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ABSTRACT

The fluency and general applicability of large language models (LLMs) has mo-
tivated significant interest in detecting whether a piece of text was written by a
language model. While both academic and commercial detectors have been de-
ployed in some settings, particularly education, other research has highlighted the
fragility of these systems. In this paper, we demonstrate a data-efficient attack that
fine-tunes language models to confuse existing detectors, leveraging recent devel-
opments in reinforcement learning of language models. We use the ‘human-ness’
score (often just a log probability) of various open-source and commercial detec-
tors as a reward function for reinforcement learning, subject to a KL-divergence
constraint that the resulting model does not differ significantly from the original.
For a 7B parameter Llama-2 model, fine-tuning for under a day reduces the AU-
ROC of the OpenAI RoBERTa-Large detector from 0.84 to 0.62, while perplexity
on OpenWebText increases from 8.7 to only 9.0; with a larger perplexity budget,
we reduce AUROC to 0.30 (worse than random), with a perplexity increase to
9.9. Similar to traditional adversarial attacks, we find that this increase in ‘de-
tector evasion’ generalizes to other detectors not used during training. In light of
our empirical results, we advise against continued reliance on LLM-generated text
detectors.

1 INTRODUCTION

Large language models (LLMs) can produce high-quality text in a wide variety of settings (3; 4). Ac-
cess to such powerful LLMs has expanded rapidly; for anyone hoping to generate machine-written
text, a plethora of free and low-cost options exist. The usage of such models has become endemic
to classrooms, news outlets, social media platforms, and other domains. This rapid development
has led to several objections to widespread use of LLMs, including moral qualms with data procure-
ment, applications, questions regarding the quality of machine-generated text and issues with LLMs
outputting inaccurate information (hallucinations) among others. These concerns have led to a sig-
nificant amount of research and commercial product offerings for detecting machine-generated text
(e.g. 6; 19; 15). In this work we present an adversarial attack that utilizes reinforcement learning
(RL) that directly optimizes an LLM to minimize it’s detectability. We seek to answer the fol-
lowing questions: How does detectability trade-off with other metrics like perplexity? How does
detectability scale with the query budget to a detector, and is it feasible to train available LLMs to
be undetectable against commercial detectors on a limited budget? Does training against one de-
tector reduce detectability under other detectors? We should note that in contrast to prior work, our
approach does not require the use of human paraphrasers or a paraphrasing model (11) and adds no
overheard during inference.

The main contribution of this paper is a detailed empirical study on the ease of evading language
model detectors by optimizing against them. Our experiments find that a simple DPO-based pipeline
produces consistent reduction in detectability against various detectors. We can achieve AUROC
metrics below 0.5 against several strong public and commercial detectors, indicating worse than
random chance detector performance on the fine-tuned model and close to random chance perfor-
mance on several additional detection algorithms at the cost of only small increases in perplexity.
Moreover, in many cases optimizing against one detector yields a model that is also less detectable
under other detectors. In particular, we find that models pre-trained against the public RoBERTa-
large achieve an average of 0.15 reduction in AUROC when evaluated by a number of black-box
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commercial detectors. These results hold even at longer sequences, such as generating essays, where
our fine-tuned Llama-7b-chat model achieves a RoBERTA-large AUROC of 0.26.

The results of our red-teaming effort suggest that fine-tuning language models to be less detectable
is both easy and cheap, which makes it feasible for a wide slate of malicious actors, even against
the best open-source and commercial detectors available. Based on these results, we advise various
stakeholders (educators, policymakers etc) against reliance on the current suite of text-detectors, and
to suitably account for less-detectable LLM generated text.

2 OPTIMIZING AGAINST LANGUAGE MODEL DETECTORS

We leverage recent advantages in fine-tuning language models with reinforcement learning to di-
rectly optimize for maximum detector confusion. We present our pipeline below.

Reinforcement Learning for Language Modelling. We consider a language model πθ that is
conditioned on a prompt x and auto-regressively generates an output sequence y. The desired ob-
jective is expressed through a reward function r(x, y) that assigns higher rewards to more desirable
responses. In practice, the most commonly-used objective includes an additional KL-divergence
penalty between the language model and its initialization:

max
πθ

Ex∼Dp,y∼πθ(y|x)
[
r(x, y)− βDKL

[
πθ(y | x) || πref(y | x)

]]
(1)

where Dp is some dataset of prompts πref is the reference model and β is a coefficient that controls
the trade-off between reward and divergence (16; 1; 20). The objective above seeks to align the
model with the reward function, while not deviating too far from the pre-trained model.

Direct Preference Optimization (DPO). Rafailov et al. (17) recently proposed the DPO algorithm
with the goal of enabling simpler, stabler optimization of the above KL-constrained objective in the
case where the reward function is learned from a dataset of preference pairs. Assume a dataset of
preference pairs D = {x(i), y

(i)
w , y

(i)
l }Ni=1 of prompts x and two generations yw ≻ yl, where yw is

preferred over yl. Under suitable assumptions, the DPO algorithm (17) shows that the exact optimal
policy π∗ for the problem in Eq. 1 can be directly optimized through the MLE objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
(2)

This supervised loss results in a simple and stable training objective, so we adopt DPO as our
optimization algorithm. See Appendix A for a complete discussion of related work.

Preference Data Generation and Optimization for Detector Evasion. To apply DPO to our
detector-evasion setting, we construct a preference dataset using Llama-2-7B samples. We generate
a pair of samples y(i), ȳ(i) for each prompt x(i) in the dataset, using temperature 1.0.1 Preference
labels are generated by comparing the detector’s ‘human-ness’ score s(x, y) for a pair of responses,
assigning the label y(i) ≻ ȳ(i) if s(x, y(i)) > s(x, ȳ(i)); otherwise we have ȳ(i) ≻ y(i). Once we
have generated the preference dataset, we fine-tune Llama-2-7B using the DPO objective in Eq. 2.

3 EXPERIMENTS

We conduct a wide variety of experimental evaluations in order to understand the extent to which
optimizing against detectors is feasible and cost-effective. In Section 3.1, we investigate the extent to
which training against one detector provides evasion from other detectors, using both open-source
and commercial detectors available only through APIs. Section 3.2 studies how many queries to
a detector are necessary to collect a dataset sufficient for evasion. Section 3.3 evaluates whether
sampling longer sequences from the evasion-tuned model degrades evasion. Finally, we explore
detector evasion in language models fine-tuned for dialogue in Section 3.4, which explore evasion
using off-policy data in a case study in essay generation.

1The number of prompts varies across experiments, but is typically on the order of 10k; the specific value
is noted in the relevant experimental sections.
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Detector Trained Against

None RoB-lg RoB-base Log Prob Log Rank DetectGPT DetectLLM

Perplexity 8.7 9.0 8.9 9.0 9.7 9.5 9.5
E

va
lD

et
ec

to
r RoB-lg 0.84 0.62 0.68 0.87 0.90 0.87 0.88

RoB-base 0.78 0.56 0.53 0.78 0.81 0.78 0.80
Log Prob 0.69 0.59 0.58 0.32 0.14 0.50 0.55
Log Rank 0.75 0.64 0.64 0.42 0.22 0.57 0.61
DetectGPT 0.81 0.82 0.80 0.70 0.62 0.48 0.53
DetectLLM 0.82 0.83 0.83 0.77 0.73 0.56 0.60

Median AUROC 0.80 0.63 0.66 0.74 0.68 0.57 0.61

Table 1: Cross-detector generalization for open-source detectors. For each detector, we train 3 models
with different KL constraints (β ∈ {0.05, 0.5, 5}). We report the perplexity of the strongest resulting model
within a perplexity budget of 9.7 (an increase of 1) on OpenWebText, as well as the AUROC for all detectors.

Models. Our experiments use the open-source 7B parameter Llama-2-base model (23) in Sec-
tions 3.1-3.3 and the corresponding Llama-2-chat model in Section 3.4. For the off-policy data
experiment in Section 3.4, we sample demonstration responses from gpt-3.5-turbo-0613.2

Datasets. In Sections 3.1-3.4, we generate texts for detection that continue short 2 to 16-token pre-
fixes of OpenWebText documents (7). For the experiments with chat-tuned models in Section 3.4’s
essay-generating case study, we use prompts from the Alpaca instruction dataset (22) for generic
evasion tuning and a collection of free, human-written essays for essay-specific evasion-tuning (25).

Detectors. We use strong open-source detectors from prior work, including language models trained
for detection such as the RoBERTa-large and RoBERTa-base models trained in Solaiman et al.
(19) as well as ‘zero-shot’ detectors (15) such as Log Rank and Log Probability thresholding.
Finally, we include zero-shot perturbation-based methods DetectGPT (15) and DetectLLM (21).
For zero-shot detectors, we make the assumption that the detector knows that samples are being
generated by a Llama-2 model; that is, for these detectors, we use Llama-2-base (the model we fine-
tune) to compute log probabilities and ranks. This configuration represents an optimistic case for the
detector. In addition to open-source detectors, we train against four popular commercial detectors,
GPTZero, Sapling, Originality.ai, and Winston AI.3 All commercial detectors advertise strong
performance against widely used LLMs.

3.1 EVALUATING GENERALIZATION OF DETECTOR EVASION ACROSS DETECTORS

In our first experiment, we study the basic question of the feasibility of optimizing language mod-
els against language model detectors without significantly harming sample quality. We fine-tune
three Llama-2 7B models on preferences computed from a variety of open source (Table 1) and
commercial (Table 2) detectors.

We find that optimizing against both open source and commercial detectors is effective, driving
the AUROC of the detector trained against to 0.62 or below in every case. In addition, we find
strong generalization between detectors when training against the OpenAI RoBERTa-large detec-
tor, DetectGPT and Originality. Performance is, intuitively, correlated for open-source detectors
with similar mechanisms: RoB-lg and RoB-base are both fine-tuned RoBERTa models; log prob
and log rank but threshold token-level statistics of the observed text; DetectGPT and DetectLLM
both measure a discrepancy that appears after perturbing the given text. Similary, among the com-
mercial detectors, we note similar performance from the RoBERTa and Originality detectors; this
result makes sense because Originality also uses a fine-tuned RoBERTa-like model for detection.4
However, we also observe asymmetry in generalization between evasion-tuned models; the model
trained against RoBERTa-large also evades log probability and log rank detectors, but not vice versa.
Among commercial detectors, Originality proves most resistant to evasion-tuning on other detectors.
However, optimizing against Originality itself produces relatively low AUROC for it as well as the

2https://platform.openai.com/docs/models/gpt-3-5.
3https://gptzero.me/; https://sapling.ai/; https://originality.ai/; https://gowinston.ai/
4https://originality.ai/blog/ai-content-detection-accuracy
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Detector Trained Against

None RoB-lg GPTZero Winston Originality Sapling

Perplexity 8.7 9.0 9.5 9.6 9.7 9.3

E
va

lD
et

ec
to

r RoB-lg 0.84 0.62 0.79 0.83 0.64 0.76
GPTZero 0.57 0.46 0.16 0.32 0.42 0.42
Winston 0.53 0.45 0.30 0.21 0.41 0.43
Originality 0.99 0.68 0.77 0.98 0.62 0.78
Sapling 0.75 0.64 0.67 0.72 0.64 0.60

Median AUROC 0.75 0.62 0.67 0.72 0.62 0.60

Table 2: Cross-detector generalization for commercial detectors. We use the same criteria as in Table 1.

other commercial detectors. Overall, training against RoBERTa-large or Originality produces the
strongest evasion of commercial detectors.

3.2 IMPACT OF DETECTOR QUERY QUOTA ON EVASION

Figure 1: Only a small number of detec-
tor queries are needed to produce a dataset
large enough to confuse even a strong detector
(RoBERTa-large).

In a real-world scenario, a malicious actor is likely
to be constrained by the amount of paired prefer-
ence data used in training, especially if optimiz-
ing against a commercial detector. We demon-
strate that strong performance of detectors can be
maintained even when training data is limited. We
trained five Llama2-7b models against OpenAI’s
large RoBERTa-based detector, using β = 0.5 for
all models. Each model was trained for up to 100k
steps on a different training set size (1k, 5k, 10k,
25k, and 100k preference pairs). We observe several
significant findings, which are presented in Figure 1.
First, detector evasion is possible with only a small
number (<10k) queries to the detector. For the com-
mercial detectors we study, this number of queries
typically costs less than $150 (in several cases sig-
nificantly so), making detector evasion a very accessible procedure even for small budgets. These
results suggest that preventing an adversary from collecting a dataset of detector evaluations large
enough to train an undetectable model may be extremely difficult or impossible.

3.3 ROBUSTNESS OF EVASION TO LONGER SEQUENCE LENGTH

Source Model

Seq. length Base Post-evasion

n̄ = 120 0.84 0.63
n̄ = 243 0.92 0.61

Table 3: Sampling longer responses from an
evasion-tuned model does not improve detector
AUROC for RoBERTa-large.

Prior work has shown that detector accuracy im-
proves as the length of the generated data increases
(10). We therefore conduct an experiment to as-
sess whether this pattern holds true after a language
model has been optimized against a given detector.
The results are shown in Table 3. We draw sam-
ples from a Llama-2 7B base model before and af-
ter it has been fine-tuned with β = 0.5 to evade
RoBERTa-large for 100k preference pairs. While
the pre-evasion model generates samples that are in-
creasingly easy to detect as sequence length increases, after fine-tuning, doubling the sequence
length does not lead to increased AUROC, but rather a slight decrease. This result shows that detec-
tor evasion fine-tuning can generalize to longer sequences than it was trained for, further increasing
its general applicability.
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3.4 CASE STUDY: ESSAY GENERATION

Finally, to analyze the feasibility of optimizing against existing detectors in a domain more
closely aligned with real-world usage, we explore evasion tuning in the context of generating
essays. We ask two questions: Can we evasion-tune a chat model to generate essays that
confuse a strong detector? and a more challenging question Can we evasion-tune a general-
purpose dialogue model that still produces essays that confuse a strong detector, without gath-
ering new detector-annotated preferences or fine-tuning specifically for essay generation? While
an affirmative answer to either question is cause for concern, an affirmative answer to the sec-
ond is much more serious: in this case, we do not need to evasion tune again for each new
domain in which we would like to evade a detector, and further, in order to do so, we can
re-use a single set of preference data generated by another model (in this case, ChatGPT).

Source Model

Metric Base Essay
training

Dialogue
training

AUROC 0.83 0.26 0.43

Perplexity 6.0 7.0 7.0

Table 4: A case study in generating difficult-to-
detect essays from Llama-7b-chat. We perform
detector evasion tuning on preferences generated
by RoBERTa-large.

To answer these questions, we perform detector eva-
sion on a LLama-2-chat 7B (23), using two different
datasets, one specifically essay prompts and essays
generated by Llama-2-chat, and the other more gen-
eral instruction-following prompts from Alpaca (22)
and preference data over samples from ChatGPT,
rather than the Llama-2-chat model. We fine-tune
both models for 30k steps using β = 0.5; the Llama-
generated preference samples are 250 tokens long;
we prompt ChatGPT to write a ‘single mid-length
paragraph’ on the given topic, discarding samples
less than 100 Llama-2 tokens. The results in Ta-
ble 4 show that optimizing against RoBERTa-
large is successful in both of these cases: fine-
tuning a general-purpose chat model to evade a detector using general-purpose instruction
following prompts and off-policy samples nonetheless can evade a detector in the specific case
of generating essays.

4 DISCUSSION

Motivated by the increasingly widespread use of large language model detectors, we have shown
that it is straightforward to fine-tune a model to evade these detectors while still maintaining high
performance. The fine-tuned models produce text that is almost completely undetectable by two out
of four commercial detectors. For the other two commercial detectors, the fine-tuned models have
an AUROC of less than 0.5, indicating that they produce text that is judged to be statistically more
likely to be human than the human-written corpus itself. Moreover, generating long-form text, such
as essays, does not increase detectability.

We emphasize that the training pipeline that we consider is straightforward and easy for adversaries
to replicate. It uses easily accessible public models and an open-source training codebase. The
entire data acquisition and training process cost a few hundred dollars. For data, the process only
requires limited, black-box query access to the detector with a budget of a few thousand prompts
and does not need human annotators, paraphrasing, or teacher models. For compute, we used widely
available consumer hardware and only a few hours of training time. We further expect that, with
more extensive data, training, and resources, a fine-tuned model may be even more evasive.

We expect that this direct kind of attack is hard to protect against. Indeed, our results showed
meaningful transfer between strong detectors. Thus, in light of these results, we argue that the cur-
rent generation of machine-generated text detectors is not robust to adversaries and may even favor
machine-generated text over actual human-generated content. This includes both public detectors
and closed black-box commercial ones. Furthermore, we argue that the problem of robust machine-
generated text detection may be unsolvable in practical settings. Any new detection algorithm can
be subject to the adversarial training process in this paper. New detection algorithms will be ren-
dered ineffective by further model fine-tuning, which would then require the development of new
detection algorithms. Hence, we argue against continued use of machine-generated text detectors.
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A RELATED WORK

Machine-generated text detection methods often either train a classifier using a dataset of LM- and
human-generated text (2; 19; 24; 9; 26) or detect zero-shot by leveraging the suspected language
model or a proxy (19; 6; 15; 21). Prior works have called into question the robustness of these
detectors, finding that detectors are susceptible to paraphrasing attacks (18; 11). and can perform
poorly for text written by non-native speakers (13). Further, Mitchell et al. (15) and Mireshghallah
et al. (14) show that zero-shot detectors show significantly reduced performance when the generating
model is not known. By showing that it is straightforward to optimize against current detectors, our
results complement these prior studies, while continuing to suggest that machine-generated text
detectors are not robust.

Another class of works have aimed to train language models that produce subtle ‘watermarks,’ i.e.
indications that they were generated by a machine (10; 29; 12; 27). However, the premise of water-
marking relies on the fact that all strong models in the LLM ecosystem are watermarked (i.e., hosted
behind APIs that enforce watermarking); a single strong LLM with freely-available weights violates
this threat model. We consider a stronger threat model where an adversary is fine-tuning the model
to be undetectable.

Finally, Solaiman et al. (19) train a detector to discriminate between human samples and samples
generated by a pre-trained model (GPT-2). In our case, fine-tuning that pre-trained model to max-
imize the ‘human’ probability of the detector with DPO (17) is very similar to performing one
round of generator improvement in a generative adversarial network (GAN; Goodfellow et al. (8)).
While adversarial objectives are typically avoided for text data due to the difficulty of differentiat-
ing through the discrete sampling step, Yu et al. (28) and Fedus et al. (5) show that GAN language
models can produce more realistic-looking samples than MLE when evaluated by humans. There
results provide some precedent for our GAN-like training procedure for our use case of generating
human-looking samples.

B SOCIAL IMPACTS STATEMENT

Evading language model detectors is a type of red-teaming exercise that we carry out in order to
call attention to the serious risks of relying on any machine-generated text detection technologies.
We categorically do not advocate for evading language model detectors for the purpose of carrying
out harmful activities with LLMs. Rather, we hope that in demonstrating the ease with which the
effectiveness of existing detectors can be severely degraded, we can spur a conversation about these
technologies. Ultimately, we believe swift action to revise institutional norms, particularly standards
in classrooms around student assessment, is warranted.

C REPRODUCIBILITY

Section 2 covers the details of the direct preference optimization algorithm, and an open-source
implementation is available in the cited paper. An anonymized implementation of our pipeline and
experiments can be made available during the review process. Precise descriptions of the fine-tuning
and model selection process for non-chat models are available in sections 3.1, 3.2, and 3.3, while
the corresponding information for chat models can be found in section 3.4. Anonymized datasets of
preference pairs and detector scores for all open-source models can also be made available during
the review process, though releasing datasets for commercial detectors violates their terms of use.
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