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Abstract
Self-play has powered breakthroughs in two-
player and multi-player games. Here we show
that self-play is a surprisingly effective strategy
in another domain. We show that robust and nat-
uralistic driving emerges entirely from self-play
in simulation at unprecedented scale – 1.6 bil-
lion km of driving. This is enabled by GIGAFLOW,
a batched simulator that can synthesize and train
on 42 years of subjective driving experience per
hour on a single 8-GPU node. The resulting policy
achieves state-of-the-art performance on three in-
dependent autonomous driving benchmarks. The
policy outperforms the prior state of the art when
tested on recorded real-world scenarios, amidst
human drivers, without ever seeing human data
during training. The policy is realistic when as-
sessed against human references and achieves un-
precedented robustness, averaging 17.5 years of
continuous driving between incidents in simula-
tion.

1. Introduction
Self-play has been an effective strategy for training policies
for board games, card games, 3D multiplayer games, real-
time strategy games, robotic manipulation, and even bio-
engineering (Silver et al., 2017; 2018; Jaderberg et al., 2019;
Berner et al., 2019; Brown & Sandholm, 2019; Vinyals et al.,
2019; Plappert et al., 2021; Perolat et al., 2022; Wang et al.,
2023a). In this work, we demonstrate the effectiveness of
self-play in another domain. We show that simulated self-
play yields naturalistic and robust driving policies, while
using only a minimalistic reward function and never seeing
human data during training.

We demonstrate that qualitatively new levels of realism
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and robustness emerge when self-play training is taken to
unprecedented scale – orders of magnitude beyond prior
experiments (Feng et al., 2023; Zhang et al., 2023). This
discovery is enabled by GIGAFLOW, a batched simulator
architected from the ground up for self-play reinforcement
learning on a massive scale. GIGAFLOW is capable of sim-
ulating and learning from 4.4 billion state transitions (7.2
million km of driving, or 42 years of continuous driving
experience) per hour on a single 8-GPU node. It simulates
urban environments with up to 150 densely interacting traf-
fic participants 360 000 times faster than real time at a cost
of under $5 per million km driven (based on public cloud
rates). A full training run simulates over one trillion state
transitions, 1.6 billion km driven, or 9500 years of subjec-
tive driving experience, and completes in under 10 days on
one 8-GPU node.

We use GIGAFLOW to train a parameterized family of driv-
ing policies. The parameters specify the type of traffic par-
ticipant controlled by the policy (passenger vehicle, large
truck, bicyclist, or even a pedestrian) and the driving style
(e.g., aggressive vs. cautious). These parameters can be
modified at test time with no additional training (Dosovit-
skiy & Koltun, 2017), such that a single trained policy can
be used to control a variety of traffic participants, with a vari-
ety of behavioral styles. During training, this parameterized
policy architecture enables all simulated traffic participants
to be collecting experience in parallel, all flowing through a
single neural network. This supports self-play simulations
where more than a hundred agents are all controlled by a
single neural network, which is learning from all of their
experiences, yet the agents exhibit diverse outward manifes-
tations (truck vs. bicycle), functional characteristics (turning
radius), and behavioral styles (adherence to traffic laws).

The result is a robust and naturalistic driving policy
that achieves state-of-the-art performance when tested in
recorded real-world scenarios, amidst recorded human
drivers, without ever seeing human data during training.
We test the GIGAFLOW policy in three leading independent
third-party benchmarks: CARLA (Dosovitskiy et al., 2017),
nuPlan (Caesar et al., 2022), and the Waymo Open Motion
Dataset (Ettinger et al., 2021) (through the Waymax sim-
ulator (Gulino et al., 2023)). State-of-the-art performance
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Figure 1: Self-play reinforcement learning yields a generalist policy. a, A single GIGAFLOW agent outperforms the
best dataset-specific specialists across leading benchmarks. GIGAFLOW is evaluated zero-shot without training on a single
benchmark, while dataset-specific specialists train on benchmark-specific datasets. Each benchmark includes different maps,
scenarios, and evaluation metrics. b, GIGAFLOW enables cost-effective training of policies via self-play on a massive scale.
Our largest policies drive over 1.6 billion km during training, more than the distance from the Sun to Saturn and orders of
magnitude farther than prior datasets or simulations. At this scale, self-play yields a generalist policy. Dashed lines indicate
points at which the performance of our single generalist policy passes the prior state of the art on each benchmark (‘prior
best’) and points at which the performance on each benchmark plateaus (‘plateau’).

on each benchmark was previously achieved by specialist
agents that were trained specifically for that benchmark,
commonly using benchmark-specific datasets. In contrast,
we outperform the prior state of the art on all benchmarks
with a single policy (Fig. 1) that was trained entirely via
self-play, using none of the provided datasets for training.

The behaviors exhibited by the GIGAFLOW policy are natu-
ralistic despite never seeing human data during training. The
trained policy exhibits long-horizon planning without any
dedicated planning or search modules, can deal with heavily
contentious traffic scenarios, is quantitatively realistic when
assessed against human references (Montali et al., 2023),
and exhibits unprecedented robustness, averaging over 3
million km (or 17.5 years of continuous driving) between
incidents in simulation.

2. GIGAFLOW

The goal of GIGAFLOW is to train a generalist policy
π(a|W,S,A,C) in simulation (Fig. 2d). The policy ob-
serves the static world W , its own state S, and other dy-
namic agents A to produce an action a (Fig. 2c). A condi-
tioning parameter C modulates the policy’s behavior. Learn-
ing this generalist policy requires careful modeling of two
core concepts: uncertainty and other-agent behaviors.

Uncertainty in driving stems from partial or incomplete
observations. The driver is generally unaware of the goals
and intentions of other agents, or even their exact location,
speed, or acceleration. Objects or parts of the static world
may be hidden or occluded. Real-world sensors often intro-
duce noise. GIGAFLOW models uncertainty directly through
noise on the state S, noise in the state transitions, stochas-
ticity in the dynamic agents, and partial observability on
dynamic agents A and the static world W . GIGAFLOW
agents observe the positions and speeds of nearby agents
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Figure 2: Overview of GIGAFLOW. a, GIGAFLOW simulates tens of thousands of worlds with millions of agents in a
massively parallel self-play reinforcement learning setup. b, Each world tasks agents to navigate to goals on a map without
collisions. c, Each agent optimizes its own performance, given a set of local observations. d, All agents use a compact
shared policy network.

but not their acceleration, and crucially, neither their goals
nor conditioning.

Modeling agent behaviors is a particularly impactful and
complex aspect of driving. Prior work approached behav-
ior models through hand-designed agents (Kesting et al.,
2010; 2007; Gulino et al., 2023), recorded and replayed
data (Gulino et al., 2023; Li et al., 2023; Vinitsky et al.,
2022), or models of driving learned from data (Ivanovic &
Pavone, 2019; Nayakanti et al., 2023; Wang et al., 2023b;
Suo et al., 2021; Shi et al., 2022; Xu et al., 2023; Zhong
et al., 2023). In contrast, in GIGAFLOW, realistic and gen-
eral driving behaviors for all traffic participants emerge via
self-play reinforcement learning on a massive scale.

2.1. GIGAFLOW world

The GIGAFLOW world is simple: we do not script scenarios,
use human driving traces, or design delicate reward terms.
We show that simulation at massive scale makes up for much
of this simplicity (Fig. 2).

Agents train on one of eight maps, randomly perturbed with
rescaling, shears, flips and reflections. Total drivable lanes
per map range from four to 40 km for a total of 136 km of
road across the eight maps (Fig. 2a). In each map, we spawn
one to Na agents at random locations and orientations on
the road and ask them to reach goal points sampled uni-

formly over the map. This creates a world in which agents
drive for long distances before reaching their destinations
(Fig. 2b). Agents are tasked with visiting a variable number
of intermediate waypoints, requiring the ability to follow
complex routes (see Appendix B for details).

Dense traffic flows with diverse interactions emerge as
agents navigate to their destinations. As training progresses,
we can observe agents executing zipper merges and tight
maneuvers in traffic jams, managing congested roundabouts
and uncontrolled intersections, resolving occasional grid-
locks, and performing multi-point turns to reroute around
accidents or obstructions.

GIGAFLOW agents train fully in self-play. All dynamic
agents – vehicles, pedestrians, and cyclists – use the same
single reactive parametric policy π; their behaviors are var-
ied through conditioning C (Fig. 2d). The policy is aware
of the dynamics of the agent it controls as part of the con-
ditioning Cdynamics. The agent reward is a mixture of incen-
tives to reach its goal, avoid collisions, drive centered and
lane aligned, as well as penalties for running red lights or
stop signs, and exceeding acceleration and jerk limits. The
weights on each of these reward components are randomized
per agent and provided as conditioning Creward to the agent
(see Appendix B for details). This allows a single reactive
policy π to exhibit a wide range of behaviors. The result
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is a diverse training world where agents learn a continuum
of driving styles: some drive cautiously, others are likely
to run traffic lights, while a rare few are willing to drive
against the flow of traffic. Because the policy only observes
the conditioning C of the agent it controls, it must learn to
be robust to the unpredictable behaviors of other drivers.

2.2. GIGAFLOW simulation and training

The GIGAFLOW simulation and training framework is de-
signed to optimize driving data collection and training
throughput per unit of computation. We simulate and learn
from 4.4 billion state transitions per hour on a single 8-GPU
node, rolling out urban commute simulations 360 000 times
faster than real time at the cost of under $5 per million kilo-
meters driven (based on public cloud rates). These training
rates require three core ingredients: a fast batched simula-
tor (Shacklett et al., 2021; Petrenko et al., 2021; Shacklett
et al., 2023), a compact and expressive policy for fast infer-
ence and backpropagation, and a high-throughput training
algorithm.

GIGAFLOW simulation. GIGAFLOW simulates 38 400 en-
vironments in parallel across 8 GPUs with up to Na = 150
vehicles each (Fig. 2a). Basic operations, such as policy in-
ference and dynamics updates are batched across all agents.
Agent localization, collision checking, and observation con-
struction rely on dedicated optimized data structures. Due
to the large map sizes, we precompute and cache all map
observations in a spatial hash and perform fast, GPU-based
runtime lookup and retrieval. Agents perceive the map by
observing sets of points sampled sparsely along drivable
lanes Wlane, and densely along the nearby road edges for
precise maneuvering Wboundary (Fig. 2c).

Beyond map features, agents get observations of nearby
traffic participants A – containing nearby vehicles’ sizes,
locations, orientations, and velocities – and nearby stop lines
and traffic lights Wstop. GIGAFLOW models static obstacles
as immobile vehicles Astatic. To reduce memory, we do not
store these observations in the rollout buffer, but calculate
them on demand from stored world states. See Appendix A
for a detailed description of the simulator.

GIGAFLOW policy. GIGAFLOW can simulate diverse actor
types, from pedestrians to heavy trucks, by parameterizing a
single unified feed-forward policy (Fig. 2d). The decision to
use the same underlying neural network policy for all traffic
participants significantly impacts the overall throughput: we
need only a single (batched) forward pass per simulation
step to calculate actions for all agents. The policy resembles
a Deep Sets architecture (Zaheer et al., 2017) and is invariant
to permutation w.r.t. each observation type. Critically, the
entire trainable artifact is relatively compact at six million
parameters. On an 8-GPU A100 node, the policy allows
inference throughput of 7.4 million decisions per second

during experience collection at a batch size of 2.6 million,
and eight gradient updates per second in the training phase
with a batch size of 256 000. See Appendix D for more
details.

GIGAFLOW training. We train the GIGAFLOW policy us-
ing Proximal Policy Optimization (PPO) (Schulman et al.,
2017). One of the main challenges associated with au-
tonomous driving is the inherent imbalance in the data
distribution. As training progresses, the on-policy data is
dominated by ordinary traffic configurations, such as orderly
driving in a straight line between intersections. The critic is
often able to accurately predict the returns for such trajecto-
ries, resulting in a large portion of samples with near-zero
advantage (Greensmith et al., 2004) that consequently yield
vanishingly small gradients.

We use a variant of Prioritized Experience Replay (Schaul
et al., 2016) that filters samples that have minimal impact
on learning. The filtering is based on the absolute value of
the estimated advantage. We filter up to 80% of samples
with low absolute advantage, which significantly increases
learning throughput without sacrificing sample efficiency.
Our approach, which we refer to as advantage filtering,
focuses training on the most informative state transitions,
prioritizing learning from the underexplored tails of the data
distribution where selected actions are measurably better or
worse, and makes more efficient use of the data we generate.
See Appendix C for more details.

3. Zero-shot evaluation on driving benchmarks
We evaluate a trained GIGAFLOW policy on the leading
closed-loop driving benchmarks: CARLA (Dosovitskiy
et al., 2017), nuPlan (Caesar et al., 2022), and the Waymo
Open Motion Dataset (Ettinger et al., 2021) through the
Waymax simulator (Gulino et al., 2023). These benchmarks
encompass a wide range of actor behaviors, driving scenar-
ios, maps, traffic densities, durations, and scoring method-
ologies. The CARLA benchmark consists of routes with
hand-designed scenarios based on the NHTSA pre-crash
topology (Najm et al., 2007). It evaluates long distance driv-
ing (several minutes per 1–3 km route). nuPlan and Waymax
evaluate short distance driving (8–14 seconds per scenario,
< 100m) in scenarios derived from recorded real-world
driving with the associated sensor data.

A generalist GIGAFLOW policy outperforms state-of-the-
art specialists. For each benchmark, we compare to spe-
cialist state-of-the-art policies that are either trained (Gulino
et al., 2023) or carefully hand-designed (Chitta et al., 2023;
Jaeger et al., 2023; Dauner et al., 2023) to perform well
on that specific benchmark. In contrast, we use a single
policy across all benchmarks. Our policy is trained purely
in self-play and is evaluated zero-shot in each benchmark
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environment. Without any fine-tuning, our policy surpasses
the state of the art in CARLA, nuPlan, and Waymax (Fig. 1
with details in Tables A5 to A7 and Appendix E). This
demonstrates robust driving with strong generalization. Our
self-play policy outperforms the state of the art on real
driving traces with human traffic participants, without ever
seeing human data during training.

GIGAFLOW policy generalizes to diverse actor behaviors.
The benchmarks implement a diverse set of environment
actors. CARLA uses reactive rules-based vehicles with lane-
changing capabilities, combined with events triggered by
the driver’s behavior (e.g., a pedestrian that darts suddenly
in front of the driver). The actors in nuPlan and Waymax
are controlled by different variants of the Intelligent Driver
Model (Treiber et al., 2000). Vehicles in nuPlan follow
the lane center line, whereas vehicles in Waymax follow
the paths of logged human drivers. The GIGAFLOW policy
exhibits robust driving amongst all of these actor types.

GIGAFLOW policy generalizes to diverse maps and driv-
ing situations. GIGAFLOW trains on variants of synthetic
maps with closed road networks (Dosovitskiy et al., 2017),
but generalizes to the real-world maps in nuPlan (Cae-
sar et al., 2022) and in the Waymo Open Motion Dataset
(WOMD) (Ettinger et al., 2021). The WOMD maps are
small, with incomplete road networks constructed from logs
of instrumented vehicles in several US cities. The nuPlan
benchmark is based on driving logs of human drivers in
locales with both right-handed and left-handed driving (Cae-
sar et al., 2020); it contains larger maps that encompass the
entire testing area of the vehicle. Both nuPlan and WOMD
scenarios include merges, unprotected turns, and interac-
tions with pedestrians and cyclists (Ettinger et al., 2021).
The GIGAFLOW policy achieves state-of-the-art results in
these benchmarks without any training on recorded driving
logs or any human-designed scenarios.

GIGAFLOW policy generalizes to real-world observation
noise. Both Waymax and nuPlan construct observations,
maps, and other actors with auto-labeling tools from real-
world perception data. This brings occlusion, incorrect or
missing traffic-light states, and obstacles revealed at the
last moment. Despite the minimalistic noise modeling in
GIGAFLOW, the GIGAFLOW policy generalizes zero-shot to
these conditions.

GIGAFLOW policy is state-of-the-art according to multi-
ple scoring methodologies. Each benchmark brings its own
definition of ‘good driving’. Those definitions are distinct
and sometimes contradictory. For example, running a red
light in CARLA incurs nearly the same penalty as colliding
with another vehicle. Yet the same action can be advanta-
geous in nuPlan, where red light violations are ignored by
the scoring criteria, hard braking causes comfort penalties,
and forward progress is strongly rewarded. Despite such

variations, the single generalist GIGAFLOW driver outper-
forms specialist policies optimized for individual benchmark
scores.

The GIGAFLOW policy approaches the ceiling of bench-
mark performance. The vast majority of the infractions
sustained by the GIGAFLOW policy during testing on the
benchmarks can be attributed to limitations of the bench-
marks. For instance, 20% of the reported infractions in
CARLA are caused by pedestrians or cyclists darting from
the sidewalk into the roadway without reacting to the evasive
maneuver of the driver or other traffic participants. Prevent-
ing such collisions would require drastic overfitting to this
type of scenario (Jaeger et al., 2023). Other exemplary limi-
tations are gridlocks caused by CARLA-controlled traffic
(33% of all infractions) or fuzzy stop sign and red light
checks (16% of all infractions).

In nuPlan our policy sustains 15 collisions in 1118 scenar-
ios. We analyzed each of them. Nine are unavoidable due
to invalid initialization or sensor noise (agents appearing
inside the vehicle’s bounding box). Four are caused by non-
reactive pedestrian agents walking into the vehicle while
the vehicle was stopped or in an evasive maneuver. Two
collisions are due to traffic light violations of other agents.

In Waymax our policy sustains 187 collisions in 44 097
scenarios. We again analyzed each of them. 55.6% were
caused by unavoidable IDM agent behavior (Treiber et al.,
2000) of the traffic participants controlled by the benchmark,
such as swerving directly into the ego vehicle. 41.7% were
caused by initialization in a state of collision, typically with
a pedestrian. 2.7% (i.e. five scenarios) were considered at-
fault and avoidable by the GIGAFLOW policy. Of the at-fault
collisions, there were additional contributing factors such as
perception issues or aggressive and spurious IDM behaviors.
One example is when the GIGAFLOW policy seeks to avoid
a rear-end collision with an IDM agent approaching from
behind at high speed.

We include videos of all reported infractions in the supple-
mentary material.

4. Analysis
GIGAFLOW training employs two neural networks: the pol-
icy (actor) that chooses actions and the value function ap-
proximator (critic) that estimates the expected cost-to-go
from a given state. We examine how the policy’s driving be-
havior changes over the course of training (Fig. 3) and how
the policy and value networks respond to targeted changes
to their inputs in various scenarios (Fig. 4).

Reinforcement learning at scale yields mastery of com-
plex skills. The scale of GIGAFLOW training enables the
policy to handle complex scenarios despite never seeing real-
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Figure 3: Evolution of the policy during training. a, Zero-shot performance on example benchmark scenarios with
increasing number of state transitions (K) seen during training. From top to bottom: K = 1010 (3 million km), K = 1011

(90 million km), and K = 1012 (1600 million km). The color of the controlled vehicle and its trajectories indicate the
benchmark score. b, Performance of the GIGAFLOW policy on a diagnostic scenario where a static obstruction (red bounding
boxes) forces a merge of several highway lanes into one. All agents are controlled by the same policy. Trajectories from 100
independent rollouts are shown. Agent colors indicate probability of success (moving past the bottleneck). Binary matrices
on the right indicate the success of each actor in each rollout (white indicates success). After K = 108 state transitions,
the agents drive out of their lanes and crash. After K = 109, the agents drive forward, avoid collision, and sometimes
successfully change lanes, but do not successfully merge across multiple lanes (only agents on the right succeed). After
K = 5 × 109, merging ability emerges but agents in the leftmost lane usually fail. After K = 1010, agents sometimes
merge from the left lane, but not reliably. After K = 1011, all agents reliably succeed with no incidents. c, Performance of
the GIGAFLOW policy in a diagnostic scenario where road closures require three traffic flows to merge into one without the
aid of traffic lights. As training progresses, the policy goes from only succeeding at the right turn to successfully completing
unprotected left turns and u-turns. After K = 1012 steps of training, all agents reliably succeed. Binary matrices show the
worst 100 samples from 1000.

world or hand-designed driving scenarios during training.
The policy learns to execute unprotected left turns, drive
in crowded roads used by both pedestrians and vehicles,
and handle vehicles dangerously merging into the driver’s
lane (Fig. 3a). In diagnostic tests designed for analysis,
GIGAFLOW vehicles are able to safely negotiate through a
narrow bottleneck into a single lane when the other lanes are
blocked by an accident (Fig. 3b) and quickly merge three
traffic flows into a single one due to road closures (Fig. 3c).
Many of these skills are mastered only after 1011 to 1012

steps of training experience (90 to 1600 million km driven).

Value network detects dangerous states. To examine
the value network’s ability to detect dangerous states, we
evaluate it on a set of observations generated by densely
sampling all possible positions and orientations of the driver
on a fixed region of the map. We find that the network
appropriately assigns low value to states where the driver is
taking a corner too fast, and where collision with another
vehicle is imminent due to high relative velocity (Fig. 4a).

Policy and value networks attend to salient scene fea-
tures. Driving requires attending to the most consequential
traffic participants at any given time, among hundreds of
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Figure 4: Analysis of the learned policy and value networks. a, Value network estimates danger at fine granularity over
the surface of the road. Heatmaps show state-value estimates for a driver placed at every possible location, oriented in
parallel to the nearest lane. Left: The network assigns lower value to rounding a sharp corner at higher speed. Right: Value
estimates for driving at various speeds in the vicinity of a vehicle (gray) moving 36 km/h to the right. Being placed at rest
(0 km/h) in front of the moving vehicle is likely to result in collision. As velocity increases, the danger zone shifts behind
the other vehicle. The estimated danger becomes acute as the relative speed increases. b, Attention of the policy and value
networks of the controlled vehicle (blue) to surrounding actors in two scenarios from the Waymo Open Motion Dataset.
Top row: Mutual information between the policy network’s action distribution and actor presence. Bottom row: Decrease
in the value network’s state-value estimate due to actor presence. c, Scenarios where a scripted nearby vehicle (orange)
either continues moving forward at constant velocity (solid orange line) or executes a different behavior (dashed orange
line). The policy (blue vehicle) executes maneuvers (solid blue line, dashed blue line) contingent on the other vehicle’s
behavior. Final poses are translucent. d, Policy and value networks perform long-horizon prediction and decision-making.
Top: Policy drives to its goal (20 second trajectory in blue) when the road is clear. When an obstruction (black) is placed
156 m away, the policy re-routes (black trajectory). Bottom: Heatmap shows change in value estimate over the surface of the
road due to introduction of the obstruction. e, Top: Diversity of trajectories due to goal conditioning (three goals shown with
associated trajectories in matching color). Bottom: Additional variability due to randomized reward conditioning parameters.
f, Changing vehicle dimensions with all else fixed yields different behaviors: A slender vehicle can squeeze around an
obstacle; a compact vehicle with a tight turning radius can make a u-turn; a larger vehicle resorts to a three-point turn.

actors who may be present in the environment. We assess
the attention of our policy and value networks by analyzing
the change in action distribution (via mutual information)
and change in value estimate when each actor is individually
removed (Fig. 4b). As expected, the networks sometimes
attend to different actors: For example, the value estimate is
affected by all actors that make the scene more dangerous
over the long term (for example a speeding car approaching

a line of vehicles queued at a red traffic light), whereas the
policy’s action might not change due to such an actor if there
is no way for the policy to mitigate the danger (Fig. 4b).

Policy executes maneuvers contingent on nearby traf-
fic behavior. We evaluate the policy in scenarios where
a nearby vehicle either behaves predictably (continuing to
move at constant velocity) or unpredictably, with all else
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fixed. We find that the policy executes appropriate discrete
maneuvers contingent on the nearby vehicle behavior, like
changing lanes to avoid collision with a vehicle that is cut-
ting into its lane and passing a vehicle that unexpectedly
stops in the road. The policy executes contingent longer-
term routing maneuvers, like turning around by circling the
block instead of making a three-point turn, depending on
traffic (Fig. 4c).

Policy reacts to potential events far in the future. Both
networks are also able to react to salient scene features
even when they are distant, like an obstruction 150m down
the road (Fig. 4d), and can ignore actors that are near but
irrelevant (e.g., a car parked few meters from the driver in
a parking lot). While considering potential events beyond
the planning horizon is often a challenge for trajectory-
based planners (Casas et al., 2021), the GIGAFLOW policy
optimizes long-term return directly without the limitations
of a short time horizon.

One policy learns a continuum of driving styles. Reward
function coefficients Creward, vehicle dimensions, and vehi-
cle goals are all randomized during training. As a result,
the policy learns a parameterized family of driving styles
(Fig. 4e,f; Fig. A1); different styles can be elicited from
a single trained policy by setting the parameters accord-
ingly, without any retraining or fine-tuning. For example,
the policy squeezes through narrow passages or performs
tight turns if and only if the vehicle dimensions permit this
(Fig. 4f). Likewise, reducing the conditioning parameter
that controls sensitivity to red lights makes the policy more
willing to run red lights in order to accomplish other goals.

GIGAFLOW yields a highly efficient, capable, and re-
alistic simulation environment. The GIGAFLOW train-
ing configuration features substantial dynamics noise and
diverse reward conditioning parameters Creward (see Sec-
tion 2). We can configure the same simulation infrastructure
for long-form evaluation of trained policies. In this config-
uration, we reduce the injected dynamics noise, increase
control frequency, and set conditioning parameters Creward
that prioritize safety for all actors. This yields a fast, cost-
effective, and highly robust traffic simulator. In this regime,
a fully trained GIGAFLOW agent experiences on average
17.5 years of driving and travels over 3 million km before
encountering an incident. (For reference, human drivers
average approximately 829 000 vehicle kilometers traveled
per police-reported traffic crash in the United States (Stew-
art, 2023), or as much as 1 crash per 24 800 km in narrower
domains such as San Francisco (Flannagan et al., 2023).)
To our knowledge this is the first demonstration of long-
term robust traffic simulation based on independent agents
traversing a diverse urban road network.

We evaluate the realism of the driving behaviors learned
via GIGAFLOW on the Waymo Open Sim Agents Challenge

(WOSAC), which measures the ability to reproduce real-
world driving behaviors for simulation purposes (Montali
et al., 2023). Despite not using any human data for train-
ing, the GIGAFLOW policy exhibits many characteristics of
human driving, achieving a score of 0.62 in zero-shot eval-
uation on the realism meta-metric, outperforming several
approaches based on supervised autoregressive prediction.
(Details in Section E.4.)

5. Discussion
Many questions remain to fully understand the long-term
role of self-play in delivering broad-competence robust au-
tonomy. First, our work has been conducted entirely in
simulation. Techniques for transferring policies from simu-
lation to reality will have to be brought to bear before claims
can be made regarding the efficacy of self-play policies in
the physical world (Müller et al., 2018; Lee et al., 2020;
Kaufmann et al., 2023).

Second, our work has focused on planning and decision-
making, largely abstracting the perception stack. To in-
tegrate the presented findings into an operational system,
sensing and perception will have to be modeled much more
closely. An exciting possibility is to combine large-scale
self-play training with data-driven simulation of the asso-
ciated perceptual inputs (e.g., camera images) (Ost et al.,
2021; Yang et al., 2023; Hu et al., 2023). It is likely fea-
sible in the coming years due to ongoing improvements in
simulation methodology (Shacklett et al., 2021; Petrenko
et al., 2021; Shacklett et al., 2023), computing hardware,
and system architectures. Combining self-play with pho-
torealistic sensor simulation would substantially increase
the computational footprint of each experience, but the wall-
clock training time can be maintained by scaling out over
a commensurate number of compute nodes (Dubey et al.,
2024).

Third, our work has demonstrated that training without real-
world driving traces can yield policies that are surprisingly
human-like (Montali et al., 2023) and highly robust when
tested in recorded real-world scenarios with human partici-
pants (Caesar et al., 2022; Gulino et al., 2023). By contrast,
common perspectives on learning-based autonomous driv-
ing hold that recorded datasets will play a key role in training
driving policies (Jain et al., 2021; Hawke et al., 2021; Chen
et al., 2023). How do we reconcile our findings with these
views? One possibility is to combine large-scale self-play
training with training on recorded scenarios, perhaps via a
combination of reinforcement learning and imitation learn-
ing (Lu et al., 2023; Zhang et al., 2023). This can further
increase robustness and help bridge simulation and reality.
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Impact Statement
Our findings may inspire broader application of self-play
in training agents that act in the presence of (and in close
coordination with) humans in physical and digital environ-
ments. Such coordinated action may be called for in mobile
robotics, in both consumer and industrial settings, and in
digital domains such as online games. We have shown that
policies that function effectively in the presence of human
actors in complex dynamic environments can be trained
without utilizing human data. Broader application of this
methodology may substantially reduce the cost and com-
plexity of training autonomous policies by meaningfully
reducing the need for human data collection.

References
Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voz-

nesensky, M., Bao, B., Bell, P., Berard, D., Burovski,
E., et al. PyTorch 2: Faster machine learning through
dynamic python bytecode transformation and graph com-
pilation. In International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, 2024.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
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A. Simulator Design
GIGAFLOW is a batched simulator (Makoviychuk et al.,
2021; Freeman et al., 2021; Petrenko et al., 2021; Shacklett
et al., 2021), implemented in PyTorch (Ansel et al., 2024)
and designed for GPU acceleration. A single instance of
GIGAFLOW simulates thousands of worlds, enabling it to
leverage the parallelism of modern GPUs. Implementing
GIGAFLOW efficiently required the development of custom
batched operators for the kinematics, collision checking,
initialization of urban driving environments, and many other
features. Below we outline the overall flow of GIGAFLOW
and describe the acceleration techniques used.

At every timestep, GIGAFLOW takes the current state of the i-
th world s

(t)
i and vehicle controls a(t)i to produce the state at

the next timestep s
(t+1)
i . Instead of running multiple copies

of the environment to simulate N = 38 400 worlds, a single
instance of GIGAFLOW simulates N worlds in parallel. The
state and vehicle controls of all N worlds are denoted s(t)

and a(t).

A.1. World initialization

The simulation process begins with the initialization of ur-
ban driving environments by placing up to Na = 150 vehi-
cles at random positions on the map. We first draw a random
sample over map locations, vehicle headings, and vehicle
bounding box dimensions and reject states that are off-road
(off-road checking is detailed below). A naive application
of this process results in a marginal distribution of vehicle
locations that is biased towards wider road sections. To cor-
rect for this, we estimate this marginal distribution from an
initial sample and use it to adjust the proposal distribution
used in subsequent rejection sampling. Given the set of valid
vehicle states, we then select a collision-free subset with
the desired number of agents (collision detection is detailed
below). This subset becomes the initial traffic configuration
at t = 0.

For each retained vehicle, we select a sequence of its way-
points (goals). The first waypoint is sampled uniformly
over the map and additional waypoints are sampled such
that given the jth waypoint, the (j + 1)th waypoint is at
least 20m away and no more than 200m away, and has lane
heading that is within 60 degrees of the jth waypoint’s lane
heading. There are cases where the jth waypoint is in a loca-
tion where these constraints cannot be met (e.g., a dead end).
In these cases, we gradually relax the constraints as we try
to sample points that fit them. The intent of this sampling
procedure is to generate waypoint sequences that resemble
realistic driving routes where intermediate destinations are
reached in a natural succession.

We use two acceleration techniques specific to initialization.
First, we draw a large buffer of vehicle states and goals all

at once and then consume that buffer until it is empty as
new initializations are requested, e.g., when episodes reset.
This allows for better cost amortization when generating
initial states. Second, we use sequential rejection sampling
to produce collision-free initializations. We add one agent
to the world, then add a second agent that is not in collision
with existing agents (via rejection sampling), and so on
until we reach the desired number of agents. This approach
was necessary because the probability that an independent
sample of over one hundred vehicles contains no collisions
is extremely low for small maps.

A.2. Dynamics model update

The dynamics model (described below) produces s(t+1)

given s(t) and a(t). This is a set of element wise operations
(trigonometric functions, multiplications, divisions, etc.)
that are parallelized on a GPU using their respective PyTorch
implementations.

A.3. Road localization

The next step is to localize s(t+1) on the road surface.

Road representation. GIGAFLOW represents the road sur-
face as a set of potentially overlapping polygons, exclusively
using convex quadrilaterals. We find quadrilaterals to offer a
good balance between expressivity and the simplicity of op-
erations. A given lane on the road surface is approximated
by quadrilaterals that have the same width as the lane and
are 1m in length. We find this resolution of polygons to
be a good trade-off between the accuracy of road geometry
approximation and the total number of primitives.

It should be noted that the number of geometric primitives
could be minimized further by merging polygons in the re-
gions with simple geometry, such as straight road segments.
However, we retain the uniform polygon density irrespective
of the geometric complexity because this polygonal subdi-
vision additionally serves as a spatial hash map for certain
types of queries (e.g., map observations are pre-computed
for all polygon center points).

Frenet coordinates. Let q represent the distance along a
lane, d be the distance from lane center, and polyId be
a unique identifier of the polygon approximating the road
geometry at the current location. The Frenet coordinate for
position (x, y) is then (q, d,polyId).

We convert world-frame state s(t) to Frenet-frame state f (t)

as this information is useful for constructing actor obser-
vations and covers off-road checking in the majority of
cases. We construct the Frenet-frame state by first finding
the polygon that contains (x, y). Given this polygon, we can
compute (q, d) by transforming (x, y) into the coordinate
frame defined by the polygon’s heading and center point
then adding the distance from the start of the lane to the
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polygon’s center to q. If multiple polygons contain (x, y),
we use the polygon where the agent is most lane centered
(where d is the smallest).

Naively implementing this would require performing
O(N × A × P ) point-in-polygon checks, where N is the
number of worlds, A is the number of agents, and P is the
number of polygons. This is prohibitively computationally
expensive.

Spatial hashing. We accelerate this via spatial hashing
on the GPU. Specifically, we first construct a 2-D grid of
non-overlapping axis-aligned boxes with a fixed width and
height. This scheme allows us to trivially map a point
(x, y) to its given bucket in the hash map. We then assign
each polygon in the road representation to the (potentially
multiple) buckets that it overlaps. Note that this step only
needs to be performed once at startup.

We localize (x, y) by first retrieving the polygons that are in
its bucket and then performing a point-in-polygon check for
each matching quadrilateral. One challenge of implement-
ing this efficiently is that each hash bucket has a different
number of corresponding polygons. We maintain efficiency
by designing APIs to expect these “ragged” variable-size
tensors and only perform padding on operations that require
it (e.g., finding the polygon that minimizes d).

This spatial hash additionally allows for the support of mul-
tiple maps via augmentation of vehicle coordinates (x, y)
with the map Id: (x, y,mapId). Essentially, the map an
agent is driving on functions as a “third” dimension, allow-
ing us to filter out polygons from other maps at the hash
bucket retrieval step.

A.4. Off-road checking

Given s(t), we localize the vehicle’s bounding box center
and corners on the road surface using the spatial hash proce-
dure described above. In the majority of cases, a vehicle is
off-road if any of these 5 points could not be localized onto
the road surface. However, there are two edge cases that are
important to handle.

Curved roads and islands. These are various situations
where all 5 of these points can be on the road surface but
the vehicle should still be considered off-road. Two such
examples are curved roads (where part of the bounding
box overhangs the edge of the road) and pedestrian safety
islands (where the vehicle can straddle the islands). To
handle both these cases, we generate a set of out-of-bounds
(OOB) points by taking the mid-point of each polygon edge,
nudging it slightly in the outwards direction, and keeping all
points that do not lie within any other polygon. A vehicle is
classified as off-road if any of these OOB points are found
to be within its bounding box.

We again use our spatial hashing data structure to acceler-
ate the check between vehicle bounding box and the OOB
points. Specifically, each OOB point is first associated with
its hash bucket. Then, we lookup which buckets the vehicle
overlaps with and perform a point-in-bounding-box check
with that set of points.

We associate the vehicle bounding box with appropriate
hash buckets as follows: first, we set the bucket size to be
2× the maximum possible vehicle length. Then, we approxi-
mate the vehicle’s oriented bounding box by its axis-aligned
bounding box (AABB). Due to our choice of spatial hash
bucket size, the AABB overlaps with at most 4 buckets, each
containing (at least) one of the AABB’s corners. We retrieve
the OOB points that correspond to ≤ 4 buckets overlapped
by the vehicle and perform a point-in-bounding-box check
with each. We find that this fairly simple approximation is
appropriate since it enables very fast lookup which is crucial
as it is performed at every simulation step.

Gaps in the road surface. Due to the extremely low off-
road rates achieved by GIGAFLOW policies, we found that
most remaining off-road events are characterized by thin
gaps in the road surface (sometimes under 1mm), often
located between neighboring lanes. These thin gaps are not
actual geometrical features but numerical inaccuracies in
the underlying map files.

During training, we allow any of the 5 points used for off-
road checking to be in one of the spurious gaps by measuring
the distance from the point to the closest road polygon and
considering points within δ = 15 cm to be still on the road
surface. We again use spatial hashing to accelerate this
lookup. We take edges of all road polygons and assign
them to any bucket that they overlap with or pass within the
distance δ of, so we can quickly obtain a list of candidate
edges.

A.5. Collision detection

Given s(t) and s(t+1), we detect collisions as follows. Let
s
(t)
ai and s

(t+1)
ai be successive states of agent i, and s

(t)
aj and

s
(t+1)
aj be the successive states of agent j. We perform two

checks to see if a collision occurred. First we transform s
(t)
aj

into the coordinate frame of s(t)ai and s
(t+1)
aj into the coor-

dinate frame of s(t+1)
ai . Then we check to see if any of the

lines defined by the movement of agent j’s corners intersect
with agent i’s bounding box (the bounding box is centered
at the origin). We then swap the roles of agents i and j
and perform this check again. A collision occurred between
agents i and j if either check is positive. Note that we only
perform collision detection, not collision simulation.

We accelerate this using our spatial hash by constructing,
for all agents, the axis-aligned bounding box (AABB) that
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contains the vehicle’s bounding box at both states s(t) and
s(t+1). We assign the vehicle to all buckets that overlap
with this bounding box and perform the collision detection
procedure described above for all pairs of vehicles that share
at least one bucket. We use the world ID of each agent as
an additional dimension in the spatial hash so that vehicles
can only collide with other vehicles in the same world. This
hashing method is fast to compute and greatly reduces the
number of candidate collision pairs. Therefore hashing
represents a large improvement over a naive pairwise check.

The check described above only works when (at least) one
vehicle is in motion. This is acceptable during simulation,
as at least some movement is required to transition from
collision-free to a colliding state. For detecting collisions
at t = 0, we simply check to see if the two bounding boxes
overlap at state s(0). We use the spatial hash in a similar
manner as before, except the AABB corresponds to a single
(initial) state.

A.6. 2.5-D simulation

Simulating driving can be largely approximated without
errors as a two-dimensional problem. This approximation
enables performance improvements and reduces code com-
plexity (thereby limiting the surface area for coding errors).
However, certain cases cannot be accurately approximated
in two dimensions, like overpasses. GIGAFLOW handles this
with “2.5-D” simulation. We simulate the world as if it were
2-D and then correct for these errors. For example, we per-
form collision detection in two dimensions and then remove
collisions that would not have occurred in 3-D. We maintain
the vehicle’s z-coordinate by applying the dynamics model
purely in 2-D and then looking up new z(t+1) for all vehi-
cles from the map that correspond to new locations s(t+1).
We use z(t), s(t), and the maximum slope of a given map to
filter out conflicting z values in cases like overpasses.

A.7. Hardening

Given the extremely low collision and off-road rates seen
in GIGAFLOW training we found that extremely rare bugs
would dominate the collisions and off-road events when
present. We iterated extensively; training numerous policies
to very high fidelity, watching videos of collisions and off-
road events, and sieving those caused by coding errors and
numerical inaccuracies rather than the agent’s poor decision
making. Each iteration would yield new bug fixes, improv-
ing both training and downstream benchmark performance.

To address these bugs, we built numerous visualization tools,
as merely knowing that a rare bug existed was not enough
to fix it — we had to find the exact steps to reproduce it as
well. The visualization, diagnostic, and recording tools we
developed were instrumental to the overall success of the
project.

We additionally developed multiple simplified versions of
GIGAFLOW to speed up diagnostics and troubleshooting.
Using the minimal single-agent configuration we could train
policies to convergence in under 20 minutes, allowing us
to get immediate feedback on the core functionality. We
established infrastructure for continuous testing, repeatedly
retraining policies from scratch using these streamlined sim-
ulator configurations. This system has significantly acceler-
ated the identification and isolation of regressions, thereby
conserving numerous development cycles.

B. Defining the partially observed stochastic
game

We model the environment that our agents learn in as a
partially observed stochastic game (POSG) (Hansen et al.,
2004); an extension of POMDPs to the multi-agent setting
in which there are multiple agents with conflicting goals.
We define each of the components of the POSG below.

B.1. Observations

We render the world state s(t) into a relatively low dimen-
sional vector representation. In order to drive safely, a
GIGAFLOW agent utilizes information about vehicle’s dy-
namics and its position w.r.t. the lane S(t), approximate
map of the surrounding area, including roads and traffic
lights

(
W

(t)
lane,W

(t)
boundary,W

(t)
stop

)
, observations of other traf-

fic participants A(t), desired destination and intermediate
waypoints G(t), as well as the agent’s conditioning Creward
(Table A2) .

Local observation S(t) can be further broken down as fol-
lows (time indices omitted for clarity):

• c, θ: the distance from the current lane center and the
angle relative to lane heading.

• κ: local road curvature.

• v: current speed of the vehicle.

• vlim: maximum allowed speed.

• ϕ: current steering angle.

• along, alat: current longitudinal and lateral acceleration.

• Driver’s acceleration limits Cacc.

• Cthrottle, Csteer: randomized coefficients determining
the vehicle’s responsiveness to throttle and steering
inputs.

• l, w: driver’s vehicle’s length and width.
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Note that all of these observations are normalized to [−1, 1]
range and provided in egocentric frame.

Map observations outline the surrounding area at two lev-
els of resolution, including the high-level overview of the
nearby road network W

(t)
lane and a more detailed set of fea-

tures W (t)
boundary that represent the precise shape of the local

driveable area.

The coarse map view W
(t)
lane provides a set of positional

features sampled along driveable lanes at 40m intervals,
containing information about lane widths and heading di-
rections. These features also convey higher-level routing in-
formation similar to that provided by GPS-based navigation
applications. Each observation within W

(t)
lane is augmented

with relative (w.r.t. other observations) and absolute normal-
ized distances to the next goal, which allows GIGAFLOW
agents to make informed routing decisions at complex junc-
tions. We pre-calculate all routing information by running
the Dijsktra’s algorithm (Dijkstra, 1959) offline, computing
pairwise distances between all locations of interest.

For a more fine-grained road geometry representation
W

(t)
boundary we provide midpoints of nearby polygon edges

spaced roughly 1m apart which delineate the out-of-bounds
areas closest to the driver (Fig. 2c). For both W

(t)
lane and

W
(t)
boundary we provide the 80 features closest to the driver,

additionally limited to 200m viewing horizon for the coarse
map. We pre-calculate Wlane and Wboundary for each map
polygon which enables extremely fast retrieval at runtime,
only requiring a simple conversion to driver’s egocentric
frame to obtain W

(t)
lane and W

(t)
boundary.

For observations of other agents we return the No nearest
agents within δmax = 200m of the driver. We pad the array
of observations in case there are fewer than No nearby actors.
For each agent, we observe its position, orientation, velocity,
dimensions (i.e. width and length), and z-coordinate, all
transformed into driver’s egocentric frame. The goals, mo-
mentary accelerations, dynamics properties, or conditioning
parameters of other agents are not observed.

While we do not explicitly model occlusions, we keep
the maximum number of observed agents during train-
ing relatively low: No = 20 ≪ Na. Together with the
distance-based visibility threshold δmax this allows us to
train the agent well adjusted to limited observability. Our
permutation-invariant model architecture allows the value
No to be trivially increased at test time to use all available
information (see the model architecture details below).

B.2. Actions and dynamics

Our agents use a discrete set of actions to control the vehi-
cle’s change in acceleration using a jerk-actuated bicycle
dynamics model. The action space includes 12 total ac-

tions, the Cartesian product of the sets of available values of
longitudinal ȧlong ∈ {−15,−4, 0, 4}ms−3 and lateral jerk
ȧlat ∈ {−4, 0, 4} ms−3.

We compute longitudinal and lateral accelerations using
numerical integration (∆t = 0.3 s during training):

a
(t)
long = a

(t−1)
long + Cthrottle ȧlong ∆t (1)

a
(t)
lat = a

(t−1)
lat + Csteer ȧlat ∆t (2)

where coefficients Cthrottle, Csteer ∈ Cdynamics are sampled
from a mixed uniform distribution X(1.25), defined as:

X(a) = 0.5U(a−1, 1) + 0.5U(1, a), a > 1

This distribution generates an equal number of samples
smaller and greater than one, thereby allowing for a bal-
anced randomization of dynamics properties.

We apply a small modification to the Eqs. (1) and (2), setting
values a(t)long, a(t)lat to exactly 0 when acceleration changes sign

(i.e. when a(t−1)
long a

(t)
long < 0). We found that this modification

makes it easier for the agent to wait in place or drive at a
constant velocity, producing smoother trajectories.

The acceleration components are then clipped ensur-
ing the g-forces stay within the specified limits (here
Cacc ∼ X(1.5)):

a
(t)
long ← clip

(
a
(t)
long, −5, 2.5Cacc

)
a
(t)
lat ← clip

(
a
(t)
lat , −4, 4

)
We update the velocity magnitude using the trapezoidal rule
(averaging previous and current accelerations):

v(t) = v(t−1) + 0.5
(
a
(t)
long + a

(t−1)
long

)
∆t

Just as for the accelerations, we set v(t) to exactly 0 when
its value changes sign. We then clip v(t) to stay within the
randomized speed limit (Cvel ∼ X(1.5)):

v(t) ← clip
(
v(t), −2, 20Cvel

)
To reach the acceleration a

(t)
lat , the vehicle would have to fol-

low the arc with radius |ρ| and signed curvature ρ−1 apply-
ing the steering angle ϕ (here lwb is the vehicle’s wheelbase
and ϵ = 10−5 ensures numerical stability):

ρ−1 =
alat

max(v2, ϵ)

ρ−1 ← sign
(
ρ−1

)
max

(∣∣ρ−1
∣∣ , ϵ)

ϕ = arctan
(
ρ−1 lwb

)
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We calculate the change in the steering angle, δϕ, and
update the effective steering angle, ϕ(t), ensuring that
both values remain within conservatively defined limits
(δmax = 0.6 rad s−1, ϕmax = 0.55 rad):

δϕ = clip(ϕ− ϕ(t−1), −δmax ∆t, δmax ∆t) (3)

ϕ(t) = clip(ϕ(t−1) + δϕ, −ϕmax, ϕmax) (4)

The clipping in Eqs. (3) and (4) prevent excessive changes
in the steering angle, limiting the maximum lateral accel-
eration at low speed. To account for the limited steering
actuation, we update the effective signed curvature ρ−1 and
acceleration a

(t)
lat accordingly:

ρ−1 ←
tan

(
ϕ(t)
)

lwb

a
(t)
lat ←

(
v(t)
)2

ρ−1

Finally, the resulting movement of the vehicle is updated
using the bicycle dynamics model:

d = 0.5
(
v(t) + v(t−1)

)
∆t

θ = d ρ−1

∆x = ρ sin (θ)

∆y = ρ cos (θ)

where d is the displacement along the arc and θ is the angular
displacement.

B.3. Reward

Our agents optimize a scalar reward function consisting
of multiple terms weighted by their respective coefficients
α(·) which are randomly sampled at the beginning of each
episode (see Table A2). This reward function R is defined
by:

R = Rgoal +Rcollision +Roff-road +Rcomfort +Rlane

+Rvelocity +Rreverse +Rstop-line +Rtimestep

where the individual terms can be described as follows:

• Rgoal rewards the agent for reaching its intermediate
goals (waypoints) and the final goal.

• Rcollision penalizes agents for colliding with vehicles
or pedestrians with an additional penalty for collid-
ing at high speed. Randomizing αcollision allows us
to populate the training environments with agents of
varying risk tolerance, from very aggressive to very
conservative.

• Roff-road penalizes agents for leaving the road.

• Rcomfort is a penalty for exceeding the comfortable lim-
its of acceleration and jerk. Randomized αcomfort cre-
ates a distribution of driving styles, from relatively
smooth to practically unconcerned with comfort.

• Rl-align incorporates the preferences for driving in the
designated driving direction and staying parallel to
road lanes. We randomize this term in a wide range,
which occasionally exposes our agent to erratic actors
driving against traffic.

• Rl-center rewards the agent for staying centered in the
lane. We randomize αcenter-bias for additional behavioral
diversity.

• Rvelocity encourages forward progress and motivates
the agent to prefer routes with consistent traffic flow
over traffic jams. We found that this term accelerates
convergence in the early stages of training and helps
us train policies that are better at avoiding gridlocks in
self-play.

• Rreverse penalizes the agents for reversing. Due to the
randomization of αreverse some agents perform multi-
point turns to reach the goals behind them, while others
prefer to drive forward and wrap around the block or
perform a U-turn instead.

• Rstop-line penalizes the agent for crossing a stop line at
a red light.

• Rtimestep is a small penalty applied at each simulation
step. This serves a function similar to the discount
γ, except we disable Rtimestep when ego is stationary
which creates agents more willing to patiently wait at
traffic lights and intersections when necessary.

B.4. Additional randomized components

In addition to the reward function coefficients we randomize
a number of simulator’s components to generate diverse
embodiments and behavioral patterns. Agents have access
to the randomized parameters as a part of their conditioning.

Vehicle size. We randomize vehicle’s dimensions as follows
(measured in meters):

• Vehicle length and wheelbase: l ∼ U(0.8, 7), lwb =
0.6 l.

• Vehicle width: w ∼ U(0.8, 3).

• The vehicle width is clipped: w ← min(w, l).

Size randomization allows us to generate a variety of road
users, from very maneuverable agents with a footprint of
a pedestrian to relatively big vehicles. We represent occa-
sional bigger vehicles at test time using a set of smaller
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bounding boxes (e.g., a semi-truck with a trailer can be split
into two bounding boxes).

Goals. A final goal is sampled for each agent. Additionally
we sample Nwp ∼ U{0, 3} intermediate waypoints (see
“World Initialization” for details). We randomize the goal
collection radius δgoal to control how precisely our driver is
required to adhere to the designated route (see Table A2).

Vehicle dynamics. For each agent in each episode we ran-
domly sample maximum permitted acceleration, velocity,
throttle and steering coefficients (refer to “Actions and dy-
namics” for specific randomization ranges).

Traffic lights. Real driving situations include a diverse set
of traffic light systems, from synchronized lights at 3-way
and 4-way intersections to occasional faulty, disabled, or
miscalibrated signals. Instead of explicitly modeling this
distribution in GIGAFLOW we simply pick random dura-
tions of green, yellow, and red signals for each traffic light
independently. We start with default signal durations used
in CARLA (typically τ̂red = 2, τ̂yellow = 3, and τ̂green = 10
seconds) and then randomize them for each episode within
the following ranges:

• τred ∼ U(0.15 τ̂red, 5.0 τ̂red)

• τyellow ∼ U(0.5 τ̂yellow, 0.75 τ̂yellow)

• τgreen ∼ U(0.1 τ̂green, τ̂green)

We additionally remove 20% of individual lights, 20% of
traffic light groups (e.g., all lights at an intersection), and
in 20% of all episodes we disable traffic lights entirely,
making all intersections unregulated. We also set 5% of all
remaining traffic lights to be constantly green.

Even though we train only on 128 variants of CARLA maps
(8 maps modified with affine transformations), this aggres-
sive traffic light randomization allows us to combinatorially
increase the total number of unique training environments
and traffic patterns, preventing overfitting. Our policy learns
to handle arbitrary traffic light configurations which helps
significantly in benchmarks like nuPlan where traffic signal
states are derived from the sense stack and often have errors.

The maximum red light duration in our simulator is delib-
erately limited (τred ≤ 10 s). This allows us to mitigate the
impatient nature of discounted reward maximization. When
durations of required stops are short during training, agents
with αstop-line ≫ 0 are never incentivized to run red lights to
maximize their return by getting to the goal faster. We find
that our agents, due to their reactive nature, generalize to
much longer red light durations occasionally encountered
in benchmarks.

Modeling erratic drivers. We aim to train an attentive,
rational, and defensive driver which does not require coop-

eration of other traffic participants to ensure safety. Ideally,
even clearly erratic maneuvers by other vehicles should
not lead to collisions or comfort violations on behalf of
GIGAFLOW agent. In order to achieve this, we degrade a
fraction of agents during training by introducing two types
of modifications:

1. Up to 5% of agents occasionally do not see other vehi-
cles. This models inattentive drivers and drivers with
blind spots.

2. Up to 10% of agents sharply apply their brakes at
arbitrary moments for a short duration before resuming
normal driving. This models drivers that stop without
warning or remain stationary when a traffic light turns
green.

Between random applications of these modifications, agents
are still controlled by GIGAFLOW policy and are completely
oblivious to their modification, which makes it impossible
for regular drivers to predict their erratic behavior. We
exclude trajectories from these agents from the rollouts used
for training.

C. Training algorithm
Agents are trained using a version of Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) derived from the
Stable Baselines codebase (Raffin et al., 2021). PPO trains
a policy that outputs actions, and a critic that estimates dis-
counted returns. In our implementation, we do not share
any parameters between the policy and the critic, which
empirically produces comparatively more robust low en-
tropy policies at convergence. Additionally, we add the
terminal value estimate to reward at the end of all truncated
episodes, thus emulating infinite-horizon learning, similar
to “Reset Handling” in Rudin et al. (2021). We use Adam
optimizer (Kingma & Ba, 2015) with annealed cosine-rate
learning schedule:

α(k) =
α(0)

2

[
1− cos

(
π − π k

K

)]
where k is the current training iteration and K is the maxi-
mum number of iterations. We use in DD-PPO (Wijmans
et al., 2020) to train with mutliple GPUs. Specifically, each
GPU collects experience independently and then gradients
are synchronized before the model update.

During development, we optimized a subset of hyperparam-
eters of PPO and GIGAFLOW simulator using Population
Based Training (PBT) (Jaderberg et al., 2017; Petrenko et al.,
2023). We conducted this optimization using a simplified
version of GIGAFLOW training setup (single map, reduced
randomization) which enabled faster iteration. Our PBT ex-
periments informed a number of non-trivial hyperparameter
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Algorithm 1 Advantage filtering
Require: Initial model parameters Θ, RL environment E , EWMA

decay β = 0.25.
1: for k = 0 to K − 1 do ▷ Training iteration k
2: Bexp ← COLLECTROLLOUTS(Θ, E) ▷ Experience buffer

3: Â
(·)
GAE ← GAE(Bexp,Θ, γ, λ) ▷ GAE advantages

4: Amax ← max
t∈Bexp

∣∣∣Â(t)
GAE

∣∣∣ ▷ Max abs. advantage

5: Āmax ← 1k=0Amax + 1k>0

(
βAmax + (1− β)Āmax

)
6: Filtering threshold: η ← 0.01 Āmax

7: Bfiltered ← FILTER(Bexp,
∣∣∣Â(·)

GAE

∣∣∣ < η)

8: Θ← PPO(Bfiltered,Θ)
9: end for

choices, from the learning rate schedule to comparatively
large integration step ∆t = 0.3 s. Table A3 provides our
final list of training hyperparameters.

Advantage filtering. To make use of the vast scale of syn-
thesized data, we implement a technique termed advantage
filtering which can be viewed as a variant of Prioritized
Experience Replay (Schaul et al., 2016) where the majority
of transitions are sampled exactly zero times.

Specifically, for each transition we calculate the advantage
estimate Â

(t)
GAE (Schulman et al., 2016) and then simply dis-

card all transitions that satisfy
∣∣∣Â(t)

GAE

∣∣∣ < η. The adaptive
filtering threshold η is set to 1% of the moving average esti-
mate of the maximum advantage magnitude at the current
stage of training, thus rendering the method insensitive to
the absolute scale of rewards (see Algorithm 1).

Empirically, we filter out on average ∼ 80% of all samples
throughout training (over 90% in the early epochs). This
significantly increases learning throughput as we avoid com-
puting gradients that contribute minimally to the overall
parameter update. With the proposed adaptive threshold
η we observe a 2.3-fold increase in training throughput,
from 0.53 to 1.2 million steps per second. Our experiments
suggest that application of this technique not only acceler-
ates learning, but also yields more robust policies (e.g., see
Carla LAV results in Fig. A2). We hypothesize that advan-
tage filtering could be beneficial across various RL setups,
especially where data collection is cheaper than gradient
calculation (e.g., training LLMs on synthetic data).

Previously Tao et al. (2021) explored an experience filtering
approach based on the fixed advantage threshold, selecting
a subset of maximally informative samples from the teacher
policy in the context of transfer learning. We further develop
this idea and propose a general adaptive method compatible
with a broad class of reinforcement learning applications.

D. Neural network architecture
Our actor and critic are parameterized by virtually iden-
tical compact neural networks with 3 million parameters
each (6 million trainable parameters combined). At the high
level, the architecture consists of a fully-connected back-
bone ([1024× 1024× 1024] MLP) which receives concate-
nated feature embeddings and outputs either a distribution
over actions or a scalar value estimate (see Fig. 2d).

Observations represented by simple feature vectors (S(t),
G(t), Creward, etc.) are trivially encoded by smaller fully-
connected networks, e.g.,: f (t)

S = MLP
(
S(t)

)
.

Observations containing multiple features per agent(
W

(t)
lane,W

(t)
boundary,W

(t)
stop, A

(t)
)

are represented by sets of
feature vectors and require permutation-invariant en-
coders (Zaheer et al., 2017). For each feature type we
employ a small fully-connected network to encode each
element in a set (e.g., an individual map feature in W

(t)
lane)

followed by channel-wise maxpooling layer. Outputs of all
maxpooling encoders are then concatenated.

Observation sets W (t) and A(t) represent some of the largest
data structures in our computation graph containing over 108

individual feature vectors per inference step across all agents.
Storing all of these observations in the PPO’s rollout buffer
would be prohibitively expensive. Instead, we store only the
world states s(t) and reconstruct most of the observations as
needed for each training minibatch.

In addition to that, for the largest feature sets Wlane and
Wboundary we omit a fraction of input features (akin to the
dropout regularization technique). We randomly drop 40%
of Wboundary and 50% of Wlane features during training for
each agent. This feature dropout approach allows us to fit
the full GIGAFLOW training system on 40GB A100 GPUs,
while additionally modelling potential sensor noise, increas-
ing robustness of the policy and preventing overfitting.

E. Benchmark evaluation
For each benchmark, we use the benchmark-provided simu-
lation infrastructure, translate observations into GIGAFLOW,
and run GIGAFLOW as a co-simulator. For Waymax and
CARLA, we co-simulate a single GIGAFLOW step for each
evaluation step. nuPlan additionally requires trajectory pre-
dictions at each step. At each time-step, we roll out an entire
scenario using GIGAFLOW policies for all agents for 0.3 sec-
onds, and use the subsequent observed trajectory from the
driver as its trajectory.

E.1. nuPlan benchmark evaluation

The nuPlan benchmark consists of a training, validation and
held out test set built from thousands of hours of data col-
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lected from Las Vegas, Boston, Pittsburgh, and Singapore.
However, in our work we never use data from the training
set. The benchmark provides three different challenges, an
open-loop (OL) Challenge 1, closed-loop non-reactive (CL-
NR) Challenge 2, and closed-loop reactive (CL-R) Chal-
lenge 3. We focus only on challenge 3 because it repre-
sents the most realistic setting with both the driver and the
traffic vehicles being closed loop. The reactive traffic ve-
hicle agents are controlled by the Intelligent Driver Model
(IDM) (Kesting et al., 2010) with their initial placement
taken from real traffic distributions. However pedestrians
are non-reactive and follow their logged trajectory. After
initialization, the IDM agent will select a series of lanes
(independent of the log vehicles trajectory) and follow a
centerline lane path provide by nuPlan’s map. Longitudinal
acceleration control comes from the IDM equation.

dv

dt
= a

(
1−

(
v

v0

)δ

−
(
s∗

s

)2
)

With acceleration limit a, desired speed v0, current speed v,
distance to lead agent s, safety margin s∗, and exponent δ is
usually set to 4. The agent defaults to acceleration a unless
it’s close to desired v0 or close to an object in its path. In
this challenge, there is less diversity in behavior, but it has
more realistic vehicle interactions when the driver deviates
from the logged vehicle trajectory.

Due to the nuPlan online leaderboard evaluation servers
no longer being accessible, we evaluate GIGAFLOW on
the Val14 benchmark, which has been shown to be a good
proxy for the leaderboard evaluation and has other publicly
reported results (Dauner et al., 2023).

The GIGAFLOW policy achieves state of the art results zero-
shot on the Challenge 3 closed loop score. The closed-
loop score is measured from 0 to 100 and is a weighted
evaluation composed of at-fault collisions, drive-able area
compliance, driving direction compliance, progress towards
goal, time-to-collision bounds, speed limit compliance, and
comfort. Full results are shown in Table A5. We are able to
compute the component scores for the PDM-Hybrid entrant
and simply present the total score for the other entrants.
Finally, we categorized all videos of nuPlan’s collisions and
we provide them in the supplementary material.

E.2. CARLA benchmark evaluation

Jaeger et al. (2023) implemented a CARLA expert driver
that serves as a teacher for a trained perception-based model.
To our best knowledge, the presented expert manifests the
best scores on CARLA benchmarks ever reported in the
literature. This expert makes use of privileged information
such as exact positions of all traffic participants and perfect
map information. Since the default CARLA leaderboard

tracks do not provide such information, Jaeger et al. adapt
the leaderboard code accordingly. We adopt this procedure
and extract this information in a similar way. Moreover, we
identified a bug in CARLA that can lead to faulty pedestrian
states when a pedestrian collides with other traffic partici-
pants. This bug can result in erroneous collision infractions;
see video in the supplementary material. We obviate this
bug by removing a pedestrian actor from the scene in case
of an event. To ensure the same test bed for all competing
approaches, we run all of them in our setup and report the re-
sulting scores along with the scores reported by the authors.
In addition to the expert in Jaeger et al. (2023), we compare
to the CARLA autopilot and another expert from Chitta
et al. (2023). Since simulations in CARLA contain a large
amount of randomness, Table A6 presents the mean and
standard deviations of the evaluation results for 3 different
runs.

E.3. Waymax benchmark evaluation

To run the Waymax simulator, we wrote a distributed sce-
nario runner to evaluate on the full Waymo Open Mo-
tion Dataset (WOMD) 1.2.0 validation set consisting of
44 097 scenarios each 8 s long running at 10Hz. To
match the results from Table 3 in Gulino et al. (2023), for
our DatasetConfig we use max num objects=128,
and use the default IDMRoutePolicy settings. We
also applied this patch, https://github.com/
waymo-research/waymax/pull/54, to fix IDM
agent issues on top of commit 720f9214a in the pub-
lic Waymax Github repo. For goals used for the GIGAFLOW
policy we use the final location of the expert logged tra-
jectory as an intermediate goal, as well as two more goals
projected out at 50m and 100m and snapped to the nearest
lane center.

We use the provided agent overlap, off road rate, log diver-
gence, and SDC kinematic infeasibility metrics provided
by Waymax to calculate our results. However, due to the
Waymax route information not being released at the time
of this writing, we report a modified metric for Route
Progress Ratio. We calculate it by dividing the dis-
tance the GIGAFLOW policy drove by the expert logged
trajectory per scenario, and clamp to 100% if the expert
drove less than 1m. We also report an additional progress
metric, Total Distance Driven Ratio, which is
simply the total distance the GIGAFLOW policy drove over
all scenarios divided by the total the expert log drove.

Unlike Carla and nuPlan, Waymax does not have an ag-
gregate score which allows for easier comparison and visu-
alization of results. Because of this, we propose a sim-
ple aggregate score composed of a progress score (i.e.
a clamped Total Distance Driven Ratio), colli-
sion rates, and off-road rates show in Eq. (5) below. This
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metric is what is reported in our figures when referring to a
single Waymax score.

progress = min


∑
s∈S

ds∑
s∈S

d expert
s

, 1



success = 1−

∑
s∈S

1
collision
s × 1off-road

s

|S|

score = progress× success (5)

Where S is the set of scenarios, ds is the distance the policy
under test drove in scenario s, d expert

s is the distance the
expert policy drove in scenario s, 1collision

s is the indicator
function for if scenario s contained a collision, and 1off-road

s

is the indicator function for if scenario s contained an off-
road event.

Table A7 presents Waymax results.

E.4. Waymo Open Sim-Agents Challenge

Waymo introduced their Open Sim Agents Challenge
(WOSAC) in 2023 to promote the development of intel-
ligent, interactive simulation agents capable of exhibiting a
diversity of behaviors in response to decisions made by the
autonomous vehicle (Montali et al., 2023). In WOSAC, driv-
ing scenarios are characterized by 9.1 second sequences of
recorded tracks of road users derived from the Waymo Open
Motion Dataset (WOMD) (Ettinger et al., 2021), stored at
10 Hz, where the first 1.1 s of history is used to form an
initial context. Models are evaluated by their ability to accu-
rately reproduce the remaining 8 s of the scenario for up to
128 agents.

Despite being designed for imitative traffic modeling, we
use WOSAC to evaluate GIGAFLOW in real-world multi-
agent settings and demonstrate the policy’s ability to control
a diversity of road users while avoiding undesired behavior.
Following the evaluation of other benchmarks, we evaluate
a fully trained GIGAFLOW policy zero-shot on WOSAC
without fine-tuning. We use the provided 1.1 s history to
conditionally sample from the map distribution of possible
goal locations, filtering out positions that are either unreach-
able or are trivially reachable. Proposed goal locations are
retained proportional to the GIGAFLOW agent’s value esti-
mate from the provided initial position of each actor.

Behavior of all vehicles and bicycles is modeled using a
GIGAFLOW policy, while pedestrians are controlled with
an IDM-like policy based on the provided initial velocity
and heading. If a collision with a vehicle is forecast within
a 0.5 s horizon, the pedestrian actor stops moving forward

until a collision is no longer imminent. To account for
sensor noise in recorded data, we add random Gaussian
noise to all generated actor positions. We achieved a 2-point
improvement in the overall metametric using σ = 0.0125
when compared to rollouts without the added noise.

Results of our zero-shot evaluation of GIGAFLOW to
WOSAC are reported in Table A8, using the Waymo-defined
validation set to allow for detailed analysis in Table A9. In
addition to GIGAFLOW we include a comparison to a pol-
icy where all actors are fixed to be stationary, establishing
a lower bound on generated behaviors by the GIGAFLOW
policy. We also include the reported performance for the top
methods included on the public 2023 WOSAC leaderboard
as well as a set of baseline approaches reported in Montali
et al. (2023), nearly all based around supervised autoregres-
sive modeling.

We see that the GIGAFLOW policy approaches the perfor-
mance of expert models, despite having never been exposed
to any map or human data recorded in WOMD during train-
ing. Notably, GIGAFLOW offers strong performance for col-
lision and off-road metrics, out-performing most approaches.
GIGAFLOW also maintains respectable performance among
acceleration metrics, a consequence of producing kinemati-
cally feasbile and smooth rollouts following the dynamics
model the policy was trained with. With GIGAFLOW, we are
able to control multiple actors within real-world scenarios
without colliding or driving off-road, producing natural-
istic driving. The scoring metrics used for WOSAC are
likelihood measures of the ground truth behavior within
the distribution induced by generated actor trajectories. To
achieve idealized performance for the likelihood of colli-
sion and off-road behavior, it is expected that the generated
trajectories collide or drive off-road whenever ground truth
actors are assessed to do so. Because GIGAFLOW explicitly
penalizes these outcomes during training we cannot expect
our policy to substantively improve over the reported scores
in Table A8 for these metrics. We characterize the collision
and off-road behavior of GIGAFLOW within WOSAC in
Table A9, conditioned on actor type and whether the ground
truth trajectories collide or go off-road.

F. Analysis
F.1. Reward conditioning analysis

To capture a continuum of driving styles in GIGAFLOW we
vary reward parameters for our agents and then allow the
policy to condition on them. In total we condition on 12
different parameters used in our reward shown in Table A2.

To better understand how these reward parameter conditions
affect GIGAFLOW policy behavior, we attempt to find which
parameters can explain the most variation in trajectories.
We do this by sampling 200 random reward parameters
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within the training distribution range, roll out each of them
on various scenarios in nuPlan, then cluster trajectories to
find which conditioned reward parameter provides the most
mutual information on the clusters. Because single reward
parameter will typically dominate the variation seen in the
trajectories, we repeat the analysis again but with the previ-
ous dominant parameter fixed. We repeat this procedure for
the top 6 parameters with the results shown in Fig. A1.

The order of parameters with highest mutual information
with the clusters is αcenter-bias followed by δgoal, αl-center,
αcomfort, αl-align, and αvel-align. As seen in Fig. A1, the vari-
ation is interpretable and relatable to a human driver. For
αcenter-bias, the policy will pick the left lane if it’s biased to-
wards the right (so that it can be further from the boundary)
and vice versa for the right lane. For δgoal, the policy will
change lanes to get closer to the goal when the max distance
is small enough. For αl-center, if this value is high enough,
the policy prefers to stay centered in its lane to not incur the
extra cost of a lane change, despite the additional progress
it could make. For αcomfort, the policy cares less about high
accelerations and jerks when this penalty is closer to zero,
so will take more aggressive turns to stay within its lane and
receive centering rewards. For αl-align, the policy incurs less
reward for staying oriented with its lane if this value is low,
and therefore if this value is low enough the driver is willing
to U-turn to get to its goal behind it. Finally for αvel-align,
we are rewarded for staying centered in our lane at higher
speeds, and therefore when this value is low the policy takes
a wider turn to maximize comfort.

By allowing our policy to condition on a range of reward
parameters, we solve a few problems at once while keep-
ing the simplicity of a single policy. First, it introduces a
wide variety of agent behaviors that makes our policy more
robust. One reason is because the policy now must handle
both the hidden goals and hidden behaviors of other agents.
Due to this, the GIGAFLOW policy learns to handle vehi-
cles that favor different positioning within the lane, drive
aggressively, lane change more often, plus combinations of
the above. The second benefit is that the optimal driving
style could be captured in our conditioning range. So as
an additional alignment step, the reward conditions can be
tuned to reduce the error between the GIGAFLOW policy
and an ideal logged driver. This method would then allow
us to create both a chaotic self-play training environment
to increase robustness, and a safe and comfortable driving
controller, all with the same policy.

F.2. Ablation studies

We perform a series of experiments to understand how dif-
ferent algorithmic choices influence the final performance
of the GIGAFLOW agent using a reduced compute budget of
660 GPU-hours (∼ 30% of the final training run’s budget).

Fig. A2 demonstrates the effect of the advantage filtering
technique described earlier. Using this method we filter out
samples that have near zero contribution to PPO’s policy and
critic losses, thus focusing on rare events at the tails of data
distribution. While we expect this technique to improve the
wall time performance of the algorithm, to our surprise we
also see qualitative difference at convergence. The version
of GIGAFLOW without filtering plateaus substantially lower
on the Carla LAV benchmark and is unable to reach up to
5% of goals in time leading to timed out episodes in the
self-play evaluation mode.

Fig. A3 demonstrates the influence of various algorithmic
features on zero-shot benchmark performance. Here, we
quantify the error rate across multiple benchmarks; specifi-
cally, we measure the additional percentage points needed
to achieve a perfect score on each benchmark.

F.3. Long-form evaluation in self-play

To evaluate robustness of our agent in self-play, we devise a
version of GIGAFLOW training environment tuned for long-
form evaluation. We remove dynamics noise, set the number
of drivers to Na = 50, and slightly modify the initialization
procedure to ensure minimal clearance between all vehicles
at t = 0. We remove all traffic light randomization and
simply use CARLA’s default traffic light system to promote
conventional interactions at intersections. We additionally
modify drivers’ observations to increase their perceived
vehicle size by 10 cm on each side.

We observe that at decision-making frequency of 15Hz,
GIGAFLOW agent conditioned for safe and conservative
driving (see Table A4) exhibits nearly accident-free driving,
covering on average 3 million km before encountering any
collision or going off-road (Fig. A4).
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Parameter Value

Total num. of maps w/ affine transformations 128
Number of agents per sim. U{1, 150}
Number of sims per GPU 4800
Max number of agents per GPU 720 000
GPUs used 8× Nvidia A100 (40GB)
Total GPU hours used in training 1900
Total number of sims 38 400
Total number of agents 5 760 000
Throughput: steps per second ∼ 1 200 000
Throughput: km driven per second ∼ 1850
Training cost per million km driven ∼ $5USD
Total simulated distance driven 1 600 000 000 km
Total number of simulated state transitions 1 000 000 000 000

Table A1: Setup and scale of GIGAFLOW training.

Reward Training distribution

Rgoal= 1(||x−g||<δgoal ∧ (1waypoint∨|v|<vgoal))
δgoal∼ U(2, 12)
vgoal= 3

Rcollision= − (αcollision + 0.1|v|)1collision αcollision∼ U(0, 3)

Roff-road= −αboundary1boundary αboundary∼ U(0, 3)

Rcomfort= −αcomfort

(
1|along|>3 + 1|alat|>3 + 1|ȧlong|>5∨ |ȧlat|>5

)
αcomfort∼ U(0.0, 0.1)

Rl-align= αl-align∆t
(
min (cos (θf ) , 0) + αvel-align min (cos (θf ) ∗ v, 0) + 0.0025

(
1− |θf |

π/2

))
αl-align∼ U(2.5× 10−4, 2.5× 10−2)

αvel-align∼ U(0, 1)

Rl-center= −αl-center∆t

(
1cos(θf )>0.5 ∗ |xf − αcenter-bias| − 0.05

exp(|xf−αcenter-bias|−0.5)

)
αl-center∼ U(2.5× 10−4, 7.5× 10−3)

αcenter-bias∼ U(−0.5, 0.5)

Rvelocity= αvelocity ∆t max (cos (θf ) , 0.0) 1|v|>2.5 αvelocity= 2.5× 10−3

Rreverse= −αreverse ∆t1v<0 αreverse∼ U(2.5× 10−4, 7.5× 10−3)

Rstop-line= −αstop-line 1stop-line-violation αstop-line∼ U(0, 1)

Rtimestep= − (αtimestep∆t) 1|v|>0∨ |a|>0 αtimestep= 2.5× 10−5

Table A2: Training distribution for each of the reward components.
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Parameter Value

Training batch size 256 000
Batch size per GPU 32 000
Rollout length 128
Num. PPO epochs 3
Discount factor γ 0.999
λGAE 0.95
Max. episode length 1200 steps (360 s)
PPO clipping ratio 0.2
Value function clipping None
Initial LR α(0) 5× 10−4

LR schedule Cosine
Entropy coefficient 0.01
Value loss coefficient 0.5
Max grad. norm 0.5
Advantage normalization Enabled
Adv. filtering threshold η 0.01 Āmax (Alg. 1)
Inference & training precision 16-bit AMP
Model weights initialization Orthogonal, zero bias

Table A3: RL algorithm settings and hyperparameters used
during training.

Setting/Parameter Value

Vehicle length l ∼ U(2, 5.5)
Vehicle width w ∼ U(1.5, 2.5)
Maximum speed 20m s−1

Timestep ∆t 0.066 s
Episode length 9000 steps (600 s)
Agents per sim Na 50
Observed agents No up to 40 closest

δgoal 10m
vgoal 3m s−1

αcollision 3.0
αboundary 3.0
αcomfort 0.05
αl-align 2.5× 10−2

αvel-align 1.0
αl-center 3.8× 10−3

αcenter-bias 0.0
αvelocity 2.5× 10−3

αreverse 5.0× 10−3

αstop-line 1.0
αtimestep 2.5× 10−5

Table A4: GIGAFLOW settings for long-form evaluation in
self-play.

Method Score ↑ Ego Progress↑ No AF-Collisions ↑ Comfort ↑ TTC in bounds ↑ Driving Direction ↑ Speed Limit ↑ Drivable Area ↑ Ego Making Progress ↑
Val14 Benchmark
Urban Driver (Scheel et al., 2021) 50 - - - - - - - -
GC-GPP (Hallgarten et al., 2023) 55 - - - - - - - -
PlanCNN (Renz et al., 2022) 72 - - - - - - - -
IDM (Treiber et al., 2000) 77 - - - - - - - -
PDM-Hybrid (Dauner et al., 2023) 92.1 90.2 98.1 94.8 93.5 99.9 99.8 99.5 99.1
Diffion-ES (Yang et al., 2024) 92.2 91.2 97.7 93.4 93.8 100.0 99.7 99.6 99.2
GIGAFLOW (ours) 93.8±0.11 93.6±0.06 98.4±0.09 96.4±0.27 93.8±0.23 99.6±0.05 99.9±0.00 99.7±0.04 99.0±0.07

Table A5: Results on Val14 (Dauner et al., 2023) nuPlan benchmark.

Method DS↑ RC↑ IP↑ Ped↓ Veh↓ Lay↓ Red↓ Stop↓ Off↓ Dev↓ TO↓ Block↓
CL1 Testing Routes (leaderboard.carla.org/get_started_v1)
CARLA Agent (our run) 29 ±0 41 ±0 0.73 ±0.03 0.03 ±0.00 0.36 ±0.11 0.00 ±0.00 0.28 ±0.02 0.03 ±0.02 0.00 ±0.00 0.44 ±0.02 0.01 ±0.01 0.15 ±0.00
Expert from Jaeger et al. (2023) (our run) 90 ±0 96 ±1 0.94 ±0.01 0.00 ±0.00 0.06 ±0.01 0.00 ±0.00 0.06 ±0.03 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.05 ±0.02 0.05 ±0.00
GIGAFLOW (ours) 93 ±1 97 ±2 0.95 ±0.01 0.00 ±0.00 0.07 ±0.01 0.00 ±0.00 0.01 ±0.01 0.00 ±0.00 0.64 ±0.44 0.01 ±0.01 0.07 ±0.02 0.00 ±0.00

LAV Benchmark (Chen & Krähenbühl, 2022) (with adapted scenarios from Jaeger et al. (2023))
CARLA Agent (our run) 9 ±2 58 ±0 0.18 ±0.04 0.22 ±0.00 0.74 ±0.43 0.00 ±0.00 3.99 ±0.10 0.58 ±0.21 0.00 ±0.00 0.87 ±0.00 0.00 ±0.00 0.00 ±0.00
Expert from Jaeger et al. (2023) 94 95 0.99 0.00 0.02 0.00 0.02 0.00 - 0.00 0.00 0.08
Expert from Jaeger et al. (2023) (our run) 92 ±9 95 ±7 0.98 ±0.02 0.00 ±0.00 0.04 ±0.05 0.00 ±0.00 0.02 ±0.03 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.09 ±0.07 0.07 ±0.07
GIGAFLOW (ours) 99 ±1 99 ±1 1.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.02 ±0.03 0.00 ±0.00

Longest6 Benchmark (Chitta et al., 2023)
CARLA Agent (our run) 7 ±1 54 ±0 0.25 ±0.01 0.31 ±0.00 1.50 ±0.21 0.00 ±0.00 1.84 ±0.06 0.10 ±0.02 0.00 ±0.00 0.43 ±0.00 0.02 ±0.01 0.04 ±0.00
Expert from Chitta et al. (2023) 77 ±2 89 ±1 0.86 ±0.03 0.02 0.28 0.01 0.03 0.00 0.00 0.00 0.08 0.13
Expert from Jaeger et al. (2023) 81 ±3 90 ±1 0.91 ±0.04 0.01 0.21 0.00 0.01 - - 0.00 0.07 0.09
Expert from Jaeger et al. (2023) (our run) 83 ±1 94 ±2 0.88 ±0.01 0.00 ±0.00 0.20 ±0.03 0.00 ±0.00 0.04 ±0.01 0.02 ±0.01 0.00 ±0.00 0.00 ±0.00 0.09 ±0.00 0.06 ±0.02
GIGAFLOW (ours) 92 ±2 99 ±1 0.93 ±0.01 0.02 ±0.00 0.08 ±0.01 0.00 ±0.00 0.04 ±0.02 0.03 ±0.01 0.24 ±0.08 0.03 ±0.02 0.05 ±0.03 0.00 ±0.00

Table A6: Results on CARLA benchmarks.

Method Off-Road Rate (%) ↓ Collision Rate (%) ↓ Kinematic Infeasibility (%) ↓ Log ADE (m) Route Progress Ratio (%) ↑ Total Distance Driven Ratio (%) ↑ Score (%) ↑
Expert Demonstration (Gulino et al., 2023) 0.32 0.61 4.33 0.00 100.00 100.00 ≤ 99.07
Wayformer (Gulino et al., 2023) 7.89 10.68 5.40 2.38 123.58 - ≤ 81.43
DQN (Gulino et al., 2023) 3.74±0.90 6.50±0.31 0.00±0.0 9.83±0.48 177.91±5.67 - ≤ 89.76±0.95
BC (Gulino et al., 2023) 1.11±0.2 4.59±0.06 0.00±0.0 2.26±0.2 129.84±0.98 - ≤ 94.3±0.21
GIGAFLOW (ours) 0.43±0.008 0.43±0.005 0.14±0.008 5.87±0.01 146.27±0.08 106.79±0.05 99.16±0.009

Table A7: Results on Waymax benchmarks when evaluated with IDM agents. For the Score of other agents, we assumed
100% progress and mutually exclusive collision and offroad events.
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Method Linear Speed Linear Accel. Ang. Speed Ang. Accel. Dist. to Obj. Collision TTC Dist. to Road Edge Off-road Composite Metric

Expert Demo.* (Montali et al., 2023) 0.5610 0.3300 0.5630 0.4890 0.4850 1.0000 0.8810 0.7130 1.0000 0.7220

Random Agent* 0.0020 0.0440 0.0740 0.1200 0.0000 0.0000 0.7340 0.1780 0.2870 0.1550
Linear Extrapolation* 0.1570 0.1190 0.0190 0.0350 0.2470 0.4110 0.7750 0.5020 0.4630 0.3240
Stationary Policy 0.0408 0.0612 0.4984 0.3195 0.0553 0.9466 0.7363 0.2408 0.8575 0.5007
Joint-Multipath++* (Wang & Zhen, 2023) 0.4340 0.2300 0.5150 0.4520 0.3450 0.5670 0.8120 0.6390 0.6820 0.5330
PredSim* 0.4051 0.2208 0.4958 0.4653 0.3441 0.7193 0.8027 0.6167 0.7519 0.5663
Wayformer* (Nayakanti et al., 2023) 0.3310 0.0980 0.4130 0.4060 0.2970 0.8700 0.7820 0.5920 0.8660 0.5750
SceneDMF* (Guo et al., 2023) 0.4315 0.2767 0.5230 0.4666 0.3678 0.7447 0.8128 0.6215 0.7392 0.5821
MTR+++* (Qian et al., 2023) 0.4119 0.1066 0.4838 0.4365 0.3457 0.8630 0.7969 0.6545 0.8954 0.6077
GIGAFLOW (ours) 0.2613 0.2534 0.5060 0.4756 0.3161 0.9470 0.8077 0.5445 0.9095 0.6190
VPD-BP* (Huang et al., 2024) 0.4751 0.2161 0.5358 0.4775 0.3908 0.8162 0.8234 0.6628 0.9010 0.6315
MTR-E* (Qian et al., 2023) 0.4278 0.2353 0.5335 0.4753 0.3455 0.8774 0.7983 0.6541 0.9143 0.6348
MVTE* (Wang et al., 2023b) 0.4426 0.2218 0.5353 0.4810 0.3819 0.8943 0.8321 0.6641 0.9086 0.6448
Trajeglish* (Philion et al., 2023) 0.4504 0.1929 0.5382 0.4850 0.3869 0.9226 0.8369 0.6596 0.8864 0.6451
InteractionFormer* 0.4294 0.2394 0.5291 0.4780 0.3776 0.9591 0.8311 0.6464 0.9347 0.6587

Table A8: Per-component metrics, as defined and computed within WOSAC using the WOMD validation split. *-scores
publicly reported on WOMD test set at https://waymo.com/open/challenges/2023/sim-agents/ and
from Montali et al. (2023). All scores are derived using the 2023 metric definitions. Shaded rows correspond to approaches
that do not use training data. We see that GIGAFLOW, in zero-shot evaluation, is capable of producing effective driving
performance that approaches expert policies specifically developed for imitative traffic modeling using the provided training
data, even without having been shown WOMD data or maps previously.

Collisions

Overall Ego Vehicles Pedestrians Bicycles

Method Total ¬C C Total ¬C C Total ¬C C Total ¬C C Total ¬C C

Expert Demo. 0.0337 0.0000 1.0000 0.0048 0.0000 1.0000 0.0076 0.0000 1.0000 0.2986 0.0000 1.0000 0.0547 0.0000 1.0000

GIGAFLOW (ours) 0.0322 0.0085 0.7082 0.0021 0.0006 0.3223 0.0080 0.0051 0.3700 0.2391 0.0029 0.7938 0.0291 0.0003 0.5268

Stationary 0.0220 0.0017 0.6015 0.0021 0.0007 0.2832 0.0035 0.0012 0.3513 0.2012 0.0003 0.6731 0.0242 0.0001 0.3556

Off-road

Overall Ego Vehicles Pedestrians Bicycles

Total ¬O O Total ¬O O Total ¬O O Total ¬O O Total ¬O O

Expert Demo. 0.1263 0.0000 1.0000 0.0127 0.0000 1.0000 0.0599 0.0000 1.0000 0.8513 0.0000 1.0000 0.3611 0.0000 1.0000

GIGAFLOW (ours) 0.1105 0.0072 0.8252 0.0071 0.0003 0.5367 0.0409 0.0051 0.6033 0.8385 0.0014 0.9847 0.2397 0.0013 0.6635

Stationary 0.0959 0.0060 0.7053 0.0041 0.0001 0.3220 0.0298 0.0052 0.5117 0.6999 0.0002 0.8201 0.2346 0.0002 0.6493

Table A9: Calculated rates by which vehicles controlled by either the GIGAFLOW policy or with the baseline stationary
policy are assessed to be in collision (condition C) or drive off-road (condition O), grouped by actor type and whether
these outcomes were assessed to occur in the ground truth. We anchor this analysis by the provided expert demonstrations
recorded in WOMD. GIGAFLOW produces the expected vehicle behavior when the ground truth trajectories do not collide
or drive off-road, achieving incidence rates well below one percent. While not directly rewarded in WOSAC scoring, the
aversion of GIGAFLOW to colliding and off-road driving is evident among circumstances where the ground truth trajectories
are assessed to do so. Aside from pedestrians, all other actors controlled by GIGAFLOW have incidence rates far lower than
anticipated (where generated rollouts are expected to collide or drive off-road if the underlying ground truth trajectory does
so). Notably, there is a proportion of trajectories that are initialized to be in collision or off-road (unsurprising given the
presence of pedestrians) since the incidence rates of the stationary policy are not zero for these events in this conditional
analysis. From this, we conclude that GIGAFLOW avoids an excess amount of collisions or off-road behavior as the incidence
rates do not significantly increase when applying the self-play policy.
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Figure A1: Conditional analysis.

26



Robust Autonomy Emerges from Self-Play

0 10 20 30 40 50 60 70 80

70

75

80

85

90

95

nu
P

la
n

re
ac

tiv
e

ch
al

le
ng

e
sc

or
e

Advantage filtering ablation: nuPlan score

nuPlan reactive, advantage filtering
nuPlan reactive, no advantage filtering

0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

C
ar

la
LA

V
sc

or
e

Advantage filtering ablation: Carla LAV score

Carla LAV, advantage filtering
Carla LAV, no advantage filtering

0 10 20 30 40 50 60 70 80
Training time, h

0.0

0.2

0.4

0.6

0.8

1.0

S
el

f-p
la

y,
m

ill
io

n
km

be
tw

ee
n

cr
as

he
s

Advantage filtering ablation: crash rate in self-play

Robustness, advantage filtering
Robustness, no advantage filtering

0 10 20 30 40 50 60 70 80
Training time, h

0

20

40

60

80

Ti
m

ed
ou

te
pi

so
de

s,
%

Advantage filtering ablation: self-play episode timeouts

Timeouts, advantage filtering
Timeouts, no advantage filtering

Figure A2: Training with and without advantage filtering (see Algorithm 1). Top row: nuPlan reactive challenge and Carla
LAV Benchmark results. Bottom row: accident rate and task completion rate in self-play.
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Figure A3: Aggregate impact of algorithmic features used in GIGAFLOW. The length of each bar indicates the cumulative
percentage points required to attain a perfect score across three benchmarks.
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Figure A4: Accident rate in GIGAFLOW self-play at different values of simulation/decision-making frequency.
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