
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPERT-INTEGRATED ACTIVE LEARNING FOR OPTI-
MIZING LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Large Language Models (LLMs) have created new opportu-
nities for their application in interactive environments. However, these agentic
tasks present significant challenges due to the complexity of long and specialized
interaction trajectories that are underrepresented in standard training distributions.
While Reinforcement Learning (RL) post-training offers a promising approach to
mitigate the need for extensive human-annotated data, it faces fundamental limi-
tations in exploration efficiency when applied to LLMs. In this paper, we intro-
duce a novel framework that synergistically combines RL post-training with Ac-
tive Learning (AL) for LLM agents. By choosing informative tasks with reward-
based filter and diversity-based selection criteria, our approach enables models to
not only refine their capabilities through autonomous exploration but also strategi-
cally request expert demonstrations for challenging scenarios, thereby extending
their exploration boundaries. We demonstrate the efficacy of this method on the
AppWorld benchmark with DeepSeek-V3.1 as expert, showing comparable per-
formance with full supervision while using minimal expert demonstrations. We
then further look into adapting our framework for different budgets and examine
the factors that affect the final performance, as well as validate our framework
on WebShop benchmark. Our method highlights the potential of efficiently in-
tegrating limited human resources within RL pipelines to enhance LLM agents’
capabilities in complex interactive environments.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have sparked significant interest in leveraging
these models for a wide range of downstream tasks. Increasingly, LLMs are required to interact not
only with users, but also with external tools and environments, such as APIs (Qin et al., 2023), web
browsers (Thil et al., 2024), and embodied environments (Shridhar et al., 2021). Unlike traditional
Natural Language Processing (NLP) tasks, these scenarios often involve multi-turn interactions,
where the model must interpret feedback from the environment and adapt its strategy dynamically.
However, such long and complex interaction trajectories typically reside in the long tail of the data
distribution, as environmental observations are not only decided by model inputs but also the envi-
ronment states. Also, environment-specific settings and action space are underrepresented in general
training datasets. Consequently, zero-shot or few-shot prompting approaches often yield suboptimal
performance in these agentic settings.

A common remedy to adapt pretrained models on these agentic tasks is to finetune models with an-
notated data. However, collecting sufficient high-quality human-environment interaction trajectories
can often prohibitively expensive or infeasible, especially for scenarios with specific requirements
or limited resources. As an alternative, Reinforcement Learning (RL) post-training has gained pop-
ularity. For tasks where outcomes can be evaluated by predefined rules or reward models, RL en-
ables models to optimize their behavior by collecting trajectories and reward signals autonomously,
thereby significantly reducing dependence on manual annotation.

Despite these advancements, RL approaches for LLMs face fundamental limitations in exploration
efficiency. (i) From the perspective of action space, LLMs operate over vast token vocabularies,
where each generated token maps to different environment-specific actions. This results in an enor-
mous exploration space, within which only a sparse subset is truly meaningful. (ii) From the per-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

spective of policy initialization, pretrained LLMs already possess an initial policy shaped by their
pretraining data. This prior knowledge governs the generation of environment actions, but can be
difficult to adapt or modify through training on a specific downstream task. To address these chal-
lenges, we propose a novel framework that combines LLM RL post training with Active Learning
(AL). With this framework, the model can not only use its current policy to examine and refine its
own capabilities but also actively query for additional expert data to expand the upper bound of its
exploration. Our main contributions are summarized as follows:

• We examine the feasibility of introducing expert demonstrations to RL training of LLM
Agents, showing performance improvements with limited expert demonstrations in App-
World and WebShop benchmark.

• We propose a novel AL framework for RL training of LLM Agents, which actively selects
informative tasks for expert annotation based on reward-based filter and diversity-based
selection strategies.

• We look into the performance of our method under different budget setting and revealing
the relationship between used expert demonstration and final performance.

2 RELATED WORKS

Interactive Environments for LLM Agents Recent benchmarks increasingly evaluate LLM-
based agents in realistic and interactive settings. ALFWorld provided an interactive benchmark
that enables transferring abstract textual instructions to a 3D environment, evaluating the reason-
ing and planning abilities of embodied LLM agents (Shridhar et al., 2021). WebShop introduced
a scalable web-based environment with real products and instructions(Yao et al., 2022). Agent-
Bench broadened coverage across domains such as operating systems, databases, and games (Liu
et al., 2023). OSWorld benchmarked multimodal agents on real desktop applications, highlighting
the challenges of multimodal interaction (Xie et al., 2024). AppWorld provided lightweight, veri-
fiable environments for phone-API tasks (Trivedi et al., 2024). τ -bench assessed agent consistency
and rule-following in tool-augmented dialogues (Yao et al., 2024). SWE-bench targeted software
engineering tasks such as code generation, debugging, and refactoring (Jimenez et al., 2024). Col-
lectively, these benchmarks underscore the growing effort to evaluate LLMs in complex, interactive
tasks that require reasoning, planning, and tool use.

Reinforcement Learning for LLMs Beyond supervised instruction tuning, recent work applies
RL to improve LLM reasoning, alignment, and agentic control. Group Relative Policy Optimiza-
tion (GRPO) replaces the critic in Proximal Policy Optimization (PPO) with a group-wise baseline,
reducing training memory cost and improving model reasoning ability (Shao et al., 2024). Decou-
pled Clip and Dynamic sAmpling Policy Optimization (DAPO) introduces important techniques
like clip-higher and dynamic sampling, further improving models’ performance (Yu et al., 2025).
Dr.GRPO looks into the design of advantage estimation as well as prompting templates, achieving
SOTA results on multiple math benchmarks (Liu et al., 2025).

Reinforment Learning for Downstream Agentic Tasks In LLM agent settings, several works
have explored ways to transfer, stabilize and improve GRPO-like methods for multi-turn interac-
tion tasks. Leave-One-Out Proximal Policy Optimization (LOOP) combines PPO-style clipped up-
dates with a Leave-One-Out advantage estimator, achieving SOTA on AppWorld benchmark (Chen
et al., 2025). DeepSWE introduces trajectory-level compact filtering, greatly improves open-weight
model’s performance on SWE-Bench (Luo et al.). MobileRL incorporates successful trajectory re-
play and negative rollout pruning to enhance training efficiency (Xu et al.). SimpleTIR focuses on
improving trajectory quality by filtering rollouts with void turns where no valid actions are provided,
preventing gradient explosions and stabilizing end-to-end RL (Xue et al., 2025).

Active Learning in NLP Tasks Active Learning focuses on improving model performance with
minimal labeled data by strategically selecting the most informative samples for annotation. In
previous LLM-related works, uncertainty-based methods have been commonly used to improve text
classification and text summarization (Li et al., 2024; Rouzegar & Makrehchi, 2024; Bayer, 2025).
Some works also explore how to apply AL to efficiently learn reward models for Reinforcement
Learning from Human Feedback (RLHF) (Liu et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PROBLEM SETTING AND PRELIMINARY

LLM Agent Interaction as a Markov Decision Process Interactions involving LLM-based
agents can be naturally framed as a finite-horizon Partially Observable Markov Decision Process
(POMDP), represented by the tuple (S,A, R, P,H). Here, S denotes the state space, A the action
space, R : S × A the reward function, P : S × A the state transition dynamics, and H the finite
horizon. In practical settings, rewards are most often provided only at the end of an episode, once
the horizon H is reached.

GRPO To adapt GRPO to this framework, let G denote the rollout group size for each sam-
ple and T the number of interaction turns in a trajectory τ . We define an action a as a token
generated by the LLM policy πθ, with the response at turn t denoted as the action sequence
at =

[
ap(t)+1, ap(t)+2, . . . , ap(t)+l(t)

]
, where l(t) is the number of output tokens at turn t, and

p(t) =
∑t−1

k=1 l(k). The full trajectory τ is written as τ = (c,o1,a1, . . . ,oT ,aT), with final re-
ward R. The state s at token position p(t) + j consists of the initial prompt c concatenated with all
previously generated tokens and observations:sp(t)+j = (c,o1,a1, . . . ,ot,at[: j]).

GRPO follows the structure of the PPO algorithm, optimizing the objective

L(θ) = Eτ∼πθold

[
1

G

G∑
i=1

1

Li

Li∑
j=1

min
(

ratioi,j(θ)Âi,j , clip
(
ratioi,j(θ), 1− ϵ, 1 + ϵ

)
Âi,j

)

−β DKL
(
πθold ∥πθ

)]
,

where

Li = pi(Ti + 1), ratioi,j(θ) =
πθ(ai,j | si,j)
πθold(ai,j | si,j)

, Âi,· =
Ri −meanGk=1 Rk

stdGk=1 Rk

.

In our main experiments, we adopt a modified version of GRPO that uses Leave-One-Out advantage

estimation. The advantage for each token is given by Âi,· =
G

G−1

(
Ri −meanGk=1 Rk

)
.

Active Learning for LLM Agent We consider the following active learning setting. Let D =
{di}Ni=1 denote a pool of task data, where each di is a unique task instance. The goal is to iteratively
select informative tasks D∗ ⊂ D for expert demonstration T ∗, thereby improving the LLM agent’s
performance while minimizing annotation cost. The total annotation cost is C =

∑
d∈D∗ c·m, where

c is the cost of annotating one trajectory and m is the number of expert demonstrations collected for
a task.

4 METHOD

Overview Figure 1 demonstrates an overview of our proposed framework. With the RL training
framework (e.g., GRPO), we first samples a batch of tasks from the training dataset. The training
LLM Agent interacts with the environment to collect rollouts as well as reward signals and other
information. Then we perform a two-step expert task selection. For the collected rewards for each
task over a given step range, we perform a reward-based filter to identify the challenging task can-
didates. These task candidates are further filtered with a diversity-based selection strategy to ensure
the selected tasks are not redundant. The final selected tasks are then sent to experts (in our ex-
periments, a stronger model) for annotation, and the collected expert demonstrations are added to
the expert replay buffer. Finally, the sampled trajectories from the LLM Agent are mixed with the
expert demonstrations from the expert replay buffer for the calculation of policy gradients, which is
used to update the parameters of the LLM Agent.

Reward-Based Filter A key aspect of AL is the selection of informative samples for expert an-
notation, which is usually measured by the model’s uncertainty about a sample. In the RL setting,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Environment
InteractiveLLM Agent

Sampled
Tasks

Training
Dataset

Candidate
Tasks

Expert
Tasks

ExpertExpert
Trajectories

Expert
Replay Buffer

Training
Trajectories

Mixing
Strategy

step k

policy
gradient

Reward-Based
Filter

Diversity-Based
Task Selection

Traj.
Rewards

Sampled
Trajectories

task selection

Figure 1: An overview of our proposed framework.

uncertainty can be interpreted as the model’s difficulty in finding policy changes to improve per-
formance on specific task types. Intuitively, tasks that the current policy consistently fails on, or
where no noticeable improvement is observed over time, provide the clearest signal that additional
supervision from experts may be beneficial.

To implement this idea, we apply the following two-step criteria for task filtering: (i) Within a sliding
step window of size u, we identify tasks for which at least 80% of sampled rollouts remain unsuc-
cessful. This criterion highlights tasks that the current policy persistently struggles with. (ii) Among
these difficult tasks, we further select those where the average reward achieved in the most recent
u/2 steps does not surpass that of the preceding u/2 steps by more than a small margin ϵ. This
stagnation in reward suggests that the model has failed to make meaningful progress or to discover
an effective learning trajectory.

By combining success rate filtering with reward progression analysis, our selection mechanism pri-
oritizes tasks that are both persistently unsolved and resistant to incremental policy updates, thereby
ensuring that expert annotation is directed towards the most informative and impactful training sig-
nals.

Diversity-Based Task Selection Another important aspect of AL is to ensure the diversity of the
selected samples, which requires effective de-redundancy among the chosen tasks. To address this,
we introduce a diversity-based selection strategy following the initial score-based filtering of task
candidates. Specifically, after computing a similarity metric for each candidate, we employ a max-
min greedy selection strategy to select a batch of diverse tasks, as detailed in Algorithm 1. This
approach iteratively selects tasks that are maximally distinct from both previously selected tasks
and those chosen in recent steps, thereby promoting coverage of a broader range of task types.
Furthermore, we introduce a buffer step size to incorporate historical selections from the last v steps
into the max-min similarity calculation. This mechanism controls the diversity of selected tasks
during the buffer step while also allowing additional flexibility for the model to revisit challenging
or underexplored task types if no improvements are made during the previous steps, ultimately
improving the efficiency and robustness of expert demonstration collection. The accumulative cost
of expert demonstrations at step n is C≤n =

∑n
k=1

∑
d∈D∗

t
c ·m.

Mixing Strategy After updating the expert replay buffer with the newly collected expert demon-
strations, we construct the rollouts for policy updates by mixing trajectories generated by the LLM
Agent with carefully selected expert demonstrations from the buffer. The goal of this mixing strat-
egy is to effectively inject high-quality expert knowledge into the training process while avoiding
excessive reliance on expert data, thereby preserving the diversity and exploration ability of the
LLM Agent’s own trajectories. To achieve this balance, we design the following rules: (i) With
a mixing ratio α, we incorporate at most αG expert demonstrations for each task. To ensure that
only superior knowledge is introduced, we restrict candidates to demonstrations whose rewards are
strictly higher than those of all sampled trajectories from the LLM Agent. (ii) When selecting eligi-
ble expert demonstrations from the replay buffer, we prioritize demonstrations with distinct reward
values to encourage reward diversity. (iii) During the replacement of sampled trajectories with ex-
pert demonstrations, we adopt a preference order: first replacing trajectories with redundant rewards

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Diversity-Based Max-Min Task Selection

1: Input: History Expert Task List D∗ = [D∗
1 ,D∗

2 , . . . ,D∗
n−1], Candidate Task Set at Step n D̂n,

Similarity Metric sim(·, ·), Similarity Threshold δ, Buffer Step Size v
2: Output: Selected Task Set at Step n D∗

n

3: D∗
hist ←

⋃n−1
i=n−v D∗

i , D∗
n ← []

4: if D∗
hist = ∅ then

5: select d ∼ D̂n, D∗
n ← D∗

n ∪ {d}, D̂n ← D̂n \ {d}
6: end if
7: while D̂n ̸= ∅ do
8: d∗ ← argmaxd∈D̂n

mind′∈D∗
n∪D∗

hist
sim(d, d′)

9: if mind′∈D∗
n∪D∗

hist
sim(d∗, d′) < δ then

10: D∗
n ← D∗

n ∪ {d∗}, D̂n ← D̂n \ {d∗}
11: else
12: break
13: end if
14: end while
15: return D∗

n

to maintain the diversity of original samples, and then replacing those with relatively low rewards to
improve overall rollout quality. This principled mixing strategy enables the training process to ben-
efit from superior expert knowledge while preserving sufficient variation in the rollouts, ultimately
helps develop a more robust and generalizable policy. The full algorithmic details are provided in
Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset We adopt AppWorld (Trivedi et al., 2024) as our main experimental environment. App-
World provides a lightweight, verifiable, yet challenging benchmark for mobile app interaction. The
training set consists of 30 scenarios, each with 3 tasks, divided into 3 difficulty levels. Following
LOOP’s setup (Chen et al., 2025), we use level-1 and level-2 tasks for training, covering 24 scenar-
ios and 72 tasks. The relatively small training set enables efficient experimentation under different
settings and budget constraints. For evaluation, AppWorld offers two test sets: Test Normal (168
tasks) and Test Challenge (417 tasks).

Models and Training We use Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct (Qwen et al.,
2025) as base LLMs, with LoRA adapters (Hu et al., 2021) for efficient finetuning. Our frame-
work is implemented on top of RAGEN (Wang et al., 2025). At each training step, we sample 40
tasks from the training set, with a rollout group size of 6 per task.

Experiment Settings We evaluate these three main configurations:

• /GRPO/baseline: GRPO without external demonstrations. The policy is updated only from
the model’s own rollouts.

• /GRPO/full demonstration: Expert demonstrations for all tasks are available throughout
training and are mixed into rollouts according to the mixing strategy.

• /GRPO/active learning: The expert replay buffer is initialized empty. During training,
tasks are chosen via a reward-based filter and diversity-based selection. Expert demon-
strations for these tasks are then added to the buffer and remain available for subsequent
step.

We also provides results from these two baseline implementations for comparision:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance of different models and settings on AppWorld benchmark. “Task Success
Rate” indicates average success rate for all tasks, and “Scene Success Rate” indicates success rate
for all scenes (a scene is considered a success if all three tasks under the scene are successfully
executed).

Models / Settings Cost (C)
Train Test Normal Test Challenge

Task
Success
Rate (%)

Scene
Success
Rate (%)

Task
Success
Rate (%)

Scene
Success
Rate (%)

Task
Success
Rate (%)

Scene
Success
Rate (%)

Qwen2.5-7B-Instruct 0 1.38 0.00 0.60 0.00 1.92 0.00
Qwen2.5-14B-Instruct 0 23.61 8.33 10.71 1.79 6.00 1.44
Expert
DeepSeek-V3.1 - 56.94 33.33 56.55 37.50 40.63 18.75

Qwen2.5-7B-Instruct
/GRPO0/baseline 0 40.27 29.17 10.71 5.36 5.27 1.44
/SFT/full demonstration 360 44.44 25.00 27.98 10.71 8.39 2.16
/GRPO/baseline 0 41.67 33.33 11.90 3.57 3.60 0.72
/GRPO/full demonstration 360 72.22 50.00 29.76 16.07 10.07 2.16
/GRPO/active learning 165 66.67 45.83 28.57 12.50 7.19 1.44
Qwen2.5-14B-Instruct
/GRPO0/baseline 0 69.44 50.00 43.45 26.79 19.64 8.63
/SFT/full demonstration 360 56.94 37.50 37.50 17.86 14.39 3.60
/GRPO/baseline 0 72.22 58.33 43.45 32.14 18.94 7.91
/GRPO/full demonstration 360 76.39 66.67 51.19 30.36 23.50 7.91
/GRPO/active learning 75 77.78 66.67 49.40 32.14 21.82 9.35

• /GRPO0/baseline: Vanilla GRPO without external demonstrations. Instead of using LOOP
style advantage estimation, using default normalized reward.

• /SFT/full demonstration: Model is directly finetuned on expert demonstrations for all tasks.

In both /GRPO/full demonstration and /GRPO/active learning, we set the mixing rate to α = 0.33.
For /GRPO/active learning, we use a similarity threshold of δ = 0.65, a reward filter window of
u = 5, a reward filter threshold of ϵ = 0.05, and a buffer update step size of v = 10. Expert
demonstrations are simulated using DeepSeek-V3.1. For each training task, we pre-collect m = 5
demonstrations, which are added to the replay buffer when required. For simplicity, we assume the
cost of each expert demonstration c = 1.

5.2 MAIN RESULTS

Table 1 summarizes the main experimental results on the AppWorld benchmark. As shown, both
Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct perform poorly on this benchmark. Even after
standard GRPO training, the task success rate of Qwen2.5-7B-Instruct on the Test Normal split is
only 11.9%, while the success rate on the training set remains below 50%. This indicates that the
model struggles to fully explore the training set on its own, let alone develop a generalizable policy
for unseen tasks. In contrast, incorporating expert demonstrations leads to a notable performance
boost. Both /GRPO/full demonstration and /GRPO/active learning achieve significantly higher suc-
cess rates, with improvements of approximately 18% over the GRPO baseline. This confirms that
expert trajectories provide crucial guidance, helping the model explore previously unseen states and
learn more effective task-solving strategies. The training dynamics shown in Figure 2 further support
this conclusion. We observe that the gap between /GRPO/baseline and /GRPO/full demonstration
emerges and stabilizes after roughly 20 training steps, indicating that expert demonstrations not only
accelerate learning but also enable the model to reach solutions beyond its initial capabilities. A sim-
ilar pattern is observed for Qwen2.5-14B-Instruct. Although the improvements are less pronounced
than for the 7B model, both /GRPO/full demonstration and /GRPO/active learning still outperform
the baseline. We hypothesize that the smaller performance gap arises from the limited capability

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Reward

0.0

0.2

0.4

0.6

0.8
Success Rate

10

12

14

16

18

Avg. Trajectory Turns

6000

7000

8000

9000

10000

Avg. Trajectory Tokens

0 20 40 60 80 100
Steps

0.6

0.7

0.8

0.9

0 20 40 60 80 100
Steps

0.2

0.4

0.6

0.8

0 20 40 60 80 100
Steps

10

11

12

13

14

15

0 20 40 60 80 100
Steps

6000

7000

8000

9000

10000

11000

Qwen2.5-7B-Instruct/GRPO/baseline
Qwen2.5-14B-Instruct/GRPO/baseline

Qwen2.5-7B-Instruct/GRPO/full_demonstration
Qwen2.5-14B-Instruct/GRPO/full_demonstration

Qwen2.5-7B-Instruct/GRPO/active_learning
Qwen2.5-14B-Instruct/GRPO/active_learning

Figure 2: Training metrics of Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct under three settings.
Settings with expert demonstrations reach higher rewards and success rate significantly faster than
/GRPO/baseline setting.

Table 2: Usage of expert demonstrations in /GRPO/full demonstration and /GRPO/active learning
setting. “Expert tasks (|D∗|)” denotes the number of tasks selected for expert demonstrations.
“Cost (C)” denotes number of expert demonstrations collected. “Used” denotes the number of ex-
pert demonstrations used in final rollout after mixing strategy. “Appearances” denotes the number
of expert demonstration appearance in all rollouts after mixing strategy. “Efficiency” is defined as
“Used” / “Appearances”, the average times of appearances for a used rollout.

Models / Settings Expert
Tasks (|D∗|)

Expert Demonstrations Total
RolloutsCost (C) Used Appearances Efficiency

Qwen2.5-7B-Instruct
/GRPO/full demonstration 72/72 360 241 629 2.61 12,000
/GRPO/active learning 33/72 165 119 457 3.91 19,200
Qwen2.5-14B-Instruct
/GRPO/full demonstration 72/72 360 117 326 2.78 14,400
/GRPO/active learning 15/72 75 52 205 3.94 15,600

of our simulated expert, which constrains the quality of the demonstrations and, consequently, their
impact on a stronger model. Nevertheless, these results consistently validate the effectiveness of
incorporating expert demonstrations into the training process.

0 20 40 60
Steps

0

100

200

300

Expert Demonstrations Cost ()

0 20 40 60
Steps

0.00

0.05

0.10

0.15

0.20

0.25

Expert Demonstration Percentage

0 20 40 60
Steps

0

1

2

3

4
Expert Demonstrations Efficiency

Qwen2.5-7B-Instruct/GRPO/full_demonstration Qwen2.5-7B-Instruct/GRPO/active_learning

Figure 3: Usage of expert demonstrations during training of Qwen2.5-7B-Instruct under /GRPO/-
full demonstration and /GRPO/active learning setting.

Table 2 shows the statistics of expert demonstration cost and usage under different settings. In
/GRPO/active learning, Qwen2.5-7B-Instruct and Qwen2.5-14B-Instruct each acquire 33 and 15 of
the total 72 training tasks as expert tasks, achieving a much lower cost C. In our experiments, about

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

70% collected demonstration are actually used during training, as the mixing strategy only admits
superior demonstrations. The average appearance of each demonstration used to update policy,
denoted as expert demonstration efficiency, is significantly higher than /GRPO/full demonstration.
This frequent re-use suggests that the expert tasks selected in /GRPO/active learning are inherently
of a more challenging subset, since it takes more step for model to learn and generate rollouts with
the same high rewards consistently.

Figure 3 shows changes of expert demonstration usage over the training process of the /GRPO/-
full demonstration setting and /GRPO/active learning setting. We can see that in the /GRPO/ac-
tive learning setting, the demand for additional demonstrations gradually decreases as the model
improves its capabilities and stabilizes its policy. At the same time, expert demonstration efficiency
remains relatively constant, suggesting that expert demonstrations added later of the contributes
equally to the policy gradients as earlier ones.

5.3 ABLATION STUDIES

Table 3: /GRPO/active learning with different
similarity thresholds δ.

Settings
(δ)

Expert
Demonstrations Test Normal

Cost(C) Used
Task

Success
Rate (%)

Scene
Success
Rate (%)

0.25 60 43 17.26 3.57
0.45 110 84 27.38 10.71
0.65 165 119 28.57 12.50

Table 4: /GRPO/active learning with different
early stopping steps for AL.

Settings
(Early
Stop)

Expert
Demonstrations Test Normal

Cost(C) Used
Task

Success
Rate (%)

Scene
Success
Rate (%)

25 steps 90 71 25.60 12.50
45 steps 130 91 26.78 12.50
75 steps 165 119 28.57 12.50

0 50 100 150 200 250 300 350
Cost

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Ta
sk

 S
uc

ce
ss

 R
at

e
(%

)

/GRPO/baseline

=0.25
step=75

=0.45
step=75 =0.65

step=75

=0.65
step=25

=0.65
step=45

/GRPO/full_demonstration

/GRPO/half_demonstration

Figure 4: Demonstration cost and task success rate on Test Normal with Qwen2.5-7B-Instruct under
different settings. Settings with our proposed framework is marked with yellow triangles and settings
with random expert task selection marked with purple star. Logistic curve fit under these settings are
respectively colored red and grey. Our proposed framework has a significant bigger Area Under
Curve (AUC) than random selection method, indicating its overall superiority.

A key consideration when applying AL in production is managing annotation costs. To accommo-
date varying budget constraints, we test two strategies. The first is to adjust the similarity threshold
in diversity-based selection, allowing control over the number of selected tasks for sustained train-
ing. The second is to apply early stopping of the AL process once the desired budget limit is reached,
which is more suitable for a fixed training set. In our ablation studies, we examine both strategies
and analyze how changes in budget impact model performance.

Table 3 shows the usage of expert demonstrations and performance on Test Normal with different
δ. With smaller data, numbers of new expert tasks added shrinks, leading to a smaller overall
demonstration cost over time. The same goes for experiments with different early stopping steps of
active learning as shown in Table 4, but less drastic as more demonstrations are introduced in early
steps than later steps with our strategy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 20 40 60
Steps

2

4

6

Avg. API Docs Checked per Trajectory

0 20 40 60
Steps

1

2

3

4

5

6

Avg. Code Errors per Trajectory

0 20 40 60
Steps

0.0

0.2

0.4

0.6

0.8

1.0
Success Rate of Using apis. phone. login

Qwen2.5-7B-Instruct/GRPO/baseline Qwen2.5-7B-Instruct/GRPO/full_demonstration Qwen2.5-7B-Instruct/GRPO/active_learning Expert

Figure 5: Average number of code documentation query and code errors in each trajectory under
three settings. Settings with expert demonstrations exhibit a much faster grasp on documentation
checking, as well as a lower code block error rate. Expert demonstrations also help agent to learn
more fine-grained, specific policies, as the example of apis.phone.login shows.

Cost–Performance Relationship in Demonstration Usage To illustrate the trade-off between
cost and performance with our AL framework, Figure 4 plots the cost of demonstrations against
the task success rate on Test Normal. As the results show, the number of used demonstrations and
performance in our framework fits a logistic function with an upper bound.

Impact of Expert Task Selection on Learning Efficiency We perform another experiment, /GR-
PO/half demonstration, in which half of the training set is randomly selected as expert tasks,
and the corresponding expert demonstrations are provided from the start, similar to /GRPO/-
full demonstration. The logistic function fits for /GRPO/baseline, /GRPO/half demonstration, and
/GRPO/full demonstration reflect the trade-off with random expert task selection, which is signifi-
cantly weaker than our proposed task selection process.

Influence of Demonstration Timing We notice that the results of /GRPO/active learning with
δ = 0.25 drift away from the fitted curve. In this setting, far fewer expert tasks are added each round.
We attempt to continue the training and add more expert demonstrations to match the number of the
other two δ settings, but the model seems already converged on a rather stable policy, and extra
demonstrations do not improve the performance, indicating that for a fixed dataset, the timing when
expert demonstrations are introduced also affects the development of a superior policy.

5.4 TRAJECTORY ANALYSIS

We analyse training trajectories across different settings to understand how expert demonstrations
guide the model toward a more reliable policy. A core requirement in AppWorld is correct API us-
age, a behavior not directly rewarded but crucial for efficiency and final performance. While stronger
models (e.g., Qwen2.5-32B-Instruct) can acquire this behavior through GRPO alone, smaller models
such as Qwen2.5-7B/14B-Instruct frequently misuse APIs under the /GRPO/baseline setting and fail
to form consistent habits such as checking documentation before invoking functions. As shown in
Figure 5, /GRPO/full demonstration and /GRPO/active learning encourage Qwen2.5-7B-Instruct to
consult documentation roughly twice as often and reduce codeblock errors. Expert demonstrations
also improve more fine-grained behaviors. For instance, the API apis.phone.login requires
a phone number instead of an email. Without demonstrations, the model fails this call in 60% of
attempts; with demonstrations, the success rate rises to around 75%. Models trained with demon-
strations check the relevant documentation in around 85% of trajectories, compared to around 15%
under /GRPO/baseline. These results show that expert demonstrations help LLM agents develop
environment-aligned behavioral patterns, prioritizing actual environment specifications over prior
assumptions.

5.5 ADDITIONAL VALIDATION ON WEBSHOP

To further validate the generalizability of our method, we perform extra experiments on Web-
Shop(Yao et al., 2022). We aggregate tasks by their goal products, then selecting a subset as can-
didate task set for possible expert demonstration. We use DeepSeek-V3.2 as expert, where we also
provides oracle information of the task if the model cannot achieve success after a few trials. We

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Performance of Qwen2.5-3B-Instruct and different settings on WebShop benchmark.

Models / Settings Cost (C)
Train Test

Success
Rate (%)

Reward Success
Rate (%)

Reward

Qwen2.5-3B-Instruct 0 4.20 42.02 4.80 41.11
Expert
DeepSeek-V3.2 + Oracle Information - 35.38 65.71 34.80 64.34

/GRPO/baseline 0 52.29 76.42 56.20 78.04
/GRPO/full demonstration 4,270 66.30 83.31 68.00 84.74
/GRPO/active learning 970 64.99 83.50 64.00 81.92

use a mixing rate of α = 0.33, a similarity threshold of δ = 0.7, a reward filter window of u = 5,
a reward filter threshold of ϵ = 0.05, and a buffer update step size of v = 10. We use Qwen2.5-3B-
Instruct as base model. As shown in 1, with less than 25% expert demonstration cost, /GRPO/ac-
tive learning achieves around 2/3 performance growth of /GRPO/full demonstration. We provide
more information about the implementation in D.

6 DISCUSSION

In our experiment, we implement the expert E with an external model, denoted asM∗. This design
allows for consistent demonstration trajectories throughout different experiment setting, enabling
more reliable and comparable evaluations. However, there remain some issue: (i) In experiments,
about 30% of demonstrations remain unused due to the mixing strategy. (ii) Despite no issues were
observed in training, distribution mismatch between expert demonstrations and sampled rollouts
may affect GRPO’s on-policy learning.

Expert Design In practice, the expert design can be more complex, efficient and capability-aware
with joint effort of human expert H, LLM M∗ and task-specific information Ii, which may in-
clude current rollouts from agent, oracle information and evaluation metrics. Here are some possible
beneficial interactions between these entities:

• E(H,M∗) Expert trajectories can be formed by human expert supervising the model’s interaction
with the environment and making necessary adjustments at each turn. The model can be either
the external model or the current training model. This interaction helps reduce human labor while
maintaining consistency between expert trajectories and model rollouts.

• E(M∗, Ii) Expert trajectories can be formed via model reflection. Providing current rollouts in
context increases the likelihood of sampling successful trajectories with M∗ or building accu-
mulative progress based on the capability of the current training agent. Oracle information and
evaluation metrics can further reduce the difficulty of obtaining successful trajectories.

• E(H, Ii) Providing current rollouts and evaluation metrics helps the human expert design trajec-
tories with specific rewards or environment feedback, informed by the mixing strategy, improving
the efficiency of expert trajectory generation.

7 CONCLUSION

In this paper, we investigate the feasibility of incorporating expert demonstrations into the training of
LLM agents. Our experiments on the AppWorld and WebShop benchmark show that including ex-
pert demonstrations helps less capable models improve performance by both broadening exploration
and encouraging more consistent behavioral patterns. Furthermore, we propose an active learning
framework to manage annotation budgets while maximizing the utility of expert demonstrations.
Future work could explore extending this framework to other agentic tasks and developing a more
generalizable approach for efficient expert annotation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Markus Bayer. ActiveLLM: Large Language Model-based Active Learning for Textual Few-Shot
Scenarios. In Markus Bayer (ed.), Deep Learning in Textual Low-Data Regimes for Cybersecurity,
pp. 89–112. Springer Fachmedien, Wiesbaden, 2025. ISBN 978-3-658-48778-2. doi: 10.1007/
978-3-658-48778-2 7.

Kevin Chen, Marco F. Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Krähenbühl. Reinforcement Learning for Long-Horizon Interactive
LLM Agents. CoRR, abs/2502.01600, 2025. doi: 10.48550/ARXIV.2502.01600.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, October 2021.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. SWE-bench: Can Language Models Resolve Real-World GitHub Issues?, Novem-
ber 2024.

Dongyuan Li, Ying Zhang, Zhen Wang, Shiyin Tan, Satoshi Kosugi, and Manabu Okumura. Active
Learning for Abstractive Text Summarization via LLM-Determined Curriculum and Certainty
Gain Maximization. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Find-
ings of the Association for Computational Linguistics: EMNLP 2024, pp. 8959–8971, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.findings-emnlp.523.

Pangpang Liu, Chengchun Shi, and Will Wei Sun. Dual Active Learning for Reinforcement Learning
from Human Feedback, December 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023. doi: 10.48550/arXiv.2308.03688.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding R1-Zero-Like Training: A Critical Perspective, March 2025.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Tarun Venkat, Shang Zhu, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. DeepSWE: Training a Fully Open-sourced,
State-of-the-Art Coding Agent by Scaling RL. https://www.together.ai/blog/deepswe.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating Large Language Models to
Master 16000+ Real-world APIs, October 2023.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 Technical Report,
January 2025.

Hamidreza Rouzegar and Masoud Makrehchi. Enhancing Text Classification through LLM-Driven
Active Learning and Human Annotation. In Sophie Henning and Manfred Stede (eds.), Proceed-
ings of the 18th Linguistic Annotation Workshop (LAW-XVIII), pp. 98–111, St. Julians, Malta,
March 2024. Association for Computational Linguistics.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. ALFWorld: Aligning Text and Embodied Environments for Interactive Learning. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. doi: 10.48550/arXiv.2010.03768.

Lucas-Andreı̈ Thil, Mirela Popa, and Gerasimos Spanakis. Navigating WebAI: Training Agents to
Complete Web Tasks with Large Language Models and Reinforcement Learning. In Proceedings
of the 39th ACM/SIGAPP Symposium on Applied Computing, pp. 866–874, April 2024. doi:
10.1145/3605098.3635903.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. AppWorld: A Controllable World of
Apps and People for Benchmarking Interactive Coding Agents, July 2024.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing Jin,
Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho, Jiajun Wu,
Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. RAGEN: Understanding Self-Evolution in
LLM Agents via Multi-Turn Reinforcement Learning, May 2025.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024. doi: 10.48550/arXiv.2404.07972.

Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan
Zhang, Yuting Wang, Wenyi Zhao, and Yuxiao Dong. MOBILERL: ADVANCING
MOBILE USE AGENTS WITH ADAPTIVE ONLINE REINFORCEMENT LEARNING.
https://github.com/Xiao9905/AutoGLM/blob/main/static/papers/mobilerl 0820.pdf.

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Simple-
TIR: End-to-End Reinforcement Learning for Multi-Turn Tool-Integrated Reasoning, September
2025.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. WebShop: Towards Scal-
able Real-World Web Interaction with Grounded Language Agents. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022. doi:
10.48550/arXiv.2207.01206.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. \(\tau\)-bench: A Benchmark
for Tool-Agent-User Interaction in Real-World Domains. CoRR, abs/2406.12045, 2024. doi:
10.48550/ARXIV.2406.12045.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu,
Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: An
Open-Source LLM Reinforcement Learning System at Scale, May 2025.

A USAGE OF LLMS IN PAPER WRITING

During the paper writing, LLMs are used solely for polishing the writing, such as correcting spelling
and grammar errors, and for no other purpose.

B GRPO IMPLEMENTATION DETAILS

Multi-turn Agentic RL LLM training suffers from instablility issues. We found these following
techniques helpful to stabilizes the training process:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

• Response Reformatting: For each turn generation, we use regex to check if the generated
response follows the expected format. If not, we first attempt to use a series of rules to
reformat the response into the expected format, then if the reformatting fails, this turn is
marked as invalid.

• Selective Resampling and Rollback: After the generation of each turn in one rollout, we
check the validity of the generated message. If the message is invalid (e.g., no actions can
be found, incomplete API calls, syntax errors, etc.), we resample up to N times. If all N
resamples are invalid, we rollback to the k + b ∗m turns before and restart the generation
from there, where m is the times of rollback. If we rollback M times without getting valid
trajectory, we stop this rollout and keep it at the last valid turn.

• Compact Filtering: First proposed in DAPO (Yu et al., 2025) then further adapted in Deep-
SWE (Luo et al.). For rollout that ended prematurely (e.g., max token limit reached, max
turn limit reached, etc.), we mask the whole rollout in loss calulation.

Our implementation is based on RAGEN (Wang et al., 2025)

C MIXING STRATEGY

We provide the pseudo code of our mixing strategy in Algorithm 2.

D WEBSHOP SETTING

Here is a more detailed description about the setting of our extra validation experiments on Web-
Shop:

• We follow RAGEN (Wang et al., 2025) and use “items ins v2 1000” and
“items shuffle 1000” as our dataset, then randomly sample 5410 tasks as training
set, 1000 tasks as validation set and 500 as test set.

• We first aggregates the training set by their goal products. Then for each product, we sample
min(4, ⌈|T |/2⌉) tasks as a subset D̂0 for possible expert demonstrations.

• In WebShop, we use E(M∗, Ii) expert design, where M∗ is DeepSeek-V3.2 and Ii in-
cludes meta information of tasks. We first sample 3 trajectoriesM∗. Then, if none of these
3 trajectories achieve success, we add Ii into context and continue to generate 2 more
trajectories. Else, we keep the same prompt and continue to generate 2 more.

• In Reward-based Filter, we calculate the average reward difference at product level, and
products further go through Diversity-based Selection. The intersection of D̂0 and tasks
corresponding to selected products are finally selected as expert tasks.

• The similarity is calculated using the query, category, attribute and option information of
each product, where category are compared at phrase level, and others first broken down
into words then used to calculate set similarity. Then the 4 scores are finally given weights
0.3, 0.4, 0.2, 0.1 to form the final similarity score.

E COMPUTATION AND MEMORY COST

In our framework, the computation and memory cost mostly comes from:

• Reward-based Filter: In this module, we calculate the average reward of tasks in two
concessive step windows. We first iterate over each rollout to get the rewards, then cal-
culate the difference in average reward for each task involved. The time complexity is
O(u×G× |Dn|), where u/2 is the size of a window, G is the rollout number for each
task and |Dn| is the number of tasks at step n. The memory complexity is O(|Dn|). The
operations are simple scalar additions and multiplications and should cost minimal time or
memory.s

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 2 Mixing Strategy
1: Input: Sampled Trajectory Set For Task di Ti = {τi,1, τi,2, . . . , τi,G}, Expert Demonstration

Set For Task di T ∗
i = {τ∗i,1, τ∗i,2, . . . , τ∗i,m}, Mixing Ratio α, Outcome Reward Function R(·)

2: Output: Mixed Trajectory Set For Task di T̃i
3: Initialize T candi

i ← []
4: for each τ∗i,j ∈ T ∗

i do
5: if R(τ∗i,j) > max τi,k ∈ TiR(τi,k) then
6: T candi

i ← T candi
i ∪ {τ∗i,j}

7: end if
8: end for
9: Initialize T̃i ← [], T sub

i ← []

10: while |T̃i| < α×G and T candi
i ̸= ∅ do

11: Randomly select τ∗i,j ∈ T candi
i

12: if R(τ∗i,j) = anyτi,k∈T̃i
R(τi,k) then

13: T sub
i = T sub

i ∪ {τ∗i,j}
14: else
15: T̃i ← T̃i ∪ {τ∗i,j}
16: end if
17: T candi

i = T candi
i \ {τ∗i,j}

18: end while
19: if |T̃i| < α×G and T sub

i ̸= ∅ then
20: Randomly select α×max(G− |T̃i|, |T sub

i |) trajectories from T sub
i and add to T̃i

21: end if
22: Initialize T sub

i ← []

23: while |T̃i| < G do
24: Randomly select τi,j ∈ Ti
25: if R(τi,j) = anyτi,k∈T̃i

R(τi,k) then
26: T sub

i = T sub
i ∪ {τi,j}

27: else
28: T̃i ← T̃i ∪ {τi,j}
29: end if
30: Ti = Ti \ {τi,j}
31: end while
32: if |T̃i| < G and T sub

i ̸= ∅ then
33: Randomly select max(G− |T̃i|, |T sub

i |) trajectories from T sub
i and add to T̃i

34: end if
35: return T̃i

• Diversity-based Selection: In this module, we use similarity between tasks to further select
appropriate expert tasks. The similarity computation cost is very dependent on the design of
the similarity metric design. In our experiment, we use the similarity of the set of API func-
tions involved in tasks, which can be pre-computed with time complexity and memory com-
plexity O(|D|2). The operations are simple set similarity calculation (|A ∩B|/|A ∪B|)
and should cost minimal time or memory.

The time and memory complexity of Max-Min selection is O(|D̂n|3) and O(|D̂n|2) in the-
ory, where |D̂n| is the number of candidate expert tasks at step n, but much less in practice
as we apply a threshold to end it prematurely. For a larger batch size, we can further re-
duce the cost by using a sampling-based Max-Min selection where instead of calculating
the similarity of all the tasks left, we sample k tasks to check if there are any tasks that
qualifies, which further reduce the time complexity to O(|D̂n|2 × k).

• Trajectory Mixing: In this module, we mix the agent rollouts with expert demonstrations
with a few pre-defined rules. The time and memory complexity is O(G+m), where G is

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the rollout number for each task and m is the number of expert demonstrations for each
tasks, which are all rather small constants.

In conclusion, the extra operations introduced in these modules are orthogonal to the size of the
models or environments and mostly only related to the rollout batch size. More importantly, these
operations are almost all scalar operations is negligible compared to the rollout process itself.

F EXAMPLE TRAJECTORY

Here we provide an example trajectory from AppWorld for reference.

< PROMPT START >
[
{ "role": "system", "content": "You're a helpful assistant. " },
{

"role": "user",
"content": "I am your supervisor and you are a super intelligent AI Assistant whose job is to achieve

my day-to-day tasks completely autonomously.\n\nTo do this, you will need to interact with app/s
(e.g., spotify, venmo etc) using their associated APIs on my behalf. For this you will undertake
a *multi-step conversation* using a python REPL ... code, that I will execute, to solve the task.
Let's start with the task\n\nMy name is: Melissa Bailey. My personal email is
mel.bailey@gmail.com and phone number is 3383946795.\nTask: How many playlists do I have in
Spotify?"

↪→
↪→
↪→
↪→
↪→
↪→

},
{

"role": "assistant",
"content": "Okay. Lets first find which APIs are available to use in

Spotify.\n<answer>\nprint(apis.api_docs.show_api_descriptions(app_name='spotify'))\n</answer>"↪→
},
{

"role": "user",
"content": "Output:\n[\n ...\n \"login : Login to your account.\",\n \"logout : Logout from your

account.\",\n ...\n]"↪→
},
{

"role": "assistant",
"content": "Okay. Looks like I can use the `login` api. Lets find its

specifications.\n\n<answer>\nprint(apis.api_docs.show_api_doc(app_name='spotify',
api_name='login'))\n</answer>"

↪→
↪→

},
{
"role": "user",
"content": "Output:\n{\n \"app_name\": \"spotify\",\n \"api_name\": \"login\",\n \"path\":

\"/auth/token\",\n \"method\": \"POST\",\n \"description\": \"Login to your account.\",\n
\"parameters\": [\n {\n \"name\": \"username\",\n \"type\": \"string\",\n \"required\":
true,\n \"description\": \"Your account email.\",\n ... }\n],\n \"response_schemas\": {\n
\"success\": {\n \"token_type\": \"string\",\n \"access_token\": \"string\"\n },\n
\"failure\": {\n \"message\": \"string\"\n }\n }\n}"

↪→
↪→
↪→
↪→
↪→

},
{
"role": "assistant",
"content": "I need the supervisor's username and password. Lets see if any app can help me get

that.\n\n<answer>\nprint(apis.api_docs.show_app_descriptions())\n</answer>"↪→
},
{
"role": "user",
"content": "Output:\n{'api_docs': 'An app to search and explore API documentation.', 'supervisor':

\"An app to access supervisor's personal information, account credentials, addresses, payment
cards, and manage the assigned task.\", 'amazon': 'An online shopping app to buy products and
manage orders, returns, etc.', 'phone': 'An app to find and ... 'A bill splitting app to track
and split expenses with people.', 'simple_note': 'A note-taking app to create and manage notes',
'todoist': 'A task management app to manage todo lists and collaborate on them with others.'}"

↪→
↪→
↪→
↪→
↪→

},
{
"role": "assistant",
"content": "Looks like the supervisor app could help me with

that.\n\n<answer>\nprint(apis.api_docs.show_api_descriptions(app_name='supervisor'))\n</answer>"↪→
},
{
"role": "user",
"content": "Output:\n[\n ...\n \"show_account_passwords : Show your supervisor's account

passwords.\"\n ...\n]"↪→
},
{
"role": "assistant",
"content": "I can use `show_account_passwords` to get the passwords. So I will call that and save it

in a variable for future reference.\n<answer>\npasswords=apis.supervisor.show_account_passwords(⌋
)\nprint(passwords)\n</answer>"

↪→
↪→

},
{
"role": "user",
"content": "Output:\n[\n {\n \"account_name\": \"spotify\",\n \"password\":

\"dummy_spotify_pass\"\n },\n {\n \"account_name\": \"file_system\",\n \"password\":
\"dummy_fs_pass\"\n }\n]"

↪→
↪→

},

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

{
"role": "assistant",
"content": "So the Spotify password is an entry in the `passwords` list with the

account_name=spotify. I can use it to login now with the provided email address:
mel.bailey@gmail.com.\n\n<answer>\nspotify_password = [account_password[\"account_name\"] ==
\"spotify\" for account_password in passwords][0][\"password\"]\nlogin_result =
apis.spotify.login(username='mel.bailey@gmail.com',
password=spotify_password)\nprint(login_result)\n</answer>"

↪→
↪→
↪→
↪→
↪→

},
{

"role": "user",
"content": "Output:\n{\n \"token_type\": \"Bearer\",\n \"access_token\": \"fake_access_token\"\n}"

},
{

"role": "assistant",
"content": "First, let's check the available APIs for the Spotify

app.\n<answer>\nprint(apis.api_docs.show_api_descriptions(app_name='spotify'))\n</answer>"↪→
},
{

"role": "user",
"content": "Output:\n[\n...\n{\n \"name\": \"show_playlist_library\",\n \"description\": \"Get a

list of playlists in the user's playlist library.\"\n},\n{\n \"name\": \"show_playlist\",\n
\"description\": \"Get detailed information about a specific playlist. You can view your own
playlists or others' playlists if they are public.\"\n },\n...\n]"

↪→
↪→
↪→

},
{

"role": "assistant",
"content": "The `show_playlist_library` API seems to be the one we need. Let's check its

specifications.\n<answer>\nprint(apis.api_docs.show_api_doc(app_name='spotify',
api_name='show_playlist_library'))\n</answer>"

↪→
↪→

},
{

"role": "user",
"content": "Output:\n{\n \"app_name\": \"spotify\",\n \"api_name\": \"show_playlist_library\",\n

\"path\": \"/private_playlists\",\n \"method\": \"GET\",\n \"description\": \"Get a list of
playlists in the user's playlist library.\",\n \"parameters\": [\n {\n \"name\":
\"access_token\",\n \"type\": \"string\",\n \"required\": true, ...
\"2019-01-01T00:00:00\",\n \"is_public\": true,\n \"rating\": 0.0,\n \"like_count\": 1,\n
\"owner_email\": \"user@example.com\",\n \"playlist_id\": 1,\n \"song_ids\": [\n 1\n]\n
}\n]\n}"

↪→
↪→
↪→
↪→
↪→
↪→

},
{

"role": "assistant",
"content": "I need to page through all the playlists to get the list of playlists and save it in

`playlists`.\n<answer>\npage_index = 0\nplaylists = []\nwhile page_index < 10:\n playlist_page =
apis.spotify.show_playlist_library(access_token=spotify_access_token, page_index=page_index)\n
if playlist_page:\n playlists.extend(playlist_page)\n page_index += 1\n else:\n
break\nnum_playlists = len(playlists)\nprint(num_playlists)\n\n</answer>"

↪→
↪→
↪→
↪→

},
{ "role": "user", "content": "Output:\n23" },
{

"role": "assistant",
"content": "Now that the task is completed, I can call apis.supervisor.complete_task(). Since this

task has an answer to be returned, I will pass that as an
argument.\n\n<answer>\napis.supervisor.complete_task(answer=num_playlists)\n</answer>"

↪→
↪→

},
{

"role": "user",
"content": "Output:\nMarked the active task

complete.\n\n\n--\n\n**Key instructions**:\n(1) Make
sure to start code blocks with <answer> and end them with </answer>.\n\n(2) Remember you can use
the variables in your code in subsequent code blocks.\n\n(3) Remember that the email addresses,
access tokens and variables (e.g. spotify_password) in the example above are not valid
anymore.\n\n(4) You can use the \"supervisor\" app to get information about my accounts and use
the \"phone\" app to get information about friends and family.\n\n(5) Always look at API
specifications (using apis.api_docs.show_api_doc) before calling an API.\n\n(6) Write small
chunks of code and only one chunk of code in every step. Make sure everything is working
correctly before making any irreversible change.\n\n(7) Many APIs return items in \"pages\". Make
sure to run through all the pages by looping over `page_index`.\n\n(8) Once you have completed
the task, make sure to call apis.supervisor.complete_task(). If the task asked for some
information, return it as the answer argument, i.e. call
apis.supervisor.complete_task(answer=<answer>). Many tasks do not require an answer, so in those
cases, just call apis.supervisor.complete_task() i.e. do not pass any argument.\n\nUsing these
APIs, now generate code to solve the actual task:\n\nMy name is: Adrian Burton. My personal email
is adrian_burt@gmail.com and phone number is 5025534184.\nTask: The \"˜/pictures/\" directory in
my file system has photo files organized in sub-directories for each vacation spot. Compress them
and save them in \"˜/pictures/vacations/<vacation_spot>.zip\" for each vacation spot, and then
delete all vacation spot sub-directories. Here, <vacation_spot> is the name of the vacation spot
as it appears in the sub-directory name."

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
< PROMPT END >
{
"role": "assistant",
"content": "First, I need to explore the file system to see what vacation spot sub-directories exist

in ˜/pictures/.\n<answer>\nprint(apis.api_docs.show_api_descriptions(app_name='file_system'))\n<⌋
/answer>"

↪→
↪→

},
{
"role": "user",

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

"content": "Output:\n[\n {\n \"name\": \"show_account\",\n \"description\": \"Show your account
information. Unlike show_profile, this includes private information.\"\n },\n {\n \"name\":
\"signup\",\n \"description\": \"Sign up to create account.\"\n },\n {\n \"name\":
\"delete_account\",\n \"description\": \"Delete your account.\"\n },\n {\n ...
\"description\": \"Compress a directory.\"\n },\n {\n \"name\": \"decompress_file\",\n
\"description\": \"Decompress a compressed file.\"\n }\n]\n\n"

↪→
↪→
↪→
↪→
↪→

},
{

"role": "assistant",
"content": "I need to login to the file system first, then list the vacation spot sub-directories in

˜/pictures/.\n<answer>\nprint(apis.api_docs.show_api_doc(app_name='file_system',
api_name='login'))\n</answer>"

↪→
↪→

},
{

"role": "user",
"content": "Output:\n{\n \"app_name\": \"file_system\",\n \"api_name\": \"login\",\n \"path\":

\"/auth/token\",\n \"method\": \"POST\",\n \"description\": \"Login to your account.\",\n
\"parameters\": [\n {\n \"name\": \"username\",\n \"type\": \"string\",\n \"required\":
true,\n \"description\": \"Your account email.\",\n ... }\n],\n \"response_schemas\": {\n
\"success\": {\n \"access_token\": \"string\",\n \"token_type\": \"string\"\n },\n
\"failure\": {\n \"message\": \"string\"\n }\n }\n}\n\n"

↪→
↪→
↪→
↪→
↪→

},
{

"role": "assistant",
"content": "I need to get the file system password from the supervisor app to

login.\n<answer>\npasswords = apis.supervisor.show_account_passwords()\nfs_password =
next((acc[\"password\"] for acc in passwords if acc[\"account_name\"] == \"file_system\"),
None)\nlogin_result = apis.file_system.login(username='adrian_burt@gmail.com',
password=fs_password)\naccess_token =
login_result[\"access_token\"]\nprint(access_token)\n</answer>"

↪→
↪→
↪→
↪→
↪→

},
{

"role": "user",
"content": "Output:\neyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJmaWxlX3N5c3RlbSthZHJpYW5fYnVydE⌋

BnbWFpbC5jb20iLCJleHAiOjE2ODQ0MTI0MDR9.jwWfOmxx6OLyIf4nOpGhvG3QjZ1LQYppQ9ilxRCEucI\n\n"↪→
},
{

"role": "assistant",
"content": "Now I'll list the contents of the ˜/pictures/ directory to find vacation spot

sub-directories.\n<answer>\nprint(apis.api_docs.show_api_doc(app_name='file_system',
api_name='show_directory'))\n</answer>"

↪→
↪→

},
{

"role": "user",
"content": "Output:\n{\n \"app_name\": \"file_system\",\n \"api_name\": \"show_directory\",\n

\"path\": \"/directory\",\n \"method\": \"GET\",\n \"description\": \"Show a list of files and/or
sub-directories, optionally recursively, in a directory.\",\n \"parameters\": [\n {\n
\"name\": \"access_token\",\n \"type\": \"string\",\n \"required\": true,\n
\"description\": \"Access token obtained from file_system app login.\",\n \"default\": ...
\"response_schemas\": {\n \"success\": [\n \"string\"\n],\n \"failure\": {\n \"message\":
\"string\"\n }\n }\n}\n\n"

↪→
↪→
↪→
↪→
↪→
↪→

},
{

"role": "assistant",
"content": "I'll list only the sub-directories in ˜/pictures/ to find the vacation spot

directories.\n<answer>\nvacation_dirs =
apis.file_system.show_directory(access_token=access_token, directory_path=\"˜/pictures/\",
entry_type=\"directories\", recursive=False)\nprint(vacation_dirs)\n</answer>"

↪→
↪→
↪→

},
{

"role": "user",
"content": "Output:\n[\"/home/adrian/pictures/vacations/\"]\n\n"

},
{

"role": "assistant",
"content": "I see there's a vacations directory, but I need to check what's inside it to find the

vacation spot sub-directories.\n<answer>\nvacation_spot_dirs =
apis.file_system.show_directory(access_token=access_token,
directory_path=\"˜/pictures/vacations/\", entry_type=\"directories\",
recursive=False)\nprint(vacation_spot_dirs)\n</answer>"

↪→
↪→
↪→
↪→

},
{

"role": "user",
"content": "Output:\n[\n \"/home/adrian/pictures/vacations/bali/\",\n

\"/home/adrian/pictures/vacations/maui/\",\n \"/home/adrian/pictures/vacations/santorini/\",\n
\"/home/adrian/pictures/vacations/seoul/\"\n]\n\n"

↪→
↪→

},
{

"role": "assistant",
"content": "Now I need to compress each vacation spot directory and save it as a zip file in the

vacations directory, then delete the original
directories.\n<answer>\nprint(apis.api_docs.show_api_doc(app_name='file_system',
api_name='compress_directory'))\n</answer>"

↪→
↪→
↪→

},
{

"role": "user",
"content": "Output:\n{\n \"app_name\": \"file_system\",\n \"api_name\": \"compress_directory\",\n

\"path\": \"/directory/compress\",\n \"method\": \"POST\",\n \"description\": \"Compress a
directory.\",\n \"parameters\": [\n {\n \"name\": \"directory_path\",\n \"type\":
\"string\",\n \"required\": true,\n \"description\": \"Path of ... \"message\":
\"string\",\n \"compressed_file_path\": \"string\"\n },\n \"failure\": {\n \"message\":
\"string\"\n }\n }\n}\n\n"

↪→
↪→
↪→
↪→
↪→

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

},
{

"role": "assistant",
"content": "I'll compress each vacation spot directory to a zip file in the vacations directory with

the vacation spot name, then delete the original directories.\n<answer>\nfor vacation_dir in
vacation_spot_dirs:\n vacation_spot = vacation_dir.split('/')[-2] # Extract vacation spot
name from path\n zip_path = f\"˜/pictures/vacations/{vacation_spot}.zip\"\n result =
apis.file_system.compress_directory(\n access_token=access_token,\n
directory_path=vacation_dir,\n compressed_file_path=zip_path,\n
delete_directory=True,\n overwrite=True\n)\n print(f\"Compressed {vacation_dir} to
{zip_path}: {result}\")\n</answer>"

↪→
↪→
↪→
↪→
↪→
↪→
↪→

},
{

"role": "user",
"content": "Output:\nCompressed /home/adrian/pictures/vacations/bali/ to

˜/pictures/vacations/bali.zip: {'message': 'Directory compressed.', 'compressed_file_path':
'/home/adrian/pictures/vacations/bali.zip'}\nCompressed /home/adrian/pictures/vacations/maui/ to
˜/pictures/vacations/maui.zip: {'message': 'Directory compressed.', ... seoul.zip: {'message':
'Directory compressed.', 'compressed_file_path':
'/home/adrian/pictures/vacations/seoul.zip'}\n\n"

↪→
↪→
↪→
↪→
↪→

},
{

"role": "assistant",
"content": "The task has been completed successfully - all vacation spot directories have been

compressed to zip files and the original directories
deleted.\n<answer>\napis.supervisor.complete_task()\n</answer>"

↪→
↪→

}
]

REWARD: 1.0

18

	Introduction
	Related Works
	Problem Setting and Preliminary
	Method
	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Trajectory Analysis
	Additional Validation on WebShop

	Discussion
	Conclusion
	Usage of LLMs in Paper Writing
	GRPO Implementation Details
	Mixing Strategy
	WebShop Setting
	Computation and Memory Cost
	Example Trajectory

