; AX (sg, ay) is also fixed. Therefore,

we can establish the filtration {Fy, k = 1,2, ...} as follows:

Fr—1 = 0{T1, 00y Tk, (81,01), -y (Sk—1, Q1) }, ®
where o{-} denotes the smallest o-algebra generated by the random elements. Thus, we obtain:
Pu(Sk, ak
E[AXkLFkJ—l] = E(Sk,ak)/\/ﬂ'k M ' AX(Skv ak) = ]E(sk,ak)rvb{ [AX(S7 CL)] = d(M7 MI)
T (Sk> k)

©))
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This allows us to obtain another empirical estimator do using the filtration model. We analyze the
sampling complexity of dy and summarise the results in the following theorem.

Theorem 4.2 (Sampling Complexity under task-to-task variation). Under the same conditions as
Theoremmwhen n independent samples are used to estimate da, we have Pr{|dy — d(M, M")| <

max 2
€} > 1— 6 forany § € (0,1), if the number of samples satisfy n > 5 b* (p“T) In (2).

It implies that more samples are needed, considering the task-to-task variation of the policy update
process for the distance estimate. We approximate the filtration by resetting episodes and re-sampling
initial states from a replay buffer at task boundaries.

NN-based Distance Estimate. We propose an alternative approach to first approximate the dy-
namics of MDPs M and M’ using two neural networks and then estimate d(M, M) based on the
parameterized distance between the neural networks. To this end, we need to establish a bound
on d(M, M) using the distance between their neural network parameters. We use a neural net-
work Uy : S x A — A(S) to model the MDP dynamics. Many model-based learning algorithms,
such as PILCO Deisenroth & Rasmussen! (2011),MBPO Janner et al.| (2019),PETS |Chua et al.
(2018)),MuZero |Schrittwieser et al.|(2020b)), can be employed to learn the models of M and M’. Let
¢ be the neural network parameters of MDP M and ¢’ be the neural network parameters of MDP
M'’. We define a distance in the parameter space: dpam = p(¢,@') > 0, where p is a distance or
divergence measure in the parameter space, such as the £5-norm or certain kernel distances. Intuitively,
if ¢ and ¢’ are very close, the two neural networks are similar in fitting the dynamics of the respective
MDPs. It suggests that the two MDPs should have a small distance. To provide a more rigorous
characterization of this concept, we present the following theorem, which demonstrates that under
proper assumptions, the distance dpa’ra based on neural network parameters can serve as an upper
bound for the desired d(M, M’). Let kK = Ryaxy/(1 — ) be a constant.

Theorem 4.3. If the neural networks modeling M and M’ satisfy the Lipschitz condition, i.e., there
exists a constant L > 0 such that ¥(s,a), ||U4(s,a) — Uy (s,a)|l1 < L - p(¢,¢"), then we have:

d(M, M') < (1 + &) Ldpara.

The theorem indicates that by learning neural networks to model the MDP dynamics, we can estimate
the distance d(M, M’) by estimating the distance between the neural network parameters. This
parameterized distance can be computed for event continuous action and state spaces.

(91

EVALUATIONS

epoch

(a) Task 1 (b) Task 2 (c) Task 6 (d) Task 10

Figure 1: Comparing LiZero with MCTS and lifelong RL baselines. We demonstrate the convergence
of different algorithms on representative Tasks 1, 2, 6, and 10, in a sequence of distinct ten tasks. In
Task 1, since no prior knowledge is yet available, our LiZero and other MCTS baselines show similar
convergence speeds and optimal rewards. From Task 2 to Task 10, as more knowledge from past
tasks gets transferred to the new task by LiZero, it outperforms all baselines with more significantly
improved convergence speed. In Task 10 with maximum past knowledge, LiZero demonstrates the
largest improvement in convergence speed and optimal reward.

Our experiments evaluate LiZero on a series of ten learning tasks with varying transition probabilities
and rewards. We demonstrate LiZero’s ability to transfer past knowledge in MCTS-based planning,
resulting in significant convergence speedup (3~4x) and early reward improvement (about 31%
average improvement during the first half of learning process) in lifelong planning problems. All
experiments are conducted on a Linux machine with AMD EPYC 7513 32-Core Processor CPU and
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an NVIDIA RTX A6000 GPU, implemented in python3. All source codes are made available in the
supplementary material.

Name Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task10 Total

LiZero-U 4.83+£0.05 5.98+0.10 5.99+£0.07 5.9440.05 6.08+£0.07 6.05£0.16 6.01£0.11 6.03+£0.05 6.04+0.04 6.03£0.09 58.98
LiZero-P 4.65+0.06 5.89+0.11 5.90+0.12 5.90+0.03 5.62+0.19 5.68+0.22 5.76+0.12 5.87+0.03 578+0.06 5.79+0.20 56.84
LiZero-N 4.64+£0.08 5.56+0.07 5.56+0.07 5.5240.05 5.52+£0.08 5.48+0.06 5.50+£0.09 545£0.06 5.50+0.06 5.48+0.05 54.21

MCTS-R 4.51£0.07 4.43+0.08 4.32+0.11 4.2440.05 4.18+£0.07 4.2440.10 4.25+£0.03 4.47£0.06 4.34+0.03 4.39+0.08 43.37
MCTS-O 4.52+£0.06 4.87+0.08 4.57£0.04 4.16:0.03 4.78+£0.05 4.91£0.06 4.04+0.03 3.70£0.05 3.02+0.07 2.96+0.06 41.53

pUCT 4.66+0.04 4.71£0.06 4.69+0.13  4.77+0.09 4.74+0.04 4.87£0.05 4.94£0.06 4.72+0.05 4.86+0.07 4.77+0.03 47.73
RMax 1.024£0.02  1.054+0.01 1.01+0.02 1.03£0.01 1.04+0.01 1.05£0.01 1.03+0.03 1.04+0.02 1.034+0.02 1.03+£0.01 10.33
LRMax 1.05£0.01 1.0540.02 1.04+0.02 1.06£0.03 1.05+£0.01 1.06£0.02 1.04+0.01 1.06£0.03 1.05+0.01 1.04£0.01 10.50

Table 1: The table summarizes the rewards and standard deviations obtained in sequential tasks. It
shows that LiZero achieves about 31% early reward improvement on average, compared with MCTS
baselines (including two versions of MCTS with UCT |Winands| (2024); |[Kocsis & Szepesvari| (2006);
Cheng et al.| and one with pUCT similar to MuZero |Schrittwieser et al.|(2020a))) and lifelong RL
baselines (including RMax [Brafman & Tennenholtz] (2002)) and LRMax [Lecarpentier et al.[(2021a)).
MCTS-R and MCTS-O demonstrate similar level of performance, both better than lifelong RL and
slightly below pUCT. LiZero algorithms outperform MCTS baselines by about 31% early reward
improvement on average. With more accurate distance estimates — i.e., from Lizero-N to LiZero-P
and LiZerio-U — we observe further improvement due to better knowledge transfer that comes with
more accurate aUCT.

In the evaluation, we consider some state-

of-the-art baselines using MCTS and lifelong ——
RL. In particular, we consider two versions of 00 = Lizerorp
MCTS algorithms that leverage UCT [Winands N
(2024)); Kocsis & Szepesviri| (2006); |Cheng riosd
et al.: MCTS-R denotes a version that restarts

the search from scratch for each new task, and
MCTS-O denotes a version that is oblivious to
the sequence of distinct task dynamics and con-
tinues to build upon the search tree from the — ~ .

past. We also consider state-of-the-art MCTS Percentage of Optimal Reward Achieved

using pUCT, similar to MuZero and related al-

gorithms |Schrittwieser et al.| (2020a). We have  Figure 2: LiZero shows a comfortable speedup
two lifelong RL algorithms: RMax |Brafman & of 3~4x, compared with MCTS and lifelong RL
'Tennenholtz| (2002) and LRMax |Lecarpentier] baselines, to achieve the same level of optimal
et al.| (2021a), which exploits a similar Lipschitz rewards with higher sample efficiency.

continuity in RL but does not consider MCTS

using upper confidence bounds. We evaluated three versions of LiZero using different methods to
estimate aUCT by computing task distances, as presented in Section[d] LiZero-U employs a direct

distance estimate based on Definition LiZero-P is the data-driven distance estimater dy using

samples following the search policy; and LiZero-N is the neural-network based estimator dpqq using
parameter distances.

Number of Epochs
e

«
g
T

o

The experimental environment we used is a variation of the “tight” task by Abel et al. |Abel et al.
(2018). It generates a sequence of ten learning tasks. Each task consists of a 25 x 25 grid world, with
the initial state located at the center, and four possible actions: up, down, left, and right. The three
cells in the top-right corner and one cell in the bottom-left corner are designated as goal cells. For
each task, the reward for the goal cells is randomly chosen from the range [0.9, 1]. The remaining
cells will randomly generate interference rewards within the range [0, 0.1]. Its state transition matrix
selects its own slip probability (acting differently from the chosen one) within the range [0, 0.1]. This
ensures that the sequence of tasks has varying reward and transition probabilities. Each task is for
1,000 epochs. These operations are repeated multiple times to narrow the confidence interval.

FigureE] shows the convergence of different algorithms on representative Tasks 1, 2, 6, and 10, in a
sequence of ten distinct tasks. As tasks are drawn sequentially, LiZero-U, LiZero-P, and LiZero-N
algorithms converge more rapidly than the MCTS and lifelong RL baselines. This speedup becomes
evident as early as the second task (Task 2) — while similar convergences are observed in Task 1 as no
prior knowledge is yet available. From Task 2 to Task 10, as more knowledge from past tasks gets
transferred to the new task by LiZero, it outperforms all baselines in significantly more improved
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convergence speed. In Task 10 with maximum past knowledge, LiZero outperforms all baselines in
convergence speed and optimal reward. MCTS-O (which is oblivious to changing task dynamics)
exhibits worse performance than MCTS-R (which restarts from scratch).

In Table[T} we summarize the average rewards (and their standard deviations) obtained in sequential
tasks by different algorithms during their first 500 epochs (i.e., first half of the learning process).
LiZero algorithms achieves about 31% early reward improvement on average. As for MCTS baselines
with UCT, MCTS-R shows similar reward across different tasks, while MCTS-O demonstrates higher
volatility — due to its reliance on how task dynamics evolve. pUCT achieves higher performance
due to the use of improved probabilistic UCT similar to MuZero. All MCTS baselines show better
results than lifelong RL algorithms (i.e., RMax and LRMax), which are known to be less sample
efficient and require more epochs for exploration/exploitation. With more accurate distance estimates
—1i.e., from Lizero-N to LiZero-P and to LiZero-U — we observe further improved results due to better
knowledge transfer that comes with more accurate aUCT calculations.

To evaluate the speedup of LiZero, Figure
shows the average number of epochs needed by
different algorithms to achieve 60%, 70%, and
80% of the optimal reward, respectively. We
note that LiZero shows a comfortable speedup of
3~4x, compared to MCTS and lifelong RL base-
lines, while RL baselines are much less sample-
efficient than MCTS-based planning, in general.
We do not go beyond 80% in this plot since °© v T > © °®
. . ask Sequence
some baselines are never able to achieve more

than 80% of the optimal reward that LiZero ob- ) . . .
tains. The results validate the acceleration as Tigure 3: Our ablation study comparing differ-
characterized by T in The orem@ ent distance estimators in LiZero-U, LiZero-P, and

LiZero-N, while MCTS-R can be viewed as a base-
Ablation Study. Our ablation study consid- line without distance estimator. The relevant per-
ers the impact of distance estimator on perfor- formance of these algorithms are provided in Ta-
mance. Figure [3] shows the distance estima- ble[|and Figure[2]and thus not repeated here. The
tors in LiZero-U, LiZero-P, and LiZero-N (each  superior performance of LiZero is indeed resulted
with decreasing accuracy) across the sequence from the use of aUCT in MCTS. The tighter aUCT
of tasks, while for the purpose of ablation study, bounds, the higher performance we can obtain.
MCTS-R can be viewed as an algorithm without
distance estimator. Comparing the performance of these algorithms in Table[l|and Figure [2} we see
that the superior performance of LiZero is indeed resulted from the use of aUCT in MCTS — The
tighter aUCT bounds we use, the higher performance we can achieve. Using no distance estimator
and thus only UCT (in MCTS-R) leads to the lowest performance. Further, as tasks are drawn, the
distance estimates decrease quickly, and by the third task, it is already very small, implying accurate
aUCT calculation for knowledge transfer.

LiZero-U _
LA LiZero-P
LiZero-N

-
|
<

Distance Estimates

6 CONCLUSIONS

We study theoretically the transfer of past knowledge in MCTS-based lifelong planning and develop
a novel aUCT rule, depending on both Lipschitz continuity between tasks and the confidence of
knowledge in Monte Carlo action sampling. The proposed aUCT is proven to significantly accelerate
MCTS and enable a new lifelong MCTS algorithm: LiZero. We present efficient methods for online
estimation of aUCT and analyze the sampling complexity and error bounds. LiZero is evaluated on a
sequence of distinct tasks with varying transition probabilities and rewards. It outperforms MCTS
and lifelong RL baselines with 3~4x speed-up and about 31% higher early reward.

Limitations: The derivation of Theorem [3.2] considers varying transition probabilities and rewards,
while assuming the same state and action spaces. In this case, we could consider the union of state
and action spaces, but better approaches may be needed. Further, our acceleration analysis requires
that the optimal Q-function has a bounded advantage gap to compute the acceleration factor I'. This
bound may be loose for practical problems, leading to underestimation of acceleration factor I'.
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A APPENDIX / SUPPLEMENTAL MATERIAL

THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors did not use Large Language Models for research ideation, derivations, proofs, experi-
mental design, data analysis, or writing of the manuscript. No LLM contributed content that would
qualify as authorship or a significant contribution under the conference policy.

IMPACT STATEMENT

This paper proposes a novel framework for applying Monte Carlo Tree Search (MCTS) in lifelong
learning settings, addressing the challenges posed by non-stationary environments and dynamic game
dynamics. By introducing the adaptive Upper Confidence Bound for Trees (aUCT) and leveraging
insights from previous MDPs (Markov Decision Processes), our work significantly enhances the
efficiency and adaptability of decision-making algorithms across evolving tasks.

The broader societal implications of this research include its potential to improve Al applications in
robotics, automated systems, and other domains requiring dynamic decision-making under uncertainty.
For instance, this framework could be used in autonomous systems to adaptively respond to changing
environments, thereby improving safety and reliability. At the same time, it is crucial to acknowledge
and mitigate potential risks, such as unintended biases or over-reliance on prior knowledge that may
not fully represent novel situations.

Ethical considerations for this work focus on its use in high-stakes applications, such as healthcare,
finance, or defense, where decision-making under uncertainty could have significant consequences.
Developers and practitioners should implement safeguards to ensure responsible deployment, includ-
ing comprehensive testing in diverse scenarios and establishing clear boundaries for its use.

By advancing the state of the art in continual learning and decision-making, this research contributes
to the development of more adaptable and intelligent Al systems while highlighting the importance
of ethical and responsible innovation in Al technologies.

A.1 PROOF OF THEOREM[3.2]

Proof. Proof of Theorem[3.2]Since in the MCTS UCB algorithm, the estimated Q-values are obtained
through multiple simulations, we need to analyze how the differences in simulation results between
two MDPs affect the estimated Q-values.

However, due to the randomness involved in the simulation process of the two MDPs:

* Transition randomness: Due to different transition probabilities, the two MDPs may move
to different next states even when starting from the same state and action.

* Action selection randomness: When using the UCB algorithm, action selection depends
on the current statistical information, which in turn relies on the past simulation results.

The randomness mentioned above makes it impossible for us to compare two independent random
simulation processes directly.

To eliminate the impact of randomness, we need to construct a coupled simulation process for the
two MDPs in the same probability space, allowing for a direct comparison between them. Then we
will incorporate the additional errors caused by randomness into the analysis as error terms. For this
purpose, we present the following assumptions.

Assumption A.1. Let us temporarily assume that the actions selected in each simulation are the same
for the two MDPs.

* Initial action consistency: The simulation starts from the same states

* Action selection consistency: The same action a is chosen in each state.

12
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Note: This is a strong assumption and may not hold in practice. We will discuss its impact later.

Thus, we can obtain the difference in cumulative rewards between the two MDPs in a single simulation
as:

AG = Gy — Gy = Zw (st a0) — R/ (" ar)) (10)

Where sM and sM are the states of the two MDPs at step ¢, and a; is the action selected at step ¢.

So we can get

(I

_ 1<
gAG:‘nZAGi

ny 15
Qi (s,a) = @4 (s, 0)| = Z MZ_EZGMJ;
i=1

where n = min{ny,ns} To estimate the expectation and variance of AG, we need to analyze how
the differences in the state sequences affect the cumulative rewards.

We present several settings for the state differences.

* Probability of state difference: At each time step ¢, the probability that the states of the
two MDPs differ is denoted as p;.

* Initial state is the same: py = 0.

« State difference propagation: Due to differences in transition probabilities, state differ-
ences may accumulate in subsequent time steps.

Since the probability of state differences occurring at each step is difficult to calculate precisely, we
can use the total variation distance to estimate the probability of transitioning to different states. We
present the definition of the total variation distance between the transition probabilities of the two
MDPs and a recursive method for calculating the probability of state differences.

Definition A.2. Under action a4, starting from state s;, the total variation distance between the
transition probabilities of the two MDPs is:

DTV PP Z‘P |5t7at /(s/‘staat” (12)

Thus, starting from the same state s; and actlon at, the probability that the two MDPs transition to
different next states is at most Dpy (P, P') < &F

Thus, the probability of state differences occurring can be recursively expressed as:

AP
Di+1 Spt+(1*pt)'DTV(P7P/)SthrT (13)
So
AP
Dt St'T (14)
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Thus, at each time step ¢, the expected difference in cumulative rewards is:
E[|AG|| = Zv (st a1) — R'(s}", ay))]

Y'(E[R(s)",ar) = R'(s)",a0)] + E[R'(s',a,) — R'(s!",ar)] )

The impact of reward function differences ~ Reward differences caused by state differences

S Vt(AR + 2‘Rmax : pt)
t=0 (15)
AR , AP
- f ZO v 2-Rmax T
T
_ AR Runax AP Y '
1=y t=0
AR v
- 2 AP
R (e

To estimate the variance of the cumulative reward difference, since the cumulative reward is bounded,
its variance is also finite. We can easily obtain

2Rmax
‘AG| < Gmax = (16)
L—y
According to Hoeffding:
2
P(|AG —E[AG]| > ¢) < 2exp(— ne” ) (17)
Thus, with probability at least 1 — , we have:
Am an _ In(2/6
QR1(5,0) ~ Qi (5, )] < BIAC] + Gunau) 2l
AR vy 2Rmax 2/5
= 7 _ m'leP
=y T (18)
1 flmax 2 max 1 2
1—7 FE ol 2n
= L(AR+ KAP) + Ly
O

A.2 PROOF OF THEOREM[3.4]

Proof. Proof of Theorem [3.4]First, we consider the case of a single MDP and assume that we have a
universal” upper bound U (s, a) > Q%,(s, a).

Lemma A.3. Since U(s,a) > Q% holds for all (s,a), and initially Q(s,a) < U(s,a), for any
update, Q(s,a) maintains Q(s,a) < U(s, a) and Q(s,a) > (a non-negative expected estimate).

The above two points illustrate Since we update using Q(s, a) = min{Q(s, a), U(s,a)} And since
U(s,a) > Q*(s,a), during all sampling processes, if Q(s, a) overestimates Q* (s, a) significantly,
it will still be truncated by U(s,a), ensuring that Q(s,a) < U(s,a). When Q(s,a) gradually
approaches Q* (s, a), it will no longer be truncated. This does not hinder the convergence of @ to Q*.

14
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Theorem A.4 (Convergence in a Single MDP). If there are infinitely many samples for each state s
and its available actions a (i.e., every branch in the MCTS search tree is ”continuously” expanded),
then the Q(s, a) generated by the above update formula almost surely converges to Q%,(s, a).

Now we aim to demonstrate that after completing certain MDPs (tasks) M1, Mo, . .., M,,, and then
switching to a new MDP M, the algorithm achieves faster convergence.

First, we analyze the classic scenario without upper bounds. In a finite state-action space, to achieve
the desired outcome with high probability 1 — §:

J— * <
(s,gleaé}'ixA|Qn(8’a) Qr(s,a)| <e 19

The standard UCT/UCB theory typically provides a time complexity of O (ulfu;‘;‘ez In %) . To prove

this theorem, we just need to analyze the acceleration factor I', comparing the sampling complexity
of our aUCT and standard UCT.

More specifically, if we examine each specific (s, a), the analysis often resembles that of multi-armed

bandits: for ”suboptimal” (s, a), approximately 0 W ln% samples are required. Where
(s,0)
Af\g o = Q@ (s,a*)—Q%,(s, a) is the value gap between the action and the optimal action. Summing

1

up the exploration costs for all state-action pairs gives a total magnitude of Z(S o) AV 32
' (s:a)

Now we introduce the case with upper bounds and analyze how to reduce the number of samples
across different MDPs.

To quantitatively represent this acceleration, we divide the state-action pairs (s, a) into two groups:

* S; : Upper bounds are sufficiently tight and are truncated to be lower than the optimal action
from the very beginning.

St ={(s,a)|3i : Uy, (s,a) < QY(s,a)} (20)

* Sp : The upper bounds are not “tight enough,” i.e.,

Sy = remaining actions 21

For (s,a) € S1:

We treat each sampling as a multi-armed bandit. Let the true mean of the optimal arm be p*. For a
certain arm j, its true mean is known to satisfy p; < U; < p*.

Even if we truncate fi,,(j) at U, the UCB algorithm’s “optimistic estimate” for this arm at step n is
still:

In(n)

Qn(j) = min {1, (4),U;} +¢ (22)
In(n)
Uj+c < (23)
’ Nj(n)
Let A = p* — Uj. As long as:
In(n) < é 24)
N;(n) = 2¢
From the above, it can be ensured that Q,,(j) cannot exceed p* — A/2. So
4c?1n(n)

Where we obtain a sampling time complexity of O(Inn).
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For (s,a) € Sp, these (s, a) cannot be pruned by “truncation.” They still require multiple samples,
as in classic UCT, to determine whether they are truly optimal. For any (s,a) € Sy, we still need

@ M 5 In ¢ > samples to distinguish that it is not as good as (s, a*). Thus, the

approximately O <

sampling complexity of our algorlthm is:

Xaver= ), O(mn)+ ) O<( E ;) (26)
(éa)

(s,a)ES (s,a)ESo

Using the fact that O(Inn) ~ O(In $), we can rewrite this as

1
Xaver = Z O<1n > Z O<( (M)) 6). 27

(s,a)€Sy (s,a)€So

In contrast, the sampling complexity of the standard UCT can be obtained using the same analysis,
ie.,

- 1 1
Xuor = Z 10) ((AM)an 5) . (28)
(s,a)ESHUS; (s,a)

Comparing the order bounds from Equation (28 and Equation (27), we can find the acceleration
factor I as

1
Z(s,a)e&uso m
= : ) 29
Lsaes (D +2Lwes, oy
which is the desired result in the theorem.
O

A.3 PROOF OF THEOREM [4.1]

Proof. Proof of Theorem @First, we need to establish unbiasedness and boundedness. For unbi-
asedness, we can derive:

U(s,a)
m(s,a)

Therefore, E[dy,] = d(M, M'), meaning dz, is an unbiased estimator.

E[Xi] = E(s,a)~rl CAX(s,0)] = E( ) ulAX (s, 0)] = d(M, M) (30)

w; = U(Siaai) S Z/[rnau( (31)
(84, a4) «

Where Umax = max, o) U(s,a) = ST |A\ So we can get:

umax
(0%

Xi = wAX (si,a;) < ( )b (32)

So we can get X; € [0, C] where C' = Ymaxp,

Based on the above analysis, we have X y = ~ Zj\; X; = cfu, w=E[X;] =d(M,M'"). According
to Hoeffding’s inequality, for Xy € [0, C], we have:

_ 2Ne?
Pr{| Xy — p| > €} < 2exp(— o2 ) (33)
To achieve a confidence level of J, it requires:
Ne? 2Ne? 1) 2Ne? 1) 2Ne? 2 c? 2
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We get if fulfilled:

1 UIH'IX
N> — <
- 262( o

There is then a high probability error upper bound:

b)? 1n§ (35)

Pr{|dy —d(M,M")| < e} >1—6 (36)

A.4 PROOF OF THEOREM [4.2]

Proof. Proof of Theorem[4.2] Constructing a martingale difference, let:

Sp = (X — d(M, M), Yy := X, — E[Xy| Fi_1] (37)
k=1

According to the martingale condition in formulalgl, we know that Y, = X — d(M, M’), and
Sn = 1 Yy satisfies E[Yj|F_1] = 0. Thus, {S,,, F,,} is a martingale process.

Since 7 (s,a) > o = wi < % and AX (s,a) < b= X = wpAX(sg,ar) < M“o‘j"b =:C.
Therefore, we have:

Y| < max{Xy,d(M,M")} <C (38)
According to the Azuma-Hoeffding inequality for bounded martingale differences, we have:
2

Pr{|Sn| > 1} < 2exp(—53r5) (39)
Lett = Ne, then |S,,| > tis equivalent to |y, _; X — Nd(M, M')| > Ne, that is:
A —d(M, M")| > e (40)
So: )
N N
Pr{|d}}") — d(M,M')| > ¢} < 2exp(—555) (41)
Thus, as long as N > 266;2 In 2, we have Pr{\cfz(/{N) —d(M,M")| > €} <4. O
A.5 PROOF OF THEOREM [£.3]
Proof. Proof of Theorem [.3] We decompose dy,.
du(M. M;) = B e ool [RE = RSO 153 |Poy = P
%/_/ g’
Reward difference
transition difference
~ By apual| Re = REW| + 8]0 (s, a) — Wy, (5,0)]]1] @)
< Es,a)~u[L3p(), 05) + kL3p(d, ¢;)]
< Lsp(, ¢i) + £L3p(d, ¢5)
= (1+ &)Lap(9, ¢i)
= (1 + &) Ladpara (M, M;)
[

B PSEUDO-CODE
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Algorithm 1 UMCTS

Require: {My,.... My} U, 5, L, L 5, Rinax, C, T
1: fori=1to M do
: Repeat sampling (s, a) from the uniform distribution ¢/ to update R and P.
for j = 1to M do
d(Mu MJ) — E(s,a,s’)wu [ |R? - RZ' + K ‘P.g:e’ - PZS/H
end for

2
3
4
5
6:  Initialize root node sg, set N(-), N(-,-), W(-,-) t0 0
7. fort=1toT do

8 Selection:

9 Set current node s < sg

0 while child nodes of s are fully expanded do

1

10:
1 Choose a = argmax (Q(s,a)) // using Eq. (*) below

12: s < child node after action a
13: end while
14: Expansion:
15: Expand one non-visited action @, at s, sample s’ from environment or model
16: Create new child node s, set N(s',-) =0, W(s',-) =0
17: Simulation:
18: Perform a (light) rollout or default policy from s’ to terminal or horizon
19: Receive cumulative reward G
20: Backpropagation:
21: Traverse back from s’ to sq along visited path
22: for all visited state-action pairs (3,a) do
23: N(3) « N(5)+1
24: N(3,a) < N(5,a)+1
25: W(s,a) «+ W(5,a) +G
26: // Update Q(§, a) with UMCTS bound:
27: Up(3.a) ¢ Q' (3,@) + L - d(M, M) + LY
28: U(3,a) < min{ ff=ex  Uy(3,a), ... }
L . (W (5,a) In N(5) -
29: Q(5,a) + mln{ NG.a) + NG.a)’ U(s,a)} (%)
30: end for
31:  end for
32: end for
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Algorithm 2 UMCTS with Importance Sampling

Require: Tasks {M,..., My}, each partially known; Uniform distribution U (s, a);Lipschitz

PRU R R D

bl

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:

42:
43:
44

45:

46:
47:
48:

constants L, Lél); Discount factor v, maximum reward R,,x; Exploration constant C'; Number
of search iterations T";A (default) policy 7 used in Simulation for importance sampling;
Function DISTANCE(M, M, ):
AX(s,a) = AR + Kk AP?
Uls, a) -AX(s,a)
7(s,a)
/! For each task M
for: =1to M do
Initialize root node sg, set N(-) =0, N(-,-) =0, W(-,-) =0
(Optionally maintain a buffer D; for storing samples (s,a))
fort =1to T do
Selection:
S < So
while all actions from s are fully expanded and s not terminal do
a <$— argmax (Q(s, a)) // UCB or UMCTS criterion

return B, o)

a
s < child node after action a
end while
Expansion:
if s not terminal then
Choose one unvisited action a,e at s
Sample next state ' ~ P;(- | 8, Gpew) // from environment or model
Create child node ¢, set N(s',-) =0, W(s',-) =0
end if
Simulation:
Initialize cumulative reward G < 0
Ssim s
while sg;,,, is not terminal do
Pick action agiy, by policy (- | Ssim)
Observe reward 7y, = R;(Ssim s Gsim)
Observe next state Spext ~ P (+ | Ssim, @sim )
G+ G+r sim
// Update or record increments for %, P

ARg, , AP <« (computed from new sample)
// Optionally store (Sgim, @sim ) in D; for importance sampling
Ssim € Snext
end while
Backpropagation:
Traverse from s’ back to sq along visited path
for all visited pairs ($,a) do
N(8) «+ N(5)+1
N(5,a) < N(5,a)+1
W(s,a) < W(s,a)+G
/* Use the Lipschitz bound with distance estimation */
dM;, M) « Distance(Mi,Mﬂr)
Up(3.@) « Q% (5.a) + L-d(M;, M) + LY
U(3,a) « min{ fma", Us(3,), ... }
/¥ UMCTS update rulez‘/

W(3,a InN(s -
Q(3,a) « min{ N((j Z)) +C ;(S(z; U(s,a)} (+)
end for
end for
end for
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Algorithm 3 UMCTS with Neural Network Environment Model

Require: MDPs {M;, ..., My}, each with trained neural network parameters {¢1,...,dnr};

A new MDP M (partially known), with neural network ¥y : S x A — A(S); A distance

function p(¢, ¢;) > 0 on parameter space (e.g., /3-norm); Define cfpam(M, M;) = p(o, ¢i);
Lipschitz constants L, Lél), discount factor 7y, Ry,ax, exploration constant C', iterations 77; A
default (simulation) policy 7 for rollouts

1: // For each task M (with parameter ¢) run UMCTS

2:
3:

»

42:

43:
44

Initialize root node sg, counters N(-) =0, N(-,-) =0, W(-,-) =
fort =1toT do
Selection:
S < So
while all actions from s are expanded and s not terminal do
a < argmax (Q(s, a))

a
s < child node after action a
end while
Expansion:
if s not terminal then
choose an unvisited action apew
sample s’ ~ Uy(- | s, anew) // neural net predicts next state distribution
create child node s’
N(s',:)« 0, W(s',-)«0
end if
Simulation:
G+ 0
Ssim s
while sg;,, not terminal do
asim < sample from 7(- | Sgim)
// observe reward (possibly from real env or approximated by a learned reward model)
Tsim = R(ssim; asim)
Snext ™ lII(;B( | Ssim asim)
G + G+ Tsim

/* update ¢ via gradient (e.g. supervised/unsupervised RL objective) */
¢ — ¢ - UV¢£(¢; (Ssima Asim » Snext))
Ssim € Snext
end while
Backpropagation:

traverse from s’ back to sq
for all visited state-action pairs (§,a) do
N(8) < N +1
N(s,a) «+ N(§,a)+1
W(s,a) « W(,a)+G
// parametric distance to previously trained model ¢;
dpara(M7 Mz) =S p((ba ¢z)
/I Lipschitz-based upper bound
Uq(3,a) « Qy(5,a) + L- dpara(M, M) + L

U(s,a) « mln{?‘““" U(5,a) }

// UMCTS update rule

0(,a) « min{ I;V/((jg +C,/1jlvlg(2, U, a)} (+)
end for
end for
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