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Abstract

In recent years, there have been significant im-

provements in various forms of image outlier de-

tection. However, outlier detection performance

under adversarial settings lags far behind that in

standard settings. This is due to the lack of ef-

fective exposure to adversarial scenarios during

training, especially on unseen outliers, leading to

detection models failing to learn robust features.

To bridge this gap, we introduce RODEO, a data-

centric approach that generates effective outliers

for robust outlier detection. More specifically, we

show that incorporating outlier exposure (OE) and

adversarial training can be an effective strategy

for this purpose, as long as the exposed train-

ing outliers meet certain characteristics, includ-

ing diversity, and both conceptual differentiability

and analogy to the inlier samples. We leverage

a text-to-image model to achieve this goal. We

demonstrate both quantitatively and qualitatively

that our adaptive OE method effectively generates

“diverse” and “near-distribution” outliers, lever-

aging information from both text and image do-

mains. Moreover, our experimental results show

that utilizing our synthesized outliers significantly

enhances the performance of the outlier detector,

particularly in adversarial settings.

1. Introduction

Outlier detection has become a crucial component in the de-

sign of reliable open-world machine learning models (Drum-

mond & Shearer, 2006; Bendale & Boult, 2015; Perera et al.,
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Figure 1. ALOE and ATD are robust outlier detection methods

that utilize the Tiny ImageNet dataset as OE. In this experiment,

while keeping all other aspects of the original methods constant,

we replaced Tiny ImageNet with SVHN, MNIST, and Gaussian

noise and repeated the experiments for both ALOE and ATD. This

replacement led to a notable decline in detection performance for

ALOE and ATD on the CIFAR10 vs. CIFAR100 task, particularly

under adversarial attack conditions. We attribute this performance

drop to the fact that the SVHN, MNIST, and Gaussian Noise

distributions are more distant from CIFAR10 (the inlier distribution

in this task) compared to Tiny ImageNet.

2021). Robustness against adversarial attacks is another

important machine learning safety feature (Szegedy et al.,

2013; Goodfellow et al., 2014; Akhtar & Mian, 2018). De-

spite the emergence of several promising outlier detection

methods in recent years (Liznerski et al., 2022; Cohen &

Avidan, 2021; Cao & Zhang, 2022), they often suffer sig-

nificant performance drops when subjected to adversarial

attacks, which aim to convert inliers into outliers and vice

versa by adding imperceptible perturbations to the input

data. In light of this, recently, several robust outlier de-

tection methods have been proposed (Azizmalayeri et al.,

1



RODEO: Robust Outlier Detection via Exposing Adaptive Outliers

2022; Lo et al., 2022; Chen et al., 2020; Shao et al., 2020;

2022; Béthune et al., 2023; Goodge et al., 2021; Chen et al.,

2021; Meinke et al., 2022; Franco et al., 2023). However,

their results are still unsatisfactory, sometimes performing

even worse than random detection, and are often focused

on specific cases of outlier detection, such as the open-set

recognition or tailored to a specific dataset, rather than being

broadly applicable. Motivated by this, we aim to provide

a robust and unified solution for outlier detection that can

perform well in both clean and adversarial settings.

Adversarial training, which is the augmentation of training

samples with adversarial perturbations, is among the best

practices for making models robust (Madry et al., 2017).

However, this approach is less effective in outlier detec-

tion, as outlier patterns are unavailable during training, thus

preventing training of the models with the adversarial per-

turbations associated with these outliers. For this reason,

recent robust outlier detection methods use Outlier Expo-

sure (OE) technique (Hendrycks et al., 2018) in combination

with adversarial training to tackle this issue (Azizmalayeri

et al., 2022; Chen et al., 2020; 2021). In OE, the auxiliary

outlier samples are typically obtained from a random and

fixed dataset and are leveraged during training. It is clear

that these samples should be semantically different from the

inlier training set to avoid misleading the detection.

In this study, we experimentally observe (see Fig. 1 and Sec.

3) that the OE technique’s performance is highly sensitive

to the distance between the exposed outliers and the inlier

training set distribution. Our results suggest that a near-

distribution OE set is significantly more beneficial than a

distant one. By near-distribution outliers, we refer to image

data that possesses semantically and stylistically related

characteristics to those of the inlier dataset.

Our observation aligns with (Xing et al., 2022), which sug-

gests that incorporating data near the decision boundary

leads to a more adversarially robust model in the classifica-

tion task. Simultaneously, numerous studies (Schmidt et al.,

2018; Stutz et al., 2019) have demonstrated that adversarial

training demands a greater level of sample complexity rela-

tive to the standard setting. Thus, several efforts have been

made to enrich the data diversity to enhance the adversarial

robustness (Hendrycks et al., 2019; Sehwag et al., 2021;

Pang et al., 2022).

These observations prompt us to propose the following hy-

potheses: For adversarial training to be effective in ro-

bust outlier detection, the OE samples need to be diverse,

near-distribution, and conceptually distinguishable from

the inlier samples. We have conducted numerous extensive

ablation studies (Sec. 6), and provided theoretical insights

(Sec. 3) to support these claims.

Driven by the mentioned insights, we introduce RODEO

(Robust Outlier Detection via Exposing adaptive Out-of-

distribution samples), a novel method that enhances the

robustness of outlier detection by leveraging an adaptive

OE strategy. Our method assumes access to the text label(s)

describing the content of the inlier samples, which is a fair

assumption according to the prior works (Liznerski et al.,

2022; Adaloglou et al., 2023). Specifically, the first step

involves utilizing a simple text encoder to extract labels that

are semantically close to the inlier class label(s), based on

their proximity within the CLIP (Radford et al., 2021) tex-

tual representation space. To ensure the extracted labels are

semantically distinguishable from inlier concepts, we apply

a threshold filter, precomputed from a validation set. Then,

we initiate the denoising process of a pretrained diffusion

image generator (Dhariwal & Nichol, 2021) conditioned on

the inlier images. The backward process of the diffusion

model is guided by the gradient of the distance between the

extracted outlier labels’ textual embeddings and the visual

embeddings of the generated images. Through this guidance,

the diffusion model is enforced to increase the similarity

between the generated images and the extracted labels at

each step, and transfer inliers to near-distribution outliers

during the process. Finally, another predefined threshold,

obtained through validation, filters the generated data be-

longing to the in-distribution based on the CLIP score. We

then demonstrate that adversarial training on a classifier that

discriminates the inlier and synthesized OE significantly

improves robust outlier detection.

We evaluate RODEO in both clean and adversarial settings.

In the adversarial setting, numerous strong attacks, includ-

ing PGD-1000 (Madry et al., 2017), AutoAttack (Croce &

Hein, 2020), and Adaptive Auto Attack (Liu et al., 2022), are

employed for robustness evaluation. Our experiments are

conducted across various common outlier detection setups,

including Novelty Detection (ND), Open-Set Recognition

(OSR), and Out-of-Distribution (OOD) detection. It is note-

worthy that previous robust outlier detection methods were

primarily limited to specific types of outlier setups. In these

experiments, RODEO’s performance is compared against

recent and representative outlier detection methods. The

compared methods, including EXOE (Liznerski et al., 2022)

and PLP (Adaloglou et al., 2023), utilized a pretrained CLIP

as their detector backbone. The results indicate that RODEO

establishes significant performance in adversarial settings,

surpassing existing methods by up to 50% in terms of AU-

ROC detection, and achieves competitive results in clean

settings. Moreover, through an extensive ablation study, we

evaluated our adaptive OE method pipeline in comparison to

alternative OE methods (Lee et al., 2018b; Tao et al., 2023a;

Kirchheim & Ortmeier, 2022; Du et al., 2022; Mirzaei et al.,

2022), including both baseline and recent synthetic outlier

methods such as Dream-OOD (Du et al., 2023), which uti-

lizes Stable Diffusion (Rombach et al., 2022) trained on

5 billion data samples as its generative backbone. In the
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Figure 2. Our proposed adversarially robust outlier detection method is initiated with a Near-Outlier Label Extraction, which finds words

analogous to a given input label. These words, combined with inlier training image data, are employed in the Adaptive Generation

stage to create Near-Outllier data. This stage is followed by Adversarial Training using both inliers and generated OE data, utilizing the

cross-entropy loss function. During Testing, the model processes the input and computes the OOD score as the softmax of the OOD class.

(The data filtering steps are not shown in this figure)

ablation study, we analyze why RODEO outperforms other

alternative OE methods. 1

2. Related Work

Outlier Detection. Several works have been proposed in

outlier detection, with the goal of learning the distribution

of inlier samples. Some methods such as CSI (Tack et al.,

2020) do this with self-supervised approaches. On the

other hand, many methods, such as MSAD (Reiss &

Hoshen, 2021), Transformaly (Cohen & Avidan, 2021),

ViT-MSP (Fort et al., 2021a), and Patchcore (Roth et al.,

2021), aim to leverage knowledge from pre-trained models.

EXOE (Liznerski et al., 2022) and PLP (Adaloglou et al.,

2023) utilized text and image data for the detection task,

employing a CLIP model that was pretrained on 400 million

data points. Furthermore, some other works have pursued

outlier detection in an adversarial setting, including APAE

(Goodge et al., 2021), PrincipaLS (Lo et al., 2022), OCSDF

(Béthune et al., 2023), and OSAD (Shao et al., 2022).

1For access to the implementation, please visit the following
link: https://rohban-lab.github.io/rodeo.

ATOM (Chen et al., 2021), ALOE (Chen et al., 2020), and

ATD (Azizmalayeri et al., 2022) achieved relatively better

results compared to others by incorporating OE techniques

and adversarial training. However, their performance falls

short (as presented in Fig. 1) when the inlier set distribution

is far from their fixed OE set. For more details about

previous works, see Appendix (Sec. D).

Outlier Exposure Methods. MixUp (Zhang et al., 2017)

adopts a more adaptive OE approach by blending ImageNet

samples with inlier samples to create outlier samples closer

to the in-distribution. FITYMI (Mirzaei et al., 2022) intro-

duced an OE generation pipeline using a diffusion generator

trained on inliers but halted early to create synthetic images

that resemble inliers yet display clear differences. The GOE

method (Kirchheim & Ortmeier, 2022) employs a pretrained

GAN to generate synthetic outliers by targeting low-density

areas in the inlier distribution. Dream-OOD (Du et al., 2023)

uses both image and text domains to learn visual represen-

tations of inliers in a latent space and samples new images

from its low-likelihood regions. Other OE methods, such as

VOS and NPOS (Du et al., 2022; Tao et al., 2023b), generate

3
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Figure 3. An overview of outlier data from different OE techniques. FITYMI considers image domain information exclusively. Dream-

OOD utilizes both text and image domains, but initiating generation from the embedding space makes this method highly biased toward

its prior knowledge of the generative backbone, Stable Diffusion. In contrast, RODEO shifts data from inlier to outlier while operating in

pixel space. To provide further intuition about the importance of diversity and the distance of the OE from the in-distribution, we compute

features for inliers and generated outlier data via a pretrained ViT model (Dosovitskiy et al., 2020), and apply t-SNE (Van der Maaten &

Hinton, 2008) to visualize the data in 2D. We then find decision boundaries of the data with SVM (Cortes & Vapnik, 1995) and present

them on the right side of each generated OE example. Our OE samples are both near-distribution and diverse.

embeddings instead of actual image data.

3. Theoretical Insights

In this section, we provide some insightful examples that

highlight the need for near-distribution and diverse OE in

outlier detection. Our setup is the following: We assume

that the inlier data come from N (0, Ã2I) and the test-time

outlier is distributed according to N (a, Ã2I). Furthermore,

let N (a′, Ã2I) be the OE data distribution. We also assume

equal class a priori probabilities. We train a classifier using

a balanced mixture of inlier and OE samples. However, at

test time, the classifier is tested against a balanced mixture

of inlier and outlier samples, rather than the OE data.

Near-distribution OE is beneficial

Theorem 3.1. Let Ã = 1, and assume that ∥a′∥ g ∥a∥,
reflecting that the OE is far from the distribution. Let ¹ be
the angle between a and a′. Under the setup mentioned in
Sec. 3, for fixed ¹ and a, and small ϵ, the optimal Bayes’ ad-
versarial error under ℓ2 norm bounded attacks with ϵ norm
increases as the OE moves farther from the distribution, i.e.,
as ∥a′∥ increases. More specifically, the adversarial error
is:

1− Φ

(

∥a′∥

2
− ϵ

)

+ 1− Φ

(

∥a′∥

2
− c− ϵ

)

, (1)

with c := ∥a′∥− ∥a∥ cos(¹), and Φ(.) being the standard normal
cumulative distribution function.

Proof. Under the mentioned setup, the optimal robust clas-

sifier is f⋆(x) = a′¦

∥a′∥ (x −
a′

2 ) = a′¦

∥a′∥x −
∥a′∥
2 , for an

adversary that has a budget of at most ϵ perturbation in ℓ2
norm (Schmidt et al., 2018). Now, applying this classifier
on the inlier and outlier classes at test time, we get:

a′¦x

∥a′∥
∼ N (0, I), (2)

for an inlier x, and also:

a′¦x

∥a′∥
∼ N

(

a¦a′

∥a′∥
, I

)

, (3)

for an outlier x. Therefore, using the classifier f⋆ to dis-
criminate the inlier and outlier classes, the adversarial error
rate would be:

1− Φ

(

∥a′∥

2
− ϵ

)

+ 1− Φ

(

a¦a′

∥a′∥
−

∥a′∥

2
− ϵ

)

, (4)

where Φ(.) is the CDF for the inlier distribution N (0, 1).

Let ¶ = a′ − a, and note that:

a¦a′

∥a′∥
−

∥a′∥

2
=

(a′ − ¶)¦a′

∥a′∥
−

∥a′∥

2
=

∥a′∥

2
−

¶¦a′

∥a′∥
. (5)

But note that ¶¦a′

∥a′∥ = ∥a′∥ − ∥a∥ cos(¹) =: c g ∥a′∥ −

∥a∥ g 0, where ¹ is the angle between a′ and a. Hence, by
plugging Eq. 5 into Eq. 4, the error rate can be written as:

1− Φ

(

∥a′∥

2
− ϵ

)

+ 1− Φ

(

∥a′∥

2
− c− ϵ

)

. (6)
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But note that the derivative of the above expression with respect to
∥a′∥ is

− 1

2
√
2Ã

exp

(

−1

2

(

∥a′∥
2

− ϵ

)

2
)

+
1

2
√
2Ã

exp

(

−1

2

(

−∥a′∥
2

+ ∥a∥ cos(¹)− ϵ

)

2
)

,

noting that the derivative of 1

2
∥a′∥ − c with respect to ∥a′∥ is − 1

2
.

We note that for ϵ f ∥a′∥
2

, the derivative is positive as long as

∥a′∥
2

− ϵ g ∥a′∥
2

− ∥a∥ cos(¹) + ϵ, (7)

and
∥a′∥
2

− ϵ g −∥a′∥
2

+ ∥a∥ cos(¹)− ϵ. (8)

The first condition is satisfied as long as ϵ f ∥a∥ cos(¹), which is
always satisfied for small ϵ if ¹ ̸= Ã/2. The second condition is
also satisfied as ∥a′∥ g ∥a∥ by the theorem assumptions. Hence,
the derivative is positive and the adversarial error rate is increasing
by increasing ∥a′∥.

Diverse OE is beneficial

In the last section, we provided an example of why OE

data should be near-distribution to be helpful in a simple

setup. Now, we give further insights into why the OE should

be diverse. To show this, we introduce the notion of the

worst-case outlier detection error.

Definition 3.2. As the outlier distribution is not known

during training, we seek to optimize for its worst-case per-

formance, i.e.:

R(f) := sup
∥a∥=³

Ex∼p(ℓ(f(x), y)), (9)

where we assume 0/1 loss for simplicity, and p :=
0.5N (0, Ã2I) + 0.5N (a, Ã2I).

Theorem 3.3. Assuming Ã ≈ 0, the optimal worst-case

outlier detection error under the setup of Sec. 3 is R(f⋆) =
50%. Additionally, if the OE is sampled from a Gaus-

sian mixture, with infinitely many mixture components,

whose means are sampled uniformly from the hypersphere

Sd−1(³), then R(f⋆) = 0%.

Proof. First note that f⋆, which is the optimal classifier,

takes a linear form of f⋆(x) = a′¦

∥a′∥ (x −
a′

2 ). Also, note

that if the outlier distribution mean value, a, is far from that

of the OE, a′, the risk R(f) would grow large and become

50%. That is, in finding the supremum, a would be placed

far from a′, resulting in R(f⋆) = 50%; i.e. one plausible

solution is a = −³ a′

∥a′∥ , which leads to erroneous output

f⋆(x) < 0, for all outlier samples x concentrated around a.

However, we note that for this worst-case scenario, a better

OE choice, than a simple Gaussian distribution, would be

to first randomly pick a center a′ uniformly from the sphere

centered around zero, with radius ³, denoted as Sd−1(³),
where d is feature space dimensionality. This results in the

marginal OE distribution, pOE as follows:

pOE(x) ∝

∫
Sd−1(³)

N (a′, Ã2I)da′, (10)

For this choice of OE, the optimal Bayes’ classifier that

discriminates the inliers and OE, would be a hypersphere

centered around zero with radius ³
2 . It is evident that for this

classifier, the worst-case risk R, would be 0. The intuition

behind this is that wherever the a is placed in taking the

supremum, the classifier would detect it as an outlier.

This simple example highlights the need for a diverse OE

distribution in solving the outlier detection in the worst-case.

Inspired by this example, one could approach constructing

pOE through conditioning the OE distribution on the inlier

samples x0, and a target semantic label y that is distinct from

x0 original semantic class, y0; i.e. p̂(x|x0, y), and assuming

p̂ as a generative process that minimally transforms x0 into

an outlier sample with semantic label y. This is similar

to OE samples in the previous theorem, where Gaussian

kernels with means deviating large enough from the in-

distribution (with distance ³ from the inlier class mean)

constitute the OE distribution. To make this analogy happen,

the outlier label y has the role of making x sufficiently

distant away from the in-distribution. This way, pOE would

become:

pOE(x) =
∑
y

∫
p̂(x|x0, y)p(x0)p(y|y0)dx0, (11)

where p(x0) is the inlier class distribution and p(y|y0) is

the prior distribution over the target classes that are distinct

from the inlier semantic class y0. This is similar to the form

of OE distribution in Eq. 10.

4. Method

Motivation. To develop a robust outlier detection model,

the Outlier Exposure (OE) technique appears to be crucial

(Chen et al., 2020; 2021; Azizmalayeri et al., 2022); other-

wise, the model would lack information about the adversar-

ial patterns in the outlier data. However, the Baseline OE

technique, which involves leveraging outliers from a pre-

sumed dataset, leads to unsatisfactory results in situations

where the auxiliary exposed outliers deviate significantly

from the in-distribution. Motivated by these factors, we aim

to propose an adaptive OE technique that attempts to gener-

ate diverse and near-distribution outliers, which can act as a

proxy for the real inference-time outliers. The subsequent
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sections will provide a detailed description of the primary

stages of our methodology. Our method is outlined in Fig. 2.

4.1. Generation Step

Near-outlier Label Extraction. Utilizing a text encoder

and given the class labels of the inlier samples, we identify

words closely related to them. To achieve this, we utilize

Word2Vec (Mikolov et al., 2013), a renowned and simple

text encoder, to obtain the embeddings of the inlier labels,

denoted as yinlier (e.g., “screw”), and subsequently retrieve

their nearest labels (e.g., “nail”). By comparing these with

a pre-computed threshold (Ätext), we refine the extracted la-

bels by excluding those very similar to the inlier labels. This

threshold is computed using ImageNet labels as the valida-

tion set and the CLIP text encoder embedding to compute

word similarities. Utilizing these extracted near labels in

subsequent steps leads to the generation of semantically-

level outlier samples (those that are semantically different

from the inliers). To further enhance the diversity of synthe-

sized outliers, we also consider pixel-level OOD samples

(those that differ from the in-distribution at the texture level).

For this purpose, we incorporate texts containing negative

attributes of the inlier labels (e.g., “broken screw”), and

the union of these two sets of labels forms near outliers

(n-outliers) labels: yn-outliers, which will guide the image gen-

eration process utilizing the CLIP model in the next steps.

More details about near-label set extraction and threshold

(Ätext) computing are available in the Appendix (Sec. K).

CLIP Guidance. The CLIP model is designed to learn joint

representations between the text and image domains, and it

comprises a pre-trained text encoder and an image encoder.

The CLIP model operates by embedding both images and

texts into a shared latent space. This allows the model to

assign a CLIP score that evaluates the relevance of a caption

to the actual content of an image. In order to effectively

extract knowledge from the CLIP in image generation, we

propose the Lguidance (xgen,yn-outliers) loss, which aims to

minimize the cosine similarity between the CLIP space

embeddings of the generated image xgen and the target text

(extracted outlier labels) yn-outliers, i.e. D (x, y) = x¦y
∥x∥∥y∥ :

Lguidance (xgen,yn-outliers) = −D (EI (xgen) , ET (yn-outliers)) . (12)

Here, EI and ET represent the embeddings extracted by

the CLIP image and text encoders, respectively. During the

conditional diffusion sampling process, the gradients from

the Lguidance will be used to guide the inlier sample towards

the near outliers.

Conditioning on Image. We condition the denoising pro-

cess on the inlier images instead of initializing it with ran-

dom Gaussian noise. Specifically, we employ a pre-trained

diffusion generator and start the diffusion process from a

random time step, initiated with the inliers with noise (in-

stead of beginning with pure Gaussian noise). Based on

previous works (Meng et al., 2021; Kim et al., 2022), we

set t0 ∼ U(0.3T, 0.6T ), where T represents the number of

denoising steps in the regular generation setup.

Randomly choosing t0 for the denoising process leads to the

generation of diverse outliers since, with smaller t0, inlier

images undergo minor changes, while relatively larger t0
values lead to more significant changes, thereby increasing

the diversity of generated outlier samples. We then pro-

gressively remove the noise with CLIP guidance to obtain

a denoised result that is both outlier and close to the in-

distribution: xt−1 ∼ N (µ(xt|yNOOD)+s ·Σ(xt|yn-outliers) ·
∇xt

(Lguidance (xt, yn-outliers)), Σ(xt|yn-outliers)), where the

scale coefficient s controls the level of perturbation applied

to the model. Please see Appendix (Sec. E.3) for more

details about the preliminaries of diffusion models (Sohl-

Dickstein et al., 2015; Ho et al., 2020) and the generation

step. Additionally, refer to Fig. 8 for some examples of

generated images.

Filtering Generated Images. There is a concern that gen-

erated images may still belong to the inlier distribution,

which can potentially lead to misleading information in sub-

sequent steps. To mitigate this issue, we have implemented

a method that involves defining a threshold to identify and

exclude data that falls within the in-distribution. To deter-

mine the threshold, we utilize the ImageNet dataset and

the CLIP similarity score to quantify the mismatch. We

calculate the CLIP score for the synthesized data and its

corresponding inlier label. If the computed CLIP score

exceeds the threshold, it indicates that the generated data

likely belongs to the in-distribution and should be excluded

from the outlier set. Assuming the ImageNet dataset in-

cludes M classes and each class contains N data samples,

let X = {x1
1, x

1
2, . . . , x

M
N } represent the set of all data sam-

ples, and let Y = {y1, . . . , yM} represent the set of all

labels, where xl
k denotes the kth data sample with label yl.

The threshold is then defined as:

Äimage =

∑N

i=1

∑M

j=1

∑M

r=1,r ̸=j
D
(

EI(x
j

i ), ET (yr)
)

MN(M − 1)
(13)

Model Selection. During our OE generation process, CLIP

encoders receive input xt, which is a noisy image. Since

the public CLIP model is trained on noise-free images, this

discrepancy leads to the generation of low-quality data, as

observed in (Nichol et al., 2021). Consequently, we opt

for the smaller CLIP model proposed by (Nichol et al.,

2021), which has been trained on noisy image datasets. It is

noteworthy that this model has been trained on 67 million

samples and is still well-suited for our pipeline. It can

generate outlier samples that has not been exposed to during

training. For more details, see Appendix (Sec. H).
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Table 1.

(a) In this table, we assess ND methods on various datasets against PGD-1000, AutoAttack (AA), AdaptiveAutoAttack (A3), and a clean
setting, using the AUROC(%) metric. Perturbations: ϵ = 8

255
for low-res and ϵ = 2

255
for high-res datasets. The best scores are bolded.

Method Attack
Low-Res Datasets High-Res Datasets

Mean
CIFAR10 CIFAR100 MNIST FMNIST SVHN MVTecAD Head-CT BrainMRI Tumor Detection Covid19 Imagenet-30

CSI Clean / PGD 94.3 / 2.7 89.6 / 2.5 93.8 / 0.0 92.7 / 4.1 96.0 / 1.3 63.6 / 0.0 60.9 / 0.1 93.2 / 0.0 85.3 / 0.0 65.1 / 0.0 91.6 / 0.3 84.2 / 1.0

MSAD Clean / PGD 97.2 / 0.0 96.4 / 2.6 96.0 / 0.0 94.2 / 0.0 63.1 / 0.5 87.2 / 0.4 59.4 / 0.0 99.9 / 1.5 95.1 / 0.0 89.2 / 4.0 96.9 / 0.0 88.6 / 0.8

TRANSFORMALY Clean / PGD 98.3 / 0.0 97.3 / 4.1 94.8 / 9.9 94.4 / 0.2 55.4 / 0.3 87.9 / 0.0 78.1 / 5.8 98.3 / 4.5 97.4 / 6.4 91.0 / 9.1 97.8 / 0.0 90.1 / 3.7

EXOE Clean / PGD 99.6 / 0.3 97.8 / 0.0 96.0 / 0.0 94.7 / 1.8 68.2 / 0.0 76.2 / 0.2 82.4 / 0.1 86.2 / 0.1 79.3 / 0.0 72.5 / 0.8 98.1 / 0.0 86.5 / 0.3

PATCHCORE Clean / PGD 68.3 / 0.0 66.8 / 0.0 83.2 / 0.0 77.4 / 0.0 52.1 / 3.0 99.6 / 6.5 98.5 / 1.3 91.4 / 0.0 92.8 / 9.2 77.7 / 3.8 74.2 / 0.0 80.2 / 2.3

PRINCIPALS Clean / PGD 57.7 / 23.6 52.0 / 15.3 97.3 / 76.4 91.0 / 60.8 63.0 / 30.3 63.8 / 24.0 68.9 / 26.8 70.2 / 32.9 73.5 / 24.4 54.2 / 15.1 61.4 / 18.7 68.4 / 31.7

OCSDF Clean / PGD 57.1 / 22.9 48.2 / 14.6 95.5 / 60.8 90.6 / 53.2 58.1 / 23.0 58.7 / 4.8 62.4 / 13.0 63.2 / 18.6 65.2 / 16.3 46.1 / 8.4 62.0 / 24.8 64.3 / 23.7

APAE Clean / PGD 55.2 / 0.0 51.8 / 0.0 92.5 / 21.3 86.1 / 9.7 52.6 / 16.5 62.1 / 3.9 68.1 / 6.4 55.4 / 9.1 64.6 / 15.0 50.7 / 9.8 54.5 / 12.8 63.0 / 9.5

RODEO (OURS)
Clean / PGD 87.4 / 70.2 79.6 / 62.1 99.4 / 94.6 95.6 / 87.2 78.6 / 33.8 61.5 / 14.9 87.3 / 68.6 76.3 / 68.4 89.0 / 67.0 79.6 / 58.3 86.1 / 73.5 83.7 / 63.5

AA / A3 69.3 / 70.5 61.0 / 61.3 95.2 / 94.0 87.6 / 87.0 33.2 / 31.8 14.2 / 13.4 68.4 / 68.1 70.5 / 67.7 66.9 / 65.6 58.8 / 57.6 76.8 / 72.4 63.8 / 62.6

(b) Comparison of OSR method performance on MNIST, FMNIST,
CIFAR10, and CIFAR100 datasets under PGD-1000, AutoAttack
(AA), AdaptiveAutoAttack (A3), and clean conditions, evaluated
using AUROC(%).

Method Attack

Dataset

MNIST FMNIST CIFAR10 CIFAR100

VIT-MSP Clean / PGD 92.4 / 2.9 87.6 / 2.0 96.8 / 1.6 92.1 / 0.0

AT∗ Clean / PGD 80.2 / 36.1 72.5 / 29.8 65.2 / 20.6 61.7 / 17.9

ATOM Clean / PGD 74.8 / 4.1 64.3 / 4.2 68.3 / 5.0 51.4 / 2.6

ALOE Clean / PGD 79.5 / 37.3 72.6 / 28.5 52.4 / 25.6 49.8 / 18.2

PLP Clean / PGD 88.3 / 0.4 82.6 / 0.0 94.1 / 0.0 92.7 / 3.1

ATD Clean / PGD 68.7 / 56.5 59.6 / 42.1 49.0 / 32.4 50.5 / 36.1

RODEO
Clean / PGD 97.2 / 85.0 87.7 / 65.3 79.6 / 62.7 64.1 / 35.3

AA / A3 86.4 / 84.1 66.8 / 62.9 63.5 / 63.0 36.9 / 35.4

* indicates the model was trained without using OE.

(c) Comparison of OOD detection performance using CIFAR10 as
in-distribution and CIFAR100 as out-of-distribution, and vice versa,
under PGD-1000, AutoAttack (AA), AdaptiveAutoAttack (A3), and
clean conditions, measured by AUROC(%).

Method Attack

In-Dataset

CIFAR10 CIFAR100

VIT-MSP Clean / PGD 99.5 / 0.0 95.1 / 0.0

AT∗ Clean / PGD 80.5 / 18.9 70.0 / 12.7

ATOM Clean / PGD 82.7 / 24.4 91.6 / 3.6

ALOE Clean / PGD 97.8 / 5.0 79.3 / 24.9

PLP Clean / PGD 98.4 / 0.1 93.7 / 0.0

ATD Clean / PGD 94.3 / 69.1 87.7 / 54.8

RODEO
Clean / PGD 93.2 / 69.5 88.1 / 64.7

AA / A3 69.0 / 68.8 65.3 / 63.2

* indicates the model was trained without using OE.

4.2. Training & Test Step

Adversarial Training. During training, we have access

to an inlier dataset Din consisting of pairs (xi, yi) where

yi ∈ {1, ...,K}, and we augment it with generated OE

Dgen consisting of pairs (xi,K + 1) as auxiliary outliers

to obtain Dtrain = Din ∪ Dgen. We then adversarially

train a classifier f¹ with the standard cross-entropy loss

ℓ¹: min¹ E(x,y)∼Dtrain
max∥x∗−x∥∞fϵ ℓ¹(x

∗, y) with

the minimization and maximization performed respectively

by Adam and PGD-10. For evaluation purposes, we utilize a

dataset Dtest that consists of both inlier and outlier samples.

Adversarial Testing. During test time, we utilize the

(K + 1)-th logit of f¹ as the anomaly score, which cor-

responds to the class of auxiliary outliers in the training

phase. For evaluating our model, along with other methods,

we specifically target both inlier and outlier samples with

several end-to-end adversarial attacks. Our objective is to

cause the detectors to produce erroneous detection results by

decreasing anomaly scores for outlier samples and increas-

ing them for inlier samples. We set the value of ϵ to 8
255

for low-resolution datasets and 2
255 for high-resolution ones.

For the PGD attack, we use 10 random restarts for the attack,

with random initializations within the range of (−ϵ, ϵ), and

perform N = 1000 steps. Furthermore, we select the attack

step size as ³ = 2.5× ϵ
N

. In addition to the PGD-1000 at-

tack, we have evaluated the models using AutoAttack (AA)

(Croce & Hein, 2020) and Adaptive AutoAttack (A3) (Liu

et al., 2022). It is important to note that our reported robust

performance for some methods differs from their published

results. This discrepancy arises because we used a larger

epsilon value and targeted all test samples, unlike some

methods that focus solely on outliers or inliers. Further-

more, in the Appendix (see Table 8), we have evaluated the

models under black-box attack (Guo et al., 2019). Due to

limited space, the preliminaries of adversarial attacks, their

details, and how we adopt them for targeting the outlier

detection method can be found in Appendix E.4. Addition-

ally, more information on the evaluation metrics, datasets,

and implementation is provided in Appendix (Sec. A). The
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hyperparameters of our method are provided in Tables 9 and

10.

5. Experimental Results

In this section, we conduct comprehensive experiments to

evaluate previous outlier detection methods, including both

standard and adversarially trained approaches, as well as our

own method, under clean and various adversarial attack sce-

narios. Our experiments are organized into three categories

and are presented in Tables 1a, 1b, and 1c. We provide a

brief overview of each category below, and further details

can be found in the Appendix (sec. E.1, E.2).

Novelty Detection. For each dataset containing N distinct

classes, we perform N separate experiments and average

the results. In every individual experiment, samples from a

single class are used as the inlier data, while instances from

the remaining N − 1 classes are considered outliers. Table

1a presents the results of this setup.

Open-Set Recognition. For this task, each dataset was

randomly split into an inlier set and an outlier set at a 60/40

ratio. This random splitting was repeated 5 times. The

model was exclusively trained on the inlier set samples,

with average AUROC scores reported. Results are presented

in Table 1b.

Out-Of-Distribution Detection. For the task of OOD de-

tection, we considered CIFAR10 and CIFAR100 datasets

as inlier datasets in separate experiments. Following earlier

works (Chen et al., 2020), and (Hendrycks et al., 2018), we

test the model against several outlier datasets which are se-

mantically distinct from the in-distribution datasets, includ-

ing MNIST, TinyImageNet (Deng et al., 2009), Places365

(Zhou et al., 2018), LSUN (Yu et al., 2015), iSUN (Xu et al.,

2015), Birds (Welinder et al., 2010), Flowers (Nilsback &

Zisserman, 2008), COIL-100 (Nayar & Murase, 1996) and

CIFAR10/CIFAR100 (depending on which is considered

the inlier dataset). For any given in-distribution dataset,

the results are averaged over the OOD datasets. We have

provided the results of this task in Table 1c.

As the results indicate, RODEO demonstrates significant

performance in robust outlier detection, outperforming oth-

ers by a large margin under various strong attacks. Notably,

in open-world applications where robustness is crucial, a

slight decrease in clean performance is an acceptable trade-

off for enhanced robustness. Our results support this stance,

where in ND setup, achieving an average of 83.7% in clean

setting and 63.5% in adversarial scenario across various

datasets. RODEO surpasses recent methods in clean detec-

tion, such as EXOE, which utilizes pretrained CLIP. While

achieving 86.5% in clean settings, it experiences a substan-

tial drop to 0.3% in adversarial settings. RODEO also shows

superiority in OSR and OOD detection setups. More exper-

iments, including performance in non-adversarial training

setups, can be found in Appendix 7.

6. Ablation Study

In this section, we quantitatively evaluate our adaptive OE

method pipeline in comparison to alternative OE methods,

as presented in Fig. 3. Our experiment is divided into two

categories. In the first category, we substituted our adaptive

OE method with an alternative one and reported the perfor-

mance of our outlier detection method. In the second cate-

gory, we compared OE methods by assessing their exposed

auxiliary data, using the Fréchet Inception Distance (FID)

(Heusel et al., 2017) and Density & Convergence (Naeem

et al., 2020) metrics. FID measures the distance between

two sets of image distributions, with higher values indicating

greater distance. The Density & Convergence metric mea-

sures diversity, where higher values indicate more diversity.

For a unified comparison, we define

FDC = log(1 +
Density× Coverage

FID
× 104) (14)

using the logarithm to scale values and adding one to en-

sure inputs to the logarithm are greater than zero. A higher

FDC value indicates that the generated outliers have more

diversity and are closer to the in-distribution. The results

of the experiments are presented in Table 2. For more de-

tails about FDC, please refer to Sec. I. Additionally, more

comprehensive results can be found in the Appendix 6.

Analyzing Ablation Study. Ablation study results indi-

cate that alternative OE methods underperform compared to

RODEO in enhancing robust outlier detection, closeness to

in-distribution, and diversity. RODEO’s superiority stems

from its pixel-based generation process that shifts inliers

to outliers. This process, leveraging entire ID information

from both text and image domains, was overlooked by meth-

ods like GOE. Meanwhile, Dream-OOD, despite leveraging

both text and image information and being trained on a sig-

nificantly larger dataset of 5 billion data points compared

to RODEO’s 67 million, underperforms due to its method-

ology of generating images in the embedding space. This

approach is less suited for synthesizing pixel-level outliers

and often leads to the generation of samples with different

styles, i.e., far outliers, attributed to the bias of its back-

bone trained on LAION (Schuhmann et al., 2022; Naik &

Nushi, 2023). We provide a visual representation in the

Appendix to showcase our method’s capability to generate

outliers specifically for unseen image domains, compared

to alternatives.

7. Conclusion

In conclusion, our work introduces RODEO, a novel and

effective approach for enhancing the robustness of outlier
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Table 2. AUROC (%) of the detector model after adversarial training with outliers generated by different OE techniques in clean data and

under PGD-1000 attack evaluation. The results indicate that our adaptive OE method outperforms other methods in terms of improving

robust detection. The experiments were conducted in the ND setting (Clean/PGD-1000).

Exposure Technique Measure
Target Dataset

Mean
CIFAR10 MNIST FMNIST MVTec-AD Head-CT Covid19

BASELINE OE (GAUSSIAN NOISE)
Clean / PGD 64.4 / 15.2 60.1 / 11.6 62.7 / 15.0 41.9 / 0.0 59.0 / 0.5 40.7 / 0.0 54.8 / 7.1

FDC 0.024 0.005 0.015 0.008 0.004 0.002 0.010

BASELINE OE (IMAGENET)
Clean / PGD 87.3 / 69.3 90.0 / 42.8 93.0 / 82.0 64.6 / 0.0 61.8 / 1.3 62.7 / 23.4 76.6 / 36.5

FDC 3.205 0.152 1.320 0.848 1.739 1.702 1.971

MIXUP WITH IMAGENET
Clean / PGD 59.4 / 30.8 59.6 / 1.7 74.2 / 47.8 58.5 / 0.5 54.4 / 20.6 69.2 / 50.2 62.6 / 25.3

FDC 3.342 0.031 0.584 0.938 1.001 0.969 1.872

FITYMI
Clean / PGD 29.5 / 15.5 76.0 / 51.1 52.2 / 30.6 43.5 / 7.2 63.7 / 6.9 42.7 / 12.4 56.3 / 20.6

FDC 0.683 0.016 0.064 0.457 0.028 0.029 0.249

GOE
Clean / PGD 67.4 / 38.0 80.3 / 58.3 63.7 / 47.1 62.8 / 18.0 71.5 / 1.4 39.6 / 13.7 64.2 /29.4

FDC 0.589 1.128 0.547 0.838 0.128 0.011 0.613

DREAM OOD
Clean / PGD 58.2 / 24.7 80.5 / 51.4 66.8 / 45.9 55.0 / 12.7 69.9 / 1.2 44.1 / 0.1 62.4 / 22.7

FDC 0.619 1.210 0.515 0.760 0.280 0.055 0.573

ADAPTIVE OE (OURS)
Clean / PGD 87.4 / 70.2 99.4 / 94.6 95.6 / 87.2 61.5 / 14.9 87.3 / 68.6 79.6 / 58.3 85.1 / 65.6

FDC 3.674 3.902 3.046 1.160 3.476 3.059 3.325

detection methods against adversarial attacks. By proposing

a novel data-centric approach, we strategically craft informa-

tive OOD samples, allowing RODEO to achieve superior de-

tection performance under both clean and adversarial evalua-

tion conditions. We verify RODEO through comprehensive

ablation experiments on its various components. Moreover,

our extensive experiments across real-world datasets, as

well as under various strong attacks, confirm our method’s

effectiveness, setting a new benchmark for future research

in reliable outlier detection.

8. Limitations

This study aims to enhance the adversarial detection per-

formance of outlier detection tasks. Despite significant ad-

vancements in adversarial detection, our clean performance

still lags behind existing state-of-the-art methods. The trade-

off between clean and adversarial test performance is well-

documented in the literature (Zhang et al., 2019; Madry

et al., 2017; Schmidt et al., 2018). Our work is also sub-

ject to these trade-offs. However, we have also provided

results for scenarios where standard training is performed in-

stead of adversarial training, which leads to increased clean

performance.
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A. Evaluation Metrics & Datasets & Implementation Details

Evaluation Metrics AUROC is used as a well-known classification criterion. The AUROC value is in the range [0, 1], and

the closer it is to 1, the better the classifier performance.

Datasets For the low-resolution datasets, we included CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al.,

2009), MNIST (LeCun & Cortes, 2010), and FashionMNIST (Xiao et al., 2017). Furthermore, we performed experiments

on medical and industrial high-resolution datasets, namely Head-CT (Kitamura, 2018), MVTec-ad (Bergmann et al., 2019),

Brain-MRI (Bhuvaji et al., 2020), Covid19 (Cohen et al., 2020), and Tumor Detection (Nickparvar, 2021). The results are

available in Table 1.

Implementation Details We use ResNet-18(He et al., 2016) as the architecture of our neural network for the high-resolution

datasets and for the low-resolution datasets, we used Wide ResNet(Zagoruyko & Komodakis, 2017). Furthermore, RODEO

is trained 100 epochs with Adam(Kingma & Ba, 2017) optimizer with a learning rate of 0.001 for each experiment.

B. Algorithm

This algorithm presents the complete approach, including all components that are integral to it.

Algorithm 1 RODEO: Adversarial Training with Adaptive Exposure Dataset

Input: Din, Dval, Äimage-val, Älabel-val, enctext, µDiffusion, ΣDiffusion, ECLIP
I , ECLIP

T , f¹, K, T0, T ▷ T0 ∈ [0, 0.6T ]

Output: f̂¹
1: Near-Distribution outlier Prompt Search

2: Älabel-val = Avg(Dist(ECLIP
T (yi), E

CLIP
T (yj))) ∀(yi, yj) ∈ Y(Dval)

3: for (i, label) ∈ Y do

4: Prompts[i]← enctext.KNN(label)
5: Prompts[i]← Prompts[i].Remove(enctext.MinDist(Prompt, Y \label) < Älabel-val)
6: Prompts[i]← Prompts[i] ∪Append(NegativeAdjectives[label], label)
7: end for

8: Adaptive Exposure Generation

9: Äimage-val = Avg(Dist(ECLIP
I (xi), E

CLIP
T (y))) ∀(xi, yi) ∈ Dval∀y ̸= yi

10: for (xi, yi) ∈ Din do

11: c ∼ U(Prompts[yi])
12: tinit ∼ U([T0, . . . , T ])
13: x̂tinit

= xi

14: for t = tinit, . . . , 0 do

15: µ̂(x̂t|c) = µDiffusion(x̂t|c) + s · ΣDiffusion(x̂t|c) · ∇x̂t
(ECLIP

I (x̂t) · E
CLIP
T (c))

16: x̂t−1 ∼ N (µ̂(x̂t|c),ΣDiffusion(x̂t|c))
17: end for

18: if Dist(ECLIP
I (x̂0), E

CLIP
T (yi)) < Äimage-val then

19: Dexposure ← Dexposure ∪ {(x̂0,K + 1)}
20: end if

21: end for

22: Dtrain ← Din ∪ Dexposure

23: f̂¹ ← Adversarial-Training(f¹,Dtrain)

C. ND, OSR and outlier Detection

As we have reported the results of our method on the most common settings for outlier detection, in this section, we provide

a brief explanation for each setting to provide further clarification. In OSR, a model is trained on K classes from an N -class

training dataset. During testing, the model encounters N distinct classes, where N −K of these classes were not present

during the training phase. ND is a type of open-set recognition that is considered an extreme case, specifically when k is
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Prompt: Train

Perturb with diffusion Reverse diffusion

Inlier

Outlier

Inlier

Outlier

Figure 4. The figure illustrates a text-guided diffusion process. A yellow dot, representing an inlier data point within the green inlier

distribution, is progressively transformed towards the red outlier distribution, driven by CLIP guidance. This showcases the model’s

ability to guide the transformation from inlier to outlier data via textual instructions.

equal to 1. Some works refer to ND as one-class classification. outlier detection shares similarities with OSR; however, the

key distinction is that the open-set and closed-set classes originate from two separate datasets. (Yang et al., 2021; Mirzaei

et al., 2022)

D. Detailed Baselines

Some works introduced the OE technique for outlier detection tasks, which utilizes auxiliary random images known to

be anomalous (Hendrycks et al., 2018). Many top-performing outlier detection methods incorporate OE to enhance their

performance in both classic and adversarial outlier detection evaluation tasks (Kong & Ramanan, 2021; Liznerski et al.,

2022; Mirzaei et al., 2022). The most direct approach to utilizing outliers involves incorporating them into the training set,

with labels uniformly selected from the label space of typical samples. In an effort to improve the adversarial robustness

of outlier detection, some methods have attempted to make OE more adaptive. For example, ATD (Azizmalayeri et al.,

2022) employs a generator to craft fake features instead of images. Another approach, ALOE (Chen et al., 2021), mines low

anomaly score data from an auxiliary outlier dataset for training, thereby enhancing the robustness of outlier detection.

Furthermore, some other works have pursued outlier detection in an adversarial setting which includes APAE (Goodge

et al., 2021), PrincipaLS (Lo et al., 2022) and OCSDF (Béthune et al., 2023) and OSAD (Shao et al., 2022) ATOM(Chen

et al., 2021) ALOE (Chen et al., 2020) and ATD (Azizmalayeri et al., 2022), between these robust outlier detection methods,

ATOM, ALOE and ATD achieved relatively better results by incorporating OE and adversarial training, however, their

performance falls short in case that inlier set distribution is far from their fixed OE set. For instance, APAE (Goodge et al.,

2021) suggested enhancing adversarial robustness through the utilization of approximate projection and feature weighting.

PrincipaLS (Lo et al., 2022) proposed Principal Latent Space as a defense strategy to perform adversarially robust ND.

OCSDF (Béthune et al., 2023) aimed to achieve robustness in One-Class Classification (OCC) by learning a signed distance

function to the boundary of the support of the inlier distribution, which can be interpreted as the inlierity score. Through

making the distance function ℓ1 Lipschitz, one could guarantee robustness against ℓ2 bounded perturbations. OSAD (Shao

et al., 2022) augmented the model architecture with dual-attentive denoising layers, and integrated the adversarial training

loss with an auto-encoder loss. The auto-encoder loss was designed to reconstruct the original image from its adversarial

counterpart.

In the context of adversarial outlier scenarios, certain studies focused on utilizing the insights gained from the pre-trained

models based on Vision Transformers (ViT) (Fort et al., 2021a; Dosovitskiy et al., 2020). Some other works incorporated

OE to enhance their performance in both clean and adversarial outlier detection evaluation tasks (Chen et al., 2021; Kong

& Ramanan, 2021; Liznerski et al., 2022; Mirzaei et al., 2022). The most direct approach to utilizing outliers involved

incorporating them into the training set, with labels uniformly selected from the label space of typical samples. In an effort

to improve the adversarial robustness of the detection models, some methods have attempted to make OE more adaptive.

For example, ATD (Azizmalayeri et al., 2022) employed a generator to craft fake features instead of images, and applied

adversarial training on OE and inlier real samples to make the discriminator robust. Another approach, ATOM (Chen et al.,

2021), mined low anomaly score data from an auxiliary outlier dataset for training, thereby enhancing the robustness of

outlier detection through adversarial training on the mined samples.
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E. Details About Evaluation and Generation

E.1. OSR Experiments Details

In order to evaluate earlier works in OSR setting, we first select desired number of classes, say K and rename the labels

of samples to be in the range 0 to K − 1. Then following the guideline of the method, we evaluate it in both clean and

adversarial settings and repeat each experiment 5 times and report the average.

E.2. OOD Experiments Details

Table 2 yielded results that are now presented in Table 7 for a more comprehensive overview. We designated multiple

datasets as out-of-distribution during the testing phase and reported the outcomes in Table 7. Adversarial and clean out-of-

distribution scenarios have also been examined by other approaches. Prominent methods in the clean setting encompass the

ViT architecture and OpenGAN. Regarding image classification, AT and HAT have been recognized as highly effective

defenses. AOE, ALOE, and OSAD are regarded as state-of-the-art methods for out-of-distribution detection, and ATD in

robust outlier detection. These outlier methods (excluding OpenGAN and ATD) have undergone evaluation with various

detection techniques, including MSP (Hendrycks & Gimpel, 2017)(Liang et al., 2018), MD (Lee et al., 2018a), Relative MD

(Ren et al., 2021), and OpenMax (Bendale & Boult, 2016). The results reported for each outlier method correspond to the

best-performing detection method. Notably, our approach has surpassed the state-of-the-art in robust out-of-distribution

setting (ATD) for nearly all datasets.

µk =
1

N

∑

i:yi=k

zi, Σ =
1

N

K
∑

k=1

∑

i:yi=k

(zi − µk) (zi − µk)
T
, k = 1, 2, . . . ,K (15)

In addition, to use RMD, one has to fit a N (µ0,Σ0) to the whole in-distribution. Next, the distances and anomaly score for

the input x′ with pre-logits z′ are computed as:

MDk (z
′) = (z′ − µk)

T
Σ−1 (z′ − µk) , RMDk (z

′) = MDk (z
′)−MD0 (z

′) ,

scoreMD (x′) = −min
k

{MDk (z
′)} , score RMD (x′) = −min

k
{RMDk (z

′)} .
(16)

In this section, we will provide more details about our evaluation methodology and Generation Step.

E.3. Generation Step

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020) are trained to reverse a

parameterized Markovian process that transforms an image to pure noise gradually over time. Beginning with isotropic

Gaussian noise samples, they iteratively denoise the image and finally convert it into an image from the training distribution.

In particular a network employed and trained as follows: p¹(xt−1|xt) = N (µ¹(xt, t),Σ¹(xt, t)). This network takes the

noisy image xt and the embedding at time step t as input and learns to predict the mean µ¹(xt, t) and the covariance

Σ¹(xt, t). Recent studies have shown that DDPMs can be utilized for tasks such as generating high-quality images, as well

as for editing and inpainting (Dhariwal & Nichol, 2021; Avrahami et al., 2022; Croitoru et al., 2023).

In our proposed generation method, we perturb the in-distribution(ID) images with Gaussian noise and utilize a diffusion

model with guidance from the extracted candidate near-outlier labels to shift the ID data to outlier data. This is possible

because it has been shown that the reverse process can be solved not only from t0 = 1 but also from any intermediate time

(0, 1). We randomly choose an initial step for each data between 0 and 0.6, which is a common choice based on previous

related works. (Kim et al., 2022; Meng et al., 2021)

If we have k classes in the inlier dataset, with each class containing N samples, we generate N outlier samples to extend

the dataset to k+1 classes. However, if N is a small number (e.g. N<100), we may generate up to 3000 outlier samples to

prevent overfitting.

E.4. Adversarial Attack on outlier Detectors

Adversarial attacks. For the input x with an associated ground-truth label y, an adversarial example x∗ is generated

by adding a small noise to x, maximizing the predictor model loss ℓ(x∗; y). Projected Gradient Descent (PGD) (Madry
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et al., 2017) method is regarded as a standard and effective attack technique that functions by iteratively maximizing the

loss function, through updating the perturbed input by a step size ³ in the direction of the gradient sign of ℓ(x∗; y) with

respect to x: x∗

0 = x, x∗

t+1 = x∗

t +³. sign (∇xℓ (x
∗

t , y)) , where the noise is projected onto the ℓ∞-ball with a radius of

ϵ during each step. To adapt adversarial attacks for the outlier detection task, we target the final output, which is the outlier

score of each test sample. This study utilized attacks with objectives that include both inlier and outlier samples.

Attack to outlier detectors. Outlier detection can be formulated as:

g¼(x) =

{

ID if O(x) f ¼

OOD if O(x) > ¼
,

where O(x) is the detection score, and ¼ is the threshold. In PGD attacks to outlier detection methods, instead of maximizing

the loss value, we try to increase O(x) if x belongs to in-distribution samples and decrease it otherwise. The formulation of

the attack would be: x∗

0 = x, xt+1 = xt + ³ · sgn (∇x (y ·O¹ (x
t))) Where y = 1 for in-distribution samples and y = −1

for outlier samples. The same setting holds for other attacks in our study including AA, A3, and Blackbox.

We performed various strong attacks including PGD-1000 with 10 random restarts, Auto Attack (AA) (Croce & Hein,

2020), and Adaptive Auto Attack (A3) (Liu et al., 2022). The latter is a recently introduced attack that has demonstrated

considerable strength. It adapts the attack according to the test dataset and the model to better use the adversarial budget, i.e.

the number of iteration steps. It also uses a wiser method for the initialization of the attack to save the adversarial budget for

perturbing more samples from the test dataset. The detailed experiments on these attacks are reported in Tables 3, 4, and 5.

It is also noteworthy that for Auto Attack, it was not possible to adapt the DLR(Croce & Hein, 2020) loss-based attacks due

to their presumption that the output of the model has at least 3 elements, which does not hold in outlier detection tasks.

E.5. Computational Cost

Experiments were conducted on RTX 3090 GPUs. Generating approximately 10,000 low-resolution and 1,000 high-

resolution outlier data required 1 hour. For the one-class anomaly detection, training each class of low-resolution datasets

took about 100 minutes (see Figure 5 for detailed analysis). The outlier detection task required around 16 hours of training,

and each experiment in the OSR setting took approximately 9 hours.

CIFAR-10 CIFAR-100 MNIST FashionMNIST MVTecAD HeadCT BrainMRI Tumor Detection Covid-190
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Figure 5. Comparative analysis of computational time for data generation and adversarial training across various datasets in one-class

anomaly detection setting. The time is measured in minutes and is split into two components: data generation (golden segment) and the

subsequent adversarial training phase (purple segment). The datasets range from standard image benchmarks like CIFAR-10 and MNIST

to specialized medical and anomaly detection datasets such as MVTecAD, BrainMRI, and Covid-19.
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F. Using Image Labels as Descriptors

Novelty detection, also known as one-class classification, involves identifying instances that do not fit the pattern of a given

class in a training set. Traditionally, methods for this task have been proposed without using the labels of the training data.

For example, they did not take into account the fact that the inlier set includes the semantic "dog". In the case of outlier

detection (which is a multi-class setting), methods commonly extract features and define supervised algorithms using the

labels of the inlier set. However, they do not fully utilize the semantic information contained in these labels. Specifically,

they only consider class labels as indexes for their defined task, such as classification.

Recently, there has been a growing interest in leveraging pre-trained multimodal models to enhance outlier detection

performance, both in one-class and multi-class scenarios. Unlike prior works, these approaches utilize the semantic

information embedded within the labels of the inlier set. This is akin to treating labels as image descriptors rather than just

as indices. For example, (Liznerski et al., 2022) used CLIP in the novelty detection setting and utilized both pairs of inlier

images and their labels (e.g., a photo of x) to extract maximum information from the inlier set. Similarly, (Esmaeilpour

et al., 2022) applied CLIP for zero-shot outlier detection and used both the image and semantic content of their respective

labels to achieve the same goal. Motivated by these works, our study utilizes image labels as descriptors in all reported

settings (ND, OSR, OOD). In fact, we utilized a simple language model to predict candidate unseen labels for outlier classes

located near the boundary, leveraging these image labels.

Discussion Although some recent works have used labels as descriptors, there may be concerns that this approach could

provide unfair guidance since it is not commonly used in traditional literature. However, it is important to note that the

outlier detection problem is a line of research with many practical applications in industries such as medicine autonomous

driving cars and industry. In such cases, knowing the training data labels and semantics, such as "healthy CT scan images",

is possible and we do not need more details about inlier data classes except for their names.

Moreover, previous adversarially robust outlier detector models have reported almost no improvement over random results in

real-world datasets, especially in the case of ND settings. Therefore, our use of the inlier class label as an alternative solution

is reasonable. Our approach outperforms previous models by up to 50% in the robust ND scenario and this superiority

continues in multi-class modes where data labels are available and we only use the class names to improve the model. Given

the applicability of the task addressed in this article and the progress of multi-domain models, our approach has potential for

practical use

G. Leveraging Pre-trained Models for outlier Detection

It has been demonstrated that leveraging pre-trained models can significantly improve the performance and practical

applicability of downstream tasks (Wei et al., 2021; Wang et al., 2022), including outlier detection, which has been

extensively studied.

Various works (Bergman et al., 2020; Reiss et al., 2021; Reiss & Hoshen, 2021; Cohen & Avidan, 2021; Roth et al., 2021;

Salehi et al., 2021) have utilized pre-trained models’ features or transfer learning techniques to improve detection results

and efficiency, particularly in outlier detection under harder constraints. For example, (Esmaeilpour et al., 2022) used a

pre-trained CLIP model trained on 400 million data for Zero-Shot outlier Detection, (Fort et al., 2021b) proposed using a

pre-trained ViT (Dosovitskiy et al., 2020) model trained on 22 million data for near-distribution outlier detection, and (Xu

et al., 2021) utilized a pre-trained BERT (Devlin et al., 2018) model trained on billions of data for outlier detection in the

text domain. In our work, we addressed the highly challenging task of developing an adversarially robust outlier detector

model, which is unexplored for real-world datasets such as medical datasets. To accomplish this, we utilized the CLIP and

diffusion model as our generator backbone, which was trained on 67 million data.

H. Why Our Diffusion Model Is the Best Fit for Near-outlier Generation

Working in Pixel Space In Section K.1, we discussed how outlier data can be divided into two categories (i.e. pixel-

and semantic-level). Our need for diverse outlier data motivates our preference for generative models that can create both

pixel-level and semantic-level outlier data. Our generative model is a suitable choice as it uses a diffusion model applied at

the pixel-level to generate images from texts. This allows the model to generate outlier samples that differ in their local

appearance, which is particularly important for pixel-level outlier detection. Compared to other SOTA text-to-image models

that mostly work at the embedding level, our generative model’s ability to generate images at the pixel-level makes it a
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better choice for our purposes.

Comparing with DreamBooth As our pipeline’s generator model involves image editing, we explored the literature

on image manipulating and tested a common methods used for image editing. Numerous algorithms have been proposed

for generating new images conditioned on input images among these, we have chosen DreamBooth as one of the SOTA

algorithms for specifying image details in text-to-image models. we evaluated the DreamBooth (Ruiz et al., 2023) algorithm

for changing image details in various datasets. Our experiment showed that, despite DreamBooth’s good performance for

natural images and human faces, the algorithm had poor results for datasets with different distributions, such as MNIST and

FashionMNIST. One possible explanation for the poor performance of these algorithms is their bias towards the distribution

of the training datasets, such as LAION, which typically consists of natural images and portraits. Consequently, these

algorithms may not yield satisfactory results for datasets with different distributions.

Inliers Generated with Stable Diffusion + DreamBooth

Figure 6. generated images using the DreamBooth algorithm and StableDiffusion model, which shows a very large shift between ID- and

generated OOD data. This demonstrates the superiority of our pipeline as a near OOD generator.

I. Detailed Analysis and Insights of Ablation Study

FID, Density and Coverage Fréchet Inception Distance (FID) metric (Heusel et al., 2017) measures the distance between

feature vectors of real and generated images and calculates the distance them, has been shown to match with human

judgments. The diversity of generative models can be evaluated using two metrics: Density and Coverage (Naeem et al.,

2020). By utilizing a manifold estimation procedure code, the distance between two sets of images can be measured. To

calculate these metrics, features from a pre-trained model are utilized, specifically those before the final classification layer.

The mathematical expression for these metrics is as follows:

Density (Xs,Xt, F, k) =
1

kM

M
∑

j=1

N
∑

i=1

I
(

f t,j ∈ B
(

fs,i,NNk

(

F (Xs) ,fs,i, k
)))

, (17)

Coverage (Xs,Xt, F, k) =
1

N

N
∑

i=1

I
(

∃j s.t. f t,j ∈ B
(

fs,i,NNk

(

F (Xs) ,fs,i, k
)))

. (18)

where F is a feature extractor, f is a collection of features from F ,
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Xs = {xs,1, . . . ,xs,N} denotes real images, Xt = {xt,1, . . . ,xt,M} denotes generated images, B(f , r) is the n-

dimensional sphere in which f = F (x) ∈ R
n is the center and r is the radius, NNkf(F,f , k) is the distance from f to the

k-th nearest embedding in F , and I(·) is a indicator function. We use the standard InceptionV3 features, which are also used

to compute the FID. The measures are computed using the official code (Naeem et al., 2020).

The definition of the FDC metric introduced in the paper is as below:

FDC = log(1 +
Density × Coverage

FID
× 104) (19)

J. The Significance of Conditioning on Both Images and Text from the inlier Distribution

In order to have an accurate outlier detector, it’s important to generate diverse and realistic samples that are close to the

distribution of the inlier data. In our study, we tackle this challenge by leveraging the information contained in the inlier

data. Specifically, we extract the labels of classes that are close to the inlier set and use them as guidance for generation.

Additionally, we initialize the reverse process generation of a diffusion model with inlier images, so the generation of outlier

data in our pipeline is conditioned on both the images and the text of the inlier set. This enables us to generate adaptive

outlier samples.

In the Ablation Study (sec. 6), we demonstrate the importance of using both image and text information for generating

outlier data. We compare our approach with two other methods that condition on only one type of information and ignore

the other. The first technique generates fake images based on the inlier set, while the other generates outlier data using only

the extracted text from inlier labels. The results show that both techniques are less effective than our adaptive exposure

technique, which conditions the generation process on both text and image. This confirms that using both sources of

information is mandatory and highly beneficial.

J.1. Samples Generated Solely Based on Text Conditioning

In this section, we compare inlier images with images generated by our pipline using only text in Fig. 7 (without conditioning

on the images). Our results, illustrated by the plotted samples, demonstrate that there is a significant difference in distribution

between these generated images and inlier images. This difference is likely the reason for the ineffectiveness of the outlier

samples generated with this technique.

K. Label Generation

K.1. Pixel-Level and Semantic-Level outlier Detection

OOD samples can be categorized into two types: pixel-level and semantic-level. In pixel-level outlier detection, ID and

outlier samples differ in their local appearance, while remaining semantically identical. For instance, a broken glass could

be considered an outlier sample compared to an intact glass due to its different local appearance. In contrast, semantic-level

outlier samples differ at the semantic level, meaning that they have different meanings or concepts than the ID samples. For

example, a cat is an outlier sample when we consider dog semantics as ID because they represent different concepts.

K.2. Our Method of Generating labels

A reliable and generalized approach for outlier detection must have the capability to detect both semantic-level and pixel-wise

outliers, as discussed in the previous section. To this end, our proposed method constructs n-outlier labels by combining two

sets of words: near-distribution labels and negative adjectives derived from a inlier label name. We hypothesize that the

former set can detect semantic-level outliers, while the latter set is effective in detecting pixel-wise outliers. Additionally,

we include an extra label, marked as ’others’, in the labels list to increase the diversity of exposures.

To generate negative adjectives, we employ a set of constant texts that are listed below and used across all experimental

settings (X is the inlier label name):

• A photo of X with a crack

• A photo of a broken X

• A photo of X with a defect
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• A photo of X with damage

• A photo of X with a scratch

• A photo of X with a hole

• A photo of X torn

• A photo of X cut

• A photo of X with contamination

• A photo of X with a fracture

• A photo of a damaged X

• A photo of a fractured X

• A photo of X with destruction

• A photo of X with a mark

For n-outlier labels, we utilize Word2Vec to search for semantically meaningful word embeddings after inlierizing the words

through a process of lemmatization. First, we obtain the embedding of the inlier class label and then search among the

corpus to identify the 1000 nearest neighbors of the inlier class label.

In the subsequent phase, we employ the combination of Imagenet labels and CLIP to effectively identify and eliminate labels

that demonstrate semantic equivalence to the inlier label. Initially, we leverage CLIP to derive meaningful representations

of the Imagenet labels. Then, we calculate the norm of the pairwise differences among these obtained representations.

By computing the average of these values, a threshold is established, serving as a determinant of the degree of semantic

similarity between candidate labels and the inlier label. The threshold is defined as:

Ätext =

∑M

i=1,i ̸=j

∑M

j=1
|ET (yi)− ET (yj)|

M(M − 1)
(20)

In which, M is the number of Imagenet labels, and yis are the Imagenet labels.

Consequently, we filter out labels whose CLIP output exhibits a discrepancy from the inlier class(es) that falls below the

threshold.

We then sample n-outlier labels from the obtained words based on the similarity factor of the neighbors to the inlier class

label. The selection probability of the n-outlier labels is proportional to their similarity to the inlier class label. Finally, we

compile a list of n-outlier labels to serve as near outlier labels.

L. Outlier Detection Performance Under Various Strong Attacks

Tables 3, 4, and 5 demonstrate the robust detection performance of RODEO when subjected to various strong attacks.
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Table 3. The detailed AUROC scores of the class-specific experiments for (One-Class) Novelty Detection setting in CIFAR10, CIFAR100,

MNIST, Fashion-MNIST datasets.

(a) CIFAR10

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 91.7 97.3 77.4 74.0 82.6 81.2 91.5 92.8 94.0 91.7 87.4

BlackBox 89.9 95.8 75.5 72.1 81.6 79.1 89.1 91.2 92.4 89.6 85.6

PGD-1000 76.6 81.4 59.1 55.2 65.0 65.9 73.6 69.6 78.9 77.3 70.2

AutoAttack 75.7 80.0 58.7 53.6 64.2 65.1 72.1 68.8 78.9 76.0 69.3

(b) CIFAR100

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ours

Clean 79.0 78.6 95.5 78.1 89.2 69.4 76.2 82.6 77.9 87.4 92.7 73.1 77.6 65.0 83.9 65.5 72.1 93.6 83.5 72.0 79.6

BlackBox 76.9 77.0 93.2 75.4 87.6 67.3 74.0 79.6 75.7 85.1 89.9 71.3 74.7 62.9 81.0 63.4 69.7 91.8 81.8 70.1 77.4

PGD-1000 59.7 60.2 83.0 61.3 72.9 53.0 60.4 62.6 59.0 76.5 78.1 51.2 61.0 47.4 60.3 44.5 51.9 78.7 61.2 58.1 62.1

AutoAttack 56.8 59.4 80.4 60.9 73.9 51.2 61.3 61.7 58.3 75.9 75.7 51.7 59.9 45.7 59.2 44.4 50.6 76.1 60.5 57.1 61.0

(c) MNIST

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 99.8 99.4 99.3 99.2 99.6 99.4 99.8 98.9 99.4 98.8 99.4

BlackBox 98.7 99.0 98.2 98.8 98.3 98.9 99.4 97.8 98.5 98.2 98.6

PGD-1000 96.3 96.1 95.5 92.0 97.4 95.1 96.4 92.5 94.0 91.2 94.6

AutoAttack 96.9 96.1 96.3 92.0 96.7 96.3 98.1 92.5 95.2 92.0 95.2

(d) Fashion-MNIST

Method Attack Class Average

0 1 2 3 4 5 6 7 8 9

Ours

Clean 95.8 99.7 93.9 93.4 92.9 98.3 86.5 98.6 98.5 98.8 95.6

BlackBox 94.4 98.6 92.7 92.6 91.2 96.9 85.1 97.1 97.5 97.1 94.3

PGD-1000 89.7 98.4 82.9 79.9 76.1 94.8 71.4 94.0 90.7 93.9 87.2

AutoAttack 89.7 98.1 83.0 80.9 76.5 95.1 72.6 94.2 92.4 94.1 87.6
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Table 4. OOD detailed results

(a) CIFAR10

Out-Dataset Attack Method

OpenGAN ViT (RMD) ATOM AT (OpenMax) OSAD (OpenMax) ALOE (MSP) ATD RODEO

MNIST
Clean 99.4 98.7 98.4 80.4 86.2 74.6 98.8 96.9

PGD-1000 29.4 2.6 0.0 38.7 54.4 21.8 89.3 83.1

TiImgNet
Clean 95.3 95.2 97.2 81.0 81.9 82.1 88.0 85.1

PGD-1000 14.3 1.4 3.4 15.6 18.4 20.7 46.1 46.3

Places
Clean 95.0 98.3 98.7 82.5 83.3 85.1 92.5 96.2

PGD-1000 16.4 2.2 5.6 18.0 20.3 21.9 59.8 70.2

LSUN
Clean 96.5 98.4 99.1 85.0 86.4 98.7 96.0 99.0

PGD-1000 23.1 1.1 1.0 18.7 19.8 50.7 68.1 85.1

iSUN
Clean 96.3 98.6 99.5 83.9 84.0 98.3 94.8 97.7

PGD-1000 22.1 1.2 2.5 18.6 19.4 49.5 65.9 78.7

Birds
Clean 98.3 76.0 95.8 75.1 76.5 79.9 93.6 97.8

PGD-1000 33.6 0.0 5.2 13.8 18.2 20.9 68.1 76.0

Flower
Clean 98.3 99.6 99.8 85.5 88.6 79.0 99.7 99.5

PGD-1000 29.2 1.7 19.0 20.0 25.7 18.7 92.8 88.7

COIL
Clean 98.1 95.9 97.3 70.3 75.0 76.8 90.8 91.1

PGD-1000 37.6 3.0 8.6 15.7 17.8 18.4 57.2 59.5

CIFAR100
Clean 95.0 97.3 94.2 79.6 79.9 78.8 82.0 75.6

PGD-1000 9.2 0.8 1.6 15.1 17.2 16.1 37.1 37.8

Avg.
Clean 97.1 95.1 97.8 80.5 82.7 84.3 94.3 93.2

PGD-1000 25.7 1.6 5.1 19.9 24.2 27.8 68.4 69.5

(b) CIFAR100

Out-Dataset Attack Method

OpenGAN ViT (RMD) ATOM AT (RMD) OSAD (MD) ALOE(MD) ATD RODEO

MNIST
Clean 99.0 83.8 90.4 41.1 95.9 96.6 97.3 99.7

PGD-1000 12.9 0.0 0.0 12.5 80.3 71.4 84.6 96.0

TiImgNet
Clean 88.3 90.1 85.1 72.3 48.3 58.1 73.7 72.9

PGD-1000 2.2 1.4 0.1 10.3 8.2 4.6 24.3 37.3

Places
Clean 94.5 92.3 94.8 73.1 55.7 75.0 83.3 93.0

PGD-1000 3.2 2.0 3.0 11.0 10.4 12.4 40.0 66.6

LSUN
Clean 97.1 91.6 96.6 76.0 55.6 83.1 89.2 98.1

PGD-1000 5.6 0.0 1.5 11.2 8.7 19.0 47.7 83.1

iSUN
Clean 96.4 91.4 96.4 72.5 54.8 80.1 86.5 95.1

PGD-1000 5.8 0.0 1.4 10.2 8.9 20.4 45.6 75.6

Birds
Clean 96.6 97.8 95.1 73.1 54.5 78.4 93.4 96.8

PGD-1000 5.7 8.8 12.5 11.7 9.3 22.0 64.5 74.2

Flower
Clean 96.8 96.6 98.9 77.6 69.6 85.1 97.2 97.2

PGD-1000 7.6 3.8 15.5 14.0 21.2 30.1 78.4 77.2

COIL
Clean 97.7 88.1 79.5 74.4 57.5 77.9 80.6 78.6

PGD-1000 14.0 1.8 0.0 14.6 12.3 17.5 43.6 43.1

CIFAR10
Clean 92.9 94.8 87.5 67.5 50.3 43.6 57.5 61.5

PGD-1000 7.4 4.1 2.0 9.0 8.6 1.3 12.1 29.0

Avg.
Clean 95.8 91.5 91.6 70.0 61.5 79.3 87.7 88.1

PGD-1000 7.1 2.0 3.7 11.9 19.9 24.7 53.6 64.7
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Table 5. AUROC scores for (One-Class) Novelty Detection under three different adversarial attacks with ϵ =
8

255

Method

A
tt

a
ck

Low-Res Datasets High-Res Datasets

CIFAR10 CIFAR100 MNIST FMNIST SVHN MVTecAD Head-CT BrainMRI Tumor Detection Covid19 Imagenet-30

DeepSVDD

Clean 64.8 67.0 94.8 94.5 60.3 67.0 62.5 74.5 70.8 61.9 62.8

BlackBox 54.6 55.3 65.7 66.8 42.7 36.0 44.1 52.7 42.0 32.4 50.1

PGD-1000 22.4 14.1 10.8 48.7 7.2 6.3 0.0 3.9 1.6 0.0 22.0

AutoAttack 9.7 5.8 9.6 38.2 2.4 0.0 0.0 2.1 0.0 0.0 7.3

CSI

Clean 94.3 89.6 93.8 92.7 96.0 63.6 60.9 93.2 85.3 65.1 91.6

BlackBox 43.1 34.7 72.3 64.2 32.0 37.7 50.3 61.0 60.9 25.7 36.8

PGD-1000 2.7 2.5 0.0 4.1 1.3 0.0 0.1 0.0 0.0 0.0 0.3

AutoAttack 0.0 0.0 0.0 3.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0

MSAD

Clean 97.2 96.4 96.0 94.2 63.1 87.2 59.4 99.9 95.1 89.2 96.9

BlackBox 38.4 51.8 58.1 73.8 40.9 41.3 42.6 64.2 67.7 53.6 34.9

PGD-1000 0.0 2.6 0.0 0.0 0.5 0.4 0.0 1.5 0.0 4.0 0.0

AutoAttack 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0

Transformaly

Clean 98.3 97.3 94.8 94.4 55.4 87.9 78.1 98.3 97.4 91.0 97.8

BlackBox 62.9 64.0 73.5 79.6 26.4 56.0 65.0 71.6 78.6 70.7 63.5

PGD-1000 0.0 4.1 9.9 0.2 7.3 0.0 5.8 4.5 6.4 9.1 0.0

AutoAttack 0.0 2.6 6.7 0.0 1.9 0.0 3.2 1.6 5.1 4.4 0.0

PatchCore

Clean 68.3 66.8 83.2 77.4 52.1 99.6 98.5 91.4 92.8 77.7 98.1

BlackBox 18.1 23.6 46.9 58.2 12.5 58.3 80.7 72.5 67.2 56.3 24.4

PGD-1000 0.0 0.0 0.0 0.0 3.0 6.5 1.3 0.0 9.2 3.8 0.0

AutoAttack 0.0 0.0 0.0 0.0 1.1 4.8 0.0 0.0 6.1 0.5 0.0

PrincipaLS

Clean 57.7 52.0 97.3 91.0 63.0 63.8 68.9 70.2 73.5 54.2 74.2

BlackBox 33.3 39.4 91.6 71.1 47.7 45.2 54.3 56.9 56.4 43.8 31.9

PGD-1000 23.6 15.3 76.4 60.8 30.3 24.0 26.8 32.9 24.4 15.1 18.7

AutoAttack 20.2 14.7 72.5 58.2 29.5 12.6 16.2 17.8 14.7 9.1 18.0

OCSDF

Clean 57.1 48.2 95.5 90.6 58.1 58.7 62.4 63.2 65.2 46.1 61.4

BlackBox 48.4 36.9 85.7 77.0 46.8 33.4 40.2 48.0 35.0 28.5 52.7

PGD-1000 22.9 14.6 60.8 53.2 23.0 4.8 13.0 18.6 16.3 8.4 18.7

AutoAttack 15.3 12.0 58.3 49.2 19.8 0.3 8.5 12.5 10.1 6.5 14.1

APAE

Clean 55.2 51.8 92.5 86.1 52.6 62.1 68.1 55.4 64.6 50.7 62.0

BlackBox 37.6 16.3 73.0 24.3 41.6 35.9 45.2 27.1 43.1 26.1 33.9

PGD-1000 0.0 0.0 21.3 9.7 16.5 3.9 6.4 9.1 15.0 9.8 24.8

AutoAttack 0.0 0.0 19.8 7.0 16.2 1.8 3.8 8.3 8.3 8.7 0.0

EXOE

Clean 99.6 97.8 96.0 94.7 68.2 76.2 82.4 86.2 79.3 72.5 98.1

BlackBox 68.3 71.5 79.4 70.4 31.1 52.7 44.6 59.0 51.4 45.5 37.2

PGD-1000 0.3 0.0 0.0 1.8 0.0 0.2 0.1 0.1 0.0 0.8 0.0

AutoAttack 0.0 0.0 0.0 1.1 0.0 0.1 0.1 0.0 0.0 0.2 0.0

RODEO (ours)

Clean 87.4 79.6 99.4 95.6 78.6 61.5 87.3 76.3 89.0 79.6 86.1

BlackBox 85.6 77.4 98.6 94.3 77.2 60.0 85.6 75.8 87.2 75.0 83.9

PGD-1000 70.2 62.1 94.6 87.2 33.8 14.9 68.6 68.4 67.0 58.3 73.5

AutoAttack 69.3 61.0 95.2 87.6 33.2 14.2 68.4 70.5 66.9 58.8 76.8

A3 70.5 61.3 94.0 87.0 31.8 13.4 68.1 67.7 65.6 57.6 72.4
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Table 6. Detailed AUROC(%) comparison of different exposure techniques and our introduced method of Adaptive Exposure over different

datasets.

Exposure Technique

Target Dataset
Attack CIFAR10 CIFAR100 MNIST Fashion-MNIST MVTec-ad Head-CT Brain-MRI Tumor Detection Covid19

Gaussian Noise
Clean 64.4 54.6 60.1 62.7 41.9 59.0 45.3 51.7 40.7

PGD 15.2 11.9 11.6 15.0 0.0 0.5 0.0 0.9 0.0

ImageNet (Fixed OE Dataset)
Clean 87.3 79.6 90.0 93.0 64.6 61.8 69.3 71.8 62.7

PGD 69.3 64.5 42.8 82.0 0.0 1.3 0.0 22.1 23.4

Mixup with ImageNet
Clean 59.4 56.1 59.6 74.2 58.5 54.4 57.3 76.4 69.2

PGD 30.8 27.1 1.7 47.8 0.5 20.6 10.8 53.1 50.2

Fake Image Generation
Clean 29.5 23.0 76.0 52.2 43.5 63.7 65.2 65.2 42.7

PGD 15.5 14.3 51.1 30.6 7.2 6.9 28.2 32.1 12.4

Stable Diffusion Prompt
Clean 62.4 54.8 84.3 63.7 54.9 71.5 66.7 45.8 37.1

PGD 35.0 34.4 62.1 47.1 12.2 2.2 7.0 5.3 0.0

Dream outlier Prompt
Clean 58.2 50.3 80.5 66.8 55.0 69.9 68.6 42.7 44.1

PGD 24.7 20.7 51.4 45.9 12.7 1.2 5.0 10.9 0.1

Adaptive Exposure
Clean 87.4 79.6 99.4 95.6 61.5 87.3 76.3 89.0 79.6

PGD 70.2 61.3 94.6 87.2 14.9 68.6 68.4 67.0 58.3

Table 7. FID, Density, and Coverage Metrics for Adaptive Exposure technique

Exposure Technique

Target Dataset
Metric CIFAR10 CIFAR100 MNIST Fashion-MNIST MVTec-ad Head-CT Brain-MRI Tumor Detection Covid19

Adaptive Exposure
FID 145 156 133 134 263 204 165 186 201

D / C 0.87 / 0.64 0.63 / 0.62 0.75 / 0.86 0.61 / 0.44 0.64 / 0.09 0.77 / 0.83 0.69 / 0.61 0.57 / 0.37 0.51 / 0.80

Table 8. The detailed AUROC of the experiments for ND, OSR, and OOD settings under different training modes.

(a) ND

Method Training Mode Attack Dataset

CIFAR10 CIFAR100 MNIST FashionMNIST Head-CT Covid19

Ours
Non-Adversarial Clean / PGD-1000 93.1 / 0.0 86.6 / 0.0 98.4 / 0.0 94.8 / 0.0 96.1 / 0.0 89.2 / 0.0

Adversarial Clean / PGD-1000 87.4 / 70.2 79.6 / 61.3 99.4 / 94.6 95.6 / 87.2 87.3 / 68.6 79.6 / 58.3

(b) OSR

Method Training Mode Attack Dataset

CIFAR10 CIFAR100 MNIST FashionMNIST

Ours
Non-Adversarial Clean / PGD-1000 84.3 / 0.0 69.0 / 0.0 99.1 / 0.0 91.9 / 0.0

Adversarial Clean / PGD-1000 79.6 / 62.7 64.1 / 35.3 97.2 / 85.0 87.7 / 65.3

(c) OOD

Method Training Mode Attack Dataset

CIFAR10 vs CIFAR100 CIFAR100 vs CIFAR10

Ours
Non-Adversarial Clean / PGD-1000 83.0 / 0.0 71.2 / 0.0

Adversarial Clean / PGD-1000 75.6 / 37.8 61.5 / 29.0

26



RODEO: Robust Outlier Detection via Exposing Adaptive Outliers

Table 9. Adversarial training step hyper-parameters

Adv. Tr. N High Res. ϵ Low Res. ϵ ³ Classifier Optimizer LR

PGD 10 2

255

8

255
2.5× ϵ

N
ResNet Adam 0.001

Table 10. Generation step hyper-parameters

Gen. Backbone Pre. Dataset T t0 Äimage Ätext

GLIDE(Nichol et al., 2021) 67 Million created dataset 1000 (0, 600) Eq.11 Eq.17
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Figure 7. In this experiment, we skipped image conditioning and started the denoising process from pure Gaussian noise, directed by the

extracted outlier labels. The resulting generated outlier samples are conditioned solely on text (excluding image conditioning), produced

using our pipeline. Comparing the visuals of the generated data in this case with those where the image has also been conditioned

showcases the importance of simultaneous image and text conditioning in generating near outlier data.
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Figure 8. BrainMRI: Examples of generated auxiliary outliers from the BrainMRI dataset, conditioned on negative adjectives and inlier

images. The first row depicts inlier images, while the subsequent rows demonstrate generated auxiliary outliers corresponding to the

negative adjectives written to the left of each row.
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Figure 9. Head-CT: Examples of generated auxiliary outliers from the Head-CT dataset, conditioned on negative adjectives and inlier

images. The first row depicts inlier images, while the subsequent rows demonstrate generated auxiliary outliers corresponding to the

negative adjectives written to the left of each row.
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Figure 10. Covid19: Examples of generated auxiliary outliers from the Covid19 dataset, conditioned on negative adjectives and inlier

images. The first row depicts inlier images, while the subsequent rows demonstrate generated auxiliary outliers corresponding to the

negative adjectives written to the left of each row.
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Figure 11. Tumor Detection: Examples of generated auxiliary outliers from the Tumor Detection dataset, conditioned on negative

adjectives and inlier images. The first row depicts inlier images, while the subsequent rows demonstrate generated auxiliary outliers

corresponding to the negative adjectives written to the left of each row.
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Figure 12. MVTec-AD: Examples of generated auxiliary outliers from the MVTec-AD dataset, conditioned on negative adjectives and

inlier images. The first row depicts inlier images, while the subsequent rows demonstrate generated auxiliary outliers corresponding to the

negative adjectives written to the left of each row.
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Figure 13. MNIST Adaptive Exposures Grid: This figure illustrates a grid of adaptive exposures of handwritten digits, created using our

pipeline with the MNIST dataset, accompanied by their corresponding labels. By utilizing the original data and text prompts, our pipeline

generates a variety of exposures that adaptively capture the dataset’s distribution while incorporating outlier elements.
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Figure 14. FashionMNIST Adaptive Exposures Grid: This figure illustrates a grid of adaptive exposures of handwritten digits, created

using our pipeline with the FashionMNIST dataset, accompanied by their corresponding labels. By utilizing the original data and

text prompts, our pipeline generates a variety of exposures that adaptively capture the dataset’s distribution while incorporating outlier

elements.
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