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Multi-Agent Trajectory Prediction With
Spatio-Temporal Sequence Fusion

Yu Wang and Shiwei Chen

Abstract—Accurate trajectory prediction of surrounding agents
is an important issue for building up an intelligent transportation
system. Frequent interactions among agents have a major impact
on their movement patterns. Current research mainly relies
on agents’ spatial structure associated with the last frame of
the observation to model social interactions, while paying less
attention to structure information from previous moments. In
addition, existing methods merely consider temporal features of a
single trajectory sequence, while neglecting temporal dependencies
across multiple trajectories. In this work, we endeavor to
capture comprehensively social interactions among agents with the
proposed Spatio-Temporal Sequence Fusion Network (STSF-Net).
Specifically, we construct a spatio-temporal sequence that encodes
contextual information taking explicitly spatial distributions of
agents during movement into account while capturing socially
temporal dependencies across multiple trajectory sequences.
Besides, a social recurrent mechanism is introduced to explicitly
capture temporal correlations between interactions by concerning
spatial structure at each time-step. Finally, our model is evaluated
on datasets covering pedestrian, vehicle, and heterogeneous multi-
agent trajectories. Experimental evidence manifests that our
method achieves excellent performance.

Index Terms—Multi-modal trajectory prediction, saptio-
temporal sequence fusion, generative adversarial networks,
sequence-to-sequence.

I. INTRODUCTION

H IGH-PRECISION trajectory prediction is extremely
important to various applications, e.g., autonomous

driving [1], [2], and agent navigation [3], as well as many
downstream tasks, including object tracking [4]–[7], and person
re-identification [8]–[11]. However, trajectory prediction is
fairly sophisticated and formidable since it involves various
factors such as social norms, environmental constraints, scene
rules, etc. Specifically, interactions among agents and changes
in context frequently occur, and thus agents have to consider
these factors in time for safe moving. Adequate and appropriate
physical spacing between agents is also necessary to be main-
tained for collision avoidance under emergency. Furthermore,
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physical constraints of the environment, e.g., road conditions,
and geographical context, also have a potential impact on agent
trajectories. For instance, we have to avoid obstacles and move
on a feasible terrain. Another intractable issue involved in
trajectory prediction is multi-modal properties [12], [13], which
means that there may be multiple feasible future trajectories
given an observation. This phenomenon results in difficulty in
modeling and calculations.

An increasing number of works have been investigated to
tackle the challenges mentioned above. Conventional methods
depend on manually extracting salient and discriminative fea-
tures by leveraging domain-specific knowledge [14], [15] and
devising efficient learning criteria for specific scenarios [16],
[17]. Since deep learning-based methods have been widely
proven to be effective in resolving computer vision tasks, nu-
merous research has attempted to solve trajectory prediction
issues through deep learning methods [12], [13], [18]–[22].
These methods try to investigate social behaviors among agents
based on a data-driven paradigm, while it is agnostic for us
to understand what kind of interactive information the model
learned. Consequently, it is challenging to sufficiently exploit
such knowledge for effective inference. Some recent stud-
ies [23], [24] pay much attention to capture social behaviors
among agents based on their geographic locations, but only the
spatial structure associated with the last frame of the observa-
tion is considered. Here, we point out two factors that are quite
important for trajectory prediction tasks:

1) The spatial distribution of agents throughout the ob-
servation is critical for future trajectory prediction, not
just the observed final spatial structure.
Some works model social behaviors from nearby agents
based on the location distribution at the end of the obser-
vation [23], [24]. These approaches ignore topology infor-
mation during agent movement and merely focus on the fi-
nal moment of the observation. Since social behaviors with
varying degrees of importance have different potential ef-
fects on subsequent motion patterns, existing methods fail
to model this aspect. As a consequence, we investigate
this factor by explicitly considering spatial structures of
agents across the entire observation window to help cap-
ture social behaviors.

2) The temporal dependency across multiple trajectory
sequences involved in the scene has a non-trivial effect
on accurate inference.
Motion patterns of agents are potentially affected by
neighbors around them throughout the movement. Over
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time, early weak interactions may be amplified and have a
significant impact on subsequent actions. Hence, the tem-
poral dependency across multiple trajectory sequences is
crucial for formulating social interactions. But most pre-
vious methods [12], [13] overlook this factor. They inde-
pendently extract the temporal dynamics of each trajectory
without paying attention to the temporal dependencies of
these sequences.

In general, most previous approaches capture social inter-
actions among agents only via fusing multi-agent trajectory
features based on their final positions without considering the
spatial distribution throughout the movement [24], [25], as
well as temporal dependencies across multiple trajectory se-
quences [13], [26], [27]. Therefore, to address these concerns,
we construct a novel spatio-temporal sequence, which jointly en-
codes spatial structures of agents throughout the movement and
temporal dependencies across multiple trajectories in a unified
way. Besides, we adopt a social recurrent mechanism to explic-
itly model temporal correlations between interactions when ex-
tracting temporal dynamics of a single trajectory. Our method is
evaluated on publicly available datasets covering pedestrian and
vehicle trajectories. Quantitative results and qualitative analyses
demonstrate that our method is promising.

II. RELATED WORK

Social trajectory prediction has attracted considerable atten-
tion due to its importance in the decision-making of robot navi-
gation and autonomous driving vehicles. Previous works mainly
focus on how to extract discriminative features. These feature
extraction strategies require to capture various kinds of inter-
actions among agents and constraints from the scene. Con-
ventional methods mostly depend on hand-crafted features or
well-engineered learning criteria for specific scenarios [14],
[17], [28], thus lacking universality. Recently, plenty of deep
learning-based strategies have been explored for social trajec-
tory prediction. They concentrate on automatically capturing
latencies affecting movement [12], [13], [24], thereby learning
informative representations.

Agent-centric methods attempted to discover a merge func-
tion for fusing features of multiple agents. S-LSTM [12] ex-
ploited a max-pooling scheme to integrate agent interactions
within a specified local range. But it failed to model the
global context and temporal correlations between interactions.
S-GAN [13] combined an encoder-decoder paradigm and the
generative adversarial network to capture multi-modal trajec-
tory distribution, and also proposed a global pooling mechanism
to capture interactions. Nevertheless, S-GAN employed vanilla
LSTM to independently extract representations of each trajec-
tory, without concerning temporal dependencies across multiple
sequences. Besides, attention mechanisms have recently been in-
troduced into social trajectory prediction issues to mine latencies
by concentrating on important clues [18], [29].

Another line of research focused on encoding interactions
by explicitly considering the spatial relationships of agents.
CS-LSTM [23] pre-designed a local grid and proposed a convo-
lutional social pooling mechanism that considers the local spatial

structure of agents involved in the pre-defined grid. Chauffeur-
Net [26] maintained the spatial structure of multiple agents by
means of introducing a bounding box area. MATF-GAN [24]
constructed a social tensor that jointly encodes static scene con-
text and trajectory features of agents. Although MATF-GAN
considered the global spatial structure of agents of the ob-
served final locations, it failed to investigate temporal dynamics
across trajectories and ignored the spatial distribution of agents
throughout the motion.

Beyond that, some studies also attempted to apply graph
neural networks for modeling social interactions among
agents [30]–[32]. Social-BiGAT [30] utilized a graph atten-
tion network to extract reliable representations for generating
multi-modal trajectory distributions. SR-LSTM [31] introduced
a state refinement module to encode interactions from adjacent
pedestrians through a graph-based message passing mechanism.
Social-STGCNN [32] substituted the need of aggregation meth-
ods by formulating interactions as a spatio-temporal graph.

In conclusion, current prominent strategies on capturing so-
cial interactions among agents are to independently extract tem-
poral features of each trajectory and then discover a fusion mech-
anism to aggregate these features. Some methods also insuffi-
ciently utilized the spatial structure in the process of feature
fusion. Nevertheless, these approaches neglected spatial struc-
tures of agents throughout motion and also failed to consider
temporal dependencies across multiple trajectories.

III. NOTATIONS AND PROBLEM FORMULATION

In this section, some notations used in this paper and the
problem formulation are defined. For the observed n agents in-
volved in the scenario, tobs frames’ historical trajectories, and
tfut frames’ future trajectories, we define (xt

i, y
t
i) as coordi-

nates of the ith agent at the tth frame. The trajectory predic-
tion task is formulated to exploit past moving experience to rea-
son about future trajectories (xt

i, y
t
i), where t = tobs + 1, tobs +

2, . . ., tobs + tfut. We denote the predicted future trajectory co-
ordinates by (x̂t

i, ŷ
t
i). In general, the trajectory prediction task

requires the network to take as input the historical trajectories
of all dynamic agents involved in the scene and is required to
infer their future trajectories.

IV. PROPOSED STSF-NET FRAMEWORK

In this section, details about the proposed Spatio-Temporal
Sequence Fusion Network (STSF-Net) are provided. STSF-Net
comprehensively captures social behaviors by means of investi-
gating spatio-temporal properties of all trajectories involved in
the scene. The complete architecture is presented in Fig. 1. Our
method is able to predict the future trajectories of all agents in-
volved in the scene simultaneously. Next, we will discuss each
module in detail.

A. Spatio-Temporal Sequence Construction

LSTM is widely regarded as competent to learn sequential
correlations, and thus it is popular in trajectory prediction tasks.
Nevertheless, a vanilla LSTM reasons about future trajectories
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Fig. 1. The overall architecture of STSF-Net. The spatio-temporal sequence is constructed to model both temporal dependencies among multiple trajectories
and the spatial structure of agents throughout the movement. Additionally, a fancy mechanism is incorporated into our framework to capture temporal correlations
between interactions. The overall model is formulated in an end-to-end fashion.

independently without an ability of capturing social behaviors
among agents. Before we utilize LSTM to learn trajectory rep-
resentations, the coordinates of the ith agent at time-step t are
encoded as a vector ξti = ϕ(xt

i, y
t
i), where ϕ is a linear embed-

ding function. Then the coordinate embedding ξti is input into
LSTM encoder to extract state representations as follows:

ut
i = δ(Wuξti + V uht−1

i + bu),

f t
i = δ(W fξti + V fht−1

i + bf ),

oti = δ(W oξti + V oht−1
i + bo),

cti = f t
i � cti−1 + ut

i � tanh(W cξti + V cht−1
i + bc),

ht
i = oti � tanh(cti), (1)

where W �, V � and b�, � ∈ {u, f, o, c}, are learnable parame-
ters in LSTM cells, and u, f, o and c denote input gate, forget
gate, output gate and memory cell, respectively. δ is an activa-
tion function, e.g., sigmoid function, and the symbol � denotes
element-wise product. Note that ht

i ∈ Rdh is the extracted state
representation at time-step t.

In our framework, all LSTM encoders share parameters, and
thus the model is able to handle any number of agents. The above
mechanism is first employed to extract all agents’ state represen-
tations {ht

1, h
t
2, . . ., h

t
n} for each time-step t = t1, t2, . . ., tobs.

These representation vectors reflect temporal features at each
time-step.

To preserve the spatial structure of agents throughout the
movement, we construct a global spatial tensor from a bird’s-eye
view for each time-step, where each element is initialized to 0.
Then feature encodings of the corresponding time-step with the
same dimension as the channel of the tensor are placed into
the spatial tensor. Specifically, for a certain time-step t, we
extract feature encodings of all agents ht

1, h
t
2, . . ., h

t
n, which

Fig. 2. The illustration of tensor construction for the time-step t. First, a
bird’s eye view scene is discretized into a series of cells whose elements are
initialized to 0. The extracted features ht

1, h
t
2, . . ., h

t
n (shown in green cubes)

of all agents involved in the scene are placed into cells at their coordinates
(xt

1, y
t
1), . . ., (x

t
n, y

t
n) respectively to form a spatial tensor.

are respectively placed into the spatial tensor at coordinates
(xt

1, y
t
1), (x

t
2, y

t
2), . . ., (x

t
n, y

t
n). Such rasterization and align-

ment operation constructs a spatial feature map πt, as shown
in Fig. 2. If multiple feature encodings are placed into a same
cell due to discretization, element-wise max-pooling is con-
ducted. Likewise, we execute rasterization and alignment op-
erations on each time-step, i.e., t1, . . ., tobs, and finally acquire
a spatio-temporal sequence {π1, π2, . . ., πtobs}.

B. Spatio-Temporal Sequence Fusion

In order to capture temporal dependencies across multi-
ple trajectory sequences from the constructed spatio-temporal
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sequence above, the 3D convolutional neural network is a natu-
ral choice. As a consequence, we stack 3D convolutional layers
in a bottleneck structure, where the number of channels in the
input and output layers of the entire structure is 32, and in the
bottleneck layer is 16. Each convolution layer is followed by a
ReLU nonlinearity and a 3D max-pooling layer for all datasets.
A batch-normalization layer is also used on the vehicle trajectory
dataset. For all convolution layers, kernel size is 3, padding is 1,
and stride is 1. All pooling operations use a 2 × 1 × 1 window.
In this way, we encode spatio-temporal properties that existed
in the constructed trajectory sequence and derive a fused tensor
O of the same size as πtobs . Afterwards, fused vectors for each
agent Oi are sliced out from O according to their coordinates
(xtobs

i , ytobsi ).

C. Modeling Temporal Correlations Between Interactions

We utilize vanilla LSTMs to independently extract tempo-
ral dynamics of a single trajectory, and then capture tempo-
ral dependencies across multiple trajectories through the above
spatio-temporal sequence construction and fusion mechanisms.
However, when extracting temporal features of a single trajec-
tory, interactions among agents are ignored. As a consequence,
we further introduce a Social Recurrent Mechanism (SRM) by
employing an extra LSTM to explicitly capture temporal corre-
lations between interactions:

gti = LSTM(gt−1
i ⊕ SIti ),

SIti = [SI(π′
t−1)]xt

i,y
t
i
, (2)

where ⊕ is an element-wise addition operation, [ ] is a slice
operation from the given coordinates, and π′

t is the generated
spatial tensor using gti with the same strategy as described in
Section IV-A. SI is a spatial interaction module that consists
of three 2D-convolutional layers in a bottleneck structure with
kernel size 3, stride size 1, and padding size 1. The number of
channels in the input and output layers is the same as π′

t−1, and
in the bottleneck layer is half ofπ′

t−1. The first two convolutional
layers are followed by a ReLU layer, and the last is followed by
a Sigmoid nonlinearity. The social feature SIti for the i-th agent
at time-step t is sliced out from the generated tensor SIt(π′

t−1)
according to coordinates (xt

i, y
t
i).

D. Multi-Modal Trajectory Prediction

Inspired by advancements in sequence generation, STSF-Net
adopts an encoder-decoder structure to reason about future tra-
jectories. Besides, motion behaviors of agents are inherently
multi-modal, which means that there exist multiple socially-
acceptable future trajectories when given an observed part. For
this reason, the generative adversarial network, as employed
in S-GAN [13], is integrated into our framework to generate
multi-modal trajectory distribution, which covers the space of
feasible trajectories while being in accordance with the obser-
vations. Specifically, we concatenate the state vector htobs

i , the
agent-specific spatio-temporal encoding Oi, the socially recur-
rent feature gtobsi , and a random noise z sampled from a standard
Gaussian distribution, as the input to an LSTM decoder for future

trajectory prediction. Besides, we also utilize a discriminator D
that consists of an encoder followed by a Multi-Layer Percep-
tron (MLP) to distinguish the real trajectory [Xi, Yi] from the
generated one [Xi, Ŷi], where Xi is observed sequence, Yi is the
ground truth, and Ŷi is the predicted future sequence.

E. Loss Function

In this work, the generative adversarial network is employed
for multi-modal trajectory generation, and thus the adversarial
loss is introduced:

Lgan = min
G

max
D

Ex∼pdata(x)[logD(x)] +

Ez∼p(z)[log(1−D(G(z)))], (3)

where G and D are generator and discriminator, respectively. In
addition, to measure the error between the predicted trajectory
and the ground truth, the mean squared error of coordinates
across the observation window is also considered:

Lmse =
1

n

n∑
i=1

tobs+tfut∑
t=tobs+1

(xt
i − x̂t

i)
2 + (yti − ŷti)

2, (4)

Generally, we minimize the following loss function for the tra-
jectory prediction task in STSF-Net:

Lall = Lmse + λLgan, (5)

where λ controls the importance of Lmse and Lgan.

F. Implementation Details

We use an SGD optimizer to train STSF-Net on ETH and
UTY datasets for 40 epochs with an initial learning rate of 0.001,
with 0.5 times decay every 10 epochs. The size of hidden states
extracted by LSTM is set to 32 for both encoder and decoder,
and we follow the same data preprocessing strategy and training
mechanism as S-GAN. Besides, STSF-Net is trained on NGSIM
and Stanford Drone datasets using Adam optimizer [33] with a
batch size of 64 for 10 epochs and 100 epochs, respectively. The
learning rate is initialized as 0.001, using an exponential decay
schedule with a rate of 0.5 every 5 epochs and 20 epochs re-
spectively for NGSIM and Stanford Drone datasets. The size of
hidden states in LSTM is set to 64 for both encoder and decoder.
For all datasets, the random noise is a 16-dimensional vector
sampled from a standard Gaussian distribution. MLP used in the
discriminator consists of two fully-connected layers, of which
the first layer has 1024 nodes followed by a ReLU nonlinearity,
and the second has one node followed by a Sigmoid nonlinearity
indicating whether the output is true or false. Our model is im-
plemented on the PyTorch framework and trained on the Nvidia
Titan V GPU.

V. EXPERIMENT

In this section, the proposed STSF-Net model is evaluated on
publicly available benchmark datasets: ETH [41], UCY [42],
Stanford Drone [43], NGSIM US-101 [44] and NGSIM
I-80 [45]. The performance is compared with some state-of-
the-art methods.
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TABLE I
COMPARISON WITH DIFFERENT BASELINES USING ADE/FDE METRICS ON FIVE SCENARIOS FROM ETH AND UCY DATASETS

Fig. 3. With different resolutions of spatial tensor, quantitative results on (a) five scenarios of ETH, HOTEL, UNIV, ZARA1, and ZARA2 using ADE as the
evaluation criteria; (b). five scenarios of ETH, HOTEL, UNIV, ZARA1, and ZARA2 using FDE as the evaluation criteria; (c). NGSIM US-101 and I-100 datasets
using root squared mean error (d). Stanford Drone dataset using ADE and FDE.
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A. Quantitative Evaluation

1) Pedestrian Trajectory Dataset: We first evaluate STSF-
Net on ETH, UCY, and Stanford Drone datasets, which in-
volve abundant social interactions among pedestrians. Specif-
ically, ETH and UCY are composed of pedestrian trajectories in
five scenes termed ETH, HOTEL, UNIV, ZARA1, and ZARA2,
which are composed of more than 1500 pedestrians in crowded
scenarios. All data are converted to coordinates by sampling
at 0.4-second intervals. In experiments, we utilize the obser-
vation of 3.2 seconds to reason about trajectories for the next
4.8 seconds.

Evaluation Metric. For pedestrian trajectory datasets, we use
the same evaluation rule as S-GAN for measuring the accu-
racy of predictions. Particularly, the Average Displacement Er-
ror (ADE) and the Final Displacement Error (FDE) metrics are
employed for performance evaluations. The ADE calculates the
average �2-distance between the predicted coordinates and the
ground truth cross the prediction window:

ADE =

∑n
i=1

∑tobs+tfut

t=tobs+1

√
(xt

i − x̂t
i)

2 + (yti − ŷti)
2

n ∗ tfut , (6)

and the FDE calculates the �2-distance between the predicted
coordinates and the ground truth at the last frame:

FDE =

∑n
i=1

√
(xt

i − x̂t
i)

2 + (yti − ŷti)
2

n
, (7)

where t = tobs + tfut.
Baseline Methods. We compare STSF-Net on ETH and UCY

datasets with some popular methods listed in Table I, some of
these demonstrate state-of-the-art performance.
� Linear. A simple Kalman Filter is adopted for trajectory

prediction.
� Vanilla LSTM. As a baseline, the vanilla Long Short-

Term Memory that is qualified for sequence generation is
adopted for trajectory prediction without any special mech-
anism for modeling social interactions.

� S-Force. An agent-based model, which formulates an ex-
plicit energy function that encodes social interactions and
environmental factors, is developed to mine potential per-
sonal properties for effective behavior inference.

� S-LSTM [12]. It designed a social-pooling mechanism
that generates a compact representation that facilitates in-
formation fusion from adjacent agents. Social-LSTM cap-
tures social interactions within a specified distance. Nev-
ertheless, it fails to model global spatial structure and
even only uses a simple pooling operation for feature
aggregation.

� S-GAN [13]. It combined sequence generation tools and
generative adversarial networks for multi-modal trajectory
generation. Besides, S-GAN introduced a global pooling
mechanism that encodes cues among agents.

� Sophie [18] incorporated a social attention mechanism and
a physical attention mechanism to capture cues from both
scene context and social interactions among agents;

TABLE II
QUANTITATIVE RESULTS ON NGSIM US-101 AND NGSIM I-80 DATASETS

TABLE III
QUANTITATIVE RESULTS ON STANFORD DRONE DATASETS

� PIF [19] developed a multi-task framework to jointly pre-
dict future paths and activities by encoding human behavior
and social interactions with neighbors;

� MATF-GAN [24]. It implemented a multi-agent tensor
fusion system that jointly encodes social interactions and
environment constraints. MATF-GAN combined the ad-
vantages of agent-centric and spatial-centric methods, but
only focused on the last frame of the observation.

� Social-PEC [35] utilized a temporal CNN with a novel
operation to extract social patterns;

� Recent work adopted graph-based methods because the
topology of graphs is a natural way to describe so-
cial behaviors: Social-BiGAT [30], RSBG [34], Social-
STGCNN [32], and SILA [36].

We compare STSF-Net against baselines on pedestrian tra-
jectory datasets, i.e., ETH and UCY. ADE and FDE met-
rics are exploited for performance evaluation. Quantitative re-
sults are reported in Table I. Our approach achieves a signifi-
cant boost and comprehensively outperforms baselines on four
scenarios of Hotel, UNIV, ZARA1, and ZARA2. The best
baseline methods achieving the lowest ADE and FDE are SILA
and Social-STGCNN, respectively. Compared with SILA, the
performance is increased by 17.9% and 33.7% for ADE and FDE
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TABLE IV
ABLATION STUDY USING ADE/FDE METRICS ON FIVE SCENARIOS FROM ETH AND UCY DATASETS

TABLE V
ABLATION STUDY ON NGSIM US-101 AND NGSIM I-80 DATASETS

respectively. Compared with Social-STGCNN, ADE and FDE
are also increased by 27.3% and 21.3%, respectively. SILA and
Social-PEC derive better performance on the scene ETH. One
possible reason is that ETH is more sparsely populated, so the
graph structure with an attention mechanism employed by SILA
and Social-PEC is more suitable for modeling relationships be-
tween agents. But our method models spatial structures through
a grid-based manner, which is more suitable for crowded scenes
and may cause overfitting to sparse settings. Besides, SILA
utilizes two additional data (ZARA3 and uni examples from
UCY) for training, which is a potential factor leading to unfair
comparisons.

Also, we further analyze another important factor that affects
the performance of the algorithm, i.e. spatial resolution of the
grid due to rasterization operation in the process of constructing
spatio-temporal sequence. Various resolutions are set in experi-
ments for ADE and FDE as illustrated in Fig. 3(a) and (b). Due
to under-fitting caused by low resolution and over-fitting caused
by high resolution, the error first decreases and then increases.
With the ADE criterion, we found that 32 × 32 is the ideal set-
ting for ETH, Univ, and Hotel, and 16× 16 is the suitable choice
for ZARA1 and ZARA2. Likely, with the FDE criterion, 32 ×
32 is the ideal setting for Univ and Hotel, and 16 × 16 is the
suitable choice for ETH, ZARA1, and ZARA2.

2) Vehicle Trajectory Dataset: Vehicle trajectories from
NGSIM US-101 and NGSIM I-80 datasets are further employed
to evaluate our model. Specifically, NGSIM records real-world
vehicle driving trajectories on the highway, each of which is
sampled at 10 Hz from a 45-minute video. These vehicle trajec-
tories also involve different types of traffic conditions and social

TABLE VI
ABLATION STUDY ON STANFORD DRONE DATASETS

interactions. We utilize trajectories of the observed 3 seconds
to forecast the next 5 seconds.

To verify the effectiveness of STSF-Net in fast-moving pat-
terns, we also perform evaluations on NGSIM. In addition
to comparisons against benchmark methods such as vanilla
LSTM, S-LSTM, S-GAN, and MATF-GAN, we also include
comparisons with some approaches specifically designed for
vehicle trajectory prediction with domain-specific knowledge,
e.g., CV-GMM [17], GAIL-GRU [22], CS-LSTM [23], M-
LSTM [37], and ST-LSTM [38]. We evaluate the performance
using root squared mean error in meters as [24] for the fu-

ture 5 seconds: rmse =
√

1
n

∑n
i=1((x

t
i − x̂t

i)
2 + (yti − ŷti)

2).
Quantitative results shown in Table II indicate that our method
improves the performance over other benchmarks. Note that
GAIL-GRU accesses the ground truth of adjacent vehicles when
predicting a specific agent trajectory and CS-LSTM uses ex-
tra supervised signals from horizontal and vertical maneuver
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Fig. 4. A linear search is performed on the value of hyper-parameter λ to
investigate its impact on model performance. (a) five scenarios of ETH, HOTEL,
UNIV, ZARA1, and ZARA2 using ADE as the evaluation criteria; (b). five
scenarios of ETH, HOTEL, UNIV, ZARA1, and ZARA2 using FDE as the
evaluation criteria; (c). NGSIM US-101 and I-100 datasets using root squared
mean error (d). Stanford Drone dataset using ADE and FDE.

Fig. 5. Examples of predictions from our model and MATF-GAN on ETH and
UCY. SLOW and FAST mean that agents change speed for collision avoidance.
DIR stands for a change of direction and FAILED denotes the failed cases. The
circle highlights some details.

classes, while our method does not. But our method is still bet-
ter than theirs.

Besides, we also investigate the impacts of spatial range on
predictions. Since NGSIM US-101 and NGSIM I-80 record tra-
jectories of vehicles on the highway with designed lanes, current
vehicles are generally only affected by the vehicles on adjacent
lanes. Hence, we only consider two adjacent lanes in the hori-
zontal direction followed [23], which are discretized into 3 cells.
We study the effect of different resolutions on vertical direction,
and results are presented in Fig. 3(c). It illustrates that 3 × 37 is
the ideal choice.

3) Heterogeneous Agent Dataset: For universality, we eval-
uate our approach on a more challenging scenario with Stanford
Drone Dataset. This dataset consists of more complex scenar-
ios, where a variety of types of agents, including pedestrians,
cars, and bicyclists will appear at the same time. We follow

Fig. 6. Examples of predictions from our model and MATF-GAN on NGSIM
US-101 and NGSIM I-80.

Fig. 7. Examples of predictions from our model and MATF-GAN on Stanford
Drone Dataset.

prior work [12], [13], [18], [21], [24], [39] and use the same
dataset splits and evaluation protocols (i.e. ADE and FDE).
Table III demonstrates that STSF-NET is superior to all base-
lines for both ADE and FDE. Such results also demonstrate
the model’s ability to handle scenarios involving heterogeneous
agents with different speeds and movement characteristics. Note
that MATF-GAN, as an important baseline for our comparison,
is far worse than our algorithm, and we will further analyze this
in Section V-B.

In addition, we also set different spatial resolutions on Stan-
ford Drone Dataset. The illustration in Fig. 3(d) shows a similar
phenomenon with ETH and UCY, and 64 × 64 is found to be
the ideal choice for both ADE and FDE.

B. Ablation Study

The major contributions of this work are to socially cap-
ture temporal dependencies across multiple trajectories and
temporal correlations between interactions by introducing a
spatio-temporal sequence (STS) and a social recurrent mech-
anism (SRM), respectively. To verify their benefits, we respec-
tively removed STS and SRM from the complete STSF-Net and
observed their performance on ETH, UCY, NGSIM US-101,
NGSIM I-80, and Stanford Drone Datasets. We follow the same
metrics as described in Section V-A for evaluation. As shown in
Tables IV, V, and VI, the complete model gives the best results
on both pedestrian and vehicle trajectories. Note that STS ex-
tends the single-frame tensor fusion mechanism in MATF-GAN
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Fig. 8. Qualitative analysis about the generated trajectory distributions of STSF-Net and MATF-GAN on ETH and UCY datasets. For each scenario, the blue
area stands for the generated trajectory distribution, the grey dotted line denotes observation, and the green solid line is the ground truth.

Fig. 9. Qualitative analysis about the generated trajectory distributions of STSF-Net and MATF-GAN on NGSIM US-101 and NGSIM I-100 datasets. For each
scenario, the blue area stands for the generated trajectory distribution, the grey dotted line denotes observation, and the green solid line is the ground truth. (4) is a
failed case.

to spatio-temporal sequences. In this way, STS can capture tem-
poral dependencies across multiple trajectories while preserv-
ing the spatial distribution of agents throughout the motion,
so that the performance of STS alone surpasses baselines in
ADE and FDE. Since MATF-GAN performs pre-training on
other datasets, while our model is directly trained from scratch.
To this end, in order to reveal the advantages of introducing
spatio-temporal structure over single-frame tensor fusion in
MATF-GAN, we degenerate the STS by only considering the lo-
cation structure at time-step tobs, termed as STS∗, which is equiv-
alent to MATF-GAN without pre-training on other datasets. For
both pedestrian and vehicle datasets, we observe that the perfor-
mance of using STS is better than that of using STS∗, and the
combination of STS and SRM is also superior to the combina-
tion of STS∗ and SRM. Besides, the combination of STS∗ and
SRM also wins over the use of STS∗ alone. Although STS and
SRM have the same performance, their combination achieves a
greater performance improvement. Note that this is not due to
the effect of introducing more parameters, because SRM only
performs element-wise addition for features at each time-step,
without introducing more parameters.

In addition, a linear search strategy is performed on the value
of hyper-parameter λ to investigate its impact on model per-
formance. We set λ from 0.01 to 100 in steps of 10 times to
observe changes in model performance for all datasets. The de-
tails are shown in Fig. 4. The observation demonstrates that set-
ting λ to 1 is a reasonable and desirable choice for all datasets.
In fact, we find that our model is not sensitive to the value of

hyper-parameter λ on all datasets, which also proves the robust-
ness of our model.

C. Qualitative Evaluation

Social trajectory prediction is a complex task, which depends
on the ability to capture the spatio-temporal properties of agents
involved in the scene. Agents are affected by the social inter-
actions of others in the environment, showing different mo-
tion patterns, including forming groups, changing speed, ad-
justing directions for collision avoidance, etc. We show some
scenes from ETH and UCY in Fig. 5, and from NGSIM US-101
and NGSIM I-80 in Fig. 6. Compared with MATF-GAN, our
method can better capture social behaviors and take appropri-
ate actions in time to avoid collisions. In Fig. 5, (a) When two
pedestrians merge, SFSF-NET accurately captures interactions
and takes appropriate acceleration and deceleration operations,
while MATF misunderstands such interactions and produces the
opposite operations; (b) When multiple pedestrians from differ-
ent directions meet, our model generates reasonable inferences,
while trajectories predicted by MATF-GAN produces unneces-
sary steering operations; (c) A failure example shows that when
someone is crossing a crowd, the sudden large-angle turning
behavior cannot be captured. In Fig. 6, (a) Motion behaviors
of vehicles are correctly captured by our model in a relatively
congested scene, while MATF-GAN attempts to avoid underly-
ing collisions by changing movement directions; (b) Compared
to MATF-GAN, behaviors of different vehicles at the fork is

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 01,2024 at 08:10:12 UTC from IEEE Xplore.  Restrictions apply. 



22 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

Fig. 10. Qualitative analysis about the generated trajectory distributions of STSF-Net and MATF-GAN on Stanford Drone dataset. For each scenario, the blue
area stands for the generated trajectory distribution, the grey dotted line denotes observation, and the green solid line is the ground truth. (4) is a failed case.

reasonably inferred by our model; (c) A scene with multiple ve-
hicles in parallel, our prediction is closer to the ground truth.
For Stanford Drone datasets, as illustrated in Fig. 7, (a) Paral-
lel agent trajectories are effectively inferred with STSF-NET,
while the untimely steering is taken by MATF-GAN, result-
ing in unacceptable inferences; (b) Trajectories of slowly mov-
ing objects in crowded scenes are reasonably predicted with
STSF-NET, instead of the blind steering and acceleration opera-
tions in MATF-GAN; (c) Compare with MATF-GAN, the trajec-
tory is more accurately predicted by STSF-NET when moving
in the form of a fork.

To evaluate the generated multi-modal distribution, we visual-
ized results for ETH-UCY, NGSIM, and Stanford Drone datasets
respectively in Figs. 8, 9, and 10 with kernel density estimation.
The darker colors in the illustration, the greater the predicted
probability. Specifically, STSF-NET generates convincing dis-
tributions that cover ground truth with a high probability than
MATF-GAN for all examples in illustrations. Note that the case
(4) in Fig. 9 and the case (4) in Fig. 10 provide failed cases.
The model fails to reason about trajectories because agents turn
sharply in Fig. 9 (4) and continuously changing direction in
Fig. 10 (4). Nevertheless, we find that generated samples in
Fig. 10 (4) with STSF-NET capture the trend of agent move-
ment, while MATF-GAN does not.

VI. CONCLUSION

In this paper, some novel insights on trajectory prediction are
presented. To address some concerns about modeling spatio-
temporal properties of agents involved in the scene, we introduce
a method of constructing a spatio-temporal trajectory sequence
to model temporal dependencies across multiple trajectories, as
well as a social recurrent mechanism to capture temporal cor-
relations between interactions. The proposed approach is eval-
uated on pedestrian and vehicle trajectory datasets. Quantita-
tive results and qualitative analysis show the superiority of our
model.
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