Under review as a conference paper at ICLR 2026

EXPERT-INTEGRATED ACTIVE LEARNING FOR OPTI-
MIZING LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs) have created new opportu-
nities for their application in interactive environments. However, these agentic
tasks present significant challenges due to the complexity of long and specialized
interaction trajectories that are underrepresented in standard training distributions.
While Reinforcement Learning (RL) post-training offers a promising approach to
mitigate the need for extensive human-annotated data, it faces fundamental limi-
tations in exploration efficiency when applied to LLMs. In this paper, we intro-
duce a novel framework that synergistically combines RL post-training with Ac-
tive Learning (AL) for LLM agents. By choosing informative tasks with reward-
based filter and diversity-based selection criteria, our approach enables models to
not only refine their capabilities through autonomous exploration but also strategi-
cally request expert demonstrations for challenging scenarios, thereby extending
their exploration boundaries. We demonstrate the efficacy of this method on the
AppWorld benchmark with DeepSeek-V3.1 as expert, showing comparable per-
formance with full supervision while using minimal expert demonstrations. We
then further look into adapting our framework for different budgets and examine
the factors that affect the final performance, as well as validate our framework
on WebShop benchmark. Our method highlights the potential of efficiently in-
tegrating limited human resources within RL pipelines to enhance LLM agents’
capabilities in complex interactive environments.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have sparked significant interest in leveraging
these models for a wide range of downstream tasks. Increasingly, LLMs are required to interact not
only with users, but also with external tools and environments, such as APIs (Qin et al.| 2023)), web
browsers (Thil et al., [2024)), and embodied environments (Shridhar et al.| |2021). Unlike traditional
Natural Language Processing (NLP) tasks, these scenarios often involve multi-turn interactions,
where the model must interpret feedback from the environment and adapt its strategy dynamically.
However, such long and complex interaction trajectories typically reside in the long tail of the data
distribution, as environmental observations are not only decided by model inputs but also the envi-
ronment states. Also, environment-specific settings and action space are underrepresented in general
training datasets. Consequently, zero-shot or few-shot prompting approaches often yield suboptimal
performance in these agentic settings.

A common remedy to adapt pretrained models on these agentic tasks is to finetune models with an-
notated data. However, collecting sufficient high-quality human-environment interaction trajectories
can often prohibitively expensive or infeasible, especially for scenarios with specific requirements
or limited resources. As an alternative, Reinforcement Learning (RL) post-training has gained pop-
ularity. For tasks where outcomes can be evaluated by predefined rules or reward models, RL en-
ables models to optimize their behavior by collecting trajectories and reward signals autonomously,
thereby significantly reducing dependence on manual annotation.

Despite these advancements, RL approaches for LLMs face fundamental limitations in exploration
efficiency. (i) From the perspective of action space, LLMs operate over vast token vocabularies,
where each generated token maps to different environment-specific actions. This results in an enor-
mous exploration space, within which only a sparse subset is truly meaningful. (ii) From the per-

Under review as a conference paper at ICLR 2026

spective of policy initialization, pretrained LLMs already possess an initial policy shaped by their
pretraining data. This prior knowledge governs the generation of environment actions, but can be
difficult to adapt or modify through training on a specific downstream task. To address these chal-
lenges, we propose a novel framework that combines LLM RL post training with Active Learning
(AL). With this framework, the model can not only use its current policy to examine and refine its
own capabilities but also actively query for additional expert data to expand the upper bound of its
exploration. Our main contributions are summarized as follows:

* We examine the feasibility of introducing expert demonstrations to RL training of LLM
Agents, showing performance improvements with limited expert demonstrations in App-
World and WebShop benchmark.

* We propose a novel AL framework for RL training of LLM Agents, which actively selects
informative tasks for expert annotation based on reward-based filter and diversity-based
selection strategies.

* We look into the performance of our method under different budget setting and revealing
the relationship between used expert demonstration and final performance.

2 RELATED WORKS

Interactive Environments for LLM Agents Recent benchmarks increasingly evaluate LLM-
based agents in realistic and interactive settings. ALFWorld provided an interactive benchmark
that enables transferring abstract textual instructions to a 3D environment, evaluating the reason-
ing and planning abilities of embodied LLM agents (Shridhar et al., 2021). WebShop introduced
a scalable web-based environment with real products and instructions(Yao et al. 2022)). Agent-
Bench broadened coverage across domains such as operating systems, databases, and games (Liu
et al., [2023). OSWorld benchmarked multimodal agents on real desktop applications, highlighting
the challenges of multimodal interaction (Xie et al.| |2024). AppWorld provided lightweight, veri-
fiable environments for phone-API tasks (Trivedi et al.| 2024)). 7-bench assessed agent consistency
and rule-following in tool-augmented dialogues (Yao et al., [2024). SWE-bench targeted software
engineering tasks such as code generation, debugging, and refactoring (Jimenez et al.| 2024). Col-
lectively, these benchmarks underscore the growing effort to evaluate LLMs in complex, interactive
tasks that require reasoning, planning, and tool use.

Reinforcement Learning for LLMs Beyond supervised instruction tuning, recent work applies
RL to improve LLM reasoning, alignment, and agentic control. Group Relative Policy Optimiza-
tion (GRPO) replaces the critic in Proximal Policy Optimization (PPO) with a group-wise baseline,
reducing training memory cost and improving model reasoning ability (Shao et al.,|2024). Decou-
pled Clip and Dynamic sAmpling Policy Optimization (DAPO) introduces important techniques
like clip-higher and dynamic sampling, further improving models’ performance (Yu et al.| [2025).
Dr.GRPO looks into the design of advantage estimation as well as prompting templates, achieving
SOTA results on multiple math benchmarks (Liu et al., [2025)).

Reinforment Learning for Downstream Agentic Tasks In LLM agent settings, several works
have explored ways to transfer, stabilize and improve GRPO-like methods for multi-turn interac-
tion tasks. Leave-One-Out Proximal Policy Optimization (LOOP) combines PPO-style clipped up-
dates with a Leave-One-Out advantage estimator, achieving SOTA on AppWorld benchmark (Chen
et al.,2025). DeepSWE introduces trajectory-level compact filtering, greatly improves open-weight
model’s performance on SWE-Bench (Luo et al.). MobileRL incorporates successful trajectory re-
play and negative rollout pruning to enhance training efficiency (Xu et al.). SimpleTIR focuses on
improving trajectory quality by filtering rollouts with void turns where no valid actions are provided,
preventing gradient explosions and stabilizing end-to-end RL (Xue et al., 2025).

Active Learning in NLP Tasks Active Learning focuses on improving model performance with
minimal labeled data by strategically selecting the most informative samples for annotation. In
previous LLM-related works, uncertainty-based methods have been commonly used to improve text
classification and text summarization (Li et al., 2024} Rouzegar & Makrehchil, [2024; Bayer;, [2025).
Some works also explore how to apply AL to efficiently learn reward models for Reinforcement
Learning from Human Feedback (RLHF) (Liu et al., 2024)).

Under review as a conference paper at ICLR 2026

3 PROBLEM SETTING AND PRELIMINARY

LLM Agent Interaction as a Markov Decision Process Interactions involving LLM-based
agents can be naturally framed as a finite-horizon Partially Observable Markov Decision Process
(POMDP), represented by the tuple (S, A, R, P, H). Here, S denotes the state space, A the action
space, R : S x A the reward function, P : S x A the state transition dynamics, and H the finite
horizon. In practical settings, rewards are most often provided only at the end of an episode, once
the horizon H is reached.

GRPO To adapt GRPO to this framework, let G' denote the rollout group size for each sam-
ple and T the number of interaction turns in a trajectory 7. We define an action a as a token
generated by the LLM policy mg, with the response at turn ¢ denoted as the action sequence
a; = [ap(t)+1, Ap()425 -+ » ap(t)+l(t)], where [(t) is the number of output tokens at turn ¢, and

p(t) = 2;11 (k). The full trajectory 7 is written as 7 = (c,01,4ay,...,0r,ar), with final re-
ward R. The state s at token position p(t) + j consists of the initial prompt ¢ concatenated with all
previously generated tokens and observations:s,)4, = (c,01,a1,...,0¢ a4[: j]).

GRPO follows the structure of the PPO algorithm, optimizing the objective
L(0) = Erm,,, [G Z T Z min (rati0i7j(9)z4i7j7 clip(ratio; ;(6),1 —€,1 + e)A,-,j)
i=1 "' j=1

—B Dxi(mo,, | We)] ;

where
mo(ai; | Sij) i - R; — mean{_| Ry,
Toge (@i | sig)" stdi_; Ry

L; = pi(T; +1), ratio; j(0) =

In our main experiments, we adopt a modified version of GRPO that uses Leave-One-Out advantage

estimation. The advantage for each token is given by /L = % (Ri - meanf:1 Rk).

Active Learning for LLM Agent We consider the following active learning setting. Let D =
{d;}}, denote a pool of task data, where each d; is a unique task instance. The goal is to iteratively
select informative tasks D* C D for expert demonstration 7 *, thereby improving the LLM agent’s
performance while minimizing annotation cost. The total annotation costis C = ;. c-m, where
c is the cost of annotating one trajectory and m is the number of expert demonstrations collected for
a task.

4 METHOD

Overview Figure|l| demonstrates an overview of our proposed framework. With the RL training
framework (e.g., GRPO), we first samples a batch of tasks from the training dataset. The training
LLM Agent interacts with the environment to collect rollouts as well as reward signals and other
information. Then we perform a two-step expert task selection. For the collected rewards for each
task over a given step range, we perform a reward-based filter to identify the challenging task can-
didates. These task candidates are further filtered with a diversity-based selection strategy to ensure
the selected tasks are not redundant. The final selected tasks are then sent to experts (in our ex-
periments, a stronger model) for annotation, and the collected expert demonstrations are added to
the expert replay buffer. Finally, the sampled trajectories from the LLM Agent are mixed with the
expert demonstrations from the expert replay buffer for the calculation of policy gradients, which is
used to update the parameters of the LLM Agent.

Reward-Based Filter A key aspect of AL is the selection of informative samples for expert an-
notation, which is usually measured by the model’s uncertainty about a sample. In the RL setting,

Under review as a conference paper at ICLR 2026

task selection

[Reward-Based Diversity-Based
Datas Filter asks Task Selection
) aset g ey
Traj. .
QD Revarss @

- Sampled ~e— Interactive p. Expert o
LLM Agent Trajectories Environment Trajectories EELE
Training Mixing mert
policy Trajectories Strategy Replay Buffer

gradient

step k
Figure 1: An overview of our proposed framework.

uncertainty can be interpreted as the model’s difficulty in finding policy changes to improve per-
formance on specific task types. Intuitively, tasks that the current policy consistently fails on, or
where no noticeable improvement is observed over time, provide the clearest signal that additional
supervision from experts may be beneficial.

To implement this idea, we apply the following two-step criteria for task filtering: (i) Within a sliding
step window of size u, we identify tasks for which at least 80% of sampled rollouts remain unsuc-
cessful. This criterion highlights tasks that the current policy persistently struggles with. (ii) Among
these difficult tasks, we further select those where the average reward achieved in the most recent
u/2 steps does not surpass that of the preceding u/2 steps by more than a small margin e. This
stagnation in reward suggests that the model has failed to make meaningful progress or to discover
an effective learning trajectory.

By combining success rate filtering with reward progression analysis, our selection mechanism pri-
oritizes tasks that are both persistently unsolved and resistant to incremental policy updates, thereby
ensuring that expert annotation is directed towards the most informative and impactful training sig-
nals.

Diversity-Based Task Selection Another important aspect of AL is to ensure the diversity of the
selected samples, which requires effective de-redundancy among the chosen tasks. To address this,
we introduce a diversity-based selection strategy following the initial score-based filtering of task
candidates. Specifically, after computing a similarity metric for each candidate, we employ a max-
min greedy selection strategy to select a batch of diverse tasks, as detailed in Algorithm |1} This
approach iteratively selects tasks that are maximally distinct from both previously selected tasks
and those chosen in recent steps, thereby promoting coverage of a broader range of task types.
Furthermore, we introduce a buffer step size to incorporate historical selections from the last v steps
into the max-min similarity calculation. This mechanism controls the diversity of selected tasks
during the buffer step while also allowing additional flexibility for the model to revisit challenging
or underexplored task types if no improvements are made during the previous steps, ultimately
improving the efficiency and robustness of expert demonstration collection. The accumulative cost
of expert demonstrations at step 72 is C<n = 3231 > geps € M-

Mixing Strategy After updating the expert replay buffer with the newly collected expert demon-
strations, we construct the rollouts for policy updates by mixing trajectories generated by the LLM
Agent with carefully selected expert demonstrations from the buffer. The goal of this mixing strat-
egy is to effectively inject high-quality expert knowledge into the training process while avoiding
excessive reliance on expert data, thereby preserving the diversity and exploration ability of the
LLM Agent’s own trajectories. To achieve this balance, we design the following rules: (i) With
a mixing ratio «, we incorporate at most oG expert demonstrations for each task. To ensure that
only superior knowledge is introduced, we restrict candidates to demonstrations whose rewards are
strictly higher than those of all sampled trajectories from the LLM Agent. (ii)) When selecting eligi-
ble expert demonstrations from the replay buffer, we prioritize demonstrations with distinct reward
values to encourage reward diversity. (iii) During the replacement of sampled trajectories with ex-
pert demonstrations, we adopt a preference order: first replacing trajectories with redundant rewards

Under review as a conference paper at ICLR 2026

Algorithm 1 Diversity-Based Max-Min Task Selection

1: Input: History Expert Task List D* = [D% D3, ..., D% _,], Candidate Task Set at Step n. D,,,
Similarity Metric sim(-, -), Similarity Threshold ¢, Buffer Step Size v

2: Output: Selected Task Set at Step n Dj,

3 Dy = Uiy, DF D) = [

4: if Dy, ., = (0 then

5: selectd ~ D, D} « Di U{d}, D, + D, \ {d}
6: end if

7: while D,, # 0 do

8: d* «+ argmax, s Mmingepsup;, sim(d, d’)

9: if mind’ED,ﬁUDZm sim(d*, d/> < 0 then

10: D} « D U{d*}, Dy < D, \ {d*}
11: else

12: break

13: end if

14: end while
15: return D},

to maintain the diversity of original samples, and then replacing those with relatively low rewards to
improve overall rollout quality. This principled mixing strategy enables the training process to ben-
efit from superior expert knowledge while preserving sufficient variation in the rollouts, ultimately
helps develop a more robust and generalizable policy. The full algorithmic details are provided in

Appendix [C]

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset We adopt AppWorld (Trivedi et al., 2024) as our main experimental environment. App-
World provides a lightweight, verifiable, yet challenging benchmark for mobile app interaction. The
training set consists of 30 scenarios, each with 3 tasks, divided into 3 difficulty levels. Following
LOOP’s setup (Chen et al., 2025), we use level-1 and level-2 tasks for training, covering 24 scenar-
ios and 72 tasks. The relatively small training set enables efficient experimentation under different
settings and budget constraints. For evaluation, AppWorld offers two test sets: Test Normal (168
tasks) and Test Challenge (417 tasks).

Models and Training We use Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct (Qwen et al.,
20235) as base LLMs, with LoRA adapters (Hu et al., [2021)) for efficient finetuning. Our frame-
work is implemented on top of RAGEN (Wang et al.l [2025)). At each training step, we sample 40
tasks from the training set, with a rollout group size of 6 per task.

Experiment Settings We evaluate these three main configurations:

* /GRPO/baseline: GRPO without external demonstrations. The policy is updated only from
the model’s own rollouts.

* /GRPO/full_demonstration: Expert demonstrations for all tasks are available throughout
training and are mixed into rollouts according to the mixing strategy.

* /GRPO/active_learning: The expert replay buffer is initialized empty. During training,
tasks are chosen via a reward-based filter and diversity-based selection. Expert demon-
strations for these tasks are then added to the buffer and remain available for subsequent
step.

We also provides results from these two baseline implementations for comparision:

Under review as a conference paper at ICLR 2026

Table 1: Performance of different models and settings on AppWorld benchmark. “Task Success
Rate” indicates average success rate for all tasks, and “Scene Success Rate” indicates success rate
for all scenes (a scene is considered a success if all three tasks under the scene are successfully
executed).

Train Test Normal Test Challenge

Models / Settings Cost (C) Task Scene Task Scene Task Scene
Success Success | Success Success | Success Success

Rate (%) Rate (%) | Rate (%) Rate (%) | Rate (%) Rate (%)

Qwen2.5-7B-Instruct 0 1.38 0.00 0.60 0.00 1.92 0.00
Qwen?2.5-14B-Instruct 0 23.61 8.33 10.71 1.79 6.00 1.44
E;Ip))ggik-v&l - 56.94 3333 | 56.55 3750 | 40.63 18.75
Qwen2.5-7B-Instruct

/GRPO/baseline 0 40.27 29.17 | 10.71 5.36 5.27 1.44
/SFT/full_demonstration 360 4444 2500 | 27.98 10.71 8.39 2.16
/GRPO/baseline 0 41.67 33.33 11.90 3.57 3.60 0.72

/GRPO/full_demonstration| 360 7222 50.00 | 29.76 16.07 | 10.07 2.16
/GRPO/active learning 165 66.67 4583 | 28.57 12.50 7.19 1.44

Qwen2.5-14B-Instruct

/GRPO’/baseline 0 69.44 50.00 | 4345 26.79 | 19.64 8.63
/SFT/full_demonstration 360 56.94 3750 | 37.50 17.86 | 14.39 3.60
/GRPO/baseline 0 7222 5833 | 4345 3214 | 1894 7091

/GRPO/full_demonstration| 360 7639 66.67 | 51.19 30.36 | 23.50 791
/GRPO/active learning 75 77.78 66.67 | 4940 32.14 | 21.82 9.35

* /GRPO’/baseline: Vanilla GRPO without external demonstrations. Instead of using LOOP
style advantage estimation, using default normalized reward.

» /SFT/full_demonstration: Model is directly finetuned on expert demonstrations for all tasks.

In both /GRPO/full_demonstration and /GRPO/active_learning, we set the mixing rate to a = 0.33.
For /GRPO/active_learning, we use a similarity threshold of § = 0.65, a reward filter window of
u = b, a reward filter threshold of e = 0.05, and a buffer update step size of v = 10. Expert
demonstrations are simulated using DeepSeek-V3.1. For each training task, we pre-collect m = 5
demonstrations, which are added to the replay buffer when required. For simplicity, we assume the
cost of each expert demonstration ¢ = 1.

5.2 MAIN RESULTS

Table [I| summarizes the main experimental results on the AppWorld benchmark. As shown, both
Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct perform poorly on this benchmark. Even after
standard GRPO training, the task success rate of Qwen2.5-7B-Instruct on the Test Normal split is
only 11.9%, while the success rate on the training set remains below 50%. This indicates that the
model struggles to fully explore the training set on its own, let alone develop a generalizable policy
for unseen tasks. In contrast, incorporating expert demonstrations leads to a notable performance
boost. Both /GRPO/full_demonstration and /GRPO/active learning achieve significantly higher suc-
cess rates, with improvements of approximately 18% over the GRPO baseline. This confirms that
expert trajectories provide crucial guidance, helping the model explore previously unseen states and
learn more effective task-solving strategies. The training dynamics shown in Figure2|further support
this conclusion. We observe that the gap between /GRPO/baseline and /GRPO/full_demonstration
emerges and stabilizes after roughly 20 training steps, indicating that expert demonstrations not only
accelerate learning but also enable the model to reach solutions beyond its initial capabilities. A sim-
ilar pattern is observed for Qwen2.5-14B-Instruct. Although the improvements are less pronounced
than for the 7B model, both /GRPO/full_demonstration and /GRPO/active learning still outperform
the baseline. We hypothesize that the smaller performance gap arises from the limited capability

Under review as a conference paper at ICLR 2026

0000

Reward Success Rate Avg. Trajectory Turns Avg. Trajectory Tokens

9000

8000

11000

14 0000

13 9000

8000

7000

6000 1+

o 20 40 60 80 100 o 20 40 60 80 100 o 20 40 60 80 100 o 20 40 60 80 100
Steps Steps Steps Steps
Qwenz.5-7B-Instruct/GRPO/baseline Qwenz.5-7B-Instruct/GRPO/full_demonstration ~ —— Qwen2.5-7B-Instruct/GRPO/active_learning
Qwen2.5-14B-Instruct/GRPO/baseline Qwen2.5-14B-Instruct/GRPO/full_demonstration ~—— Qwen2.5-14B-Instruct/GRPO/active_learning

Figure 2: Training metrics of Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct under three settings.
Settings with expert demonstrations reach higher rewards and success rate significantly faster than
/GRPO/baseline setting.

Table 2: Usage of expert demonstrations in /GRPO/full_demonstration and /GRPO/active_learning
setting. “Expert tasks (|D*|)” denotes the number of tasks selected for expert demonstrations.

“Cost (C)” denotes number of expert demonstrations collected. “Used” denotes the number of ex-
pert demonstrations used in final rollout after mixing strategy. “Appearances” denotes the number
of expert demonstration appearance in all rollouts after mixing strategy. “Efficiency” is defined as
“Used” / “Appearances”, the average times of appearances for a used rollout.

Expert Expert Demonstrations Total
Tasks (|D*|)[Cost (C) Used Appearances Efficiency |Rollouts

Models / Settings

Qwen2.5-7B-Instruct

/GRPO/full_demonstration 72/72 360 241 629 2.61 12,000
/GRPO/active learning 33/72 165 119 457 391 19,200
Qwen2.5-14B-Instruct

/GRPO/full_demonstration 72/72 360 117 326 2.78 14,400
/GRPO/active learning 15/72 75 52 205 3.94 15,600

of our simulated expert, which constrains the quality of the demonstrations and, consequently, their
impact on a stronger model. Nevertheless, these results consistently validate the effectiveness of
incorporating expert demonstrations into the training process.

Expert Demonstrations Cost (C) Expert Demonstration Percentage Expert Demonstrations Efficiency
4

o 20 40 60 o 20 40 60 o 20 40 60
Steps Steps Steps
Qwenz.5-7B-Instruct/GRPO/full_demonstration ~ —— Qwenz2.5-7B-Instruct/GRPO/active_learning

Figure 3: Usage of expert demonstrations during training of Qwen2.5-7B-Instruct under /GRPO/-
full_demonstration and /GRPO/active_learning setting.

Table [2] shows the statistics of expert demonstration cost and usage under different settings. In
/GRPO/active_learning, Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct each acquire 33 and 15 of
the total 72 training tasks as expert tasks, achieving a much lower cost C. In our experiments, about

Under review as a conference paper at ICLR 2026

70% collected demonstration are actually used during training, as the mixing strategy only admits
superior demonstrations. The average appearance of each demonstration used to update policy,
denoted as expert demonstration efficiency, is significantly higher than /GRPO/full_demonstration.
This frequent re-use suggests that the expert tasks selected in /GRPO/active_learning are inherently
of a more challenging subset, since it takes more step for model to learn and generate rollouts with
the same high rewards consistently.

Figure [3] shows changes of expert demonstration usage over the training process of the /GRPO/-
full_demonstration setting and /GRPO/active_learning setting. We can see that in the /GRPO/ac-
tive_learning setting, the demand for additional demonstrations gradually decreases as the model
improves its capabilities and stabilizes its policy. At the same time, expert demonstration efficiency
remains relatively constant, suggesting that expert demonstrations added later of the contributes
equally to the policy gradients as earlier ones.

5.3 ABLATION STUDIES

Table 3: /GRPO/active_learning with different

Table 4: /GRPO/active_learning with different
similarity thresholds 4.

early stopping steps for AL.

Expert Expert
Settings Demonstrations Test Normal Settings| Demonstrations Test Normal
(5) & Task Scene (Early Task Scene
Cost(C) Used |Success Success Stop) |Cost(C) Used |Success Success

Rate (%) Rate (%)

Rate (%) Rate (%)

0.25 60 43 17.26 3.57 25 steps| 90 71 25.60 12.50
0.45 110 84 2738 10.71 45 steps| 130 91 26.78 12.50
0.65 165 119 28.57 12.50 75 steps| 165 119 28.57 12.50
30.0 - /GRPO/fulLdEnlonstration;
Q 75 - = e
g 50 ::3:, }’GRPO/half_demonstraﬁon
o 225 s
i 17:5 ,' Ry 5-0.25
é 15.0 ,'I//
1251 L}GRPO/baseline

T T T T
200 250 300 350

Cost C

T T T T
o 50 100 150

Figure 4: Demonstration cost and task success rate on Test Normal with Qwen2.5-7B-Instruct under
different settings. Settings with our proposed framework is marked with yellow triangles and settings
with random expert task selection marked with purple star. Logistic curve fit under these settings are
respectively colored red and grey. Our proposed framework has a significant bigger Area Under
Curve (AUC) than random selection method, indicating its overall superiority.

A key consideration when applying AL in production is managing annotation costs. To accommo-
date varying budget constraints, we test two strategies. The first is to adjust the similarity threshold
in diversity-based selection, allowing control over the number of selected tasks for sustained train-
ing. The second is to apply early stopping of the AL process once the desired budget limit is reached,
which is more suitable for a fixed training set. In our ablation studies, we examine both strategies
and analyze how changes in budget impact model performance.

Table [3] shows the usage of expert demonstrations and performance on Test Normal with different
0. With smaller data, numbers of new expert tasks added shrinks, leading to a smaller overall
demonstration cost over time. The same goes for experiments with different early stopping steps of
active learning as shown in Table] but less drastic as more demonstrations are introduced in early
steps than later steps with our strategy.

Under review as a conference paper at ICLR 2026

Avg. API Docs Checked per Trajectory Avg. Code Errors per Trajectory Success Rate of Using apis. phone. login
10

-k w A o o

o 20 40 60 o 20 40 60 o 20 40 60
Steps Steps Steps
Qwenz.5-7B-Instruct/GRPO/baseline Qwenz.5-7B-Instruct/GRPO/full_demonstration = Qwen2.5-7B-Instruct/GRPO/active_learning === Expert

Figure 5: Average number of code documentation query and code errors in each trajectory under
three settings. Settings with expert demonstrations exhibit a much faster grasp on documentation
checking, as well as a lower code block error rate. Expert demonstrations also help agent to learn
more fine-grained, specific policies, as the example of apis.phone.login shows.

Cost-Performance Relationship in Demonstration Usage To illustrate the trade-off between
cost and performance with our AL framework, Figure [4] plots the cost of demonstrations against
the task success rate on Test Normal. As the results show, the number of used demonstrations and
performance in our framework fits a logistic function with an upper bound.

Impact of Expert Task Selection on Learning Efficiency We perform another experiment, /GR-
PO/half_demonstration, in which half of the training set is randomly selected as expert tasks,
and the corresponding expert demonstrations are provided from the start, similar to /GRPO/-
full_demonstration. The logistic function fits for /GRPO/baseline, /GRPO/half-demonstration, and
/GRPO/full_demonstration reflect the trade-off with random expert task selection, which is signifi-
cantly weaker than our proposed task selection process.

Influence of Demonstration Timing We notice that the results of /GRPO/active_learning with
& = 0.25 drift away from the fitted curve. In this setting, far fewer expert tasks are added each round.
We attempt to continue the training and add more expert demonstrations to match the number of the
other two § settings, but the model seems already converged on a rather stable policy, and extra
demonstrations do not improve the performance, indicating that for a fixed dataset, the timing when
expert demonstrations are introduced also affects the development of a superior policy.

5.4 TRAJECTORY ANALYSIS

We analyse training trajectories across different settings to understand how expert demonstrations
guide the model toward a more reliable policy. A core requirement in AppWorld is correct API us-
age, a behavior not directly rewarded but crucial for efficiency and final performance. While stronger
models (e.g., Qwen2.5-32B-Instruct) can acquire this behavior through GRPO alone, smaller models
such as Qwen2.5-7B/14B-Instruct frequently misuse APIs under the /GRPO/baseline setting and fail
to form consistent habits such as checking documentation before invoking functions. As shown in
Figure 5] /GRPO/full_demonstration and /GRPO/active_learning encourage Qwen2.5-7B-Instruct to
consult documentation roughly twice as often and reduce codeblock errors. Expert demonstrations
also improve more fine-grained behaviors. For instance, the APl apis.phone.login requires
a phone number instead of an email. Without demonstrations, the model fails this call in 60% of
attempts; with demonstrations, the success rate rises to around 75%. Models trained with demon-
strations check the relevant documentation in around 85% of trajectories, compared to around 15%
under /GRPO/baseline. These results show that expert demonstrations help LLM agents develop
environment-aligned behavioral patterns, prioritizing actual environment specifications over prior
assumptions.

5.5 ADDITIONAL VALIDATION ON WEBSHOP

To further validate the generalizability of our method, we perform extra experiments on Web-
Shop(Yao et al. 2022). We aggregate tasks by their goal products, then selecting a subset as can-
didate task set for possible expert demonstration. We use DeepSeek-V3.2 as expert, where we also
provides oracle information of the task if the model cannot achieve success after a few trials. We

Under review as a conference paper at ICLR 2026

Table 5: Performance of Qwen2.5-3B-Instruct and different settings on WebShop benchmark.

Train Test
Models / Settings Cost (C)| Success Reward| Success Reward
Rate (%) Rate (%)
Qwen2.5-3B-Instruct 0 420 42.02| 4.80 41.11
][:;‘;Esee?k—\@l + Oracle Information - 35.38 65.71 34.80 64.34
/GRPO/baseline 0 5229 7642 | 56.20 78.04
/GRPO/full_demonstration 4,270 | 66.30 83.31| 68.00 84.74
/GRPO/active learning 970 64.99 83.50| 64.00 81.92

use a mixing rate of & = 0.33, a similarity threshold of 6 = 0.7, a reward filter window of u = 5,
a reward filter threshold of € = 0.05, and a buffer update step size of v = 10. We use Qwen2.5-3B-
Instruct as base model. As shown in|l| with less than 25% expert demonstration cost, /GRPO/ac-
tive_learning achieves around 2/3 performance growth of /GRPO/full_demonstration. We provide
more information about the implementation in @

6 DISCUSSION

In our experiment, we implement the expert £ with an external model, denoted as M*. This design
allows for consistent demonstration trajectories throughout different experiment setting, enabling
more reliable and comparable evaluations. However, there remain some issue: (i) In experiments,
about 30% of demonstrations remain unused due to the mixing strategy. (ii) Despite no issues were
observed in training, distribution mismatch between expert demonstrations and sampled rollouts
may affect GRPO’s on-policy learning.

Expert Design In practice, the expert design can be more complex, efficient and capability-aware
with joint effort of human expert H, LLM M?* and task-specific information Z;, which may in-
clude current rollouts from agent, oracle information and evaluation metrics. Here are some possible
beneficial interactions between these entities:

o £(H, M*) Expert trajectories can be formed by human expert supervising the model’s interaction
with the environment and making necessary adjustments at each turn. The model can be either
the external model or the current training model. This interaction helps reduce human labor while
maintaining consistency between expert trajectories and model rollouts.

» &(M*,I;) Expert trajectories can be formed via model reflection. Providing current rollouts in
context increases the likelihood of sampling successful trajectories with M™* or building accu-
mulative progress based on the capability of the current training agent. Oracle information and
evaluation metrics can further reduce the difficulty of obtaining successful trajectories.

» £(H,Z;) Providing current rollouts and evaluation metrics helps the human expert design trajec-
tories with specific rewards or environment feedback, informed by the mixing strategy, improving
the efficiency of expert trajectory generation.

7 CONCLUSION

In this paper, we investigate the feasibility of incorporating expert demonstrations into the training of
LLM agents. Our experiments on the AppWorld and WebShop benchmark show that including ex-
pert demonstrations helps less capable models improve performance by both broadening exploration
and encouraging more consistent behavioral patterns. Furthermore, we propose an active learning
framework to manage annotation budgets while maximizing the utility of expert demonstrations.
Future work could explore extending this framework to other agentic tasks and developing a more
generalizable approach for efficient expert annotation.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Markus Bayer. ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot
Scenarios. In Markus Bayer (ed.), Deep Learning in Textual Low-Data Regimes for Cybersecurity,
pp. 89-112. Springer Fachmedien, Wiesbaden, 2025. ISBN 978-3-658-48778-2. doi: 10.1007/
978-3-658-48778-2_7.

Kevin Chen, Marco F. Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Krihenbiihl. Reinforcement Learning for Long-Horizon Interactive
LLM Agents. CoRR, abs/2502.01600, 2025. doi: 10.48550/ARXIV.2502.01600.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, October 2021.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, Novem-
ber 2024.

Dongyuan Li, Ying Zhang, Zhen Wang, Shiyin Tan, Satoshi Kosugi, and Manabu Okumura. Active
Learning for Abstractive Text Summarization via LLM-Determined Curriculum and Certainty
Gain Maximization. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2024, pp. 8959-8971, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024 findings-emnlp.523.

Pangpang Liu, Chengchun Shi, and Will Wei Sun. Dual Active Learning for Reinforcement Learning
from Human Feedback, December 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023. doi: 10.48550/arXiv.2308.03688.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding R1-Zero-Like Training: A Critical Perspective, March 2025.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Tarun Venkat, Shang Zhu, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. DeepSWE: Training a Fully Open-sourced,
State-of-the-Art Coding Agent by Scaling RL. https://www.together.ai/blog/deepswe.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language Models to
Master 16000+ Real-world APIs, October 2023.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report,
January 2025.

Hamidreza Rouzegar and Masoud Makrehchi. Enhancing Text Classification through LLM-Driven
Active Learning and Human Annotation. In Sophie Henning and Manfred Stede (eds.), Proceed-
ings of the 18th Linguistic Annotation Workshop (LAW-XVIII), pp. 98—111, St. Julians, Malta,
March 2024. Association for Computational Linguistics.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,

Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024.

11

Under review as a conference paper at ICLR 2026

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In

9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. doi: 10.48550/arXiv.2010.03768.

Lucas-Andrei Thil, Mirela Popa, and Gerasimos Spanakis. Navigating WebAl: Training Agents to
Complete Web Tasks with Large Language Models and Reinforcement Learning. In Proceedings
of the 39th ACM/SIGAPP Symposium on Applied Computing, pp. 866874, April 2024. doi:
10.1145/3605098.3635903.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. AppWorld: A Controllable World of
Apps and People for Benchmarking Interactive Coding Agents, July 2024.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. RAGEN: Understanding Self-Evolution in
LLM Agents via Multi-Turn Reinforcement Learning, May 2025.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040-52094, 2024. doi: 10.48550/arXiv.2404.07972.

Yifan Xu, Xiao Liu, Xinghan Liu, Jiagi Fu, Hanchen Zhang, Bohao Jing, Shudan
Zhang, Yuting Wang, Wenyi Zhao, and Yuxiao Dong. MOBILERL: ADVANCING
MOBILE USE AGENTS WITH ADAPTIVE ONLINE REINFORCEMENT LEARNING.
https://github.com/Xia09905/AutoGLM/blob/main/static/papers/mobilerl_0820.pdf.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Simple-
TIR: End-to-End Reinforcement Learning for Multi-Turn Tool-Integrated Reasoning, September
2025.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. WebShop: Towards Scal-
able Real-World Web Interaction with Grounded Language Agents. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. doi:
10.48550/arXiv.2207.01206.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. \(\tau\)-bench: A Benchmark
for Tool-Agent-User Interaction in Real-World Domains. CoRR, abs/2406.12045, 2024. doi:
10.48550/ARXIV.2406.12045.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu,
Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: An
Open-Source LLM Reinforcement Learning System at Scale, May 2025.

A USAGE OF LLMS IN PAPER WRITING

During the paper writing, LLMs are used solely for polishing the writing, such as correcting spelling
and grammar errors, and for no other purpose.

B GRPO IMPLEMENTATION DETAILS

Multi-turn Agentic RL LLM training suffers from instablility issues. We found these following
techniques helpful to stabilizes the training process:

12

Under review as a conference paper at ICLR 2026

» Response Reformatting: For each turn generation, we use regex to check if the generated
response follows the expected format. If not, we first attempt to use a series of rules to
reformat the response into the expected format, then if the reformatting fails, this turn is
marked as invalid.

* Selective Resampling and Rollback: After the generation of each turn in one rollout, we
check the validity of the generated message. If the message is invalid (e.g., no actions can
be found, incomplete API calls, syntax errors, etc.), we resample up to N times. If all N
resamples are invalid, we rollback to the k + b * m turns before and restart the generation
from there, where m is the times of rollback. If we rollback M times without getting valid
trajectory, we stop this rollout and keep it at the last valid turn.

* Compact Filtering: First proposed in DAPO (Yu et al.,|[2025)) then further adapted in Deep-
SWE (Luo et al.). For rollout that ended prematurely (e.g., max token limit reached, max
turn limit reached, etc.), we mask the whole rollout in loss calulation.

Our implementation is based on RAGEN (Wang et al., 2025)

C MIXING STRATEGY

We provide the pseudo code of our mixing strategy in Algorithm 2}

D WEBSHOP SETTING

Here is a more detailed description about the setting of our extra validation experiments on Web-

Shop:

* We follow RAGEN (Wang et al, [2025) and use “items_ins_-v2_1000” and
“items_shuffle_1000” as our dataset, then randomly sample 5410 tasks as training
set, 1000 tasks as validation set and 500 as test set.

* We first aggregates the training set by their goal products. Then for each product, we sample
min(4, [|7]/2]) tasks as a subset D° for possible expert demonstrations.

* In WebShop, we use £(M*,Z;) expert design, where M* is DeepSeek-V3.2 and Z; in-
cludes meta information of tasks. We first sample 3 trajectories M™*. Then, if none of these
3 trajectories achieve success, we add Z; into context and continue to generate 2 more
trajectories. Else, we keep the same prompt and continue to generate 2 more.

* In Reward-based Filter, we calculate the average reward difference at product level, and
products further go through Diversity-based Selection. The intersection of DO and tasks
corresponding to selected products are finally selected as expert tasks.

» The similarity is calculated using the query, category, attribute and option information of
each product, where category are compared at phrase level, and others first broken down

into words then used to calculate set similarity. Then the 4 scores are finally given weights
0.3,0.4, 0.2, 0.1 to form the final similarity score.

E COMPUTATION AND MEMORY COST

In our framework, the computation and memory cost mostly comes from:

* Reward-based Filter: In this module, we calculate the average reward of tasks in two
concessive step windows. We first iterate over each rollout to get the rewards, then cal-
culate the difference in average reward for each task involved. The time complexity is
O(u x G X |D,]), where /2 is the size of a window, G is the rollout number for each
task and |D,,| is the number of tasks at step n. The memory complexity is O(|D,,|). The
operations are simple scalar additions and multiplications and should cost minimal time or
memory.s

13

Under review as a conference paper at ICLR 2026

Algorithm 2 Mixing Strategy

Input: Sampled Trajectory Set For Task d; 7; = {7i 1,72, - --,Ti.c}, Expert Demonstration
Set For Task d; T;* = {7}y, 7}, ..., 7, }, Mixing Ratio o, Outcome Reward Function R(-)
Output: Mixed Trajectory Set For Task d; T;
Initialize 7,24 + ||
for each 7, € 7;* do

if R(Tl-*_j) > max 7 i, € T;R(7;) then

Tcaﬁdi — Tcandi U {7__* }
i 2 2,3

end if

end for

Initialize 7; < [, 7% <]
while | 7;] < a x G and T4 = () do
Randomly select 7;°; € T
if R(7);) = anynvkeﬁR(T@k) then
7;sub — 7;sub U {Tifj}
else _
Ti < TiU{};
end if
7;candz’ — 7;candi \ {Tz*]}

: end while
if |Ti] < a x G and T;*"“* # () then

Randomly select o x max(G — |T;|, | T;5*?|) trajectories from 7;*** and add to 7;

. end if
. Initialize 7;5"® « ||
: while |7;| < G do

Randomly select 7; ; € T;

if R(7; ;) = anyn.keﬂR(Ti,k) then
7;sub — 7‘isub U {Ti,j}

else _
T« T, U {Tiﬁj}

end if

Ti = Ti\ {7}

: end while
- if |T;] < G and T;*"* # () then

Randomly select max(G — | 75|, |7;°“%|) trajectories from 7;°*® and add to 7;

s end if
: return 7;

* Diversity-based Selection: In this module, we use similarity between tasks to further select
appropriate expert tasks. The similarity computation cost is very dependent on the design of
the similarity metric design. In our experiment, we use the similarity of the set of API func-
tions involved in tasks, which can be pre-computed with time complexity and memory com-
plexity O(|D|?). The operations are simple set similarity calculation (|A N B|/|A U B|)
and should cost minimal time or memory.

The time and memory complexity of Max-Min selection is O(|D,,|?) and O(|D,,|?) in the-
ory, where |Z§n| is the number of candidate expert tasks at step n, but much less in practice
as we apply a threshold to end it prematurely. For a larger batch size, we can further re-
duce the cost by using a sampling-based Max-Min selection where instead of calculating
the similarity of all the tasks left, we sample k tasks to check if there are any tasks that

qualifies, which further reduce the time complexity to O(|D,, |2 x k).

* Trajectory Mixing: In this module, we mix the agent rollouts with expert demonstrations
with a few pre-defined rules. The time and memory complexity is O(G + m), where G is

14

Under review as a conference paper at ICLR 2026

the rollout number for each task and m is the number of expert demonstrations for each
tasks, which are all rather small constants.

In conclusion, the extra operations introduced in these modules are orthogonal to the size of the
models or environments and mostly only related to the rollout batch size. More importantly, these
operations are almost all scalar operations is negligible compared to the rollout process itself.

F EXAMPLE TRAJECTORY

Here we provide an example trajectory from AppWorld for reference.

< PROMPT START >
[

{ "role": "system", "content": "You're a helpful assistant. " },
{
"role": "user",
"content": "I am your supervisor and you are a super intelligent AI Assistant whose job is to achieve
<~ my day-to-day tasks completely autonomously.\n\nTo do this, you will need to interact with app/s
~— (e.g., spotify, venmo etc) using their associated APIs on my behalf. For this you will undertake
< a *multi-step conversationx using a python REPL ... code, that I will execute, to solve the task.
<> Let's start with the task\n\nMy name is: Melissa Bailey. My personal email is
< mel.bailey@gmail.com and phone number is 3383946795.\nTask: How many playlists do I have in
<~ Spotify?"
}
{
"role": "assistant",
"content": "Okay. Lets first find which APIs are available to use in
— Spotify.\n<answer>\nprint (apis.api_docs.show_api_descriptions (app_name="'spotify'))\n</answer>"
}
{
"role": "user",
"content": "Output:\n[\n ...\n \"login : Login to your account.\",\n \"logout : Logout from your
— account.\",\n ...\n]"
}
{
"role": "assistant",
"content": "Okay. Looks like I can use the “login” api. Lets find its

< specifications.\n\n<answer>\nprint (apis.api_docs.show_api_doc (app_name='spotify',
< api_name='login'))\n</answer>"

}

{

"role": "user",

"content": "Output:\n{\n \"app_name\": \"spotify\",\n \"api_name\": \"login\",\n \"path\":

< \"/auth/token\",\n \"method\": \"POST\",\n \"description\": \"Login to your account.\",\n

< \"parameters\": [\n {\n \"name\": \"username\",\n \"type\": \"string\",\n \"required\":
> true,\n \"description\": \"Your account email.\",\n ... I\n 1,\n \"response_schemas\": {\n
< \"success\": {\n \"token_type\": \"string\",\n \"access_token\": \"string\"\n },\n

< \"failure\": {\n \"message\": \"string\"\n }\n }\n}"

"role": "assistant",
"content": "I need the supervisor's username and password. Lets see if any app can help me get
< that.\n\n<answer>\nprint (apis.api_docs.show_app_descriptions()) \n</answer>"

"role": "user",
"content": "Output:\n{'api_docs': 'An app to search and explore API documentation.', 'supervisor':
— \"An app to access supervisor's personal information, account credentials, addresses, payment
— cards, and manage the assigned task.\", 'amazon': 'An online shopping app to buy products and
< manage orders, returns, etc.', 'phone': 'An app to find and ... 'A bill splitting app to track
< and split expenses with people.', 'simple_note': 'A note-taking app to create and manage notes',
<> 'todoist': 'A task management app to manage todo lists and collaborate on them with others.'}"
}
{
"role": "assistant",
"content": "Looks like the supervisor app could help me with

< that.\n\n<answer>\nprint (apis.api_docs.show_api_descriptions (app_name='supervisor'))\n</answer>"
}
{

"role": "user",
"content": "Output:\n[\n ...\n \"show_account_passwords : Show your supervisor's account
< passwords.\"\n ...\n]"
}
{
"role": "assistant",
"content": "I can use “show_account_passwords® to get the passwords. So I will call that and save it
<y in a variable for future reference‘\n<answer>\npasswords=apis.supervisor.show_account_passwords(J
<) \nprint (passwords) \n</answer>"
by
{
"role": "user",
"content": "Output:\n[\n {\n \"account_name\": \"spotify\",\n \"password\":
— \"dummy_spotify_pass\"\n },\n {\n \"account_name\": \"file_system\",\n \"password\":

— \"dummy_fs_pass\"\n }\n]"
b

15

Under review as a conference paper at ICLR 2026

"role": "assistant",

"content": "So the Spotify password is an entry in the “passwords”™ list with the

< account_name=spotify. I can use it to login now with the provided email address:

< mel.bailey@gmail.com.\n\n<answer>\nspotify password = [account_password[\"account_name\"] ==
— \"spotify\" for account_password in passwords] [0] [\"password\"]\nlogin_result =

< apis.spotify.login(username='mel.bailey@gmail.com',

— password=spotify_password) \nprint (login_result)\n</answer>"

"role": "user",

"content": "Output:\n{\n \"token_type\": \"Bearer\",\n \"access_token\": \"fake_access_token\"\n}"
}
{

"role": "assistant",

"content": "First, let's check the available APIs for the Spotify

< app.\n<answer>\nprint (apis.api_docs.show_api_descriptions (app_name='spotify'))\n</answer>"
}
{

"role": "user",

"content": "Output:\n[\n...\n{\n \"name\": \"show_playlist_library\",\n \"description\": \"Get a
<> list of playlists in the user's playlist library.\"\n},\n{\n \"name\": \"show_playlist\",\n
<> \"description\": \"Get detailed information about a specific playlist. You can view your own

< playlists or others' playlists if they are public.\"\n },\n...\n]"
}
{
"role": "assistant",
"content": "The “show_playlist_library™ API seems to be the one we need. Let's check its
— specifications.\n<answer>\nprint (apis.api_docs.show_api_doc (app_name="'spotify"',
< api_name='show_playlist_library'))\n</answer>"

"role" "user",
"content": "Output:\n{\n \"app_name\": \"spotify\",\n \"api_name\": \"show_playlist_library\",\n
— \"path\": \"/private_playlists\",\n \"method\": \"GET\",\n \"description\": \"Get a list of
— playlists in the user's playlist library.\",\n \"parameters\": [\n {\n \"name\" :
< \"access_token\",\n \"type\ \"string\",\n \"required\": true,
< \"2019-01-01T00:00:00\",\n \"is_public\": true,\n \"rating\": 0.0, \n \"like_count\": 1,\n
— \"owner_email\": \"user@example.com\",\n \"playlist_id\": 1,\n \"song_ids\": [\n 1\n 1\n
< }\n J\n}"

}

{
"role": "assistant",
"content": "I need to page through all the playlists to get the list of playlists and save it in
— “playlists”.\n<answer>\npage_index = O\nplaylists = []\nwhile page_index < 10:\n playlist_page =
<> apis.spotify.show_playlist_library(access_token=spotify_access_token, page_index=page_index) \n
— if playlist_page:\n playlists.extend(playlist_page) \n page_index += 1\n else:\n

< Dbreak\nnum_playlists = len(playlists)\nprint (num_playlists)\n\n</answer>"
}

{ "role": "user", "content": "Output:\n23" },
{
"role": "assistant",
"content": "Now that the task is completed, I can call apis.supervisor.complete_task(). Since this

< task has an answer to be returned, I will pass that as an

— argument.\n\n<answer>\napis.supervisor.complete_task (answer=num_playlists)\n</answer>"
}
{

"role": "user",

"content": "Output:\nMarked the active task
complete.\n\n\n \n\nx*+Key instructionsx:\n(1l) Make
sure to start code blocks with <answer> and end them with </answer>.\n\n(2) Remember you can use
the variables in your code in subsequent code blocks.\n\n(3) Remember that the email addresses,
access tokens and variables (e.g. spotify_password) in the example above are not valid
anymore.\n\n(4) You can use the \"supervisor\" app to get information about my accounts and use
the \"phone\" app to get information about friends and family.\n\n(5) Always look at API
specifications (using apis.api_docs.show_api_doc) before calling an API.\n\n(6) Write small
chunks of code and only one chunk of code in every step. Make sure everything is working
correctly before making any irreversible change.\n\n(7) Many APIs return items in \"pages\". Make
sure to run through all the pages by looping over “page_index .\n\n(8) Once you have completed
the task, make sure to call apis.supervisor.complete_task(). If the task asked for some
information, return it as the answer argument, i.e. call
apis.supervisor.complete_task (answer=<answer>). Many tasks do not require an answer, so in those
cases, just call apis.supervisor.complete_task() i.e. do not pass any argument.\n\nUsing these
APIs, now generate code to solve the actual task:\n\nMy name is: Adrian Burton. My personal email
is adrian_burt@gmail.com and phone number is 5025534184.\nTask: The \" /pictures/\" directory in
my file system has photo files organized in sub-directories for each vacation spot. Compress them
and save them in \"7/pictures/vacations/<vacation_spot>.zip\" for each vacation spot, and then
delete all vacation spot sub-directories. Here, <vacation_spot> is the name of the vacation spot
as it appears in the sub-directory name."

Lo osroorirpns

}
< PROMPT END >
{
"role": "assistant",
"content": "First, I need to explore the file system to see what vacation spot sub-directories exist

<y in ~/pictures/.\n<answer>\nprint(apis.apifdocs.show,api,descriptions(app,name=‘file,system'))\n<J

< /answer>"
}
{

"role": "user",

16

Under review as a conference paper at ICLR 2026

}
{

}
{

}
{

}
{

}
{

}
{

}
{

"content": "Output:\n[\n {\n \"name\": \"show_account\",\n \"description\": \"Show your account
< information. Unlike show_profile, this includes private information.\"\n },\n {\n \"name\":
— \"signup\",\n \"description\": \"Sign up to create account.\"\n },\n {\n \"name\":

— \"delete_account\",\n \"description\": \"Delete your account.\"\n },\n {\n

— \"description\": \"Compress a directory.\"\n },\n {\n \"name\": \"decompress_file\", \n

< \"description\": \"Decompress a compressed file.\"\n }\n]\n\n"

"role": "assistant",
"content": "I need to login to the file system first, then list the vacation spot sub-directories in
<> “/pictures/.\n<answer>\nprint (apis.api_docs.show_api_doc (app_name='file_system',
< api_name='login'))\n</answer>"
}
{
"role": "user",
"content": "Output:\n{\n \"app_name\": \"file_system\",\n \"api_name\": \"login\",\n \"path\":
< \"/auth/token\",\n \"method\": \"POST\",\n \"description\": \"Login to your account.\",\n
< \"parameters\": [\n {\n \"name\": \"username\",\n \"type\": \"string\", \n \"required\":
< true,\n \"description\": \"Your account email.\",\n ... }\n 1,\n \"response_schemas\": {\n
— \"success\": {\n \"access_token\": \"string\",\n \"token_type\": \"string\"\n },\n
— \"failure\": {\n \"message\": \"string\"\n }\n }\n}\n\n"
}
{
"role": "assistant",
"content": "I need to get the file system password from the supervisor app to
< login.\n<answer>\npasswords = apis.supervisor.show_account_passwords () \nfs_password =
— next ((acc[\"password\"] for acc in passwords if acc[\"account_name\"] == \"file_system\"),
< None)\nlogin_result = apis.file_system.login(username='adrian_burt@gmail.com',
— password=fs_password) \naccess_token =
< login_result[\"access_token\"]\nprint (access_token)\n</answer>"
}
{
"role": "user",
"content": "Output:\nethchiOiJIUzI1NiIsInR5cCI€IkpXVCJ9.eszdWIiOiJmanlX3N5c3RlbschHJpYW5fYnVydEJ

<> BnbWFpbC5jb20iLCJ1eHAiOjE20DQOMTIOMDRY . jwWfOmxx60LyIf4n0OpGhvG3QjZ1LQYppQ9ilxRCEucI\n\n"

"role": "assistant",

"content": "Now I'll list the contents of the ~/pictures/ directory to find vacation spot

< sub-directories.\n<answer>\nprint (apis.api_docs.show_api_doc (app_name='file_system',

< api_name='show_directory'))\n</answer>"

"role": "user",

"content": "Output:\n{\n \"app_name\": \"file_system\",\n \"api_name\": \"show_directory\",\n

< \"path\": \"/directory\",\n \"method\": \"GET\",\n \"description\": \"Show a list of files and/or
<> sub-directories, optionally recursively, in a directory.\",\n \"parameters\": [\n {\n

— \"name\": \"access_token\",\n \"type\": \"string\",\n \"required\": true,\n

< \"description\": \"Access token obtained from file_system app login.\",\n \"default\":

— \"response_schemas\": {\n \"success\": [\n \"string\"\n],\n \"failure\": {\n \"message\":
— \"string\"\n }\n }\n}\n\n"

"role": "assistant",

"content": "I'll list only the sub-directories in ~/pictures/ to find the vacation spot

<> directories.\n<answer>\nvacation_dirs =

< apis.file_system.show_directory (access_token=access_token, directory_path=\""/pictures/\",

< entry_type=\"directories\", recursive=False) \nprint (vacation_dirs)\n</answer>"

"role": "user",

"content": "Output:\n[\"/home/adrian/pictures/vacations/\"]\n\n"

"role": "assistant",

"content": "I see there's a vacations directory, but I need to check what's inside it to find the

< vacation spot sub-directories.\n<answer>\nvacation_spot_dirs =

< apis.file_system.show_directory (access_token=access_token,

<> directory_path=\""/pictures/vacations/\", entry_type=\"directories\",
— recursive=False) \nprint (vacation_spot_dirs)\n</answer>"

"role": "user",

"content": "Output:\n[\n \"/home/adrian/pictures/vacations/bali/\",\n

— \"/home/adrian/pictures/vacations/maui/\",\n \"/home/adrian/pictures/vacations/santorini/\",\n
— \"/home/adrian/pictures/vacations/seoul/\"\n]\n\n"

"role": "assistant",

"content": "Now I need to compress each vacation spot directory and save it as a zip file in the
< vacations directory, then delete the original

< directories.\n<answer>\nprint (apis.api_docs.show_api_doc (app_name='file_system',

<> api_name='compress_directory'))\n</answer>"

"role" "user",

"content": "Output:\n{\n \"app_name\": \"file_system\",\n \"api_name\": \"compress_directory\",\n
< \"path\": \"/directory/compress\",\n \"method\": \"POST\",\n \"description\": \"Compress a
< directory.\",\n \"parameters\": [\n {\n \"name\": \"directory_path\",\n \"type\":

< \"string\",\n \"required\": true,\n \"description\": \"Path of ... \"message\":

<~ \"string\",\n \"compressed_file_path\": \"string\"\n },\n \"failure\": {\n \"message\":
< \"string\"\n }\n }\n}\n\n"

17

Under review as a conference paper at ICLR 2026

}
{

"role": "assistant",

"content": "I'll compress each vacation spot directory to a zip file in the vacations directory with
< the vacation spot name, then delete the original directories.\n<answer>\nfor vacation_dir in

— vacation_spot_dirs:\n vacation_spot = vacation_dir.split('/") [-2] # Extract vacation spot

— name from path\n zip_path = f\""/pictures/vacations/{vacation_spot}.zip\"\n result =

< apis.file_system.compress_directory (\n access_token=access_token, \n

< directory path=vacation_dir,\n compressed_file_path=zip_path, \n

< delete_directory=True, \n overwrite=True\n)\n print (f£\"Compressed {vacation_dir} to
< {zip_path}: {result}\")\n</answer>"

"role": "user",
"content": "Output:\nCompressed /home/adrian/pictures/vacations/bali/ to
> " /pictures/vacations/bali.zip: {'message': 'Directory compressed.', 'compressed_file_path':
<> '/home/adrian/pictures/vacations/bali.zip'}\nCompressed /home/adrian/pictures/vacations/maui/ to
> “/pictures/vacations/maui.zip: {'message': 'Directory compressed.', ... seoul.zip: {'message':
<+ 'Directory compressed.', 'compressed_file_path':
<> '/home/adrian/pictures/vacations/seoul.zip'}\n\n"
}
{
"role": "assistant",
"content": "The task has been completed successfully - all vacation spot directories have been

< compressed to zip files and the original directories
— deleted.\n<answer>\napis.supervisor.complete_task () \n</answer>"

}

REWARD: 1.0

18

	Introduction
	Related Works
	Problem Setting and Preliminary
	Method
	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Trajectory Analysis
	Additional Validation on WebShop

	Discussion
	Conclusion
	Usage of LLMs in Paper Writing
	GRPO Implementation Details
	Mixing Strategy
	WebShop Setting
	Computation and Memory Cost
	Example Trajectory

