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Figure 1: Long-horizon manipulation incorporates distinct non-prehensile skills: push-and-grasp
(upper) and pivot grasp (blow). These skills are learned across diverse environmental settings with
our proposed framework while employing the same reward function without any task-specific reward
for non-prehensile manipulation. The videos are available at: https://youtu.be/4E74kLgeVas.

Abstract: Long-horizon contact-rich tasks are challenging to learn with reinforce-
ment learning, due to ineffective exploration of high-dimensional state spaces
with sparse rewards. The learning process often gets stuck in local optimum and
demands task-specific reward fine-tuning for complex scenarios. In this work, we
propose a structured framework that leverages privileged actions with curriculum
learning, enabling the policy to efficiently acquire long-horizon skills without
relying on extensive reward engineering or reference trajectories. Specifically, we
use privileged actions in simulation with a general training procedure that would be
infeasible to implement in real-world scenarios. These privileges include relaxed
constraints and virtual forces that enhance interaction and exploration with ob-
jects. Our results successfully achieve complex multi-stage long-horizon tasks that
naturally combine non-prehensile manipulation with grasping to lift objects from
non-graspable poses. We demonstrate generality by maintaining a parsimonious
reward structure and showing convergence to diverse and robust behaviors across
various environments. Our approach outperforms state-of-the-art methods in these
tasks, converging to solutions where others fail.
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1 Introduction

Training robots for long-horizon, contact-rich manipulation tasks from scratch using reinforcement
learning (RL) remains a substantial challenge. While RL has excelled in learning various complex
locomotion and manipulation tasks [1, 2, 3], most research focuses on optimizing specific short-
horizon behaviors. The usual challenges associated with exploration compound dramatically with
longer time horizons. If long-horizon sequences are considered, it is common to stitch multiple
policies together [4, 5, 6]. Overall this approach is undesirable, as we want the robot to autonomously
discover optimal behaviors without handcrafting and combining primitives.
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Exploration is yet again more challenging in contact-rich tasks [7, 8]. Imagine learning to grasp a
cube floating in mid-air versus on a surface. The set of state-action pairs that leads to grasping in
mid-air is significantly larger compared to on a surface. Physical collision boundaries can greatly
impede exploration in high-reward regions, potentially trapping the learning process in local optimum.
Furthermore, most contact-rich tasks involve learning to manipulate and change the state of external
objects. The additional non-linear dynamics in these scenarios poses a greater challenge for learning.
To solve the exploration problem in long-horizon manipulation, recent work has explored using
reference trajectories to provide a warm start and minimize unnecessary exploration [9, 10, 11].
However, training robots from scratch remains a valuable area of research, especially when robots
must operate in diverse environments where behavior varies significantly. Collecting demonstrations
for each unique environment is labor-intensive and impractical at scale. Furthermore, limitations
in teleoperation devices and mapping accuracy reduce the effectiveness of human teleoperation for
teaching manipulation skills. When environmental parameters vary significantly the optimal policy
can change substantially [12, 13], and human-provided demonstrations may introduce biases that are
misaligned with the optimal behavior of the robot due to differences in human and robotic capabilities.
Training robots in simulation offers interesting opportunities beyond what is feasible in the real-
world. For example, simulations can easily provide privileged information, which has been shown
to significantly improve sample efficiency and policy performance by providing useful features to
learn from [14, 15, 16]. Despite this, privileged information is not guaranteed to help the robot
discover innovative behaviors. We propose the novel concept of privileged actions: actions that are
infeasible in the real world, but enable efficient policy exploration. This includes relaxing constraints
by disabling collisions and applying virtual forces to simplify interactions. We are motivated to
solve long-horizon contact-rich tasks with RL, without requiring carefully tuned reward shaping.
We introduce a framework that enhances exploration via privileged action, coupled with a learning
curriculum to gradually align any physically infeasible training with real-world settings. The main
contributions are summarised as follows:
• Novel concept of privileged action: We propose to leverage privileged actions that are not feasible

in the real world to simplify the problem and improve training efficiency.
• General framework combing privileged action with curriculum learning: We build a general

framework that enables the policy to efficiently solve long-horizon, contact-rich manipulation tasks
while enforcing real-world constraints through a learning curriculum.

• Robust Policy Adaptation: Experiments demonstrate that the method adapts to environmental
changes and converges to new behaviors without requiring reward modifications and with no reward
indication on non-prehensile manipulation. Our approach outperforms state-of-the-art methods
under identical setups, excelling across various tasks.

2 Related Works
Robot Learning of Long-horizon Tasks. Learning robotic policies for long-horizon manipulation
tasks has been a longstanding and complex challenge. Many works focused on leveraging human
prior knowledge to simplify this problem [17, 18, 19, 20]. Imitation learning is commonly used
to simplify the complexities of long-horizon manipulation tasks. By breaking down long-horizon
skills into sub-skills, imitation learning enables effective training of long-horizon policies, as shown
in [4, 21]. To further enhance learned behaviors, these policies can be improved through RL [11] or
offline parameter optimization techniques [22]. Training a long-horizon manipulation policy directly
using RL often requires manual designed transitions between different primitives. To achieve robot
grasping with external dexterity, [23] incorporate a pre-generated grasp pose in the observation.
They expanded the reward function to include the difference from the desired grasp pose and a
penalty for collisions, to ensure the feasibility of the learned policy. Similarly, [24] split long-horizon
tasks into a series of interconnected subtasks. They introduce a transition feasibility function that
incrementally refines sub-policies to improve the success rate of chaining subtasks. By splitting the
non-prehensile manipulation into pre-contact and post-contact stages, [25] jointly train two policies
where the pre-policy is used to determine the contact pose between the end-effector and the object,
and the post-policy is used to apply action on the object. These two policies are jointly trained
with a highly complex and fine-tuned reward function. In this work, rather than relying on human
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demonstrations or reward engineering to guide robots toward predefined optimal behaviors, we
propose a framework that enables the policy to discover solutions autonomously. By simplifying the
problem and expanding the state-action space through privileged actions, our approach addresses the
inefficiency of RL in exploring sparse-reward environments.
Curriculum Learning. Curriculum strategies are widely used in RL to enable robots to master
challenging tasks. These strategies naturally guide the learning process by starting with simpler tasks
and gradually increasing complexity. For instance, [26] use a curriculum to enable a human hand
model with 39 muscles to rotate two Baoding balls in its palm. The work [27] devise a gravity-based
curriculum to enable in-hand manipulation. They first train with the gravity vector pointing upwards,
and then gradually decrease until the normal value. Additionally, [9] combine human demonstrations
with an auto-curriculum strategy for dexterous manipulation. Demonstrations provide initial guidance
to reduce the search space and accelerate policy convergence, while the auto-curriculum identifies
areas requiring improvement and enhances them through RL. Similarly, [28] employ an adaptive
curriculum based on velocity commands to train a robot to run and turn quickly on natural terrains.
Our work leverages curriculum learning to gradually reduce the availability of privileged actions and
guide the policy to a physically realistic solution.
Privileged Information and Actions. Simulations offer access to rich information that is often
difficult to obtain in the real world. Previous works have extensively leveraged simulation to
provide privileged information to enable policies to acquire essential knowledge, resulting in robust
performance [29, 30, 31, 32]. Learning from privileged information improves policy learning by
reducing the complexity of the state-action mapping required to be learned. [33] employ a contact-
invariant optimization (CIO) method to specify when and where contact should occur on an object,
using hand movements to replace this auxiliary decision variable gradually. Likewise, [34] utilized
Monte Carlo Tree Search (MCTS) to explore contact points on objects, enabling robot manipulation
with exceptional dexterity. By relaxing collisions between the robot and obstacles, [35] combined a
curriculum strategy with a specifically designed reward with penetration terms to train a vision-based
parkour policy. In [23], predefined grasp poses were used to learn grasping with extrinsic dexterity.
Relaxed collisions and penalties for penetration were incorporated into the training process. Despite
the success of these methods, they often require either complex task specific formulation or finely
crafted reward functions. To the best of our knowledge, we are the first to propose a structured
framework for solving long-horizon manipulation tasks without introducing any delicately designed
reward terms.

3 Method

Our method is a structured framework that provides a solution to solving a wide range of long-horizon
manipulation tasks using privileged actions with curriculum learning. It does not rely on heavy
reward shaping or human priors e.g. reference trajectories. As shown in Fig. 2, the method follows
a three-stage process consisting of constraint relaxation, virtual forces, and the normal setting. In
this section, we first present the problem formulation of our work, then we introduce the three stages
depicted in Fig. 2 in depth. After that, we introduce the reward settings we used to train our policy
and how we conduct sim-to-real transfer by applying domain randomization and improved control
bandwidth. In this work we focus specifically on manipulation, however our framework can be
naturally extended to other robotic control tasks.

3.1 Problem Formulation

Let us consider the model-free RL setting that corresponds to manipulating objects on a tabletop.
In this case our state consists of the positions and velocities of a robot and an object that is to be
manipulated x = [qR,t,qO,t, q̇R,t, q̇O,t]. The transition of this state is typically formulated as a
Markov Decision Process (MDP). At each time step t, the policy πθ predicts the action u based
on the current observation x. The objective of training the policy πθ is to maximise the discounted
return over the episode length T . To perform this maximisation, RL frameworks typically use a
simulator which internally solves an optimisation problem to compute physically realistic motions,
accelerations and forces. Below, we present these elements into a concise mathematical program
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which provides an overview of the general tabletop manipulation problem. The detailed definition of
parameters is provided in Table 2, located in Appendix D.
Maximize:

J(θ) = Ex0∼p0,ut∼πθ(·|xt)

[ ∞∑
t=0

γt r(xt,ut)
]

(1)

Subject to:

xt+1 = xt +
[
f(xt) + g(xt)ut

]
∆t, (2)

f(xt) =

 q̇

M
(
q
)−1

(
J
(
q
)⊤ [

FR,t

FO,t

]
− c

(
xt

))
 , (3)

g(xt) =

 0

M
(
q
)−1

[
Invr×mR

0nvo×mR

] , (4)

uR,t ∼ πθ(· | xt), t = 0, 1, 2, . . . (5)

Maximising the reward in this case means overcoming the challenges inherent to the environment.
For example the state of the object can only be changed through contact forces applied by the robot.
If the object is in a non-graspable pose, it becomes particularly difficult for the robot to determine
how to interact with object from scratch under sparse rewards. Equation 4 formally describes this
constraint showing that any direct forces on the object via the policy are nullified. This challenge
arises due to the involvement of non-prehensile manipulation to change the object to a grasp pose,
which is inherently contact-rich and requires extensive long-horizon exploration at this stage.
Privileged actions serve as an effective technique to simplify this problem, facilitating more efficient
exploration during policy learning. By reducing collision complexity and minimizing the need
for direct interaction with the object, the robot can accomplish the task more easily, guiding the
robot state-action space toward a more feasible subset. This strategy mitigates the risk of the
robot becoming trapped in local optimum and significantly improves its exploration capability. The
following subsections present a detailed discussion of privileged actions, reward setting, and the
auto-curriculum framework.

3.2 Constraint Relaxation with Collision Management
When grasping an object from an initially ungraspable pose, the table surface may be considered as
an obstacle that impedes the robot from achieving a successful grasp. We first train the policy with
constraint relaxation, by cancelling the collision between the robot and the table. This allows the
robot to learn the manipulation skill more effectively. Concretely, we make the contact constraint
forces between the robot and the table FR,t less restrictive by increasing the distance at which contact
is triggered, ϕR(xt) by ∆R.

FR,t ≥ 0, ϕR(xt) + ∆R ≥ 0,
(
ϕR(xt) + ∆R

)
FR,t = 0, (6)

However, it is important to note that constraint relaxation expands the robot’s state-action space,
potentially causing significant deviations in the action distribution. For instance, the robot may
learn to lift the object using its arm rather than the gripper, leading to incorrect behaviors that create
challenges in later training stages. To mitigate this issue, we introduce a virtual table that interacts
with the robot and gradually increase its height until it aligns with the actual table surface. This
process is illustrated in the left figure of Fig. 2, where the white table does not collide with the robot,
while the grey table represents the virtual surface that enforces collision constraints. It is noticeable
that the virtual table setting used in our experiments arises from simulation limitations (which restrict
flexible control of object penetration).

3.3 Virtual Force
When restoring the collision relationship between the robot and table, the robot follows the pre-
viously learned policy, often attempting penetration actions. It is important to highlight that the
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Figure 2: A structured framework utilizes privileged actions with curriculum learning. In stage 1,
the robot penetrates the white table while a grey virtual table limits this penetration and is gradually
lifted during training; stage 2 applies virtual forces on the object, indicated by blue and green arrows,
and by stage 3, no privileged actions is used.

constraint relaxation employed in [35, 23] is effective primarily due to dense rewards that penalise
penetration.When transitioning back to real collision dynamics, the dense rewards ensures that the
robot receives timely reward feedback for state changes, allowing it to quickly adapt to the updated
scenario.
Learning the interaction between the robot and the object presents a significant challenge, as the
subset of the state-action space capable of inducing meaningful object state changes is much narrower
than the robot’s original state-action space. The robot must establish contact with the object to induce
state transitions and maintain this contact to achieve effective manipulation. Consequently, training
an RL policy for non-prehensile manipulation without reward guidance is highly challenging. To
overcome this difficulty, we introduce a virtual force to promote the interaction between the robot
hand and the object. Specifically, we design the trained policy to predict the force applied to the
object while enforcing a constraint that ensures the robot’s end-effector actions align with the virtual
force. Formally, the control is sampled from [uR,t,uO,t] ∼ πθ(· | xt) additionally the space in which
the control can act on is modified to

g(xt) =

 0

M
(
q
)−1

[
Invr×mR

0
0 B

(
xt

)]
 , (7)

B(xt) =


Invo×mO

, if
∥∥qO,t − qEE,t

∥∥ < δp · α
∧
∥∥q̇O,t − q̇EE,t

∥∥ < δv · α,
0nvo×mO

, otherwise.

(8)

The gating matrix B(xt) enables control action forces on the object. Specifically, B(xt) activates I
only if

∥∥qO,t − qEE,t

∥∥ < δp α and
∥∥q̇O,t − q̇EE,t

∥∥ < δv α, ensuring that the policy’s force uO,t

affects the object only when the end-effector is sufficiently close in position and velocity. Otherwise,
B(xt) is zero, leaving the object unactuated. Overall, the curriculum learning is conducted to
encourage the robot movement to gradually replace and approximate the virtual force.

3.4 Reward Setting

Previous works utilising relaxed collision constraints added extra reward terms to guide the behavior
of the robot [35, 23]. However, such methods require careful fine-tuning of the reward function;
otherwise, the local optimum of the reward function may shift, negatively impacting learning. In
this work, we do not incorporate any additional rewards to guide the robot’s behavior when using
privileged actions. Instead, we employ an auto-curriculum framework that allows the policy to learn
autonomously and efficiently, gradually transitioning from privileged actions to the standard setting
through a curriculum strategy. Details of the reward design can be found in the Appendix A.
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3.5 Structured Privilege Actions with Curriculum Learning

The curriculum learning strategy is an effective approach for training robots to master complex
tasks by initially focusing on simpler ones. In this work, we employ a curriculum strategy to guide
the policy in progressively learning applicable behaviors by gradually reducing privileged actions.
In this work, we initially set the parameter to a relatively large value, which means that there are
no restrictions during the early stage of training. Once the environment achieves success, these
thresholds are progressively reduced by multiplying them with a factor. The detailed process is
presented in Algorithm 1 in the Appendix B.

4 Experiment Result

In this work, we focus on long-horizon, contact-rich tasks involving non-prehensile manipulation
combined with grasping to lift objects from non-graspable poses. All tasks are set up and trained
using the IsaacGym simulator [36].
We conduct two tasks to validate the performance of our proposed approach. The first task involves
grasp and lift object from non-graspable pose using a Franka robot arm and a Franka gripper. The
second task, performed in simulation, involves grasping and in-hand manipulation of several YCB
objects [37], which is a more challenging task due to the use of a dexterous hand with higher degree
of freedom. These experiment demonstrates the generality of our method across different setups.
Additionally, we conduct real-world experiments to show that our approach not only enables efficient
policy convergence to robust solutions in simulation but is also adaptable across various platforms
and tasks. More importantly, when the environment changes, with the same reward and did not
include any further guidance on the non-prehensile manipulation behavior, our method still allows
the policy to adapt and converge to physically acceptable and task-specific behaviors.

4.1 Grasp and Lift Object from Non-graspable Pose

Experiment setup. We evaluate our method using the Franka robot to grasp an object in an
ungraspable pose. The Franka robot is set up on a table. The object used in the experiment measures
15cm × 10cm × 6cm, while the maximum opening distance of the Franka gripper is 8cm. When
the object is lying flat on the table, the Franka gripper cannot directly grasp the object due to the
limited opening distance of its gripper. Instead, the robot must learn how to push the object to the
edge of the table and grasp it from the object’s side. We further evaluated our method by placing
the Franka robot in a more constrained environment with small walls surrounding the table. This
setup prevented the robot from using its previous strategy of pushing the object to the edge for side
grasping. Despite these constraints, our method enabled the robot to develop a stable and effective
behavior, leveraging its own frame as support to do the pivot grasp. Traditionally, such behaviors
require carefully designed rewards or human guidance, but our approach eliminates the need for
manual intervention. Additionally, we tested both tasks with the Franka robot in real-world scenarios,
demonstrating that the behaviors emerging from our method are not only robust but also physically
valid and applicable in real-world environments.
Results in simulation. With our method, the Franka robot successfully demonstrated long-horizon
behavior by pushing the object to the edge of the table, grasping it from the side, and lifting it. The
policy also can adapt to various object pose, when the pose of the object is not suitable for directly
push and grasp from the side, it will reorient the object first, and then grasp it. In the more constrained
environment, where the original solution was blocked by walls, the policy also can adapt to it and
leveraging the robot base as support to achieve a pivot grasp, all without human guidance in either
the observation or reward function. In comparison, the vanilla PPO failed on both tasks. The robot
end-effector remains at the center of the object and fails to lift, as this behavior is the local optimum
of the reward function that minimize object to end-effector distance.

PushGrasp PivotGrasp

Original ShapeDiff WeightDiff PoseDiff Original ShapeDiff WeightDiff PoseDiff

8/10 8/10 7/10 7/10 9/10 7/10 8/10 7/10

Table 1: Success rates for PushGrasp and PivotGrasp tasks.

Results in real-world. Our focus
is on grasping objects from non-
graspable poses in a tabletop setting,
where occlusions frequently occur,
making it challenging to obtain pre-
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Figure 3: Reward curves comparing our method with DexPBT and SAPG on three challenging
objects indicate that our framework, represented by the blue lane, performs well on all objects. The
red line indicate when the stage changes.

cise pose information. Therefore, we distilled the robot’s movement trajectories from simulation and
transferred them to the real environment by replicating the recorded behavior. As shown in Fig. 1, we
conducted two real-world experiments. The learned behavior of pushing objects to the edge of the
table adapts to various object poses. When the object’s pose is unsuitable for a direct push-and-grasp
action, the robot first reorients the object before grasping it from the side. The most challenging task
is the pivot grasp, where the robot learns to use the its base as support to perform the pivot grasp task.
This behavior, learned in a constrained environment, enables the robot to stably maintain the pivot
grasp pose and gradually adjust the object pose for a successful grasp.
Our real-world experiments demonstrated robust sim-to-real transfer, achieving successful task
execution across variations in object shape (originally 6 cm in height compared to 4 cm), mass
(originally 72 g compared to 203 g), and initial pose (randomly sampled within a 0.2 m square), with
success rates shown in Table 1. Our framework aims to provide a general and broadly applicable
method, and thus we did not alter the environment-provided policy observations.

4.2 Dexterous Manipulation of Challenge YCB Objects

Experiment setup. To evaluate the generalization capability of our proposed method across different
platforms, we conducted experiments involving the grasping of thin objects using a Kuka robot arm
with an AllegroHand (e.g. scissors, stapler and wrench). These tasks involve grasping objects from a
tabletop, lifting them, and reorienting them to achieve a specific target pose.
The work [38] focuses on functional grasping of various objects with Shadow hand using a carefully
designed reward function, a novel learning framework, and predefined grasp poses. However, their
results indicate that grasping thin objects remains a significant challenge. Therefore, to further
validate our method, we selected three objects: scissors, stapler, and wrench, which this approach
failed to grasp successfully.
For this experiment, we utilized the same environment setup provided by DexPBT [39]. DexPBT
employs a population-based training method to enhance the exploration capabilities of deep rein-
forcement learning. Additionally, SAPG [40], another approach utilizing the same environment as
DexPBT, proposes an efficient way to leverage large-scale environments by partitioning them into
smaller chunks and recombining them via importance sampling. These methods are the current SOTA
for this environment setup and they were chosen as baselines for comparison with our approach. To
ensure a fair comparison, all experimental setups, as well as the policy’s observations and reward,
were kept identical across methods.
Results in simulation. As shown in Appendix E, Fig. 8, our approach enables the robot to success-
fully grasp the scissors by maneuvering it to the edge of the table. Although DexPBT and SAPG
demonstrate strong capabilities in achieving rapid convergence and efficient exploration for randomly
sized cubes, they struggle when applied to the more challenging YCB objects. The training progress
for all three YCB objects is shown in Fig.3. The red line indicate the stage switch. Among these
objects, the stapler is relatively thick and can be grasped directly; however, the rewards for DexPBT
only converged at approximately 1500. This is due to the necessity of long-horizon exploration,
where the robot must establish a stable grasp with an appropriate pose while simultaneously lifting
and accurately adjusting orientation of the object to achieve the desired goal.
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(a) Effectiveness of the three-stage framework on
a challenging object.

(b) Robustness of our method with respect to hyperpa-
rameter variations.

Figure 4: Ablation studies evaluating (a) the contribution of the three-stage framework, and (b) the
robustness of the method under different hyperparameter settings.
4.3 Ablation Study

Experiment setup. We also performed an ablation study to evaluate the importance of the three-stage
privileged action curriculum learning framework. Based on the results presented in Fig. 4.2, we
selected the most challenging object, scissors, for this analysis.
As shown in Fig. 4a, we compared the training performance by removing specific stages from the
curriculum. Specifically, we trained the policy without Stage 1 and without Stage 2 to assess their
individual contributions to the overall learning process. This comparison highlights the impact of
each stage on improving the policy’s ability to explore and learn effectively.
Results and analysis. It is obvious from Fig. 4a that without stage 2, the policy gets stuck in a local
optimum. The constraint relaxation through collision management aids the robot in discovering a
stable grasp strategy, which is crucial for successfully executing the subsequent in-hand orientation
task. However, without the virtual force stage, the policy lacks sufficient exploration, leading to
failure in finding a feasible solution for grasping the scissors under realistic collision constraints.
When training without the stage 1, the policy can still converge to a successful grasping behavior,
but it requires significantly more training time. Notably, a policy trained from the virtual force stage
directly can eventually learn a workable behavior after an extended period of exploration, rather
than getting trapped in local optimum. This is because virtual force reduces the complexity of
object-robot interactions, making it easier for the policy to explore effective interaction strategies.
However, without stage 1, the policy struggles to select an optimal grasp pose, which is essential for
the subsequent reorientation task, ultimately leading to a lack of long-horizon planning capability.

4.4 Robustness to Curriculum Hyperparameter

In our framework, the curriculum parameters, which include penetration thresholds, as well as
distance and velocity thresholds, are set initially at high values to effectively minimize environmental
constraints, and then automatically tightened through curriculum learning based on the task success
rate. The default hyperparameter values used in this work are detailed in Appendix B. We validate the
robustness of our framework by applying the same value of hyperparameters across two distinct tasks.
To further confirm this robustness, we conducted an ablation study by randomly selecting parameters
(penetration threshold: 0.03-0.3, distance and velocity thresholds: 0.5-2, curriculum factor: 0.5-0.9).
As shown in Fig. 4b, policies trained with these randomly selected hyperparameters (four cases:
orange, green, red, and purple) rapidly converge to high reward values, demonstrating the stability of
our approach with respect to hyperparameter variation.

5 Conclusion

In this work, we propose a structured framework that integrates privileged actions with curriculum
learning for tackling long-horizon, contact-rich manipulation tasks. Through extensive evaluations in
both simulation and real-world experiments, we demonstrate that our framework can significantly
enhances the policy’s exploration efficiency. Our method not only facilitates robust non-prehensile
manipulation under sparse reward conditions but also enables the robot to learn diverse behaviors
within the same reward setting. Additionally, it outperforms SOTA methods on challenging dexterous
manipulation tasks.
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6 Limitation
While our framework significantly simplifies traditional reward engineering, it still requires the
selection of curriculum parameters. Nonetheless, this tuning process is considerably less task-
specific and reduces the overall engineering burden. The use of privileged actions enables more
effective exploration, allowing the policy to discover alternative behaviors. For example, it can
adopt pivot grasping strategies when conventional push-and-grasp motions are obstructed, which
in turn support long-horizon planning and enhance the robustness of grasp execution. In contrast,
baseline methods typically only enable simple grasp-and-lift behaviors and often fail in complex
reorientation tasks. Despite introducing curriculum parameters, our method substantially improves the
generality and robustness of learned behaviors while lowering the overall system design complexity.
Additionally, to maintain broad applicability, we retain the original policy observations provided by
the environment without additional modification. However, reliable closed-loop execution could be
further enhanced by incorporating advanced perception techniques. For instance, leveraging Teacher-
Student Networks [30] to distill policies from point cloud observations could help address challenges
such as object tracking and occlusions, thereby improving the robustness of policy deployment in
real-world scenarios. Finally, while our experiments focus on tabletop manipulation, the privileged
action framework has the potential to generalize to a wider range of robot learning problems, which
we leave for future work.

9



References
[1] O. M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. Pachocki, A. Petron,

M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and
W. Zaremba. Learning dexterous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020. doi:10.1177/0278364919887447. URL https://doi.org/10.

1177/0278364919887447.

[2] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. Scaling up multi-task robotic reinforcement learning. In Conference on Robot
Learning, pages 557–575. PMLR, 2022.

[3] T. Haarnoja, B. Moran, G. Lever, S. H. Huang, D. Tirumala, J. Humplik, M. Wulfmeier,
S. Tunyasuvunakool, N. Y. Siegel, R. Hafner, et al. Learning agile soccer skills for a bipedal
robot with deep reinforcement learning. Science Robotics, 9(89):eadi8022, 2024.

[4] J. Luo, C. Xu, X. Geng, G. Feng, K. Fang, L. Tan, S. Schaal, and S. Levine. Multi-stage cable
routing through hierarchical imitation learning. IEEE Transactions on Robotics, 2024.

[5] U. A. Mishra, S. Xue, Y. Chen, and D. Xu. Generative skill chaining: Long-horizon skill
planning with diffusion models. In Conference on Robot Learning, pages 2905–2925. PMLR,
2023.

[6] H. Ha, P. Florence, and S. Song. Scaling up and distilling down: Language-guided robot skill
acquisition. In Conference on Robot Learning, pages 3766–3777. PMLR, 2023.

[7] D. Wang, C. Liu, F. Chang, H. Huan, and K. Cheng. Multi-stage reinforcement learning for
non-prehensile manipulation. IEEE Robotics and Automation Letters, 2024.

[8] J. D. A. Ferrandis, J. Moura, and S. Vijayakumar. Learning visuotactile estimation and control
for non-prehensile manipulation under occlusions. In 8th Annual Conference on Robot Learning,
2024. URL https://openreview.net/forum?id=oSU7M7MK6B.

[9] M. Bauza, J. E. Chen, V. Dalibard, N. Gileadi, R. Hafner, M. F. Martins, J. Moore, R. Pevce-
viciute, A. Laurens, D. Rao, et al. Demostart: Demonstration-led auto-curriculum applied to
sim-to-real with multi-fingered robots. arXiv preprint arXiv:2409.06613, 2024.

[10] Y. Chen, C. Wang, Y. Yang, and C. K. Liu. Object-centric dexterous manipulation from human
motion data. arXiv preprint arXiv:2411.04005, 2024.

[11] E. Triantafyllidis, F. Acero, Z. Liu, and Z. Li. Hybrid hierarchical learning for solving complex
sequential tasks using the robotic manipulation network roman. Nature Machine Intelligence, 5
(9):991–1005, 2023.

[12] X. Yu, M. Dunion, X. Li, and S. V. Albrecht. Skill-aware mutual information optimisation for
generalisation in reinforcement learning. arXiv preprint arXiv:2406.04815, 2024.

[13] V. Atanassov, W. Yu, A. L. Mitchell, M. N. Finean, and I. Havoutis. Constrained skill dis-
covery: Quadruped locomotion with unsupervised reinforcement learning. arXiv preprint
arXiv:2410.07877, 2024.

[14] H. Jiang, T. Chen, J. Cao, J. Bi, G. Lu, G. Zhang, X. Rong, and Y. Li. Stable skill improvement
of quadruped robot based on privileged information and curriculum guidance. Robotics and
Autonomous Systems, 170:104550, 2023.

[15] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust
perceptive locomotion for quadrupedal robots in the wild. Science robotics, 7(62):eabk2822,
2022.

10

http://dx.doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1177/0278364919887447
https://openreview.net/forum?id=oSU7M7MK6B


[16] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and D. Scaramuzza. Learning
high-speed flight in the wild. Science Robotics, 6(59):eabg5810, 2021.

[17] S. Cheng and D. Xu. League: Guided skill learning and abstraction for long-horizon manipula-
tion. IEEE Robotics and Automation Letters, 2023.

[18] Z. Zhou, A. Garg, D. Fox, C. R. Garrett, and A. Mandlekar. SPIRE: Synergistic planning,
imitation, and reinforcement learning for long-horizon manipulation. In 8th Annual Conference
on Robot Learning, 2024. URL https://openreview.net/forum?id=cvUXoou8iz.

[19] J. O. von Hartz, T. Welschehold, A. Valada, and J. Boedecker. The art of imitation: Learning
long-horizon manipulation tasks from few demonstrations. IEEE Robotics and Automation
Letters, 2024.

[20] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. In Conference on Robot Learning,
pages 201–221. PMLR, 2023.

[21] X. Mao, G. Giudici, C. Coppola, K. Althoefer, I. Farkhatdinov, Z. Li, and L. Jamone. Dexskills:
Skill segmentation using haptic data for learning autonomous long-horizon robotic manipulation
tasks. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 5104–5111, 2024. doi:10.1109/IROS58592.2024.10802807.

[22] N. Kumar, T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-Pérez, L. P. Kaelbling, and
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Appendix
A. Details of Reward Setting
Dense rewards are often used to guide learning. However, relying on heavily shaped reward functions
offers limited generalisability and can demand substantial human effort. Thus, we adopt the default
reward for grasping and lifting objects from the table, as provided by IsaacGym [36], without
introducing any additional modifications.. Specifically, the task we focus on in this work involves
non-prehensile manipulation with multi-stage behavior. The reward for non-prehensile manipulation
is sparse, as no explicit rewards are provided to guide this behavior. The reward we used in this task
is defined as follows:

rtotal = rf + rl + rk + rp + rb (9)
Where rf is the distance reward between the robot end-effector and the object, rl is the lifting reward,
and rk is the distance reward between the object and the goal. rp is the penalty term, which reduces
jerk motion by penalizing sudden changes in movement. Additionally, rb is the bonus reward for
successfully reaching the goal.

B. Algorithms for Three-stage Curriculum Learning

Algorithm 1 Three-Stage Curriculum Training

1: Initialize: ∆R ← 0.3, α← 0.85, epoch← 0
2: Set: ∆i ← ∆R/3, αd ← 0.9, αmin ← 0.06
3: while not end of training do
4: if ∆R > 0.0 then ▷ Stage 1: Virtual surface
5: Train policy πθ with constraint relaxation
6: if success rate > 70% then
7: ∆R ← ∆R −∆i

8: end if
9: else if α > αmin then ▷ Stage 2: Virtual force

10: Train policy πθ with virtual force
11: if success rate > 70% then
12: α← max(α · αd, αmin)
13: end if
14: else ▷ Stage 3: No privileged actions
15: Train policy πθ without privileged actions
16: end if
17: end while

In this work, We initialize the penetration offset as ∆R = 0.3, positioning the virtual table 30 cm
below the actual surface, and progressively raise it as the policy achieves success. The initial distance
and velocity thresholds are set to δp = 1, δv = 0.5, and the curriculum factor α = 0.85, introducing
minimal constraints during early training. Additionally, the virtual force applied to the object is
restricted to the x and y directions. As the agent meets the success condition, these thresholds are
scaled by the factor α, which is updated using α = clamp(α · 0.9, 0.06, 0.85); otherwise, α remains
unchanged. This curriculum learning strategy gradually tightens constraints, enabling a smooth
transition from relaxed training conditions to realistic interactions.

C. Additional Experiments
Our framework is designed with generality by first relaxing environmental constraints, allowing rapid
adaptation by the actor and accurate future reward estimation by the critic. The second stage further
encourages diverse robot-object interactions, promoting effective exploration, which is particularly
beneficial in sparse reward settings. The benefits of our framework may be less useful in simple
manipulation tasks that do not require significant exploration (e.g., in-hand reorientation where the
object is already set within the palm), our approach substantially enhances performance for more
complex, long-horizon manipulation tasks. The Allegro Hand reorientation task demonstrates that
our framework can effectively address long-horizon tasks involving push-to-grasp with reorientation.
To further showcase the capabilities and generality of our approach, we conducted several additional
experiments.
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Object grasping and throwing. We evaluated our method on a task requiring the Allegro Hand to
grasp various YCB objects and throw them into a bucket. Figure 5 compares our method against the
SOTA methods, demonstrating its superior performance on these challenging tasks.

Figure 5: Performance comparison on the challenging YCB object in the throw task.

Push-to-insert task. To highlight the generality of our framework, we further applied it directly to a
complex push-to-insert task, as shown in Figure 6. By relaxing object-hole collision constraints and
leveraging virtual forces to guide the policy to adapt within the highly constrained goal region, our
method successfully solves this task where a standard PPO baseline fails.

Figure 6: Robot push and insert task.

Robustness to random seeds. We validated the stability of our framework by running our most
challenging task, scissors reorientation, with five different random seeds. As shown in Figure 7, all
runs consistently converge to a high reward, confirming that our method is robust and not sensitive to
random initialization.
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Figure 7: Robustness on different seeds

D. Symbol Definition

Symbol Definition
qt =

[
qR,t,qO,t

]
∈ Rnp=npr+npo System state, representing the robot’s and object’s positions.

q̇t =
[
q̇R,t, q̇O,t

]
Rnv=nvr+nvo System state, representing the robot’s and object’s velocities.

xt =
[
qR,t,qO,t, q̇R,t, q̇O,t

]
∈ Rnp+nv System state, representing the positions and velocities of the

robot and object.

ut =
[
uR,t,uO,t

]
∈ Rm Control input, partitioned into: uR,t ∈ RmR (robot joint

torques/controls) and uO,t ∈ RmO (linear force applied to
the object).

f(xt) Passive dynamics, including inertial and external contact
forces.

g(xt) Control influence on state evolution.

B(xt) ∈ Rnvo×mO Gating matrix that regulates the force applied to the object.

M(qt) ∈ Rnv×nv Mass/inertia matrix for the robot and object in generalized
coordinates.

c(xt) Bias term accounting for Coriolis, gravity, and frictional
forces.

J(qt) Jacobian mapping contact-space forces to joint torques.

r(xt,ut) Reward function at each timestep.

γ ∈ (0, 1] Discount factor for long-horizon returns.

δp, δv > 0 Distance and velocity thresholds for gating object forces.

α Curriculum factor controlling δp and δv thresholds.

ϕR(xt), ϕO(xt) Signed distances to the table for the robot’s end-effector and
the object.

FR,t,FO,t Normal contact forces, e.g., forces between the robot, ob-
ject, and table.

∆R Penetration offset regulating robot-table collision relax-
ation.

x0 ∼ p0 Initial state distribution.
Table 2: Symbol definitions used in our framework.
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E. AllegroHand Grasp Challenging YCB Object

Figure 8: Using our framework and despite the absence of a specific reward indication for non-
prehensile manipulation skills, the robot learns to grasp and lift the scissors by first pushing them to
the edge of the table.
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