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Abstract

Maximizing the area under the receiver operating characteristic curve (AUC) is a
common approach to imbalanced binary classification problems. Existing AUC
maximization methods usually assume that training and test distributions are iden-
tical. However, this assumption is often violated in practice due to a positive
distribution shift, where the negative-conditional density does not change but the
positive-conditional density can vary. This shift often occurs in imbalanced classifi-
cation since positive data are often more diverse or time-varying than negative data.
To deal with this shift, we theoretically show that the AUC on the test distribution
can be expressed by using the positive and marginal training densities and the
marginal test density. Based on this result, we can maximize the AUC on the test
distribution by using positive and unlabeled data in the training distribution and
unlabeled data in the test distribution. The proposed method requires only positive
labels in the training distribution as supervision. Moreover, the derived AUC has
a simple form and thus is easy to implement. The effectiveness of the proposed
method is experimentally shown with six real-world datasets.

1 Introduction

In many real-world binary classification problems such as intrusion detection [37], medical diag-
nosis [60], and visual inspection [42], class-imbalance frequently occurs where positive data is
much smaller than negative data [22]. In this case, classification accuracy, which is the standard
performance measure for ordinary binary classification, is not a suitable measure [54, 61]. Instead,
the area under the receiver operating characteristic curve (AUC) is commonly used [4, 19]. The AUC
is the probability that a classifier will rank a randomly drawn positive instance higher than a randomly
drawn negative one [61]. Due to the nature of the ranking, the AUC can adequately measure the
performance of the classifier even with imbalanced data. By maximizing the AUC, we can obtain
accurate classifiers even from imbalanced data [5, 61, 64, 32, 65].

Existing AUC maximization methods usually assume that training and test distributions are identical
to ensure the generalization performance. However, in real-world applications, this assumption
is often violated due to distribution shifts. This paper considers a positive distribution shift [16],
i.e., the negative-conditional density does not change but the positive-conditional density can vary,
because this shift often occurs in imbalanced problems. For example, in intrusion detection, malicious
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adversaries rapidly change their attacks (positive data) to bypass detection systems while the benign
class’s data (negative data) do not change much [9, 16, 67]. In medical diagnosis, the distribution of
disease data (positive data) can change due to the disease progression or emergence of new pathogens,
but the distribution of data of healthy people is generally stable. In visual inspection, the types of
anomalous products (positive data) are diverse but normal ones (negative data) have some degree of
stationarity. When such a distribution shift occurs, the performance of AUC maximization methods
drastically deteriorates.

Data in the training distribution Data in the test distribution

Labeled positive data in the training distribution

Unlabeled positive data in the training distribution

Unlabeled positive data in the test distribution

Unlabeled negative data in the training/test distribution

Figure 1: Illustration of given data in our
problem setting. The triangle, circle, and
cross represents negative data, positive
data in the training distribution, and pos-
itive data in the test distribution, respec-
tively. Orange and gray represents labeled
and unlabeled data, respectively. Our set-
ting assumes that the distribution of neg-
ative data does not change (triangles) but
that of positive data can vary (circles and
crosses).

Although labeled data drawn from the test distribution
can alleviate this problem, such data are often time-
consuming and expensive to collect whenever the dis-
tribution shift occurs [41]. In addition, labeled negative
data in the training distribution are also difficult to collect
in some applications. For example, in intrusion detec-
tion, although some malicious data can be collected from
public sources such as blacklists, benign data are often
unavailable due to privacy reasons, and identifying clean
benign data from given unlabeled data requires a high
level of expertise [37, 47].

In this paper, we propose a method for maximizing the
AUC under the positive distribution shift by using labeled
positive and unlabeled data in the training distribution
and unlabeled data in the test distribution. Figure 1 il-
lustrates examples of given data in our problem setting.
Since no labeled data are available in the test distribu-
tion, a challenge is how to maximize the AUC on the
test distribution. To address this challenge, we theoret-
ically show that the AUC on the test distribution can be
expressed by using the positive and marginal training
densities and the marginal test density when assuming
the positive distribution shift. This result enables us to
maximize the AUC on the test distribution with positive
and unlabeled data in the training distribution and unla-
beled data in the test distribution. The derived AUC has
a simple form and is easy to implement. In addition, it
does not depend on the class-prior in the test distribution,
which is usually difficult to obtain with unlabeled data in
the test distribution. Also, it can be applied to any differentiable classifiers such as linear classifiers,
kernel-based classifiers, and neural networks. Hence, our method is easy for practitioners to use.

The main contributions of our work are summarized as follows:

• We propose a novel and practical problem setting, where the aim is to maximize the AUC
under the positive distribution shift on imbalanced data.

• We theoretically show that the AUC on the test distribution can be maximized with positive
and unlabeled data in the training distribution and unlabeled data in the test distribution
when assuming the positive distribution shift.

• We empirically demonstrate that the proposed method outperformed various existing meth-
ods with six real-world datasets.

2 Related Work

Many AUC maximization methods have been proposed [5, 61, 64, 32, 65]. In previous studies [65,
66, 12, 55], they have been reported to often perform better than other methods for imbalanced
classification such as class balanced loss [6], focal loss [31], or sampling-based methods [8, 36].
However, these AUC maximization methods require labeled positive and negative data. In addition,
they assume that the training and test distributions are the same. Therefore, they are inappropriate for
our problem setting where there are no labeled negative data and the distribution shift occurs.
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Unsupervised domain adaptation aims to adapt to the distribution (domain) shift by using unlabeled
data in the test distribution and labeled data in the training distribution [41, 56]. One representative
approach is to learn domain-invariant feature representations by minimizing the discrepancy of the
features in both domains [33, 53, 52, 13, 27, 11, 48]. Although this approach is promising, it often
deteriorates the performance since it minimizes only the feature discrepancy without considering
the relationship between features and labels [70]. Another representative approach is to explicitly
minimize the loss on the test distribution by assuming the types of the distribution change, such as
covariate shift [50, 3, 23, 69, 35] and class-prior shift [68, 51, 1]. The proposed method belongs to this
approach. By assuming the shift type, this approach can adapt to the shift in a theoretically guaranteed
manner. The existing methods aim to minimize the classification risk (or negative classification
accuracy), which is an inappropriate metric for imbalanced data (e.g., if the imbalanced data ratio
is 1 : 99, a naive classifier that classifies ‘every’ instance as negative has 99% accuracy, but it is
definitely not a good classifier). One domain adaptation method tries to maximize the AUC by
learning domain-invariant feature representations [62]. However, this method is not designed for the
positive distribution shift. Moreover, all these methods require labeled positive and negative data in
the training distribution, which are unavailable in our problem setting.

Positive-unlabeled (PU) learning methods aim to learn classifiers by using only positive and unlabeled
data [2, 10]. The proposed method is related to the PU learning since it assumes positive and
unlabeled data in the training distribution. A representative PU learning method is the empirical
minimization-based approach, which rewrites the classification risk by using positive and unlabeled
densities [9, 25, 49, 21]. Although they are effective, they cannot maximize the AUC. Recent studies
have shown that the AUC can be rewritten from positive and marginal densities by using the technique
of the PU learning [45, 58, 6, 59]. However, these all methods assume that the training and test
distributions are identical.

Several PU learning methods consider the distribution shift such as covariate shift [46], class-prior
shift [7, 39], or positive distribution shift [16]. They require positive and unlabeled data in the training
distribution and unlabeled data in the test distribution. However, they consider the classification risk
and cannot maximize the AUC. Due to the pairwise formulation of the AUC, their methods that
use ordinary instance-wise loss functions such as the cross-entropy loss cannot be applied to the
AUC. In addition, the method for the positive distribution shift [16] requires the class-prior on the
test distribution, which is generally difficult to know with unlabeled data in the test distribution. In
contrast, the proposed method does not need to know the class-prior and thus is more practical.

3 Preliminary

We briefly explain the AUC maximization. Let instance x ∈ RD and its corresponding label
y ∈ {−1,+1} be equipped with probability density p(x, y), where +1 and −1 means a positive
and negative class, respectively. Here, pp(x) := p(x|y = +1) and pn(x) := p(x|y = −1) is
the conditional probability density of positive and negative class, respectively. Furthermore, let
s : RD → R be a score function that outputs the positivity of an input instance. The classifier is
defined by the score function with threshold t: y = sign(s(x)− t), where sign is a sign function.

The AUC is the probability of a randomly drawn positive instance being ranked before a randomly
drawn negative instance [61]. Specifically, the AUC with score function s can be formulated as

AUC(s) = Exp∼pp(x)Exn∼pn(x) [I(s(xp) > s(xn))] , (1)

I(z) is the indicator function that outputs 1 if z is true and 0 otherwise, and E is the expectation.
Since the gradient of indicator function I is zero everywhere except for the origin, the AUC cannot
be optimized via gradient descent methods. To avoid this, the following smoothed AUC is often used
by replacing the indicator function with a sigmoid function σ(z) = 1/(1 + exp(−z)) [20, 28, 29]:

AUCσ(s) = Exp∼pp(x)Exn∼pn(x) [σ(s(xp)− s(xn))] . (2)

Given Np positive instances {xp
1 , . . . ,x

p
Np} drawn from pp(x) and Nn negative instances

{xn
1 , . . . ,x

n
Nn} drawn from pn(x), the empirical estimate of the smoothed AUC is calculated as

ÂUCσ(s) =
1

NpNn

Np∑
n=1

Nn∑
m=1

[σ(s(xp
n)− s(xn

m))] . (3)
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By maximizing this empirical smoothed AUC with respect to the parameters of s, we can obtain good
score functions to maximize the AUC when the training and test distributions are identical [61].

4 Proposed Method

In this section, we first describe our problem setting (subsection 4.1). Then, we theoretically show
that the AUC on the test distribution can be maximized with positive and unlabeled data in the training
distribution and unlabeled data in the test distribution under the positive distribution shift (subsection
4.2). Then, we discuss class-priors used in the proposed method (subsection 4.3). Lastly, we explain
an extension of the proposed method (subsection 4.4).

4.1 Problem Setting

Suppose that we are given a set of positive instances Xp
tr and a set of unlabeled instances Xtr drawn

from the training distribution:

Xp
tr = {xp

tr,n}
Np

tr
n=1 ∼ p

p
tr(x) := ptr(x|y = +1), (4)

Xtr = {xtr,n}Ntr
n=1 ∼ ptr(x) = πtrp

p
tr(x) + (1− πtr)p

n
tr(x), (5)

where ptr(x) is the marginal density of the training distribution, pp
tr(x) and pn

tr(x) := ptr(x|y = −1)
are positive and negative-conditional densities of the training distribution, respectively, and πtr :=
ptr(y = +1) is the positive class-prior. Although we assume that class-prior πtr is known in this
paper, it can be estimated from positive and unlabeled data [44, 63, 15]. In addition, we suppose that
a set of unlabeled instances Xte drawn from the test distribution is also given:

Xte = {xte,n}Nte
n=1 ∼ pte(x) = πtep

p
te(x) + (1− πte)pn

te(x), (6)

where pp
te(x) := pte(x|y = +1), pn

te(x) := pte(x|y = −1), and πte := pte(y = +1). We assume
the class-imbalance in both unlabeled data, i.e., πtr, πte � 1. As shown later, the proposed method
does not need to know πte to maximize the AUC1, which is beneficial in practice.

We consider a situation of the positive distribution shift between the training and test distributions,
where the negative-conditional density does not change but the positive-conditional one can vary,

pn
tr(x) = pn

te(x), pp
tr(x) 6= pp

te(x). (7)

This situation often occurs in imbalanced classification problems as described in Section 1. Our aim
is to learn score function s : RD → R that can maximize the AUC on the test distribution by using
Xp

tr∪Xtr∪Xte. For score function s, we can use any differentiable function such as linear classifiers,
kernel-based classifiers, or neural networks. Note that we also discuss the negative distribution shift,
i.e., pn

tr(x) 6= pn
te(x) and pp

tr(x) = pp
te(x), in Section D.

4.2 Positive Distribution Shift Adaptation

In this subsection, we explain how to maximize the AUC under the positive distribution shift. The
objective function to be maximized is the following smoothed AUC on the test distribution,

AUCσ(s) = Exp∼ppte(x)Exn∼pnte(x) [f(xp,xn)] , (8)

where we set f(xp,xn) := σ(s(xp) − s(xn)). Since this AUC depends on pp
te(x) and pn

te(x), it
seems be impossible to calculate in our setting where neither positive nor negative data in the test
distribution are given. However, we show that calculation is possible. First, from the definition of
marginal density pte(x) in Eq. (6), the positive-conditional test density pp

te(x) can be expressed as

pp
te(x) =

1

πte
[pte(x)− (1− πte)pn

te(x)] , (9)

where we assume that πte > 0. By substituting Eq. (9) into Eq. (8), we can obtain

AUCσ(s)=
1

πte

[
Ex∼pte(x)Exn∼pnte(x) [f(x,xn)]−(1−πte)Exn∼pnte(x)Ex̄n∼pnte(x) [f(xn, x̄n)]

]
.

(10)

1 To be precise, the specific value of πte is not required, but we require that πte 6= 0, which will be discussed
later.
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Algorithm 1 Training procedure of the proposed method

Require: Positive and unlabeled data in the training distribution Xp
tr ∪Xtr, unlabeled data in the

test distribution Xte, positive class-prior in the training distribution πtr, mini-batch size M , and
positive mini-batch size P

Ensure: Model parameters of score function s
1: repeat
2: Sample positive data with size P form Xp

tr
3: Sample unlabeled data with size M − P from Xtr ∪Xte

4: Calculate the loss in Eq. (14) on the sampled positive and unlabeled data with πtr

5: Update model parameters of score function s with the gradient of the loss
6: until End condition is satisfied;

Here, the second term in Eq. (10) becomes constant (1− πte)Exn∼pnte(x)Ex̄n∼pnte(x) [f(xn, x̄n)] =
(1−πte)/2 because σ(z)+σ(−z) = 1 for all z ∈ R [58, 6, 59]. Therefore, we can ignore the second
term in Eq. (10) to learn score function s. Next, by using the assumption of the positive distribution
shift, pn

tr(x) = pn
te(x), and the definition of the marginal density ptr(x) in Eq. (5), we can express

the negative-conditional test density pn
te(x) as

pn
te(x) = pn

tr(x) =
1

1− πtr
[ptr(x)− πtrp

p
tr(x)] , (11)

where we assume that πtr < 1. As before, by substituting Eq. (11) into the first term in Eq. (10), we
can obtain

AUCσ(s)=
1

πte(1− πtr)

[
Ex∼pte(x)Ex̄∼ptr(x) [f(x, x̄)]−πtrEx∼pte(x)Exp∼pptr(x) [f(x,xp)]

]
+C,

(12)
whereC represents constant terms that do not depend on score function s. Since coefficient 1/(πte(1−
πtr)) does not affect the optimization for s, our loss function to be minimized is as follows,

L(s) := −Ex∼pte(x)Ex̄∼ptr(x) [f(x, x̄)] + πtrEx∼pte(x)Exp∼pptr(x) [f(x,xp)] . (13)
This loss depends on the positive and marginal training densities, marginal test densities, and class-
prior. Therefore, we can approximate this loss with given data Xp

tr ∪Xtr ∪Xte and πtr. Specifically,
the empirical estimate of the loss function is given as follows,

L̂(s) = − 1

NteNtr

Nte,Ntr∑
n,m=1

f(xte,n,xtr,m) +
πtr

NteN
p
tr

Nte,N
p
tr∑

n,m=1

f(xte,n,x
p
tr,m). (14)

Algorithm 1 shows the pseudocode of our training procedure with stochastic gradient methods. Note
that although we have used the sigmoid function to represent the AUC in Eq. (2), as long as we
use symmetric functions (i.e., function σ satisfying σ(z) + σ(−z) = K for any z ∈ R and K is a
constant [6]), we can derive the loss function of the same form in Eq. (13). The symmetric functions
include a wide range of functions such as sigmoid, ramp, and unhinged functions [6]. In addition, the
loss corrections for the proposed method such as the non-negative correction [25], which is commonly
used in ordinary PU learning to avoid overfitting, are discussed in detail in Section B.

4.3 Discussion about Class-priors

In the process of deriving our loss function, we assume πtr < 1 and πte > 0. We discuss why this
assumption is necessary in our setting. When πte = 0, all unlabeled data Xte become negative data.
In this case, our given datasets Xp

tr ∪ Xtr ∪ Xte do not have any information about positive data
in the test distribution since pp

tr(x) 6= pp
te(x). Therefore, we cannot calculate the AUC on the test

distribution. However, in this case, we can easily create trivial optimal classifiers that classify all data
as negative. Thus, this is not an issue.

When πtr = 1, all unlabeled data Xtr become positive data on the training distribution. Xp
tr ∪Xtr

(positive data in the training distribution) have no information to extract positive and negative data
from Xte since pp

tr(x) 6= pp
te(x). Thus, in this case, we also cannot calculate the AUC on the test

distribution. However, it is extremely rare for all unlabeled data to be positive in imbalanced data
problems where the ratio of positive data in unlabeled data is low. Thus, this is also not a problem in
practice.
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4.4 Extension

In some applications, a small number of labeled negative data as well as labeled positive data might
be available from the training distribution. The proposed method can be easily extended to such cases.
Specifically, by Eq. (10), the AUC on the test distribution without constant terms is represented as

AUCσ(s) ∝ Ex∼pte(x)Exn∼pnte(x) [f(x,xn)] = Ex∼pte(x)Exn∼pntr(x) [f(x,xn)] =: R(s), (15)

where we used assumption pn
tr(x) = pn

te(x). LossR(s) can be approximated with test unlabeled data
and labeled negative data. Thus, the following modified loss function to be minimized can be used:

Lmodified(s) := αL(s)− (1− α)R(s), (16)

where α ∈ [0, 1] is a weighting hyperparameter.

5 Experiments

In this section, we empirically demonstrate the effectiveness of the proposed method under the
positive distribution shift with real-world datasets.

5.1 Data

We utilized four widely used real-world datasets in the main paper: MNIST [30], FashionMNIST
[57], SVHN [40], and CIFAR10 [26]. MNIST consists of hand-written images of 10 digits. Each
image is represented by gray-scale with 28 × 28 pixels. FashionMNIST consists of images of 10
fashion categories where each image is represented by gray scale with 28× 28 pixels. SVHN consists
of 32× 32 RGB images of printed 10 digits clipped from photographs of house number plates. We
converted SVHN into gray-scale for simplicity. CIFAR10 consists of 32 × 32 RGB images of 10
animal and vehicle categories. In Section E.3, we also evaluated the proposed method with two
tabular datasets with distribution shifts (HReadmission and Hypertension) [14].

For MNIST and SVHN, we used even digits as the negative class and odd digits as the positive
class. Following the previous studies [16, 18], data with digits ‘7’ and ‘9’ were used as positive data
appearing in the training distribution and data with digits ‘1’, ‘3’ , ‘5’, ‘7’, and ‘9’ were used as
positive data appearing in the test distribution. This simulates a situation where new types of positive
data, which did not appear during the training, appear in the test environment. For FashionMNIST,
following the study [59], we used upper garments (‘T-shift’, ‘Pullover’, ‘Dress’, ‘Coat’, and ‘Shift’)
as the negative class and the others as the positive class. Positive data with the ‘Trouser’ and ‘Bag’
appeared in the training distribution and those with the ‘Trouser’, ‘Bag’, ‘Sandal’, ‘Sneaker’, and
‘Ankle boot’ appeared in the test distribution. For CIFAR10, we used the animal categories as the
negative class and the vehicles as the positive class. Positive data with the ‘Airplane’ appeared in the
training distribution and those with the ‘Airplane’, ‘Automobile’, ‘Ship’, and ‘Truck’ appeared in the
test distribution as in the previous study [16].

For each dataset, we used 10 positive and 5, 000 unlabeled data in the training distribution and
5, 000 unlabeled data in the test distribution for training. In addition, we used 5 positive and 500
unlabeled data in the training distribution and 500 unlabeled data in the test distribution for validation.
We used 1, 500 positive and 1, 500 negative data in the test distribution as test data for evaluation.
There is no overlap between training, validation, and test datasets. The positive class-prior on the
training distribution πtr was set to 0.1 and that on the training distribution πte was changed within
{0.1, 0.2, 0.3}. For each case of the positive class-prior pairs, we conducted eight experiments while
changing the random seeds and evaluated mean test AUC.

5.2 Comparison Methods

We compared the proposed method (Ours) with nine neural network-based comparison methods: CE,
nnPU [25], puAUC [58], PULA [21], AnnPU, ApuAUC, APULA, CpuAUC, and PURR [16].

CE, nnPU, puAUC, and PULA use positive and unlabeled data in the training distribution for learning
classifiers. These methods do not adapt to the test distribution. CE learns neural network parameters
by minimizing the cross-entropy loss. This method naively treats unlabeled data as negative data.
nnPU is a widely used PU learning method with a non-negative risk estimator. This method rewrites
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the classification risk with positive and unlabeled data and minimizes the rewritten non-negative
classification risk to learn neural network parameters. PULA is a recent PU learning method that
learns a neural network classifier with the label distribution alignment. nnPU and PULA used the
class-prior in the training distribution as in the proposed method. puAUC learns a neural network
classifier by maximizing the AUC that is calculated from positive and unlabeled data.

AnnPU, ApuAUC, APULA, CpuAUC, and PURR use positive and unlabeled data in the training
distribution and unlabeled data in the test distribution. AnnPU, ApuAUC, and APULA use unlabeled
data in both the training and test distributions instead of those in the training distribution of nnPU,
puAUC, and PULA respectively. AnnPU and APULA used the composite class-prior on the combined
unlabeled data (i.e., π = πtrNtr+πteNte

Ntr+Nte
). In our preliminary experiments, the methods that use

unlabeled data from the test distribution instead of data from both distributions were also evaluated.
However, they performed worse than AnnPU, ApuAUC, and APULA. Thus, we omitted them.
CpuAUC learns the invariant feature representations to mitigate the discrepancy of training and test
distributions. Specifically, this method minimizes the negative AUC loss used in puAUC and the
CORAL loss, which is a widely used in domain adaptation studies to match the second-order statistics
of both distributions [53, 52]. PURR is a PU learning method for the positive distribution shift. This
method rewrites the classification risk assuming the negative-conditional density does not change. To
rewrite the risk, PURR requires the class-prior in the test distribution to be available, whereas the
proposed method does not.

5.3 Settings

For MNIST, FashionMNIST, and SVHN, all methods used a feed-forward neural network with three
hidden layers. The number of hidden nodes was 128 and the ReLU activation function was used for
each hidden layer. For CIFAR10, all methods used a convolutional neural network, which consisted
of two convolutional blocks followed by a feed-forward neural network with two hidden layers. The
first (second) convolutional block comprised a 6 (16) filter 5× 5 convolution, the ReLU activation
function, and a 2× 2 max-pooling layer [38]. The numbers of nodes in the two hidden layers were
120 and 84, and the ReLU activation function was used. For PULA and APULA, margin ρ was
selected from {0.1, 1, 10}. For CpuAUC, the CORAL loss was applied to the last hidden layer
and its regularization weight was selected within {100, 10, 1, 0.1, 0.01}. For PULA, APULA, and
CpuAUC, the best test results were reported. For all methods, we used the Adam optimizer [24] with
a learning rate of 10−4. We set a mini-batch size M to 512, a positive mini-batch size P to 10, and
the maximum number of epochs to 200. The loss on validation data was used for early stopping
to avoid overfitting. All methods were implemented using Pytorch [43] and all experiments were
conducted on a Linux server with an Intel Xeon CPU and A100 GPU.

5.4 Results

We evaluated the performance of the proposed method under the positive distribution shift with
imbalanced datasets. Table 1 shows the average test AUCs of each method on the four datasets
(their standard deviations are reported in Section E.4). The proposed method performed the best or
comparably to it in almost all cases (11 out of 12 cases). The non-adaptation methods (CE, nnPU,
puAUC, and PULA) that do not use data in the test distribution performed worse than the proposed
method in many cases. This result indicates that adaptation using data in the test distribution is
essential when there are distribution shifts. Although AnnPU, ApuAUC, and APULA used unlabeled
data in the test distribution, they also did not work well. This is because their loss functions that
naively use unlabeled data in the test distribution are not designed to maximize the performance on the
test distribution. CpuAUC that learns invariant feature representations to mitigate the distribution gap
tended to perform worse than the proposed method since the invariant features are not theoretically
guaranteed to maximize the performance under the positive distribution shift. PURR performed well
with MNIST and FashionMNIST since it is designed to adapt to the positive distribution shift and
both datasets are relatively simple data where training is easy even in imbalanced data settings. We
note that PURR used information on true class-priors on the test distribution, which is not used in
the proposed method. By maximizing the AUC, the proposed method outperformed PURR with
SVHN and CIFAR10 by a large margin, which are more complex than MNIST and FashionMNIST.
As for the results of each class-prior pair, the proposed method performed better as the positive
class-prior on the test distribution πte increased. Since unlabeled data Xte has many positive data
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Table 1: Average test AUCs with different class-prior pairs. Values in bold are not statistically
different at the 5% level from the best performing method in each row according to a paired t-test. ‘#
best’ row represents the number of results of each method that are the best or comparable to it.

Data πte Ours CE nnPU puAUC PULA AnnPU ApuAUC APULA CpuAUC PURR
MNIST 0.1 0.723 0.796 0.782 0.801 0.802 0.782 0.798 0.793 0.804 0.815

0.2 0.854 0.796 0.784 0.801 0.802 0.785 0.793 0.769 0.803 0.871
0.3 0.902 0.796 0.783 0.800 0.802 0.780 0.786 0.745 0.802 0.914

Fashion 0.1 0.787 0.932 0.825 0.937 0.954 0.772 0.920 0.939 0.943 0.920
MNIST 0.2 0.891 0.930 0.825 0.937 0.955 0.771 0.890 0.911 0.943 0.929

0.3 0.960 0.930 0.825 0.938 0.955 0.866 0.870 0.863 0.944 0.961
SVHN 0.1 0.554 0.504 0.501 0.518 0.494 0.501 0.512 0.492 0.524 0.511

0.2 0.660 0.503 0.501 0.518 0.494 0.501 0.507 0.490 0.523 0.522
0.3 0.736 0.503 0.501 0.518 0.494 0.501 0.507 0.490 0.523 0.519

CIFAR10 0.1 0.727 0.682 0.455 0.749 0.751 0.489 0.739 0.750 0.750 0.434
0.2 0.825 0.679 0.467 0.741 0.739 0.491 0.732 0.742 0.744 0.536
0.3 0.874 0.682 0.451 0.750 0.738 0.545 0.722 0.750 0.749 0.710

# best 11 2 1 3 5 1 2 4 3 5
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Figure 2: Ablation study of our loss function: average test AUCs and standard errors over different
class-priors on the test distribution πte within {0.1, 0.2, 0.3} when changing the class-prior on the
training distribution πtr. Ours w/o the second is Ours without the second term in Eq. (13).

when πte is large, the proposed method more easily extracted information on positive data from Xte

and consequently performed well.

We conducted an ablation study of the proposed method. When positive class-prior on the training
distribution πtr is small, all unlabeled data Xtr might be treated as negative data. In this case,
existing methods can be directly applied to maximize the AUC on the test distribution by using
unlabeled data in the test distribution Xte and (pseudo) negative data Xtr [45, 58, 6, 59]. This
approach is equivalent to the proposed method without the second term (or πtr = 0) in Eq. (13),
denoted as Ours w/o the second. Figure 2 shows the average test AUCs and the standard errors of the
proposed method (Ours) and Ours w/o the second when changing the value of class-prior πtr within
{0.01, 0.05, 0.1, 0.15, 0.2}. Ours consistently outperformed Ours w/o the second across all class-
priors πtr except for SVHN. As class-prior πtr is increased, the difference between the two methods
tended to become larger. This is because the assumption of Ours w/o the second (i.e., unlabeled data
Xtr are all negative data) is significantly broken when πtr is large. With SVHN, the performances of
both methods did not differ. This result suggests that it is acceptable to consider all unlabeled data as
negative data in some datasets. However, overall, these results show that the naive approximation is
generally ineffective and our theoretically grounded loss function is important even with small πtr.

Table 2: Results with estimated class-priors
on the training distribution πest

tr : average
test AUCs [%] over different class-priors
on the test distribution when training class-
prior πtr is 0.1. FMNIST is an acronym for
FashionMNIST.

Data πest
tr Ours w/ true Ours w/ est

MNIST 0.117 0.826 0.845
FMNIST 0.077 0.879 0.857
SVHN 0.078 0.650 0.652
CIFAR10 0.146 0.809 0.811

We evaluated the proposed method with estimated class-
priors on the training distribution since class-prior infor-
mation might be unavailable in practice. To estimate the
class-prior from positive and unlabeled training data,
we used the kernel embedding-based class-prior esti-
mation method [44]. Table 2 shows the results. Here,
Ours w/ true and Ours w/ est are the proposed method
using true class-prior πtr and estimated class-prior πest

tr ,
respectively. We found that true class-prior πtr = 0.1
was accurately estimated from positive and unlabeled
data in the training distribution. As a result, Ours w/
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Figure 3: Results in the case where true and input class-priors on the training distribution πtr can be
different: average test AUCs and standard errors over different class-priors on the test distribution πte

within {0.1, 0.2, 0.3} with true training class-prior πtr = 0.1 when changing the input class-prior on
the training distribution.
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Figure 4: Results in the case where true and input class-priors on the training distribution πtr can
be different when the positive distribution drastically changed: average test AUCs and standard
errors with true training class-prior πtr = 0.1 when changing the input class-prior on the training
distribution.

est and Ours w/ true mostly performed similarly. This result indicates that the proposed method
works well even when class-prior information is unavailable in the training distribution, which is
preferable in practice. Additionally, we investigated how the performance of the proposed method
changes when there is a difference between true and input class-priors on the training distribution
πtr. Here, the input class-prior is used in the loss function of Eq. (13) and the true class-prior
is used for data generation. Figure 3 shows the average test AUCs and the standard errors of the
proposed method (Ours) when changing the input class-priors. Interestingly, the performance tended
to improve when values larger than the true class-prior (0.1) were inputted in most datasets. One
reason for this result is that since there was some overlap between the types of positive data in the
test and training distributions, strengthening the influence on labeled positive data by increasing the
input class-prior in Eq. (13) improved the performance. To confirm this, we conducted additional
experiments by excluding the types of positive data from the test distribution that were used in the
training distribution (e.g., digits ‘7’ and ‘9’ were excluded from the test distribution in MNIST).
Figure 4 shows the results. As expected, the performance did not improve even with large input
class-priors.

We investigated how the performance of the proposed method changes when the number of labeled
positive data Np

tr is increased. Figure 5 shows the average test AUCs and the standard errors with
different numbers of labeled positive data. As expected, the performance of the proposed method
tended to improve as Np

tr increased. By using much information on labeled positive data in the
training distribution, the proposed method can accurately estimate the AUC on the test distribution.

We investigated the performance of the proposed method when changing the number of unlabeled
data in the test distribution in Table 3. As expected, the performance of the proposed method tended
to increase as the number of unlabeled data in the test distribution Nte increased. The proposed
method tended to outperform puAUC, which does not use unlabeled data in the test distribution, even
when Nte = 500. Since many unlabeled data are often easy to collect, the proposed method is useful
in practice.

We evaluated the modified loss function in Eq. (16) for the cases where positive, negative, and
unlabeled data in the training distribution and unlabeled data in the test distribution are available.
Table 4 shows the results. Here, the number of labeled negative data was set to 20 and other settings
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Figure 5: Average test AUCs and standard errors of the proposed method over different class-priors
on the test distribution when changing the number of labeled positive data in the training distribution
Np

tr.

Table 3: Results of the proposed method with different numbers of unlabeled data in the test
distribution : average test AUCs over different class-prior pairs πte in the test distribution within
{0.1, 0.2, 0.3} when training class-prior πtr is 0.1. ‘Base’ represents the result of puAUC that does
not use unlabeled data in the test distribution.

Nte 100 500 1000 2000 5000 Base
MNIST 0.773 0.813 0.823 0.826 0.827 0.801
Fashion MNIST 0.863 0.913 0.918 0.911 0.879 0.938
SVHN 0.516 0.579 0.616 0.626 0.650 0.518
CIFAR10 0.683 0.757 0.770 0.778 0.809 0.746

Table 4: Results when a few labeled negative data are available on the training distribution: average
test AUCs for each test class-prior. FMNIST is an acronym for FashionMNIST.

Data MNIST FMNIST SVHN CIFAR10
πte 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
α = 1.0 0.723 0.854 0.902 0.787 0.891 0.960 0.554 0.660 0.736 0.727 0.825 0.873
α = 0.999 0.727 0.875 0.904 0.816 0.939 0.947 0.542 0.662 0.743 0.731 0.838 0.870
α = 0.0 0.517 0.577 0.661 0.732 0.794 0.838 0.503 0.506 0.510 0.602 0.594 0.697

are the same as those in the previous experiments. First, the proposed method with α = 0, which
maximizes the AUC on the test distribution in Eq. (15) with labeled negative and test unlabeled data,
did not work well. This would be because the number of positive data in test unlabeled data was
small, and thus it was difficult to extract information on such positive data from unlabeled data by
using a few labeled negative data only. The proposed method with α = 0.999, which uses positive,
negative, and unlabeled data in the training distribution and unlabeled data in the test distribution,
slightly tended to perform better than that with α = 1.0, which is equivalent to the proposed method
described in Section 4.2. This result suggests that using a few labeled negative data is useful in our
framework.

6 Conclusion

In this paper, we proposed a AUC maximization method under the positive distribution shift. We
theoretically showed the AUC on the test distribution can be maximized by using positive and
unlabeled data in the training distribution and unlabeled data in the test distribution when assuming
the positive distribution shift. The derived AUC has the advantage of being simple and easy to
implement. The experiments with six real-world datasets demonstrated that the proposed method
outperformed existing methods under the positive distribution shift with imbalanced data.

7 Limitations

The proposed method performs well in the positive distribution shift. As stated in Section 1, we
can expect that the positive distribution shift must occur in many real-world applications. However,
the proposed method is not guaranteed to keep working well if different distribution shifts occur
unexpectedly (i.e., the negative-conditional density changes). To deal with this problem, methods
should be developed that can predict the types of the shift from given data.
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[38] J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cireşan, U. Meier, A. Giusti, F. Nagi, J. Schmidhuber,
and L. M. Gambardella. Max-pooling convolutional neural networks for vision-based hand
gesture recognition. In 2011 IEEE international conference on signal and image processing
applications (ICSIPA), pages 342–347. IEEE, 2011.

[39] S. Nakajima and M. Sugiyama. Positive-unlabeled classification under class-prior shift: a
prior-invariant approach based on density ratio estimation. Machine Learning, 112(3):889–919,
2023.

[40] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, et al. Reading digits in
natural images with unsupervised feature learning. In NIPS workshop on deep learning and
unsupervised feature learning, volume 2011, page 7. Granada, Spain, 2011.

[41] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge and
data engineering, 22(10):1345–1359, 2009.

[42] J.-K. Park, B.-K. Kwon, J.-H. Park, and D.-J. Kang. Machine learning-based imaging system for
surface defect inspection. International Journal of Precision Engineering and Manufacturing-
Green Technology, 3:303–310, 2016.

12



[43] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.

[44] H. Ramaswamy, C. Scott, and A. Tewari. Mixture proportion estimation via kernel embeddings
of distributions. In ICML, 2016.

[45] T. Sakai, G. Niu, and M. Sugiyama. Semi-supervised auc optimization based on positive-
unlabeled learning. Machine Learning, 107:767–794, 2018.

[46] T. Sakai and N. Shimizu. Covariate shift adaptation on learning from positive and unlabeled
data. In AAAI, 2019.

[47] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani. Towards a reliable intrusion
detection benchmark dataset. Software Networking, 2018(1):177–200, 2018.

[48] J. Shen, Y. Qu, W. Zhang, and Y. Yu. Wasserstein distance guided representation learning for
domain adaptation. In AAAI, 2018.

[49] M. Sugiyama, H. Bao, T. Ishida, N. Lu, and T. Sakai. Machine learning from weak supervision:
an empirical risk minimization approach. MIT Press, 2022.

[50] M. Sugiyama and M. Kawanabe. Machine learning in non-stationary environments: Introduc-
tion to covariate shift adaptation. MIT press, 2012.

[51] M. Sugiyama, M. Yamada, and M. C. du Plessis. Learning under nonstationarity: covariate
shift and class-balance change. Wiley Interdisciplinary Reviews: Computational Statistics,
5(6):465–477, 2013.

[52] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI, 2016.

[53] B. Sun, J. Feng, and K. Saenko. Correlation alignment for unsupervised domain adaptation.
Domain adaptation in computer vision applications, pages 153–171, 2017.

[54] N. Ueda and A. Fujino. Partial auc maximization via nonlinear scoring functions. arXiv preprint
arXiv:1806.04838, 2018.

[55] G. Wang, S. W. H. Kwok, M. Yousufuddin, and F. Sohel. A novel auc maximization imbalanced
learning approach for predicting composite outcomes in covid-19 hospitalized patients. IEEE
journal of biomedical and health informatics, 2023.

[56] G. Wilson and D. J. Cook. A survey of unsupervised deep domain adaptation. ACM Transactions
on Intelligent Systems and Technology (TIST), 11(5):1–46, 2020.

[57] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[58] Z. Xie and M. Li. Semi-supervised auc optimization without guessing labels of unlabeled data.
In AAAI, 2018.

[59] Z. Xie, Y. Liu, H.-Y. He, M. Li, and Z.-H. Zhou. Weakly supervised auc optimization: a unified
partial auc approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

[60] C. Yang, M. Zhao, C. Zhu, S. Xie, and Y. Chen. Automated detection of breast cancer metastases.
In DSInS, 2021.

[61] T. Yang and Y. Ying. Auc maximization in the era of big data and ai: A survey. ACM computing
surveys, 55(8):1–37, 2022.

[62] Z. Yang, Q. Xu, S. Bao, P. Wen, Y. He, X. Cao, and Q. Huang. Auc-oriented domain adaptation:
From theory to algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

[63] Y. Yao, T. Liu, B. Han, M. Gong, G. Niu, M. Sugiyama, and D. Tao. Rethinking class-prior
estimation for positive-unlabeled learning. In ICLR, 2021.

13



[64] Y. Ying, L. Wen, and S. Lyu. Stochastic online auc maximization. NeurIPS, 2016.

[65] Z. Yuan, Z. Guo, N. Chawla, and T. Yang. Compositional training for end-to-end deep auc
maximization. In ICLR, 2021.

[66] Z. Yuan, Y. Yan, M. Sonka, and T. Yang. Large-scale robust deep auc maximization: a new
surrogate loss and empirical studies on medical image classification. In ICCV, 2021.

[67] J. Zhang, M. F. Khan, X. Lin, and Z. Qin. An optimized positive-unlabeled learning method for
detecting a large scale of malware variants. In DSC, 2019.

[68] K. Zhang, B. Schölkopf, K. Muandet, and Z. Wang. Domain adaptation under target and
conditional shift. In ICML, 2013.

[69] T. Zhang, I. Yamane, N. Lu, and M. Sugiyama. A one-step approach to covariate shift adaptation.
In ACML, 2020.

[70] H. Zhao, R. T. Des Combes, K. Zhang, and G. Gordon. On learning invariant representations
for domain adaptation. In ICML, 2019.

14



A Impact Statements

Although the proposed method performed well, there is a possibility of misclassification in practice.
In particular, the misclassification can lead to serious incidents in cases such as cyber/physical security
and medical care, which are typical examples of imbalanced data. Therefore, this method should be
used as a support tool for humans to make a final decision.

B Proposed Method with Loss Corrections

In this section, we discuss the loss (risk) corrections commonly used in ordinary PU learning to
mitigate overfitting [25, 16]. Specifically, the loss correction is used to prevent empirical estimates of
the risk from taking negative values even when the risk never takes negative, which often leads to
overfitting.

First, we provide a summary of our results: (1) The non-negative loss correction, which is widely
used for ordinary PU learning [25, 16], is not effective in our AUC maximization framework. This
is because zero is not a tight lower bound of our expected loss. (2) When class-prior in the test
distribution πte is available, we can derive a tighter lower bound. By using this for the loss correction,
we can often enhance the performance of the proposed method. Below, we describe the details.

Non-negative loss correction. In this section, for clarity, we consider minimizing the AUC risk,

Rσ(s) := Exp∼ppte(x)Exn∼pnte(x)[f(xn,xp)], (17)

which is equivalent to maximize the AUC in Eq. (8) since AUCσ(s) = 1−Rσ(s). The minimum
value of this risk is zero. Then, the corresponding loss for Eq. (13) becomes

Lrisk(s) := Ex∼pte(x)Ex̄∼ptr(x)[f(x̄,x)]− πtrEx∼pte(x)Exp∼pptr(x)[f(xp,x)]. (18)

This loss is derived from the AUC risk with unlabeled and negative test densities, i.e.,

Lrisk(s) = (1− πtr)Ex∼pte(x)Exn∼pnte(x)[f(xn,x)]. (19)

Since the AUC risk does not take negative values, the loss should not also take negative values.
Therefore, to prevent negative values of its empirical estimate L̂risk(s), we can use the empirical loss
with the absolute value function |L̂risk(s)| for the optimization. This type of correction is successfully
used in PU learning [16] or other weakly supervised learning [34]. Table 5 shows the results of the
proposed method with |L̂risk(s)| (Ours w/ nn). The results of Ours w/ nn and the proposed method
without the loss correction (Ours) were almost identical and thus the non-negative loss correction
was not effective in our framework unlike ordinary PU learning studies [25].

The reason of the ineffectiveness of Ours w/ nn is that the non-negative constraint is insufficient/weak
in our loss (Eq. (18)). In fact, since pn

te(x) is contained in pte(x)(= πtep
p
te(x) + (1− πte)pn

te(x)),
the minimum value of the expected loss Lrisk(s) in Eq. (19) actually be greater than zero. Thus, the
empirical loss L̂risk(s) could not be sufficiently constrained with the non-negativity; the performance
of Ours w/ nn did not improve.

Note that the non-negative correction is effective in ordinary PU learning studies [25, 16]. This is
because the minimum value of the risk R−

n (g) := Ex∼pn(x)[`(g(x),−1)] used in the study [25] is
zero, where ` is a point-wise loss and g is a decision function. This creates a gap in the effectiveness
of the non-negative correction in our framework and the previous study [25].

Loss correction with class-prior in the test distribution πte. If class-prior πte is known, we can
derive a tighter lower bound of our loss Lrisk(s). Specifically, we can obtain

Lrisk(s) = (1− πtr)Ex∼pte(x)Exn∼pnte(x)[f(xn,x)] ≥ (1− πtr)(1− πte)

2
=: b > 0. (20)

Here, we used pte(x) = πtep
p
te(x) + (1 − πte)pn

te(x) and the fact that the AUC risk between the
same densities is 1/2 as described in Section 4.2. As a result, we can use |L̂risk(s)− b|+ b for the
optimization. Our method with this correction (Our w/ b) tended to enhance the performance of it
without the correction (Ours) in Table 5. However, note that Ours has the strong advantage of not
requiring the class-prior and performed better than existing methods.
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Table 5: Comparison with the proposed methods that use the loss corrections. Ours w/ nn used
the non-negative loss correction and Ours w/ b uses b = (1 − πte)(1 − πtr)/2 for the correction:
average test AUCs over different class-prior pairs πte in the test distribution within {0.1, 0.2, 0.3}
when training class-prior πtr is 0.1.

Data Ours Ours w/ nn Ours w/ b
MNIST 0.827 0.816 0.885
Fashion MNIST 0.879 0.879 0.954
SVHN 0.650 0.650 0.572
CIFAR10 0.809 0.792 0.829

Dynamics of training loss, validation loss, and test AUC. Lastly, we compared the dynamics of
training loss, validation loss, and test AUC of these methods (Ours, Ours w/ nn, and Ours w/ b)
in Figure 6. Here, the validation loss was calculated with validation PU data (i.e., PU data in the
training distribution and U data in the test distribution). As learning progressed, the training losses of
Ours and Ours w/ nn became smaller than the lower bound b = 0.315; the validation losses and test
AUCs tended to stop improving or to become worse after the training losses were below b = 0.315.
However, since the validation loss and test AUC were well correlated, Ours and Ours w/nn could
select good models by using early-stopping with the validation loss. Ours w/ b tended to maintain
good test AUCs without overfitting even when the learning is processed by evading the training loss
to take smaller values than b = 0.315.

C How to Determine the Classification Threshold

The proposed method allows us to sort data in score order. In practical use, this is beneficial in many
situations. For example, in anomaly detection, experts or operators can check data with high scores
within the cost they can spend or until anomalous data do not appear. In disease diagnosis, patients
with higher scores can be prioritized for detailed examination. In recommendation systems, products
can be presented to users in order of score. However, a classification threshold may be required
to classify positive and negative data in some situations. Below, we explain how to determine the
classification threshold.

First, we have Nte unlabeled data in the test distribution. When the true positive class-prior in the
test distribution is πte, we can regard that Nteπte positive data are included in the Nte unlabeled
data. Thus, when the Nte unlabelled data are sorted by score, the top Nteπte instances can be
considered positive (assuming this scoring is accurate), and the score of the Nteπte-th instance can be
the boundary separating positive and negative. Thus, we can use the score of the Nteπte-th instance
as the threshold. Since true prior πte is unknown, we want to estimate it and use the estimated prior
πest

te instead.

Next, we explain the procedure to obtain the estimated class-prior in the test distribution πest
te .

Specifically, we first extract negative data in unlabeled data from the training distribution by applying
(off-the-shelf) PU learning to PU data in the training distribution. Since PU data and the class-prior
in the training distribution are available in our setting, we can perform it. Then, since the negative
distribution does not change in our setting, the extracted negative data can be regarded as negative
data in the test distribution. We can estimate the class-prior in the test distribution by applying
existing class-prior estimation methods [44, 63, 15] to the extracted negative and unlabeled data in
the test distribution.

D Discussion about Negative Distribution Shift

In the main paper, we considered the positive distribution shift. Here, we consider a negative
distribution shift, i.e., pp

te(x) = pp
tr(x) but pn

te(x) 6= pn
tr(x). In this case, when positive data in

the training distribution and unlabeled data in the test distribution are available, we show that the
negative distribution shift can be addressed by using existing AUC maximization methods [45, 58, 59].
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(a) MNIST
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(b) Fashion MNIST
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(c) SVHN
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(d) CIFAR10

Figure 6: Dynamics of training loss, validation loss, and test AUC when (πtr, πte) = (0.1, 0.3). Each
column represents the results of Ours, Ours w/ nn, and Ours w/ b, respectively from left to right. The
value of b = (1− πtr)(1− πte)/2 is 0.315 for all datasets.

Specifically, in this case, the AUC in the test distribution is

AUCσ(s) = Exp∼ppte(x)Exn∼pnte(x) [f(xp,xn)] =
1

1− πte
Exp∼pptr(x)Ex∼pte(x) [f(xp,xn)] + C,

(21)

where C is a constant, and in the second equal sign, we used that pn
te(x) = 1

1−πte
[pte(x)−πtep

p
te(x)],

pp
te(x) = pp

tr(x), and the fact that the AUC between the same densities is a constant as described in
Section 4.2. This derived AUC is equivalent to that in the existing studies [45, 58, 59] and can be
maximized with test unlabeled and training positive data. Note that we do not require to know πte

since it does not affect the optimization.
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Table 6: Comparison with BPURR: average test AUCs for each test class-prior. Values in bold are
not statistically different at the 5% level from the best performing method in each row according to a
paired t-test. FMNIST is an acronym for FashionMNIST.

Data MNIST FMNIST SVHN CIFAR10
πte 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
Ours 0.723 0.854 0.902 0.787 0.891 0.960 0.554 0.660 0.736 0.727 0.825 0.873
BPURR 0.863 0.904 0.907 0.939 0.929 0.917 0.495 0.516 0.532 0.745 0.786 0.790

E Additional Experimental Results

E.1 Comparison with PURR using Class Balanced Classification Loss

In the comparison methods, PURR is the PU learning method under the positive distribution shift to
minimize the test classification risk [16]. Since the classification risk is not suitable for imbalanced
classification, we created a new method of PURR that uses the class balanced classification loss
(the balanced class rate) [6] instead of the classification risk, called BPURR. Even in this case,
BPURR requires the class-prior on the test distribution, which is usually difficult to know and is
not required in the proposed method. Table 6 shows the mean test AUC with each class-prior on
the test distribution. BPURR used the class-prior on the training distribution as that on the test
distribution. When πte = 0.1, BPURR worked well since the used class-prior was equal to the true
value. However, in other cases, BPURR performed worse than the proposed method in many cases.

E.2 Results with Small Class-priors on the Training Distribution

In the main paper, the positive class-prior on the training distribution πtr was set to 0.1. Here, we
investigated how the performance of the proposed method changes when πtr is smaller. Table 7
shows the average test AUCs of each method on the four datasets. The proposed method performed
the best or comparably to it in almost all cases (32 out of 36). As the positive class-prior on the
training distribution πtr decreased, the proposed method tended to perform well. Since the amount
of noise (positive data in the training distribution) in Xtr decreases as πtr decreases, negative data
(which is essential information to maximize the AUC on the test distribution) might be easy to extract
from Xtr when πtr is small.

E.3 Results with Tabular Datasets

We evaluate the proposed method with two tabular datasets with distribution shifts (HReadmission
and Hypertension) [14]. In HReadmission, the task is to predict the 30-day readmission of diabetic
hospital patients. Each patient is represented by a 183-dimensional feature vector. In Hypertension,
the task is a hypertension diagnosis for high-risk age. Each survey subject is represented by a
100-dimensional feature vector. We constructed the positive distribution shift using positive-shifted
data (positive ood data) and non-shifted data (positive and negative training data). The experimental
setting, such as the number of data, is the same as that in the main paper. Table 8 shows the result. The
proposed method outperformed the others. This result shows that the proposed method is effective
for tabular datasets.

E.4 Results with Standard Deviations

In the main paper, we omitted the standard deviations of results due to the limited space. Table 9
shows the mean test AUCs with the standard deviations.

E.5 F1 Score and G-mean of TPR and TNR

Although this paper focuses on maximizing the AUC since it is a representative evaluation metric for
imbalanced data, other metrics for imbalanced data exist, such as the F1 score and the G-mean of
TPR and TNR [17]. Therefore, we investigated whether the proposed method is also effective for the
F1 score and the G-mean of TPR and TNR. Unlike the AUC, the F1 score and the G-mean of TPR
and TNR require to determine the classification threshold. In this experiment, when N test data, in
which the ratio of positive data is πte, are sorted by score of each method, we regard the top Nπte
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Table 7: Average test AUCs with different class-prior pairs. Values in bold are not statistically
different at the 5% level from the best performing method in each row according to a paired t-test. ‘#
best’ row represents the number of results of each method that are the best or comparable to it.

Data πtr πte Ours CE nnPU puAUC PULA AnnPU ApuAUC APULA CpuAUC PURR
MNIST 0.01 0.1 0.871 0.813 0.724 0.814 0.811 0.786 0.805 0.803 0.818 0.895

0.01 0.2 0.923 0.813 0.724 0.814 0.811 0.786 0.798 0.783 0.817 0.948
0.01 0.3 0.953 0.813 0.724 0.814 0.811 0.788 0.792 0.757 0.817 0.957
0.05 0.1 0.741 0.806 0.768 0.807 0.808 0.782 0.802 0.800 0.811 0.871
0.05 0.2 0.869 0.806 0.772 0.807 0.808 0.794 0.796 0.775 0.811 0.921
0.05 0.3 0.936 0.806 0.767 0.807 0.808 0.789 0.790 0.755 0.811 0.943
0.1 0.1 0.723 0.796 0.782 0.801 0.802 0.782 0.798 0.793 0.804 0.815
0.1 0.2 0.854 0.796 0.784 0.801 0.802 0.785 0.793 0.769 0.803 0.871
0.1 0.3 0.902 0.796 0.783 0.800 0.802 0.780 0.786 0.745 0.802 0.914

Fashion 0.01 0.1 0.969 0.955 0.776 0.949 0.917 0.723 0.901 0.947 0.951 0.934
MNIST 0.01 0.2 0.978 0.955 0.777 0.949 0.917 0.745 0.872 0.926 0.954 0.936

0.01 0.3 0.985 0.955 0.777 0.949 0.916 0.785 0.845 0.903 0.955 0.955
0.05 0.1 0.925 0.935 0.796 0.950 0.973 0.740 0.902 0.947 0.950 0.928
0.05 0.2 0.968 0.942 0.797 0.948 0.973 0.715 0.872 0.923 0.948 0.944
0.05 0.3 0.982 0.933 0.796 0.949 0.973 0.792 0.843 0.904 0.949 0.962
0.1 0.1 0.787 0.932 0.825 0.937 0.954 0.772 0.920 0.939 0.943 0.920
0.1 0.2 0.891 0.930 0.825 0.937 0.955 0.771 0.890 0.911 0.943 0.929
0.1 0.3 0.960 0.930 0.825 0.938 0.955 0.866 0.870 0.863 0.944 0.961

SVHN 0.01 0.1 0.586 0.503 0.503 0.522 0.499 0.503 0.521 0.500 0.538 0.501
0.01 0.2 0.752 0.503 0.503 0.521 0.499 0.503 0.520 0.500 0.533 0.501
0.01 0.3 0.801 0.503 0.503 0.521 0.499 0.503 0.517 0.497 0.532 0.495
0.05 0.1 0.587 0.503 0.501 0.513 0.498 0.501 0.514 0.498 0.510 0.501
0.05 0.2 0.715 0.505 0.501 0.513 0.498 0.501 0.513 0.495 0.517 0.501
0.05 0.3 0.779 0.505 0.501 0.513 0.498 0.501 0.512 0.493 0.517 0.501
0.1 0.1 0.554 0.504 0.501 0.518 0.494 0.501 0.512 0.492 0.524 0.511
0.1 0.2 0.660 0.503 0.501 0.518 0.494 0.501 0.507 0.490 0.523 0.522
0.1 0.3 0.736 0.503 0.501 0.518 0.494 0.501 0.507 0.490 0.523 0.519

CIFAR10 0.01 0.1 0.805 0.738 0.414 0.748 0.765 0.454 0.746 0.724 0.738 0.468
0.01 0.2 0.883 0.743 0.414 0.749 0.765 0.534 0.719 0.748 0.757 0.593
0.01 0.3 0.898 0.741 0.414 0.749 0.765 0.532 0.721 0.724 0.733 0.914
0.05 0.1 0.740 0.736 0.419 0.745 0.724 0.478 0.737 0.729 0.751 0.489
0.05 0.2 0.861 0.737 0.419 0.745 0.724 0.520 0.723 0.731 0.750 0.518
0.05 0.3 0.894 0.740 0.419 0.745 0.724 0.536 0.712 0.736 0.750 0.845
0.1 0.1 0.727 0.682 0.455 0.749 0.751 0.489 0.739 0.950 0.750 0.434
0.1 0.2 0.825 0.679 0.467 0.741 0.739 0.491 0.732 0.744 0.744 0.536
0.1 0.3 0.874 0.682 0.451 0.750 0.738 0.545 0.722 0.749 0.749 0.710

# best 32 4 1 4 10 1 4 8 5 14

Table 8: Results with tabular data: average test AUCs over different class-prior pairs πte in the test
distribution within {0.1, 0.2, 0.3} when training class-prior πtr is 0.1. Boldface denotes the best and
comparable methods according to the paired t-test and the significance level of 5%.

Data Ours CE nnPU puAUC PULA AnnPU ApuAUC APULA CpuAUC PURR
HReadmission 0.747 0.529 0.562 0.502 0.519 0.531 0.492 0.495 0.511 0.695
Hypertension 0.630 0.596 0.607 0.571 0.571 0.565 0.608 0.539 0.571 0.643

data as positive and the remaining as negative. Tables 10 and 11 show the average test F1 scores
and G-means of TPR and TNR with different test and training class-prior pairs, respectively. The
proposed method tended to outperform the other methods although it maximizes the AUC. This result
may imply that AUC maximization can also help to improve other evaluation metrics for imbalanced
data.
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Table 9: Average test AUCs and standard deviations with different class-prior pairs.

Data πte Ours CE nnPU puAUC PULA
MNIST 0.1 0.723(0.094) 0.796(0.014) 0.782(0.034) 0.801(0.011) 0.802(0.020)

0.2 0.854(0.062) 0.796(0.014) 0.784(0.035) 0.801(0.010) 0.802(0.020)
0.3 0.902(0.034) 0.796(0.013) 0.783(0.035) 0.800(0.011) 0.802(0.020)

Fashion 0.1 0.787(0.091) 0.932(0.020) 0.825(0.075) 0.937(0.038) 0.954(0.030)
MNIST 0.2 0.891(0.071) 0.930(0.021) 0.825(0.075) 0.937(0.038) 0.955(0.030)

0.3 0.960(0.037) 0.930(0.020) 0.825(0.075) 0.938(0.038) 0.955(0.030)
SVHN 0.1 0.554(0.045) 0.504(0.015) 0.501(0.009) 0.518(0.027) 0.494(0.013)

0.2 0.660(0.047) 0.503(0.016) 0.501(0.009) 0.518(0.027) 0.494(0.013)
0.3 0.736(0.013) 0.503(0.015) 0.501(0.009) 0.518(0.027) 0.494(0.013)

CIFAR10 0.1 0.727(0.070) 0.682(0.090) 0.455(0.098) 0.749(0.050) 0.751(0.029)
0.2 0.825(0.048) 0.679(0.100) 0.467(0.121) 0.741(0.055) 0.739(0.047)
0.3 0.874(0.022) 0.682(0.090) 0.451(0.082) 0.750(0.050) 0.738(0.048)

Data πte APULA AnnPU ApuAUC CpuAUC PURR
MNIST 0.1 0.793(0.021) 0.782(0.035) 0.798(0.009) 0.804(0.011) 0.815(0.037)

0.2 0.769(0.017) 0.785(0.017) 0.793(0.009) 0.803(0.011) 0.871(0.014)
0.3 0.745(0.017) 0.780(0.017) 0.786(0.010) 0.802(0.010) 0.914(0.014)

Fashion 0.1 0.939(0.066) 0.772(0.073) 0.920(0.046) 0.943(0.025) 0.920(0.010)
MNIST 0.2 0.911(0.082) 0.771(0.104) 0.890(0.059) 0.943(0.026) 0.929(0.011)

0.3 0.863(0.098) 0.866(0.105) 0.870(0.049) 0.944(0.026) 0.961(0.025)
SVHN 0.1 0.492(0.013) 0.501(0.009) 0.512(0.022) 0.524(0.026) 0.511(0.009)

0.2 0.490(0.012) 0.501(0.009) 0.507(0.015) 0.523(0.026) 0.522(0.009)
0.3 0.490(0.008) 0.501(0.009) 0.507(0.017) 0.523(0.025) 0.519(0.008)

CIFAR10 0.1 0.750(0.029) 0.489(0.141) 0.739(0.055) 0.750(0.051) 0.434(0.085)
0.2 0.742(0.038) 0.491(0.139) 0.732(0.056) 0.744(0.051) 0.536(0.162)
0.3 0.750(0.044) 0.545(0.144) 0.722(0.060) 0.749(0.049) 0.710(0.197)

Table 10: Average test F1 scores with different class-prior pairs. We set training class-prior πtr to 0.1.
Values in bold are not statistically different at the 5% level from the best performing method in each
row according to a paired t-test. ‘# best’ row represents the number of results of each method that are
the best or comparable to it.

Data πte Ours CE nnPU puAUC PULA AnnPU ApuAUC APULA CpuAUC PURR
MNIST 0.1 0.395 0.445 0.432 0.443 0.425 0.418 0.437 0.383 0.445 0.469

0.2 0.637 0.548 0.534 0.551 0.541 0.504 0.538 0.454 0.553 0.645
0.3 0.750 0.618 0.603 0.621 0.621 0.581 0.608 0.525 0.629 0.782

Fashion 0.1 0.619 0.702 0.445 0.727 0.778 0.342 0.683 0.738 0.746 0.746
MNIST 0.2 0.763 0.755 0.545 0.786 0.844 0.466 0.667 0.722 0.794 0.792

0.3 0.883 0.793 0.631 0.821 0.874 0.718 0.687 0.697 0.830 0.883
SVHN 0.1 0.163 0.110 0.111 0.112 0.101 0.111 0.121 0.097 0.129 0.116

0.2 0.368 0.207 0.201 0.217 0.195 0.206 0.211 0.193 0.227 0.208
0.3 0.542 0.310 0.310 0.323 0.293 0.309 0.314 0.287 0.324 0.321

CIFAR10 0.1 0.337 0.299 0.090 0.381 0.371 0.120 0.367 0.370 0.381 0.070
0.2 0.574 0.401 0.181 0.493 0.491 0.201 0.482 0.484 0.498 0.260
0.3 0.716 0.489 0.235 0.583 0.570 0.348 0.551 0.566 0.583 0.531

# best 11 3 1 4 5 1 2 2 4 6

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claim described in the abstract and introduction accurately reflects our
contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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Table 11: Average test G-mean of TPR and TNR with different class-prior pairs. We set training
class-prior πtr to 0.1. Values in bold are not statistically different at the 5% level from the best
performing method in each row according to a paired t-test. ‘# best’ row represents the number of
results of each method that are the best or comparable to it.

Data πte Ours CE nnPU puAUC PULA AnnPU ApuAUC APULA CpuAUC PURR
MNIST 0.1 0.604 0.646 0.634 0.644 0.629 0.624 0.640 0.596 0.646 0.663

0.2 0.760 0.697 0.683 0.699 0.692 0.664 0.690 0.626 0.700 0.767
0.3 0.818 0.719 0.707 0.721 0.721 0.690 0.711 0.647 0.721 0.842

FMNIST 0.1 0.767 0.823 0.636 0.837 0.868 0.555 0.809 0.832 0.850 0.746
0.2 0.846 0.842 0.690 0.861 0.899 0.628 0.780 0.812 0.866 0.866
0.3 0.915 0.850 0.727 0.870 0.909 0.792 0.771 0.776 0.877 0.916

SVHN 0.1 0.382 0.313 0.315 0.328 0.300 0.315 0.330 0.294 0.340 0.322
0.2 0.555 0.407 0.406 0.417 0.394 0.406 0.411 0.392 0.427 0.408
0.3 0.660 0.468 0.467 0.479 0.451 0.466 0.470 0.446 0.480 0.477

CIFAR10 0.1 0.556 0.519 0.258 0.595 0.587 0.292 0.582 0.586 0.595 0.229
0.2 0.716 0.578 0.363 0.655 0.654 0.388 0.646 0.648 0.659 0.169
0.3 0.793 0.616 0.394 0.691 0.682 0.493 0.667 0.678 0.691 0.643

# best 11 3 1 4 5 1 2 2 4 6

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Section 7.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

21



3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The full sets of assumptions and proof are described in Section 4.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of the experimental settings (data, comparison methods, network
architecture, and hyperparameters) are described in Section 5.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code is proprietary. The datasets and experimental procedures are de-
scribed in Section 5. We described the pseudocode of our method in Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of the experimental settings are described in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conducted a statistical significance test (paired t-test) in tables 1, 6, and 7.
The standard deviations of Table 1 are reported in Table 9. The standard errors are reported
in all graphs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We described the computer resource in Section 5.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirmed the NeurIPS Code of Ethnics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the potential social impacts in Section A.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release such high-risk models or datasets.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Datasets used in this paper are cited in Section 5.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not provide new assets.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26


	Introduction
	Related Work
	Preliminary
	Proposed Method
	Problem Setting
	Positive Distribution Shift Adaptation
	Discussion about Class-priors
	Extension

	Experiments
	Data
	Comparison Methods
	Settings
	Results

	Conclusion
	Limitations
	Impact Statements
	Proposed Method with Loss Corrections
	How to Determine the Classification Threshold
	Discussion about Negative Distribution Shift
	Additional Experimental Results
	Comparison with PURR using Class Balanced Classification Loss
	Results with Small Class-priors on the Training Distribution
	Results with Tabular Datasets
	Results with Standard Deviations
	F1 Score and G-mean of TPR and TNR


