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ABSTRACT

Large language models (LLMs) like GPT-4 and LLaMA-3 utilize the powerful
in-context learning (ICL) capability of Transformer architecture to learn on the
fly from limited examples. While ICL underpins many LLM applications, its full
potential remains hindered by a limited understanding of its generalization bound-
aries and vulnerabilities. We present a systematic investigation of transformers’
generalization capability with ICL relative to training data coverage by defining a
task-centric framework along three dimensions: inter-problem, intra-problem, and
intra-task generalization 1. Through extensive simulation and real-world experi-
ments, encompassing tasks such as function fitting, API calling, and translation,
we find that transformers lack inter-problem generalization with ICL, but excel
in intra-task and intra-problem generalization. When the training data includes a
greater variety of mixed tasks, it significantly enhances the generalization ability of
ICL on unseen tasks and even on known simple tasks. This guides us in designing
training data to maximize the diversity of tasks covered and to combine different
tasks whenever possible, rather than solely focusing on the target task for testing.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have become foundational architecture for most modern large
language models (LLMs), such as GPT-3 (Brown et al., 2020), GPT-4 (Achiam et al., 2023), Gem-
ini (Team et al., 2023) and LLaMA (Dubey et al., 2024). One of transformer’s impressive capabilities,
in-context learning (ICL), empowers LLMs with the remarkable ability to learn on the fly from limited
test-time examples. While in-context learning forms the bedrock of numerous LLM capabilities and
applications, a key obstacle to harnessing ICL safely and reliably lies in our limited understanding of
its origins, limitations, and generalizability.

The intricate interplay of ICL with the immense and unstructured nature of raw text data in LLMs
poses a substantial analytical hurdle. To elucidate the mechanisms and capabilities of in-context
learning, researchers have explored its potential beyond the confines of language domains and
transcended the raw nature of text data. For example, Garg et al. (2022) proposes a novel training
paradigm where GPT-2 family models are trained on prompts enriched with both input and label
demonstrations, which empowers the models to emulate the behavior of the ordinary least squares
(OLS) algorithm. Ahuja & Lopez-Paz (2023) investigate the generality and limitations of transformers’
in-context learning for linear regression by contrasting them with set-based MLPs under distribution
shift, revealing stronger resilience and OLS-like performance for transformers while highlighting
vulnerabilities at extremes. Yadlowsky et al. (2023) exhibit vulnerabilities and suffer generalization
limitations for functions outside training domains, suggesting ICL capabilities are heavily reliant on
training data coverage rather than generalizable inductive biases.

Although strides have been made in elucidating the mechanisms of in-context learning, key knowledge
gaps still remain. Notably, a systematic investigation into the relationship between the boundary of

1Code is available at https://github.com/UbeCc/Generalization-of-Transformers
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in-context learning’s generalization capabilities and its training data is lacking. Furthermore, the
robustness of in-context learning within the generalization boundary under distribution shift has yet to
be thoroughly explored. Addressing these critical gaps is essential for comprehensively understanding
the potential and limitations of this powerful learning paradigm.

We use a framework that abstracts training data into distinct problems with nested tasks. By leveraging
this task-centric representation, we aim to systematically investigate the generalization of in-context
learning along 3 dimensions: (1) inter-problem generalization, the ability to learn and perform on
entirely new problems not encountered during training, (2) intra-problem generalization, the capacity
to fully grasp familiar tasks after receiving minimal, targeted knowledge in training as guidance, and
(3) intra-task generalization, the ability to perform on the trained tasks with similar test samples.
We design a series of experiments to investigate generalization along these 3 dimensions. To ensure
the consistency of experimental conclusions with the dimension distinctions and the validity of
comparisons, we conduct function-fitting experiments on models including GPT-2 (Radford et al.,
2019) and LLaMA-3 (Dubey et al., 2024), as well as real-world experiments involving Tool calling
and translation tasks on LLaMA-2 (Touvron et al., 2023) and Qwen-2 (Yang et al., 2024).

Our findings are as follows.

1. Transformers fail to show inter-problem generalization yet succeed in achieving strong intra-
problem generalization during ICL. Even with minimal, targeted knowledge in training as guidance,
the model learns to generalize to other tasks within the problem.

2. Contrary to expectations, an abundance of pretraining data does not necessarily confer upon a
model the capacity of inter-problem generalization. Our experiments with LLaMA-3 reveal that
similar to a randomly initialized GPT-2 model, the model struggles to generalize across problems
despite demonstrating exceptional intra-problem and intra-task generalization capabilities with ICL.

3. In real-world experiments, incorporating a combination of different tasks into the training data not
only improves the generalization ability of the model’s ICL on unseen tasks, but in some scenarios, it
can even enhance performance on known, simple tasks.

4. In real-world experiments, the inclusion of a wider variety of tasks in the training data can amplify
the improvement achieved by ICL on complex or hard tasks. Even if the target task is not present in
the training data, a model exposed to a greater diversity of tasks during training can quickly learn
novel tasks through ICL and achieve better performance.

2 PRELIMINARIES

2.1 NOTATIONS

Define f(x;ϕ) as a mapping from R to R, parameterized by ϕ. A function class F , is specified
as a tuple (f,Φ), encompassing all functions parameterized by elements from the set Φ, that is,
F = (f,Φ) = {f(x;ϕ) : ϕ ∈ Φ}. Let G denote the set comprising all such function classes F .
Definition 2.1 (In-context Learning Task). For a given function class F ∈ G, in-context learning
tasks involve presenting a model such that for any f(x;ϕ) ∈ F and xi ∈ R, i = 1, 2, . . . , n + 1,
given a prompt sequence

s = (x1, f(x1;ϕ), x2, f(x2;ϕ), . . . , xn, f(xn;ϕ), xn+1), (1)
the model could accurately predict ŷ, an estimate of f(xn+1;ϕ).
Definition 2.2 (In-context Learning Problem). For a given set of function classes T ⊆ G, in-context
learning problem requires a model, such as a transformer, to successfully address all in-context
learning tasks corresponding to each F ∈ T .

Furthermore, we define Tbase and Tcom intuitively in order of increasing complexity. We define Tbase
as the set of base functions, and Tcom as the set of combinations of multiple base functions from
Tbase. Subsequently, we present the generalization task and problem defined by F and T .

2.2 RESEARCH QUESTIONS ON IN-CONTEXT LEARNING GENERALIZATION

Our objective is to investigate the generalization capability of models in in-context learning at various
levels. To this end, we pose the following specific research questions.
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Figure 1: Illustration of inter-problem, intra-problem, and intra-task generalization. Here we use
single function fitting as the base problem Tbase, and addition and multiplication as the combination
problems Tcom for example.

Research Question 2.1 (Inter-problem Generalization). Given two distinct in-context learning
problems Tbase, Tcom ⊆ G, where Tbase ̸= Tcom, can a model trained on tasks from Tbase generalize
to tasks in Tcom?

Research Question 2.2 (Intra-problem Generalization). Given two different in-context learning
problems Tbase, Tcom ⊆ G, where Tbase ̸= Tcom, and a subset of tasks F1,F2, . . . ,Fk ∈ Tcom, if the
model is trained on tasks from both Tbase and this subset {F1,F2, . . . ,Fk} of Tcom, can it generalize
to all the tasks in Tcom?

Research Question 2.3 (Intra-task Generalization). Given an in-context learning task F and a set of
functions {f(x;ϕ1), f(x;ϕ2), . . . , f(x;ϕn)} ∈ F , if a model is trained on these specific tasks, can
it generalize to encompass all the functions in F?

To facilitate understanding of the aforementioned definitions and research questions, we provide
concrete definitions of generalization problem and generalization task based on function fitting tasks
below for example.

2.3 CONSTRUCTING SPECIFIC IN-CONTEXT LEARNING TASKS AND PROBLEMS

As shown in Figure 1, to evaluate models’ capability concerning Research Questions 2.1, 2.2, and 2.3,
we devise specific in-context learning tasks and problems based on function fitting tasks.

An Example of Base Function In-context Learning Problem We select a set of n0 base function
classes {F (0)

1 ,F (0)
2 , . . . ,F (0)

n0 }, constituting the base function in-context learning problem Tbase.
These function classes are defined as:

F (0)
1 = {ϕ sin(x) : ϕ ∈ R}, F (0)

2 = {ϕ cos(x) : ϕ ∈ R},

F (0)
3 = {ϕ sin(2x) : ϕ ∈ R}, F (0)

4 = {ϕ cos(2x) : ϕ ∈ R}, · · · .
(2)

We use sinusoidal functions as base functions and leverage the inherent advantage of orthogonality
possessed by them to verify the model’s ability to accurately fit them. This orthogonality property
ensures that sinusoidal functions of different frequencies are mutually perpendicular in function
space, minimizing interference and preventing inaccurate evaluation due to function overlap.

Additive/Multiplicative/Compositional Combination In-context Learning Problems From
Tbase, we generate more complex problems using combination operations on functions. Specifically,
for any in-context learning tasks F1 and F2, we define the additive, multiplicative, and compositional
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Table 1: SE of models tested on the convex combinations of base functions. Random indicates
the SE of random sampling within the function’s codomain and serves as a measurement of SE.
Range indicates the range in each sequence to calculate SE. s(·) and c(·) represent sin(·) and cos(·),
respectively. MeanB and MeanC indicate the mean SE of base functions and combinations of base
functions, respectively. ComAll indicates the combination of all base functions.

Range Model s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

1-10 Baseline 4.38e-3 2.43e-3 5.34e-3 6.49e-3 4.66e-3 6.01e-3 6.18e-2 8.93e-2 8.96e-2 4.39e-2 1.25e-2 2.18e-1 7.96e-2
CFL 5.20e-3 3.50e-3 3.61e-3 4.55e-3 4.22e-3 1.35e-2 7.37e-3 1.59e-2 4.80e-2 2.86e-2 1.05e-2 3.09e-2 2.21e-2

11-20 Baseline 1.38e-5 9.77e-6 3.38e-5 5.58e-5 2.85e-5 2.20e-3 6.65e-2 8.44e-2 8.43e-2 2.04e-2 5.63e-3 2.06e-1 6.71e-2
CFL 2.78e-5 1.01e-5 7.81e-5 8.12e-5 4.93e-5 5.30e-3 1.76e-4 9.22e-4 1.39e-2 4.41e-3 1.88e-3 4.05e-3 4.39e-3

21-30 Baseline 7.98e-6 6.62e-6 3.44e-5 4.40e-5 2.36e-5 1.86e-3 4.25e-2 6.90e-2 5.59e-2 9.57e-3 4.92e-3 2.07e-1 5.58e-2
CFL 2.13e-5 6.78e-6 7.41e-5 6.70e-5 4.23e-5 3.13e-3 1.29e-4 3.46e-4 6.20e-3 1.41e-3 7.43e-4 1.23e-3 1.88e-3

31-40 Baseline 8.84e-6 6.60e-6 3.42e-5 4.32e-5 2.39e-5 1.71e-3 3.94e-2 6.08e-2 4.70e-2 7.82e-3 4.77e-3 1.84e-1 4.94e-2
CFL 1.87e-5 6.02e-6 7.32e-5 6.58e-5 4.12e-5 2.66e-3 1.17e-4 2.27e-4 5.27e-3 9.45e-4 5.38e-4 6.96e-4 1.49e-3

- Random 4.03e-2 4.27e-2 4.22e-2 4.14e-2 4.17e-2 9.27e-2 9.80e-2 9.45e-2 1.01e-1 9.10e-2 9.72e-2 3.59e-1 1.56e-1

operations on tasks as:

F1 + F2 = {x 7→ f1(x;ϕ1) + f2(x;ϕ2) : f1 ∈ F1, f2 ∈ F2},
F1 ×F2 = {x 7→ f1(x;ϕ1)× f2(x;ϕ2) : f1 ∈ F1, f2 ∈ F2},
F1 ◦ F2 = {x 7→ f1(f2(x;ϕ2);ϕ1) : f1 ∈ F1, f2 ∈ F2}.

(3)

For an operator ⋄ ∈ {+,×, ◦}, the respective in-context learning problem is formulated as:

T ⋄
com = {F1 ⋄ F2 : F1,F2 ∈ Tbase}. (4)

The problems T +
com, T ×

com, and T ◦
com are thus termed as additive, multiplicative, and compositional

combination in-context learning problems, respectively.

3 GENERALIZATION OF ICL ON FUNCTION FITTING

In this section, we investigate the generalization ability of ICL on function-fitting tasks and study the
research questions raised in the previous section.

Previous studies (Garg et al., 2022; Akyürek et al., 2022) have demonstrated the ability of transform-
ers to select the correct function from one or two function classes based on in-context examples.
However, their ability to generalize to convex combinations of these learned functions within the
training data remains limited (Yadlowsky et al., 2023). This difficulty arises because convex combi-
nations constitute a new function class, requiring additional knowledge beyond solely the constituent
functions. Moreover, real-world applications rarely involve separate training and test regimes with
distinct function composition patterns. Instead, models are typically trained and deployed on data
containing diverse, intermingled function (task) combinations. Hence, our investigation focuses on
the more practical and generalizable scenario: the ability of transformers to extrapolate from specific
function combinations to new, unseen combinations.

In Sections 3.1, 3.2, and 3.3, We use randomly initialized GPT-2-Standard as our base model, which is
a relatively small model enough to reveal the results. In Section 3.4, we utilize a pretrained LLaMA-3
model for finetuning on function fitting to investigate whether large-scale pretraining influences
the generalization of ICL. Since inputs are not limited by natural language, we directly perform
function fitting on GPT-2 at the embedding level to enable floating-point calculations. Large language
models map tokenized sentences into embeddings and then perform computations at the same level.
Therefore, the underlying principle of function fitting is naturally consistent with the behavior of
large language models. Our empirical results further confirm this connection.

3.1 GENERALIZATION TO CONVEX COMBINATIONS OF LEARNED FUNCTIONS

In the context of function approximation, convex combinations serve as the basis for representing
functions. Here we explore Question 2.1, 2.2, and 2.3 with additive combination ICL problems, i.e.,
T +
com. In our base setting, we use four base functions, i.e., n0 = 4 unless otherwise stated.

We denote the model trained on the convex combination of functions as the ComFuncLearner, while
the model trained without convex combinations serves as the Baseline. The ComFuncLearner model
leverages all base functions in its training alongside a specific convex combination of F (0)

1 and F (0)
3 ,
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Figure 2: Function curves on the convex combinations of base functions fitted by the Baseline and
ComFuncLearner models after ICL. Com stands for combination and the weights of base functions
are randomly sampled and labeled on the figure.

i.e., F1+F3. To maintain parity in the training set size and the number of seen functions, the Baseline
model is trained on all base function classes and an additional one, F (0)

5 = {ϕ sin(3x) : ϕ ∈ R}.
Thus the Baseline model is trained on samples generated by functions sampled from {F (0)

1 , F (0)
2 ,

F (0)
3 , F (0)

4 , F (0)
5 } while the ComFuncLearner on {F (0)

1 , F (0)
2 , F (0)

3 , F (0)
4 , F (0)

1 + F (0)
3 }. The

performance of the Baseline model on base function classes answers the Question 2.3 intra-task
generalization, while its performance on combinations of base function classes with T+ answers the
Question 2.1 inter-problem generalization. The performance of the ComFuncLearner on combinations
of base function classes with T+ answers the Question 2.2 intra-task generalization.

We report the average squared error (SE) of the predicted values compared to ground-truth labels and
averaged across 128 independent runs. Each data point thus represents the average SE computed over
128 test samples. As shown in Table 1, when tested with functions sampled from familiar classes seen
in the training data, both models attain low squared error (SE) after 10 in-context examples. However,
when presented with unseen convex combinations, the ComFuncLearner model exhibits a remarkable
improvement in generalization ability within the ICL paradigm, even with only a single exposure
to a convex combination pattern during training. Specifically, the ComFuncLearner consistently
outperforms the Baseline model across all convex combinations, except for the combination of
F (0)

1 = {ϕ sin(x) : ϕ ∈ R} and F (0)
2 = {ϕ cos(x) : ϕ ∈ R}. In this combination, both models

achieve low SEs (less than 0.002 after 20 in-context examples). This observed convergence could
potentially be due to the close functional similarity between the two base functions, making their
individual contributions subtle within the convex mixture.

To gain deeper insights into the model’s internal function representation, we employ a progressive
visualization method. Following each exposure to N in-context examples (i.e., samples), we fully
traverse the X-axis space, feeding each x as the input for the N+1st sample and recording the predicted
y. This approach effectively captures the model’s evolving understanding of the underlying function
as it accumulates training data. Figure 2 presents the function curves learned after 39 examples,
revealing the gradual refinement of the model’s predictions as it progressively learns function. Please
see Appendix D.1 for more visualization results.

For the individual basis functions, both models closely approximate the true curves across the entire
X-axis range. However, for the convex combinations, the Baseline model exhibits significantly
poorer performance compared to the ComFuncLearner model. While the ComFuncLearner accurately
approximates almost all convex combinations, the Baseline model’s fits are often suboptimal. Please
note that the ComFuncLearner model does not learn the combination of F (0)

3 = {ϕ sin(2x) : ϕ ∈ R}
and F (0)

4 = {ϕ cos(2x) : ϕ ∈ R}, and the combination of all base functions. Thus this indicates that
when we select convex combination as the operation on base functions, the transformers show
intra-problem generalization (the ComFunclearner model fits the combinations it never learned in
the training data) yet fail to achieve inter-problem generalization (the Baseline model fails to fit
most combinations of base functions).

For a detailed experimental setup, please refer to Appendix B.1. Except for convex combinations,
we also observe remarkably similar conclusions regarding the model’s ability to learn multiplicative
combinations of functions as shown in the following section.
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Table 2: SE of the ComFuncLearner and Baseline model tested on the product combinations of base
functions. CFL1, CFL2 and CFL4 indicate ComFuncLearner trained with 1, 2, and 4 combinations
during training, respectively.

Range Model s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

1-10

Baseline 3.50e-3 3.65e-3 5.34e-3 5.29e-3 4.45e-3 2.87e-2 1.89e-2 2.99e-2 2.10e-2 2.85e-2 1.44e-2 4.14e-2 3.21e-2
CFL1 4.04e-3 2.71e-3 4.01e-3 4.87e-3 3.91e-3 2.83e-2 5.90e-3 4.28e-2 1.45e-2 2.65e-2 1.98e-2 3.59e-2 2.48e-2
CFL2 4.85e-3 3.46e-3 2.35e-3 3.23e-3 3.47e-3 4.96e-3 2.31e-2 3.52e-2 1.37e-2 2.42e-2 4.85e-3 2.27e-2 1.84e-2
CFL4 3.42e-3 2.63e-3 4.13e-3 4.19e-3 3.59e-3 5.95e-3 5.94e-3 2.61e-2 1.35e-2 6.01e-3 7.16e-3 2.70e-2 1.31e-2

11-20

Baseline 4.54e-5 1.17e-5 2.13e-5 6.46e-5 3.61e-5 2.81e-2 9.07e-3 2.61e-2 1.35e-2 1.69e-2 7.65e-3 4.87e-2 2.52e-2
CFL1 2.77e-5 9.16e-6 4.04e-5 5.06e-5 3.23e-5 8.57e-3 9.40e-5 1.78e-2 5.78e-3 1.96e-2 3.23e-3 2.16e-2 1.10e-2
CFL2 3.53e-5 5.23e-6 1.93e-5 8.22e-5 3.61e-5 4.49e-5 1.22e-2 1.15e-2 8.44e-3 1.59e-2 1.30e-4 1.36e-2 8.85e-3
CFL4 4.08e-5 1.18e-5 4.34e-5 6.92e-5 4.12e-5 5.09e-5 1.88e-4 6.92e-3 5.27e-3 1.07e-3 2.55e-4 1.59e-2 4.11e-3

21-30

Baseline 3.28e-5 7.39e-6 1.58e-5 4.18e-5 2.43e-5 2.67e-2 7.69e-3 3.29e-2 8.85e-3 1.56e-2 5.70e-3 5.16e-2 2.13e-2
CFL1 1.94e-5 6.75e-6 3.23e-5 3.42e-5 2.38e-5 4.45e-3 5.41e-5 9.81e-3 3.05e-3 1.45e-2 1.68e-3 1.42e-2 6.83e-3
CFL2 2.48e-5 3.28e-6 1.17e-5 6.98e-5 2.73e-5 3.47e-5 1.03e-2 8.66e-3 6.21e-3 1.35e-2 9.78e-5 1.06e-2 7.05e-3
CFL4 2.33e-5 6.69e-6 1.56e-5 3.36e-5 2.03e-5 2.76e-5 1.16e-4 2.99e-3 3.39e-3 4.23e-5 1.08e-4 1.38e-2 2.94e-3

31-40

Baseline 2.52e-5 7.24e-6 1.61e-5 3.71e-5 2.17e-5 2.69e-2 7.76e-3 2.29e-2 8.86e-3 8.52e-3 5.21e-3 5.06e-2 1.98e-2
CFL1 1.82e-5 6.75e-6 3.65e-5 3.07e-5 2.31e-5 3.16e-3 4.99e-5 7.58e-3 2.84e-2 1.16e-2 1.59e-3 9.88e-3 5.24e-3
CFL2 2.44e-5 3.26e-6 1.13e-5 6.31e-5 2.61e-5 2.71e-5 8.78e-3 6.57e-3 5.52e-3 1.33e-2 7.83e-5 9.02e-3 6.21e-3
CFL4 1.79e-5 5.44e-6 1.25e-5 2.49e-5 1.57e-5 2.02e-5 9.73e-5 2.23e-3 2.77e-3 3.40e-5 8.77e-5 7.01e-3 2.24e-3

- Random 4.25e-2 4.14e-2 4.68e-2 4.81e-2 4.47e-2 4.87e-2 5.01e-2 4.28e-2 4.59e-2 5.14e-2 5.28e-2 4.80e-2 1.98e-1

Figure 3: Function curves on the product combinations of base functions fitted by the Baseline and
ComFuncLearner models after ICL.

3.2 GENERALIZATION TO PRODUCTS OF LEARNED FUNCTIONS

Moving beyond convex combinations, we explore the generalization of transformers when select-
ing product combinations (i.e., T ×

com) as the operation on base function classes. Unlike convex
combinations, where the model typically aligns with one constituent function to maintain control
over squared error (SE), product multiplication allows more freedom in fitting individual function
classes, potentially leading to greater divergence from the product true curve. We also consider the
combinations of F (0)

1 = {ϕ sin(x) : ϕ ∈ R} and F (0)
3 = {ϕ sin(2x) : ϕ ∈ R} as the extra function

classes to train the ComFuncLearner model here.

Table 2 reveals the Baseline model’s persistent struggle to accurately predict product combinations
within the ICL. Despite having witnessed only one combinatorial pattern, the ComFuncLearner model
consistently surpasses the Baseline in the combination problem. However, compared to the substantial
improvement observed in convex combination experiments, the ComFuncLearner’s advantage in
product combinations is less pronounced. We hypothesize that this disparity arises from the inherent
difficulty of fitting product combinations compared to convex combinations.

To investigate this further, we progressively increase the number of product combinations presented
to the ComFuncLearner model in subsequent experiments (1, 2, 3, and 4). Specifically, we report
the results of the ComFuncLearner model combinational function classes including {F (0)

1 ×F (0)
3 ,

F (0)
1 ×F (0)

2 , F (0)
2 ×F (0)

4 , F (0)
3 ×F (0)

4 }. Please note that we only add more patterns of combinations
to the training yet the number of all training samples and training steps are fixed the same for the
Baseline model, the ComFuncLearner model with 1, 2, and 4 combinations in its training.

This manipulation aims to determine whether exposure to a wider range of combinatorial patterns
during training could enhance the model’s generalization ability to unseen product combinations.
As shown in Table 2, we observe a consistent decrease of SE as the number of product combina-
tion patterns presented to the ComFuncLearner model in the training increases. For example, we
observe the mean SE among 21-30 points drop from 0.0213 (the Baseline model) to 0.00294 (the
ComFuncLearner with 4 combination patterns in its training data). Figure 3 presents the function
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Table 3: SE of the ComFuncLearner and Baseline model tested on the compositional combinations of
base functions.

Range Model s(x) c(x) s(3x) s(x)&c(x) MeanB s(2x)&c(x) s(2x)&c(2x) s(2x)&s(3x) s(3x)&c(x) c(2x)&c(3x) c(2x)&s(x) c(2x)&s(2x) MeanC

1-10

Baseline 2.56e-3 2.94e-3 3.35e-3 4.19e-3 3.26e-3 3.09e-2 3.65e-2 3.48e-2 3.97e-2 3.91e-2 1.45e-2 3.99e-2 3.36e-2
CFL1 2.50e-3 2.09e-3 2.85e-3 2.13e-3 2.39e-3 3.18e-2 3.69e-2 3.64e-2 3.89e-2 4.06e-2 1.29e-2 4.22e-2 3.43e-2
CFL2 2.19e-3 2.52e-3 3.07e-3 2.25e-3 2.51e-3 2.99e-2 3.54e-2 3.69e-2 3.73e-2 4.24e-2 1.62e-2 4.07e-2 3.47e-2
CFL4 2.69e-3 2.71e-3 3.58e-5 2.39e-3 2.84e-2 3.14e-2 2.96e-2 3.58e-2 3.39e-2 3.84e-2 1.19e-2 3.89e-2 3.11e-2

11-20

Baseline 6.41e-6 4.43e-6 1.69e-5 6.41e-5 2.34e-5 3.18e-2 3.83e-2 3.17e-2 3.56e-2 4.19e-2 7.55e-3 4.43e-2 3.30e-2
CFL1 1.33e-5 4.69e-6 3.21e-5 5.93e-6 1.47e-5 3.43e-2 3.44e-2 3.19e-2 3.68e-2 4.61e-2 6.63e-3 4.36e-2 3.34e-2
CFL2 1.64e-5 2.18e-6 2.97e-5 3.11e-6 1.43e-5 3.46e-2 3.49e-2 3.58e-2 4.08e-2 4.72e-2 7.71e-3 4.28e-2 3.48e-2
CFL4 2.32e-6 2.29e-6 9.63e-6 2.19e-6 4.75e-6 2.27e-2 2.44e-2 2.69e-2 2.32e-2 3.04e-2 4.75e-3 2.94e-2 2.31e-2

21-30

Baseline 5.56e-6 4.20e-6 1.70e-5 6.40e-5 2.31e-5 2.99e-2 3.60e-2 2.87e-2 3.46e-2 4.01e-2 6.90e-3 4.49e-2 3.16e-2
CFL1 1.29e-5 4.99e-6 3.31e-5 6.30e-6 1.43e-5 3.17e-2 3.23e-2 2.99e-2 3.89e-2 4.38e-2 6.10e-3 4.79e-2 2.48e-2
CFL2 1.58e-5 1.73e-6 2.84e-5 2.44e-6 1.39e-5 3.29e-2 3.25e-2 3.35e-2 4.15e-2 4.81e-2 6.34e-3 4.50e-2 3.42e-2
CFL4 1.51e-6 1.82e-6 8.89e-6 1.49e-6 4.35e-6 1.67e-2 1.94e-2 1.97e-2 1.79e-2 2.40e-2 3.85e-3 2.45e-2 1.80e-2

31-40

Baseline 5.43e-6 4.04e-6 1.72e-5 6.82e-5 2.43e-5 3.14e-2 3.66e-2 2.99e-2 3.85e-2 4.23e-2 7.54e-3 4.39e-2 3.29e-2
CFL1 1.24e-5 4.65e-6 3.05e-5 6.18e-6 1.38e-5 3.28e-2 3.16e-2 3.02e-2 3.88e-2 4.64e-2 6.67e-3 4.53e-2 3.31e-2
CFL2 1.45e-5 1.64e-6 2.97e-5 2.26e-6 1.34e-5 3.24e-2 3.35e-2 3.46e-2 3.94e-2 4.94e-2 7.12e-3 4.29e-2 3.42e-2
CFL4 1.21e-6 1.96e-6 8.94e-6 1.43e-6 3.67e-6 1.43e-2 1.89e-2 1.75e-2 1.43e-2 2.17e-2 4.16e-3 1.96e-2 1.58e-2

- Random 4.56e-2 4.81e-2 4.23e-2 4.54e-2 4.54e-2 6.23e-2 5.82e-2 6.40e-2 6.12e-2 5.99e-2 6.52e-2 6.85e-2 6.28e-2

Figure 4: Function curves on the compositional combinations of base functions fitted by the Baseline
and ComFuncLearner models after ICL.

curves learned after 39 examples and reveals a distinct trend: as the number of seen combinations in
training increases, the model’s fit to the objective function steadily improves. With 4 combinations
observed, the ComFuncLearner model’s fit closely approximates the function’s true curve. This
suggests that transformers fail to achieve inter-problem generalization but show intra-problem
generalization, which can be improved as the number of learned combinations increases.

3.3 GENERALIZATION TO COMPOSITIONS OF LEARNED FUNCTIONS

We then investigate the generalization of transformers when selecting composition combinations
as the operation on base functions. Compared to convex combinations and products of functions,
compositional combinations (i.e.,T ◦

com) present a significantly greater challenge due to a critical
distinction: the distribution of input to the outer function is dynamically transformed by the inner
function, creating additional complexity for analysis and optimization.

To further investigate the relationship between generalization capabilities and training patterns, we
progressively increase the number (1, 2, 3, and 4) of compositional combinations presented to the
ComFuncLearner model from combinational function classes including {F (0)

1 ◦ F (0)
3 , F (0)

1 ◦ F (0)
2 ,

F (0)
2 ◦ F (0)

4 , F (0)
3 ◦ F (0)

4 } in subsequent experiments. CFL1 has seen the combination F (0)
1 ◦ F (0)

3 .
CFL2 has seen F (0)

1 ◦ F (0)
3 and F (0)

1 ◦ F (0)
2 . While CFL4 has seen all four function pairs. As shown

in Table 3 and Figure 4, While ComFuncLearner’s improvement on compositional combinations is
not as significant as on convex or product combinations compared to the Baseline, its SE decreases
notably as the number of encountered combinations increases. We believe this is due to the nature of
compositional combinations. Since the output of the inner function in a composite function serves
as the input for the outer function, the input distribution for the outer function changes significantly
compared to the non-composite case, making it difficult for the model to fit the composite function
well. We discuss the impact of input distribution shifts on ICL generalization in Appendix C.

3.4 GENERALIZATION OF PRETRAINED LLAMA-3 ON FUNCTION FITTING

To investigate the impact of extensive pretraining data on model generalization, we finetune the
pretrained LLaMA-3 model for function-fitting and evaluate its performance with the composition
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Figure 5: The fitted curves of LLaMa-3 on composition combinations of learned functions (absolute
value functions −|x| and quadratic function x2).

combination of functions following the setting in Section 3.3. Detailed experimental procedures are
shown in Appendix B.2.

As shown in Figure 5 and Appendix D.2, our findings provide compelling evidence that while
finetuned LLaMA-3 exhibits exceptional proficiency in intra-problem and intra-task generalization,
it notably struggles with inter-problem generalization. In more precise terms, the model’s ability
to learn via ICL is contingent upon prior exposure during finetuning and novel combinations of
functions that are absent in the finetuning data cannot be acquired through ICL. However, if the model
has been exposed to a limited number of combinatorial forms during finetuning, it demonstrates
the capacity to generalize and learn other types of combinatorial forms via ICL. This implies that
despite its extensive pretraining on massive datasets, the model has not fully acquired the ability
to transfer knowledge and apply learned patterns to dissimilar problem domains, i.e., from
question-answering problems to function-fitting. However, incorporating a small amount of function
composition data into the finetuning dataset can stimulate the model’s ability to handle new problems.
This suggests that the diversity of finetuning data and its representativeness for application tasks
is crucial for activating the knowledge acquired by the model during pretraining.

4 GENERALIZATION OF ICL ON REAL-WORLD EXPERITMENS

To ensure the real-world relevance of our findings, we investigate the generalization capabilities of
transformers with ICL on complex, real-world tasks. Our primary focus is on tool-calling tasks for
pretrained models and translation tasks for models trained from scratch. Unless otherwise stated, the
results reported in this section are the average of three independent runs.

4.1 TOOL-CALLING

It is challenging to assess the generalization ability of LLMs on novel tasks, as they are typically
pretrained and supervised finetuned (SFT) on massive text corpora. To address this, we selected tool-
calling tasks, which differ significantly from the question-answering tasks commonly encountered by
LLMs. Tool-calling tasks offer a high degree of controllability and comparability, making them ideal
for delineating the boundaries of LLMs’ generalization capabilities across problems and tasks where
LLMs’ initial performance has considerable room for improvement (Qin et al., 2023).

We categorized Tool-calling tasks into single-API calls and multi-API calls. Single-API calls refer to
tasks that require only a single invocation to fulfill the instructions in the prompt, while multi-API
calls necessitate considering the combined use of APIs to achieve more complex functionalities.
Mirroring the definitions of generalization problem and task, we define single-API calls as the basic
generalization problem Tbase, and the combination of APIs as the composite generalization problem
Tcom. This allows the Baseline model to be trained only on the basic generalization problem, while
ComFuncLearner is trained on both the basic and composite generalization problems. To ensure a fair
comparison, we guarantee that the Baseline and ComFuncLearner are trained on the same number of
samples and that ComFuncLearner has not encountered any of the API combination forms present in
the test data. Further experimental details can be found in the Appendix B.3.

The results are in Table 4. When both are based on LLaMA-2 and trained on the same number of
samples, incorporating ICL can easily surpass the results of ToolLLaMA (Qin et al., 2023). Compared
to the Baseline model, ComFuncLearner with ICL demonstrates a significant boost in performance on
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Table 4: API-calling accuracy on ToolBench. Following Qin et al. (2023), we report the results of I1-inst,
I1-tool, I2-inst, I2-Cat, I3-Inst. During training, I1, I2, I3 denote single-tool, intra-category multi-tool, and
intra-collection multi-tool instructions. For inference, data is divided into levels: Inst. for new instructions on
trained tools, Tool for new tools in known categories, and Cat. for new tools in new categories. Tools in the
same category share a common theme (e.g., sports, finance), while those in the same collection have similar
functionality (e.g., database manipulation, web crawling). Baseline refers to model trained with single-tool
examples while CFL with multi-tool examples. ICLs means 16-shot evaluation with single-API examples and
ICLm with multi-API examples. The difference highlighted refers to the improvement of ICL.

Model I1-Inst. I1-Tool I1-Cat. Averages I2-Inst. I2-Cat. I3-Inst. Averagem

ToolLLaMA1 25.0 29.0 33.0 29.0 30.5 31.5 25.0 29.0
Baseline 24.2 27.5 32.6 28.1 26.2 25.6 20.6 24.1

CFL 25.2 28.7 32.8 28.9 30.5 31.7 24.8 29.0

Baseline+ICLs 26.9 29.3 33.4 29.8 (+1.8) 27.0 26.6 22.5 25.4 (+1.3)
Baseline+ICLm 26.6 28.5 33.6 29.5 (+1.4) 28.1 27.5 23.6 26.3 (+2.2)

CFL+ICLs 26.8 31.2 34.7 30.9 (+2.0) 31.8 33.1 27.3 30.7 (+1.7)
CFL+ICLm 26.2 31.3 33.4 30.3 (+1.4) 33.4 34.1 28.4 32.0 (+3.0)

1 ToolLLaMA is the SOTA based on LLaMA-2-7b. The result is reported in Qin et al. (2023)

multi-API tasks. This aligns with the conclusion of the function fitting experiment: the transformer’s
ICL exhibits better intra-problem generalization ability but weaker inter-problem generalization.
Moreover, ComFuncLearner even outperforms the Baseline on some single tasks. This indicates that,
in real-world experiments, training with complex and mixed data can enhance the generalization
ability of the model in ICL, and even raise its upper limit on simple tasks. In other words, the
diversity of generalization problems learned by the model can improve its intra-problem and
intra-task generalization in ICL. These findings guide us to utilize mixed-problem data more
extensively for transformer training, rather than being limited to single, simple tasks even when the
target task is simple. Training data with mixed problems not only improves the model’s cross-problem
generalization ability but also enhances its performance on originally simple tasks.

4.2 TRANSLATION

As existing LLMs are typically applied to natural language-related tasks, we also validate the practical
implications of our findings on translation tasks. To more clearly demonstrate the boundaries of
generalization problems and tasks, and to avoid interference from unknown large-scale pretraining
corpora on our conclusions, we pretrain randomly initialized models with the same architecture of
Qwen2-1.5B (Yang et al., 2024; Bai et al., 2023) on the CC100 (Conneau, 2019) dataset, limiting the
task language scope to English and German.

Building upon the models pretrained on CC100, we train three models on WMT14 corpus for the
translation task: Baselinee2d, Baselined2e, and ComFuncLearner with translation from English to
German data, translation from German to English data, and translation from mixed data to English
data, respectively. To generate generalization problems distinct from the single-language to single-
language translation task, we randomly replace a portion of the words in the sentence to be translated
with the other language while preserving the overall semantic meaning (e.g., in English-to-German
translation, we randomly replace some English words with German) as the mixed translation data.
To ensure a fair comparison, we guarantee the following: 1. All models are trained on the same
amount of tokens; 2. ComFuncLearner has not encountered the specific problem during training that
it will face during testing (e.g., if the test requires translating a mixed English and German sentence
into English, ComFuncLearner will only have seen data for translating mixed English and German
sentences into German during training). Detailed procedures are provided in the Appendix B.4.

The results are shown in Table 5. On the complex task involving mixed-language input, ComFun-
cLearner achieves noticable better results than Baseline, and the improvement after ICL is even more
pronounced, consistent with the conclusions in the previous sections. On the simple task, the Baseline
finetuned with the exact same test target achieves the best results, indicating that the intra-problem
and inter-problem generalization ability of ICL is still lower than the intra-task generalization ability.

To further investigate what additional knowledge ComFuncLearner learns through ICL compared to
the Baseline model, we further divide the WMT14 and WMT19 test set into easy and hard sets. The
hard set contains 500 samples, which we name WMT500. The detailed selection procedure can be
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Table 5: BLEU score performance on WMT14
de2en test set. Pretrained indicates the model pre-
trained on CC100 and other models are finetuned
based on it. BL indicates Baseline models.

Model mix2en mix2de de2en en2de

Pretrained 28.06 24.26 18.05 17.24
BLe2d 32.19 27.55 23.45 24.81
BLd2e 33.31 28.10 25.94 22.37

CFLmix 35.74 30.89 23.10 21.83

BLe2d+ICL 33.57 28.45 25.02 25.78
BLd2e+ICL 34.74 29.12 26.73 23.02

CFLe2d+ICL 37.69 – 24.36 –
CFLd2e+ICL – 32.65 – 22.45

Figure 6: The improvement of BLEU score with
ICL on WMT500 dataset of hard samples. The
rectangles in lighter colors represent the results
without ICL, while the darker rectangles represent
the improvement brought by ICL.

BLe2d BLd2e CFLmix

12

14

16

12.44
11.85

14.68
=1.35

=1.41

=2.15
mix2de

BLe2d BLd2e CFLmix
9

10

11

12

10.98

10.34 10.13

=0.64
=0.77

=0.65

en2de

found in Appendix B.4. The experimental results on WMT500 are shown in Figure 6. We observe
that on simple tasks, such as translating sentences composed of a single language into another single
language with simple sentence structures and shorter lengths, the improvement brought by ICL is
less significant, and the gap between ComFuncLearner and Baseline is not substantial. However, on
hard tasks, such as those involving mixed-language input or complex sentence structures, ICL can
bring more significant improvements to ComFuncLearner, while the Baseline shows considerably
less improvement. This indicates that during the training phase, if the model has been exposed to
a wider range of problems, it significantly raises the upper limit of improvement achievable
through ICL, thereby realizing generalization capabilities on complex tasks.

5 DISCUSSION

It is important to note that our discussions in the main text focus on the generalization capabilities
that ICL can achieve based on the training data. This implicitly assumes no distribution shift between
the samples in ICL and the test data. However, in practical applications, this assumption is not easily
satisfied. We often cannot obtain data that perfectly matches the distribution of the test samples,
and even samples directly collected from the application scenario can exhibit distribution shifts
due to factors such as temporal changes and selection bias. Therefore, we further investigate the
generalization ability of transformer-based models when there is a discrepancy between the data
distribution of ICL and the test samples in Appendix C.

6 CONCLUSION

To systematically investigate the generalization of transformers with ICL, we defined a task-centric
framework along three dimensions: inter-problem, intra-problem, and intra-task generalization.
Through extensive experiments including both simulated and real-world experiments, we showed that
transformers could achieve intra-task and intra-problem generalization, but failed on inter-problem
generalization. In other words, while exposure to diverse families of basis functions during training
hinders the Baseline models’ ability to learn combinations of these functions through subsequent in-
context examples, the ComFuncLearner model trained on a single specific combination demonstrated
remarkable flexibility. These models readily generalize to other unseen combinations of the same
basis functions, suggesting that transformer models possess the inherent ability for in-context task
acquisition, but require specific training data configurations to unlock this potential. This finding
highlights the importance of carefully crafted training data that provides targeted "inspiration" for the
model to effectively learn and be applied to complex tasks.
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A RELATED WORKS

In-context learning In-context learning is a unique capability exhibited by LLMs (Chowdhery
et al., 2023; Touvron et al., 2023), allowing LLMs to learn from a few examples dynamically
without explicit weight updates. It has been tapped to improve accuracy and speed for model
training (Wortsman et al., 2022; Chen et al., 2021; Lester et al., 2021; Min et al., 2021), while related
to model safety (Meade et al., 2023). With rapid expansion of LLMs, recent studies have discovered
that ICL ability can be boosted via pretraining (Chen et al., 2022; Min et al., 2022). Meanwhile,
researchers have been employing transformers into real-world tasks. Radosavovic et al. (2023) and
Radosavovic et al. (2024) treat humanoid locomotion as a POMDP (Partially observable Markov
decision process), and thus it can be regarded as a next token prediction task. They use in-context
learning techniques based on transformer architecture and find it the most robust locomotion predictor,
highlighting the significance of figuring out what matters to in-context learning.

Howerver, In-context learning remains a black box. Following Garg et al. (2022), several researchers
interpreted ICL as implicit finetuing on Transformer, including induction heads (Olsson et al., 2022),
gradient descent (Dai et al., 2023), implicit Bayesian inference (Xie et al., 2022), highlighting the
differences from traditional supervised learning (Caruana & Niculescu-Mizil, 2006). Li et al. (2023)
formalized ICL as algorithm learning problem, exploring its generalization bounds.

Upon those explanations, what affect the performance of in-context learning matters. Dong et al.
(2022); Liu et al. (2023); Zhao et al. (2021), Liu et al. (2023) suggest that ICL is sentsitive to almost
all components of the prompt (inputs, outputs, formatting, input-output mapping, order of examples
and so on). Based on transformers, researchers carried out experiments to study its behaviors. Liu
et al. (2021); Lu et al. (2021); Nguyen & Wong (2023) tested on various In-context examples. To
further explore the mechanism of In-context learning, Yadlowsky et al. (2023) validated stability of
ICL under distribution shifts. Ahuja & Lopez-Paz (2023) investigated the ability of transformer about
its generalization capabilities, preliminarily establishing the generalization ability of transformers.

B IMPLEMENTATION DETAILS OF TRAINING PROCEDURES

B.1 GPT-2 EXPERIMENTS SETUP

Data Construction For the weight function ϕ, we initially sample from a standard normal distri-
bution N(0, 1) and clip it to the range [−1, 1]. Since both convex combinations and products can
yield values exceeding the range of base functions, we increase the weights for a fixed proportion of
functions in the baseline.

Specifically, we define Mi = max(|Vi,min|, |Vi,max|) and M = max
i

Mi, where Vi,min is the

calculated minimum value by L-BFGS-B (Limited-memory BFGS with Bounds) and Vi,max the
same.

For convex combinations, we apply the following to 20% of the functions: ϕ = n · |M |. And for

products, we employ a similar approach. We choose ϕ =

∏
i Mi

M
. While this scale-up does not

exactly match the true value range of the product, it prevents the baseline model from treating the
product operation as a completely out-of-distribution (OOD) task.

To ensure our generated input sequence approximately obeys the gaussian distribution and also

bounded, we generate the prompt sequence following two steps. Firstly, we sample x0 ∼ N (0,
k

2
·Id),

where we set k = π. Then, we clip the sampled value in x0 within the interval [−k, k]. Because the
Cumulative Distribution Function (CDF) value of Standard Normal Distribution Φ(1) ≈ 95.45% is
pretty close to full probability, the probability that the sampled value in x0 being clipped is little.
Therefore, the resulting distribution of the value in xi still resembles the gaussian distribution, and is
bounded within the interval [−π, π].

For additional in-context examples x̂i, we generate two candidate samples x+ = x0 +
3k

2
and

x− = x0−
3k

2
respectively, where x0 ∼ N (0,

k

4
· Id). We randomly select between x+ and x− with
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equal probability to obtain x̂i. We can approximately conclude that x̂i obeys the mixture distribution
of two guassian distribution and x̂i ∈ [−2π,−π] ∪ [π, 2π]. We take (x̂i, f̂(xi) = f(xi) + 10) as
input tuple.

To avoid inaccuracies in analyzing the model’s generalization ability caused by mutual approximation
between base functions after weighting, we ensure that the expected function values of different base
functions have significant differences. In the function fitting experiments (Sections 3.1, 3.2, and 3.3),
we added a bias to each base function. Specifically, the whole equations for sine and cosine functions
are:

f(x) = ϕsin(β ∗ x) + (−1)β ∗ β/2, (5)

f(x) = ϕcos(β ∗ x) + (−1)β ∗ β/2, (6)

where β = 1, 2, . . ..

For the label noise in Section C.1, we randomly generate ϵ ∼ N(0, s · I), where s is the strength of
label noise.

Training Procedure We use randomly initialized GPT-2-Standard as our base model. The hyper-
parameters are as follow. During training, we set batch_size = 128, learning_rate = 5e − 5. For
convex and product combination, we train 50k steps in total, and we train 100k steps for composition
combination as the loss is harder to converge. Following Garg et al. (2022), we set dropout = 0
because the model will see each input once as we resample at each step.

Parameter Value

Embedding size 256
#Layers 12
#Heads 8
Total Parameters 9.5M

B.2 LLAMA-3 EXPERIMENTS SETUP

We use LLaMA-3 8B as our base model, and run 10k steps of supervised finetuning. Each of the SFT
data contains 19-shot examples.

Parameter Value

batch_size 32
optimizer AdamW
learning_rate 5e-6
weight_decay 0.001
max_grad_norm 0.3
warmup_ratio 0.03
lr_scheduler_type constant

To generate our data, we firstly select a group of x, and each of x contains 20 integers from (−40, 40).
We then calculate the corresponding y and get a group of (x, y) pairs. We take them using the style
shown in Figure 7 as our examples. And we use instruction shown in Figure 8 to control the answer
format.

B.3 DETAILS OF TOOL-CALLING MODEL TRAINING

Following Qin et al. (2023), we finetune LLaMA-2-7B with ReAct (Yao et al., 2022) template.
Details of ToolEval can be found in Qin’s original paper. The dataset consists open-sourced data for
training ToolLLaMA and our augmented data using their original pipeline. We also synthesise 0.5k
single-turn data and 1k multi-turn data using gpt-4o for validation. As we need to perform in-context
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Figure 7: In-context exapmle for pretrained model generalization. We give 19 pairs before the final x.
The sampled function is f(x) = −11|x|.

Example of Shots

Example: (-7, -70), (34, -340), (0, 0), (2, -20), (11, -110), (31, -310), (38, -380), (12, -120), (23, -230),
(14, -140), (30, -300), (-25, -250), (33, -330), (-30, -300), (-24, -240), (16, -160), (6, -60), (13, -130),
(-28, -280), (-31,)

Prediction: <Answer>-310</Answer>

Figure 8: Instruction we used for evaluation. We notice that adding task description will reduce
square error. We constrain the answer to <Answer></Answer> as the model will output unrelated
words without regularization.

Instruction

Now you are a proficient function learning, who is a master of learning a math function from (x, y)
pairs. Your task is to learn a function from (x, y) pairs from given points and predict a y’ given x’.

Specifically, we’ll give you {n_points-1} points (x, y) pairs, and you need to predict the y
value of the {n_points}-th point.
Please note that you should answer your prediction wrapped in <Answer></Answer> like <An-
swer>41</Answer>.

Here are examples. Points formatted as (x, y):

learning, we set the model’s context length to 24588 using the extended llama-22 . Furthermore, we
omitted tokens that repeats the output context, and found no performance drop but more in-context
examples. Figure 12 shows the flow of tool calling.

During training phase, we use a learning rate of 5 × 10−5, a warpup ratio of 4 × 10−2 and a total
batch size of 128. We train the model for two epochs and select the model checkpoint with the best
performance on our validation set.

B.4 DETAILS OF TRANSLATION MODEL TRAINING

Pretraining Due to limited computation resource, we use the architecture of Qwen2-1.5B and
randomly initialize the parameters. We select 2M pieces of English and German corpus from CC1003

relatively as our pretraining data. We use a learning of 1× 10−5, a warmup ratio of 2× 10−2, a total
batch size of 192 and 3 epochs in total.

Supervised Finetuning As the open-sourced translation corpus are usually short, which are not
suitable for SFT training, we choose a two-stage training convention: 1. Use 2k instruction data from
Huggingface45 for each language 2. Use 0.3M translation training data from WMT14-en2de6. We
noticed that many pieces of data in WMT14 are just a word or phrase, so we filter out text T for
which len (T ) < 50. We keep the learning rate as 1 × 10−5, a warmup ratio of 4 × 10−2, a total
batch size of 128. The epoch number is set to be 3.

2https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/
3https://data.statmt.org/cc-100/
4https://huggingface.co/datasets/WizardLMTeam/WizardLM_evol_instruct_

70k
5https://huggingface.co/datasets/AgentWaller/german-oasst1-qa-format
6https://huggingface.co/datasets/wmt/wmt14
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Figure 9: Examples for bilingual translation task (English and German). We use 5-shot examples to
guide the model to output results directly, otherwise it will output greeting words and difficult to get
rid of.

Few-shot example for en2de translation task

Translate the English into German.

Input: Allotment holders cultivate the soil of former farmers.
Output: Kleingärtner bewirtschaften den einstigen Grund von Bauern.

...

Input: The oldest official map of Munich brings captivating stories to light.
Output: Die älteste offizielle Karte Münchens fördert spannende Geschichten zu Tage.

Input: It is annoying when geographical maps are not up-to-date.
Output:

Few-shot example for de2en translation task

Übersetzen Sie das Deutsche ins Englische.

Importieren: Kleingärtner bewirtschaften den einstigen Grund von Bauern.
Exportieren: Allotment holders cultivate the soil of former farmers.

...

Importieren: Die älteste offizielle Karte Münchens fördert spannende Geschichten zu Tage.
Exportieren: The oldest official map of Munich brings captivating stories to light.

Importieren: Es nervt, wenn Landkarten nicht aktuell sind.
Exportieren:

Figure 10: Examples for mixed translation task (English and German). We use few-shot examples to
guide the model to just output the translated sentence. As the model is not fully trained, we cannot
avoid greeting words in this setting. So we manually eliminate abnormal result during test phase.

Few-shot example for mix2en translation task

Here is a sentence mixed of English and German. Translate the sentence into English.

Input: Es sind policies und Maßnahmen und corresponding schedules aufzustellen oder weit-
erzuentwickeln, z.B. für die improvement der Energieeffizienz bei der Nutzung und production
von Energie, für die Erhöhung des Anteils der Kraft-Wärme-Kopplung und die use erneuerbarer
Energieträger sowie für die reduction der Emissionen in den Bereichen transport und agriculture.
Output: Policies and measures and appropriate timetables should be established or strengthened, e.g.,
for the improvement of energy efficiency in the energy use and production, for increasing the share of
combined heat and power generation and use of renewable energy sources, and for the reduction of
emissions by the transport and agriculture sectors.

...

Input: Der wording der opinion ist in Anlage I enthalten.
Output:
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Figure 11: Prompt for mixed corpus generation from English.

Few-shot example for mix2en translation task

Your task is to replace random English phrases from the given text with equivalent German phrases.
Ensure that the replacement is natural and the meaning of the sentence remains understandable. Keep
the rest of the text in English.

Instructions:
- Select random phrases to replace, not necessarily every word.
- Maintain the overall readability of the sentence.
- Ensure that the German words are grammatically appropriate in the context of the English sentence.

# Example1
Input: I went to the supermarket yesterday and bought some apples, oranges, and bananas.
Output: I went to the Supermarkt yesterday and bought some Äpfel, oranges, and Bananen.

# Example2
Input: The weather was great, so we decided to go hiking in the mountains.
Output: Das Wetter war großartig, also beschlossen wir, in den Bergen wandern zu gehen.

# Example3
Input: She works as a teacher in a local school, and she loves her job.
Output: She works as a Lehrerin in a local Schule, and she loves her job.

# Task
Input: Knowledge is power, and with great power comes great responsibility.
Output:

Dataset Construction In order to analyze the effect of ICL more deeply, we sample 500 sentences
from the combination of WMT14 and WMT197 en2de test set called WMT500. For each translation
task, We firstly filtered out sentences which length are below 20 as they are often just a word or
phrase. We then use bert-score8 package to evaluate the difficulty of a sentence. We then sample
400 sentences with lowest bert-score for Baselinee2d, Baselined2e and CFLmix and deduplicate them.
Finally, we randomly sample 500 sentences from them.

B.5 EXTRA EVALUATION RESULTS FOR TRANSLATION TASK

We provide results using BLEU score in 5. Here we give the full evaluation results for our translation
task.

BLEUScore BLEU Score is a precision-based evaluation metric that measures the overlap between
a candidate translation and one or more reference translations. It focuses on n-gram matches while
penalizing overly short translations through a brevity penalty. It is calculated as follows:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
, (7)

where:

• pn is the precision of n-gram matches between the candidate translation and the reference
translations:

pn =
Number of matched n-grams

Total number of n-grams in the candidate translation
. (8)

7https://huggingface.co/datasets/wmt/wmt19
8https://pypi.org/project/bert-score/
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Figure 12: An example for multi-tool calling task. The user gives an instruction and the model will
do CoT (Chain of Thought) to solve the problem. If the tool manipulation fails, the model will retry
until reaching the limit of context length. As there are repeated information (annotated in red), we
omit the redundant information for token compression.

Example for multi-tool calling task

Thought: I need to search for Python developer jobs in California using the Indeed Jobs
API. This will help me gather information about available job opportunities for the job fair.
Additionally, I need to fetch the details of a specific job with the ID 138024 using the Open To Work Re-
mote API. This will provide me with more information about the job and help me make a better decision.

Action: searchjobs_for_indeed_jobs_api
Action Input: { "location": "California", "keyword": "Python developer", "offset": 0 }
Observation: {
"response": "Successfully retrieved Python developer job listings for California. Here are the first 3
results:
1. Job Title: Python Developer
Company: ABC Company
Location: San Francisco
Description: We are looking for a skilled Python developer to join our team.
Requirements: Strong knowledge of Python, experience with data analysis, and proficiency in data
visualization.
2. Job Title: Senior Python Developer
Company: XYZ Corporation
Location: Los Angeles
Description: We are seeking a senior Python developer to lead our team.
Requirements: Strong leadership skills, experience with Python, and knowledge of data science.
3. Job Title: Python Developer
Company: DEF Inc.
Location: San Diego
Description: We are looking for a Python developer to join our team.
Requirements: Strong knowledge of Python, experience with web development, and proficiency in data
analysis."
}

Action: get_one_job_for_open_to_work_remote_api
Action Input: { "is_id": 138024 }
Observation: {
"response": "Successfully retrieved details for job ID 138024:
Job Title: Python Developer
Company: ABC Company
Location: San Francisco
Description: We are looking for a skilled Python developer to join our team.
Requirements: Strong knowledge of Python, experience with data analysis, and proficiency in data
visualization."
}

Action: Finish
Action Input: { "return_type": "give_answer", "final_answer": "Here are some Python developer job
opportunities in California:{JOB LISTED ABOVE (OMITTED FOR BRIEFNESS)}}
Observation: {"error": "Tool input parse error...", "response": ""}
Thought: I have found some Python developer job opportunities in California. Here are a few
examples:
{JOB LISTED ABOVE (OMITTED FOR BRIEFNESS)}

Action: Finish
Action Input: { "return_type": "give_answer",
"final_answer": "Here are some Python developer job opportunities in California:{JOB LISTED
ABOVE (OMITTED FOR BRIEFNESS)}" }
Observation: {"response":"successfully giving the final answer."}
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Table 6: BLEU score performance on WMT14 de2en test set. Pretrained indicates the model
pretrained on CC100 and other models are finetuned based on it. BL indicates Baseline models.

Model mix2en mix2de de2en en2de

Pretrained 28.06 24.26 18.05 17.24
BLe2d 32.19 27.55 23.45 24.81
BLd2e 33.31 28.10 25.94 22.37

CFLm2d 34.25 31.68 23.32 22.15
CFLm2e 35.74 30.89 23.10 21.83
CFLe2d 37.02 – 24.36 –
CFLd2e – 31.83 – 22.37

BLe2d+ICL 33.57 28.45 25.02 25.78
BLd2e+ICL 34.74 29.12 26.73 23.02

CFLm2d+ICL 34.98 32.35 23.47 22.74
CFLm2e+ICL 36.27 31.66 23.59 22.29
CFLe2d+ICL 37.69 – 24.36 –
CFLd2e+ICL – 32.65 – 22.45

• wn is the weight assigned to the n-gram precision (typically wn = 1
N , equally distributed).

• BP is the brevity penalty, which accounts for the length difference between the candidate
translation and the reference translations:

BP =

{
1 if c > r,

exp(1− r
c ) if c ≤ r,

(9)

where c is the length of the candidate translation and r is the effective reference length
(usually the closest length to c among all references).

For reproducibility, we use sacrebleu package for evaluation. Results are shown at Table 6.

BERTScore BERTScore is a semantic evaluation metric that computes the similarity between a
candidate translation and reference translations using contextualized embeddings from pre-trained
models like BERT. It is calculated as follows:

• Given a candidate sentence C = {c1, c2, . . . , cm} and a reference sentence R =
{r1, r2, . . . , rn}:

1. Tokenize C and R and transform them into contextualized embeddings C =
{c1, c2, . . . , cm} and R = {r1, r2, . . . , rn} using a pre-trained BERT model.

2. Compute the cosine similarity between each pair of embeddings:

sim(ci, rj) =
ci · rj

∥ci∥∥rj∥
. (10)

• For each token in the candidate sentence C, find the maximum similarity with any token in
the reference sentence R:

Prec(C,R) =
1

m

m∑
i=1

max
j∈{1,...,n}

sim(ci, rj). (11)

• Similarly, for each token in the reference sentence R, find the maximum similarity with any
token in the candidate sentence C:

Rec(C,R) =
1

n

n∑
j=1

max
i∈{1,...,m}

sim(ci, rj). (12)

• Compute the harmonic mean (F1 score) of precision and recall:

BERTScore(C,R) = F1 = 2 · Prec(C,R) · Rec(C,R)

Prec(C,R) + Rec(C,R)
. (13)

For reproducibility, we use bert_score package for evaluation. Results are shown at Table 7.
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Table 7: Bertscore(F1) performance on WMT14 de2en test set. Pretrained indicates the model
pretrained on CC100 and other models are finetuned based on it. BL indicates Baseline models.

Model mix2en mix2de de2en en2de

Pretrained 91.23% 83.15% 69.90% 70.32%
BLe2d 91.97% 84.23% 71.46% 72.57%
BLd2e 92.83% 84.21% 73.42% 71.24%

CFLm2d 92.10% 85.69% 71.13% 71.74%
CFLm2e 92.55% 85.07% 71.01% 71.53%
CFLe2d 92.74% – 73.93% –
CFLd2e – 85.60% – 73.11%

BLe2d+ICL 92.16% 84.67% 71.93% 73.14%
BLd2e+ICL 93.45% 84.85% 73.85% 71.80%

CFLm2d+ICL 92.68% 86.58% 71.39% 72.00%
CFLm2e+ICL 93.38% 85.76% 71.44% 71.98%
CFLe2d+ICL 93.29% – 74.01% –
CFLd2e+ICL – 86.03% – 73.56%

Table 8: GPT-4o evaluation on WMT14 De2En test set. Pretrained indicates the model pretrained on
CC100 and other models are finetuned based on it. BL indicates Baseline models.

Model mix2en mix2de de2en en2de

Pretrained 8.58 8.12 6.85 6.57
BLe2d 9.04 8.65 7.84 8.21
BLd2e 9.12 8.40 8.38 8.02

CFLm2d 8.98 9.04 7.65 7.92
CFLm2e 9.24 8.59 7.59 7.85
CFLe2d 9.15 – 8.36 –
CFLd2e – 9.11 – 8.28

BLe2d+ICL 9.10 8.84 8.06 8.69
BLd2e+ICL 9.23 8.62 8.50 8.17

CFLm2d+ICL 9.08 9.14 7.89 8.21
CFLm2e+ICL 9.26 8.84 7.77 8.10
CFLe2d+ICL 9.22 – 8.76 –
CFLd2e+ICL – 9.31 – 8.34

LLM-as-a-Judge Measuring the semantic similarity between two languages before and after
translation has relied heavily on rule-based and statistical approaches. However, these methods often
struggle to capture deeper semantic relationships and contextual nuances. We aim to leverage the
semantic understanding capabilities of large language models, which excel at capturing contextual
meaning and complex linguistic relationships.

Let Cij represent the classification score assigned by the model for the i-th case in the j-th repetition,
where i ∈ {1, 2, . . . , N} (total number of cases) and j ∈ {1, 2, 3} (number of repetitions). The
final score for the i-th case, denoted as Si, is computed as the average of the scores across the three
repetitions:

Si =
1

k

k∑
j=1

Cij , ∀i ∈ {1, 2, . . . , N}. (14)

The overall performance score, Savg, is then calculated as the average of the scores across all cases:

Savg =
1

N

N∑
i=1

Si =
1

kN

N∑
i=1

k∑
j=1

Cij . (15)

Specifically, we categorize translation performance into five categories and make LLM to perform
the classification task. We take k=3, which means we repeat the process three times for each case,
and take the average as final score. You can find the prompt at Figure 14 and results at Table 8
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Table 9: SE of the ComFuncLearner and Baseline model tested on the product combination of base
functions under label noise. The product combinations used via training phase is F (0)

1 and F (0)
3 . Str.

indicates the standard deviation of noise. P and F indicate partial ICE and all of ICE are with noisy
labels, respectively.

Model Str. Range s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

Baseline

0 - 5.62e-5 8.81e-6 3.84e-5 6.45e-5 4.23e-5 2.12e-2 7.85e-3 1.07e-2 2.26e-2 1.35e-2 1.35e-3 1.27e-2 1.28e-2
1 P 2.89e-2 1.76e-2 2.23e-2 2.36e-2 2.30e-2 4.57e-2 3.46e-2 5.70e-2 2.43e-2 3.92e-2 4.35e-2 5.89e-2 4.33e-2
1 F 3.22e-2 2.53e-2 2.58e-2 3.14e-2 2.87e-2 3.89e-2 3.80e-2 4.31e-2 2.89e-2 3.64e-2 3.91e-2 4.14e-2 3.79e-2
2 P 4.03e-2 3.32e-2 3.17e-2 3.14e-2 3.62e-2 3.89e-2 4.90e-2 5.98e-2 3.71e-2 4.96e-2 5.34e-2 6.30e-2 5.16e-2
2 F 3.53e-2 3.31e-2 3.24e-2 3.44e-2 3.38e-2 3.70e-2 3.76e-2 4.01e-2 3.49e-2 3.81e-2 3.81e-2 3.91e-2 3.79e-2

CFL1

0 - 3.24e-5 1.34e-5 5.96e-5 6.31e-5 4.27e-5 1.06e-2 4.80e-5 3.57e-3 6.82e-3 3.41e-3 1.01e-2 8.71e-4 5.05e-3
1 P 1.79e-2 1.35e-2 1.28e-2 1.82e-2 1.56e-2 3.06e-2 2.27e-2 4.31e-2 1.44e-2 2.65e-2 3.10e-2 5.13e-2 3.14e-2
1 F 2.22e-2 1.91e-2 1.86e-2 2.58e-2 2.15e-2 3.12e-2 3.05e-2 3.48e-2 2.06e-2 2.86e-2 3.16e-2 3.76e-2 3.07e-2
2 P 2.97e-2 2.64e-2 2.47e-2 2.58e-2 2.89e-2 3.12e-2 3.82e-2 4.75e-2 2.58e-2 4.04e-2 4.01e-2 5.29e-2 4.05e-2
2 F 3.08e-2 2.77e-2 2.87e-2 3.29e-2 3.01e-2 3.41e-2 3.25e-2 3.51e-2 3.01e-2 3.33e-2 3.49e-2 3.61e-2 3.37e-2
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Figure 13: Function curves on the product combinations of base functions fitted by the Baseline and
ComFuncLearner models after ICL under label noise, where the standard deviation of noise is 2. The
product combination used via training is F1 and F3. The two figures on the left are under the partial
noise, and full noise on the right.

Figure 14: Prompt for llm-as-a-judge.

Few-shot example for mix2en translation task

Evaluate the semantic similarity between the following two sentences and provide a score between 1
and 10. Use the following criteria:

- **1**: The sentences are completely unrelated, with no semantic connection.
- **2-3**: The sentences are almost unrelated, with very little semantic similarity.
- **4-5**: The sentences share some similarity, but their overall meaning is quite different.
- **6-7**: The sentences are semantically similar, though there are some notable differences.
- **8-9**: The sentences are very similar, with only slight differences in meaning.
- **10**: The sentences are identical in meaning, with no semantic differences.

Please provide the score wrapped in <Score></Score> directly. Do not add any greeting
words and analysis!

# Example:
## Input
Sentence 1: Ich habe heute Morgen Kaffee getrunken.
Sentence 2: I drank coffee this morning.
## Output
<Score>9</Score>

# Task
## Input
Sentence 1: The movie was so engaging that we didn¡¯t notice the time passing.
Sentence 2: Der Film war so fesselnd, dass wir die Zeit nicht vergingen bemerkten.
## Output:
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C GENERALIZATION UNDER DISTRIBUTION SHIFTS BETWEEN ICL AND TEST
SAMPLES

Table 10: SE of the ComFuncLearner and Baseline model tested on the convex of base functions
under label noise. Str. indicates the standard deviation of noise. P and F indicate partial ICE and all
of ICE are with noisy labels, respectively.

Model Str. Range s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) Com_All MeanC

Baseline

0 - 5.64e-5 2.57e-5 6.95e-5 1.41e-4 7.31e-5 5.29e-3 1.32e-1 2.64e-1 1.26e-1 7.66e-2 7.98e-3 3.53e-2 9.25e-2
1 P 5.33e-2 2.26e-2 1.67e-2 3.70e-2 3.24e-2 1.75e-2 9.95e-2 1.69e-1 1.70e-1 8.25e-2 2.65e-2 3.44e-1 1.30e-1
1 F 6.25e-2 3.23e-2 2.53e-2 4.57e-2 4.21e-2 2.30e-2 1.06e-1 1.16e-1 1.80e-1 1.81e-1 1.12e-1 3.66e-2 1.49e-1
2 P 1.23e-1 6.73e-2 4.16e-2 1.06e-1 8.21e-2 1.77e-1 3.72e-1 4.10e-1 1.74e-1 4.47e-2 3.23e-1 7.71e-1 2.83e-1
2 F 2.23e-1 1.10e-1 8.74e-2 1.65e-1 1.46e-1 6.47e-2 2.87e-1 4.77e-1 6.57e-1 3.39e-1 6.94e-2 1.31e0 4.58e-1

CFL

0 - 7.83e-5 2.64e-5 1.88e-4 1.95e-4 1.22e-4 1.53e-2 6.45e-4 2.11e-2 1.24e-2 4.03e-2 2.76e-3 1.02e-2 1.72e-2
1 P 8.59e-2 7.38e-3 4.41e-3 7.32e-3 6.95e-3 9.78e-3 1.02e-2 2.35e-2 3.59e-2 2.08e-2 2.31e-2 4.52e-2 1.83e-2
1 F 1.22e-2 7.74e-3 7.83e-3 9.05e-3 9.21e-3 8.19e-3 1.39e-2 1.39e-2 2.71e-2 3.70e-2 2.12e-2 1.17e-2 2.53e-2
2 P 7.55e-3 4.63e-3 3.02e-3 5.94e-3 5.29e-3 6.03e-3 1.49e-2 2.02e-2 4.22e-2 4.48e-2 4.96e-3 3.17e-2 1.36e-2
2 F 6.54e-2 3.07e-2 3.61e-2 4.30e-2 4.368e-2 2.28e-2 7.86e-2 1.20e-1 1.53e-1 8.05e-2 3.17e-2 3.14e-1 1.14e-1

Upon our investigation in the main text, we explore the inter- and intra-problem generalization of
transformers with ICL, i.e., the performance of the model in ICL scenarios where the distribution
of in-context examples (ICE) differs from the target test data. In real-world applications, the ICE
provided to the model may not perfectly reflect the target application’s data distribution. Therefore, a
crucial question arises: how do biased input or noisy labels within ICL impact the intra-task, intra-,
and inter-problem generalization of transformers?

We consider three critical scenarios when ICL is biased: (1) label noise within ICE, (2) distribution
shifts in input data between ICE and test samples, and (3) the combined effect of distribution shifts
and noisy labeling. We aim to investigate how these challenges influence the model’s ability to fit
known functions and generalize to unseen function combinations. This may help to understand the
model’s robustness and susceptibility to various forms of data uncertainty for assessing its real-world
applicability in scenarios where perfect data alignment is often unattainable.

C.1 LABEL NOISE

We explore the impact of noisy labels within ICE on the efficacy of ICL. Following Ahuja & Lopez-
Paz (2023), we add randomly generated noise ϵ ∼ N(0, I) to the outputs (labels) of ICE, where I is
the strength of noise and we set it to 1 and 2 in our experiments.

To investigate the effects of varying degrees of label corruption, we implemented two noise injection
strategies: partial addition and full addition. In the partial addition setting, 10 noisy samples were
introduced within the ICE, while the remaining samples maintained their original, unbiased labels.
Conversely, the full addition strategy involved contaminating all ICE with noisy labels.

Table 9 and 10 shows the SE of the Baseline and ComFuncLearner model at the 40th point with
noisy ICE, where each model is fed 39 ICE and predicts the 40th output. Figure 13 shows the
curves the models learn after 39 ICE. They show a significant negative impact of label noise on the
generalization ability of both models, particularly in the fitting of base functions. This suggests that
the presence of inaccurate labels disrupts the models’ intra-task and intra-problem generalization.

Moreover, we find a critical aspect of ICL: surprisingly high sensitivity to relatively few noisy
samples. Introducing as few as 10 out of 39 ICE with label noise significantly compromised the
model’s generalization ability, irrespective of their position within the sequence.

C.2 BIASED INPUT

We explore the effect of perturbing ICE with samples outside the test data’s input range. Specifically,
we control the test sample input sampled in the range (−π, π) and the additional ICE at (−2π,−π)
and (π, 2π), respectively and add them at the beginning and end of the in-context sequence.

Please note that the outputs of these additional ICE are still generated with the groud-truth function.
While it might be expected that these additional inputs, due to their non-overlapping input range with
the test samples and still retaining the ground truth function, would not significantly influence the
predictions, our experiments revealed a surprising result. Adding these out-of-range ICE significantly
hampered the model’s generalization to the test samples.
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Table 11: SE of the ComFuncLearner and Baseline model tested on the product combinations of base
functions with biased ICE. The product combinations used via training phase is F (0)

1 and F (0)
3 . Type

indicates the type of bias in ICE and 0 indicates no bias. In and I&O indicate based input and based
input and output, respectively.

Model Type Pos s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

Baseline

0 - 6.15e-5 8.56e-6 3.95e-5 6.99e-5 4.53e-5 1.91e-2 2.19e-3 1.02e-2 1.27e-2 1.62e-2 1.04e-3 9.87e-3 1.02e-2
In 20 1.36e-1 8.59e-2 2.11e-1 6.07e-2 2.60e-1 1.44e-1 2.11e-1 5.41e-1 9.83e-2 2.11e-1 2.01e-1 1.07 3.54e-1
In 40 1.51e-2 1.33e-2 4.91e-2 4.91e-2 2.47e-2 8.87e-2 1.99e-2 1.75e-1 1.56e-2 3.91e-2 7.20e-2 1.97e-1 8.70e-2

I&O 20 9.95e-2 1.89e-1 9.73e-2 5.73e-2 8.14e-2 4.51e-2 2.21e-1 4.61e-1 1.60e-1 1.96e-1 1.83e-1 4.31e-2 1.87e-1
I&O 40 2.78e-2 5.55e-2 1.72e-2 3.54e-2 3.40e-2 8.39e-2 1.03e-1 2.15e-1 5.39e-2 4.64e-2 4.87e-2 3.44e-1 1.27e-1

CFL

0 - 3.24e-5 1.34e-5 6.50e-5 7.31e-5 4.61e-5 8.45e-3 4.24e-5 6.19e-3 3.39e-3 8.93e-3 7.24e-4 4.86e-3 4.64e-3
In 20 5.65e-2 3.25e-2 8.78e-2 4.86e-2 5.67e-2 1.96e-1 8.78e-2 4.68e-1 4.93e-2 8.73e-2 1.69e-1 6.97e-1 2.60e-1
In 40 9.75e-3 2.13e-2 2.97e-2 2.92e-2 1.79e-2 1.01e-1 8.51e-3 7.02e-2 1.87e-2 3.93e-2 3.28e-2 1.03e-1 5.35e-2

I&O 20 2.62e-1 1.19e-1 4.85e-2 2.73e-1 2.05e-1 4.76e-2 5.43e-1 1.24 2.52e-1 3.59e-1 4.04e-1 4.92e-2 4.15e-1
I&O 40 3.62e-2 6.27e-2 1.87e-2 2.85e-2 3.65e-2 4.15e-2 6.07e-2 1.86e-1 5.03e-2 5.13e-2 3.56e-2 1.64e-1 8.58e-2

Table 12: SE of the ComFuncLearner and Baseline model tested on the convex combinations of base
functions with biased ICE. Type indicates the type of bias in ICE and 0 indicates no bias. In and I&O
indicate based input and based input and output respectively.

Model Type Pos s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) Com_All MeanC

Baseline

0 - 1.85e-5 1.15e-5 7.02e-5 8.29e-5 4.67e-5 3.37e-3 3.64e-2 2.54e-1 1.01e-1 1.39e-2 8.13e-3 1.67e-1 8.35e-2
In 20 2.48e-1 1.16e-1 1.21e-1 3.53e-1 2.10e-1 9.36e-2 4.12e-1 6.32e-1 4.70e-1 3.89e-1 9.77e-2 1.65e0 5.353-1
In 40 1.90e-1 1.04e-1 7.15e-2 2.69e-1 1.59e-1 7.73e-2 3.04e-1 6.06e-1 5.60e-1 3.21e-1 5.95e-2 9.88e-1 4.16e-1

I&O 20 2.69e-1 1.21e-1 1.33e-1 3.90e-1 2.28e-1 7.91e-2 4.69e-1 9.84e-1 7.68e-1 4.79e-1 1.59e-1 1.74e0 6.71e-1
I&O 40 1.86e-1 1.14e-1 5.68e-2 2.07e-1 1.41e-1 6.11e-2 3.04e-1 6.37e-1 5.80e-1 4.02e-1 7.19e-2 1.28e0 4.71e-1

CFL

0 - 4.47e-5 1.17e-5 1.69e-4 1.26e-4 8.79e-5 5.06e-3 3.78e-4 1.23e-3 5.65e-3 2.17e-3 1.09e-3 4.43e-3 2.86e-3
In 20 1.52e-2 1.49e-2 6.52e-3 2.26e-2 1.48e-2 1.54e-1 8.93e-3 4.05e-2 1.39e-2 5.72e-1 1.37e-2 8.26e-2 3.32e-2
In 40 1.31e-3 2.67e-3 5.06e-4 6.02e-3 2.63e-3 2.29e-3 6.46e-4 5.43e-3 9.24e-3 9.35e-3 2.21e-3 6.57e-3 5.11e-3

I&O 20 2.94e-2 2.67e-2 2.31e-2 8.39e-2 4.09e-2 3.27e-2 4.03e-2 9.12e-2 6.62e-2 6.32e-2 7.76e-2 1.27e-1 7.13e-2
I&O 40 2.59e-3 3.09e-3 1.25e-3 2.23e-2 7.32e-3 3.14e-3 3.50e-3 1.27e-2 1.08e-2 6.34e-3 2.02e-2 1.38e-1 1.01e-2

Table 11, 12 and Figure 15 show the effect of augmenting ICE with 10 out-of-range input samples both
before and after the standard sequence of 20 examples, respectively. Here we set the combination of
base functions to the product combinations and more results with other combinations are in Appendix.

Both the Baseline and ComFuncLearner model exhibits a vulnerability to augmentation with out-of-
range samples. Notably, their performance significantly declines not only on unseen combinations of
base functions but also on the fitting of seen base functions. This counterintuitive observation holds
regardless of whether the out-of-range samples are placed at the beginning or end of the in-context
sequence. Thus the presence of biased input in ICE disrupts both intra-task and intra-problem
generalization of transformers.

C.3 BIASED INPUT AND OUTPUT

To investigate the influence of severely biased examples on ICL, we implement a scenario where
some ICE intentionally lie outside the test data’s input range whose output is biased. Specifically, we
confine the test sample input range to (−π, π) while placing additional OOD examples at (−2π,−π)
and (π, 2π). we deliberately introduce a constant offset of 10 to their outputs, modifying them to
y = fi(x;ϕi) + 10, where fi(x;ϕi) is the ground-truth function for the current sequence and y is the
outputs of ICE. These OOD examples are inserted at the beginning and end of the in-context sequence.
Similar to Section C.2, as shown in Table 11 and Figure 15, both Baseline and ComFuncLearner
models demonstrate remarkable susceptibility to ICE with biased input and output. The trend persists
regardless of the placement of out-of-range samples within the sequence, suggesting that the presence
of biased input disrupts both intra-task and intra-problem generalization of transformers.

D SUPPLEMENTARY RESULTS

D.1 FUNCTION FITTING ON PRETRAINED GPT-2

At Section 3.1 and Section 3.2, we take the base functions F (0)
1 ,F (0)

2 ,F (0)
3 ,F (0)

4 defined in 2.3, and
the combination of F (0)

1 ,F (0)
3 . To support the phenomenon that transformers gain ability to solve

intra-problem generalization when trained with corresponding combinations of base functions, we
test on different settings to further validate the conclusion.
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Figure 15: Function curves on the product combinations of base functions fitted by the Baseline
and ComFuncLearner models after ICL with biased ICE. The product combination used via training
is F1 and F3. Upper figures give points outside the domain of definition during the training phase
(Type I), and the lower figures additionally modify the value of y outside the domain. (Type I&O)

Figure 16: Function curves of the two Baseline models tested on the convex combinations of base
functions. The shared base functions are F (0)

1 ,F (0)
2 ,F (0)

3 ,F (0)
4 . Model w/o extra basis function

means it is trained on F (0)
5 additionally, while model w/ extra basis function indicates that it is trained

only on shared base functions. We keep total training steps the same.

Baseline Learned with 4 Base Functions To verify whether cross-problem generalization can be
achieved solely by increasing the amount of data, we conducted additional experiments where the
model was trained with more data from only 4 base functions and tested on various function fitting
tasks. The results are shown in Table 13. The conclusion drawn from these experiments is consistent
with the main text: the transformer model only achieves intra-task and intra-problem generalization,
but not inter-problem generalization.
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Table 13: SE of the ComFuncLearner and Baseline model tested on the convex combinations of base
functions, where the Baseline model is learned on 4 base functions and the same number of samples
as the ComFuncLearner model.

Range Model s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

1-10 Baseline 1.31e-2 3.82e-2 1.26e-2 4.26e-2 2.66e-2 1.98e-2 4.48e-3 1.99e-2 1.49e-2 5.95e-3 1.16e-2 1.78e-2 1.35e-2
CFL 2.63e-1 2.48e-1 6.46e-2 1.81e-1 1.89e-1 8.01e-2 8.02e-3 5.34e-2 1.39e-2 1.38e-2 2.69e-2 8.63e-3 2.93e-2

11-20 Baseline 5.99e-4 8.37e-4 1.94e-4 4.75e-4 5.26e-4 2.11e-3 5.24e-5 4.07e-3 7.33e-3 5.92e-5 1.97e-3 8.19e-3 3.40e-3
CFL 6.86e-3 1.07e-2 2.11e-3 1.39e-2 8.38e-3 3.32e-3 2.31e-4 3.82e-3 3.82e-3 4.48e-4 2.18e-3 4.89e-3 2.67e-3

21-30 Baseline 4.40e-4 1.00e-3 1.95e-4 5.77e-4 5.53e-4 2.27e-3 4.24e-5 3.66e-3 6.99e-3 5.31e-5 1.91e-3 7.60e-3 3.22e-3
CFL 6.73e-3 9.45e-3 2.58e-3 1.56e-2 8.60e-3 2.70e-3 2.41e-4 3.44e-3 4.00e-3 5.07e-4 2.49e-3 4.71e-3 2.58e-3

31-40 Baseline 4.60e-4 7.78e-4 1.56e-4 5.44e-4 4.84e-4 2.24e-3 3.79e-5 4.05e-3 7.27e-3 5.94e-5 1.87e-3 7.81e-3 3.33e-3
CFL 7.09e-3 9.16e-3 3.05e-3 1.24e-2 7.94e-3 2.99e-3 2.24e-4 3.57e-3 3.70e-3 5.53e-4 3.10e-3 4.70e-3 2.69e-3

Table 14: SE of the ComFuncLearner and Baseline model tested on the convex combinations of base
functions, where the Baseline model is learned on 4 base functions and the same number of samples
as the ComFuncLearner model. The convex combination is F (0)

1 + F (0)
2

Range Model s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

1-10 Baseline 5.21e-2 9.57e-2 8.29e-2 2.18e-2 6.31e-2 1.41e-2 5.23e-3 2.07e-2 1.71e-2 4.85e-3 1.33e-2 2.02e-2 1.36e-2
CFL 8.64e-2 1.17e+00 2.37e-1 8.76e-2 3.95e-1 7.03e-3 7.64e-3 7.66e-3 2.45e-3 1.99e-3 1.82e-3 1.58e-3 4.31e-3

11-20 Baseline 7.87e-4 4.63e-3 7.01e-4 5.32e-4 1.66e-3 2.64e-3 1.71e-4 5.67e-3 8.18e-3 4.33e-5 5.03e-3 8.90e-3 4.38e-3
CFL 4.36e-4 1.82e-3 2.98e-4 1.81e-4 6.85e-4 3.99e-5 3.51e-5 4.28e-5 2.60e-5 1.17e-5 1.71e-5 1.83e-5 2.73e-5

21-30 Baseline 4.42e-4 5.08e-3 4.66e-4 4.00e-4 1.60e-3 2.73e-3 8.21e-5 5.18e-3 7.53e-3 4.30e-5 5.27e-3 7.97e-3 4.12e-3
CFL 1.72e-4 2.17e-3 4.16e-4 1.79e-4 7.35e-4 3.41e-5 2.88e-5 2.94e-5 2.36e-5 1.13e-5 1.52e-5 1.62e-5 2.27e-5

31-40 Baseline 4.53e-4 3.02e-3 5.14e-4 5.63e-4 1.14e-3 2.43e-3 1.60e-4 5.47e-3 7.14e-3 4.53e-5 4.95e-3 8.52e-3 4.10e-3
CFL 1.91e-4 1.81e-3 3.36e-4 1.78e-4 6.29e-4 3.79e-5 2.30e-5 2.90e-5 2.13e-5 1.14e-5 1.56e-5 1.60e-5 2.20e-5

Convex Combination Generalization with ComFuncLearner Learning other Combinations
Here, we keep the base function classes defined in Section 3.1, and let the ComFuncLearner model
leverages convex combination of F (0)

2 and F (0)
4 , i.e., F (0)

2 + F (0)
4 . The Baseline model is trained on

all base function classes and F (0)
5 = {ϕ sin(3x)}, ϕ ∈ R. Results are shown in Figure 17. We also

carry out experiment on F (0)
1 + F (0)

2 . Results can be found at Figure 18 and Table 14.

Composition Generalization At Section 3.3, we select four base function classes
F (0)

1 ,F (0)
2 ,F (0)

3 ,F (0)
4 . To evaluate the significance of baseline function classes, we implemented

class numbers to 16. The base functions classes now include F (0)
i , i = 1, 2, .., 16, namely

{ϕ sin(kx), k = 1, 2, ..8} ∪ {ϕ cos(k · x), k = 1, 2, ..8}. Other settings keep the same. The re-
sult showed at Figure 19.

D.2 FUNCTION FITTING ON PRETRAINED LLAMA SERIES

To further validate our findings, we conducted additional experiments focusing on convex and multiply
combinations on pretrained LLaMA-3. These experiments aimed to assess the model’s performance
for intra-problem and intra-task generalization.

Figure 20 indicates that when exposed to convex combinations, the model still struggles with inter-
problem generalization, while successfully leveraging its prior knowledge to address intra-problem
and intra-task generalization.

These additional experiments reinforce our assertion that the diversity and representativeness of the
finetuning dataset play a pivotal role in enhancing the model’s generalization capabilities.

We carried the same experiments on LLaMA-2-7b-hf and found similar conclusion. Results can be
found at Figure 21, 22.

D.3 REVERSE INTER-PROBLEM AND INTRA-PROBLEM

To investigate whether the observed inter- and intra-problem generalization behaviors hold when the
roles of base functions and their combinations are reversed, we conducted the following supplementary
experiment. In contrast to the experimental setup in the main text, we now explore whether a model
exposed to diverse combinations of base functions can generalize to base function fitting tasks.
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Figure 17: Results of the ComFuncLearner and Baseline model tested on the convex combinations
of base functions. The convex combinations used via training phase is F (0)

2 and F (0)
4 . GT refers to

ground truth. CC refers to ComFuncLearner and Zero Estimator refers to constant function f(x) = 1.
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f(x)=0.04*sin(x)-0.98*cos(x)
+0.88*sin(2x)+1.00*cos(2x)f(x)=0.51*cos(x)-0.42*cos(2x)f(x)=-0.20*sin(2x)+1.00*cos(2x)f(x)=1.00*sin(x)

Figure 18: Function curves of the two Baseline models tested on the convex combinations of base
functions. The base functions are F (0)

1 ,F (0)
2 ,F (0)

3 ,F (0)
4 . We change the convex combination from

F (0)
1 + F (0)

3 to F (0)
1 + F (0)

2

Table 15: SE of the ComFuncLearner and Baseline model, which trained on reversed data, tested on
the product combinations of base functions.

Model Steps s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

Baseline

10k 2.08e-2 2.70e-2 2.03e-2 2.92e-2 2.43e-2 3.14e-2 2.16e-2 3.08e-2 3.11e-2 1.96e-1 2.75e-2 1.63e-1 7.17e-2
20k 1.49e-2 1.67e-2 1.53e-2 1.82e-2 1.63e-2 1.82e-2 1.51e-2 1.70e-2 1.72e-2 1.50e-1 1.68e-2 1.79e-1 5.90e-2
30k 1.30e-2 1.57e-2 1.32e-2 1.46e-2 1.41e-2 1.63e-2 1.30e-2 1.59e-2 1.64e-2 1.67e-1 1.66e-2 1.50e-1 5.64e-2
40k 1.23e-2 1.33e-2 1.18e-2 1.36e-2 1.28e-2 1.33e-2 1.08e-2 1.26e-2 1.36e-2 1.61e-1 1.37e-2 1.69e-1 5.63e-2
50k 1.04e-2 1.62e-2 1.04e-2 1.79e-2 1.37e-2 1.51e-2 1.06e-2 1.54e-2 1.63e-2 1.48e-1 1.37e-2 1.05e-1 4.62e-2

CFL

10k 2.10e-2 2.42e-2 2.07e-2 2.46e-2 2.26e-2 2.54e-2 2.05e-2 2.46e-2 2.43e-2 2.04e-1 2.49e-2 2.29e-1 7.90e-2
20k 1.04e-2 1.57e-2 1.11e-2 1.63e-2 1.34e-2 1.54e-2 1.12e-2 1.54e-2 1.58e-2 1.71e-1 1.73e-2 1.16e-1 5.18e-2
30k 9.20e-3 1.43e-2 8.24e-3 1.55e-2 1.18e-2 1.34e-2 8.89e-3 1.51e-2 1.28e-2 1.40e-1 1.46e-2 1.77e-1 5.46e-2
40k 1.02e-2 1.66e-2 9.33e-3 1.51e-2 1.28e-2 1.42e-2 9.14e-3 1.35e-2 1.56e-2 1.11e-1 1.52e-2 1.73e-1 5.02e-2
50k 8.57e-3 1.38e-2 7.33e-3 1.36e-2 1.08e-2 1.36e-2 8.50e-3 1.31e-2 1.44e-2 1.65e-1 1.51e-2 1.35e-1 5.21e-2

The results demonstrate that our findings hold even when we reverse the roles of composite functions
and base functions, treating function combinations as Tbase and the base functions (which can be
approximated as combinations of multiple combinations of functions) as Tcom. This further reinforces
our conclusion that transformers with ICL enable intra-problem generalization but not inter-problem
generalization.

• The Baseline model is trained solely on combinations of 4 functions:
{F (0)

1 +F (0)
2 ,F (0)

1 +F (0)
4 ,F (0)

2 +F (0)
3 ,F (0)

3 +F (0)
4 }.

• The ComFuncLearner is trained on the same 4 function combinations as the Baseline
model, but is additionally exposed to one base function: {F (0)

1 }.

The results are shown in table 15.

D.4 CURRICULUM LEARNING

To investigate the influence of data point order and sample difficulty on the generalization ability of
the transformer, we designed the following experiments:

For the ComFuncLearner, we designed a two-stage training process. In the first 25,000 iterations,
the model learns only the base functions. Subsequently, in the next 25,000 iterations, it is exposed to
the combined functions. We then compare the performance of this model with a ComFuncLearner
trained on a random sequence of samples. The results are presented in Table 16.

We find that training the model on base functions first, followed by combined functions, does not
further improve its generalization ability. In fact, it results in worse generalization performance
compared to a model trained with randomly sampled data. This could be attributed to the need for
careful tuning of the ratio of iterations dedicated to learning base functions versus combined functions
to achieve optimal performance.

D.5 GENERALIZATION ON OTHER BASE FUNCTION CLASSES

Aiming at analyzing the model’s ability to generalize across different function classes, we conduct
experiments on another set of base functions. Inspired by Legendre polynomials, we select new base
functions as follows.

• y(1)
L =

√
30
50 · x · |w|
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Figure 19: Result of of the ComFuncLearner and Baseline model tested on the composition com-
binations of base functions. To delve deeper into the effect of base function diversity, we increase
the function number to 16 (F (0)

i , i = 1, 2, .., 16). However, we do not find significantly drop in SE
compared to six functions in 3.3 with at most four combinations

Table 16: SE of the model tested on the product combinations of base functions. CFL1_CL means
CFL1 learned with curriculum learning.

Model s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

Baseline 2.52e-5 7.24e-6 1.61e-5 3.71e-5 2.17e-5 2.69e-2 7.76e-3 2.29e-2 8.86e-3 8.52e-3 5.21e-3 5.06e-2 1.98e-2

CFL1 1.82e-5 6.75e-6 3.65e-5 3.07e-5 2.31e-5 3.16e-3 4.99e-5 7.58e-3 2.84e-2 1.16e-2 1.59e-3 9.88e-3 5.24e-3

CFL1_CL 3.38e-3 7.62e-3 3.45e-3 7.52e-3 5.49e-3 7.81e-3 2.89e-3 7.46e-3 8.02e-3 1.60e-2 8.34e-3 4.06e-2 9.92e-3
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Figure 20: The performance of LLaMA-3 on convex combinations of learned functions (x, x2, x3

and x4). Baseline indicates LLaMA-3-8B finetuned with base functions. ComFuncLearner indicates
LLaMA-3-8B finetuned with base functions and the combination of x2 and x3.

f(x)=-192|x| f(x)=14x^2 f(x)=248*|10*x^2| f(x)=10*(129*|x|)^2

Figure 21: The fitted curves of LLaMa-2 on composition combinations of learned functions (absolute
value functions −|x| and quadratic function x2).

• y(2)
L =

√
2

50 ·
(
3x2 − 25

)
·w

• y(3)
L =

√
70

500 ·
(
x3 − 15x

)
·w

• y(4)
L = 3

√
10

10000 ·
(
7x4 − 150x2 + 375

)
·w

The training data was derived from these functions, and the model was subsequently evaluated on
various function fitting tasks. The results, presented in Figure 23 and Table 17, align with the findings
in the main text: while the transformer model demonstrates strong intra-task and intra-problem
generalization, it fails to achieve inter-problem generalization, even when trained on mathematically
diverse base functions like the polynomials.

Table 17: SE of models tested on the convex combinations of polynomials.

Range Model x x2 x3 x4 MeanB x&x2 x&x3 x&x4 x2&x3 x2&x4 x3&x4 ComAll MeanC

1-10 Baseline 2.11e-1 5.96e-2 1.81e-1 3.58e-1 2.02e-1 1.54e-2 2.40e-2 7.55e-3 2.31e-2 8.59e-3 3.95e-3 4.95e-3 1.25e-2
CFL 2.02e-1 5.57e-2 1.76e-1 2.52e-1 1.72e-1 1.52e-2 1.26e-2 7.40e-3 1.21e-2 8.24e-3 3.42e-3 4.91e-3 9.12e-3

11-20 Baseline 2.48e-2 3.35e-3 1.21e-3 2.10e-2 1.26e-2 8.98e-3 7.23e-3 3.02e-3 7.53e-3 5.10e-3 8.14e-4 3.92e-3 4.88e-3
CFL 2.36e-2 1.60e-2 6.72e-3 5.02e-2 2.41e-2 6.53e-3 3.52e-3 4.26e-3 2.15e-3 5.02e-3 7.22e-4 3.94e-3 3.73e-3

21-30 Baseline 1.50e-2 5.67e-3 1.18e-3 1.79e-2 9.93e-3 7.47e-3 7.41e-3 2.55e-3 7.94e-3 3.97e-3 8.90e-4 4.35e-3 4.71e-3
CFL 2.11e-2 2.01e-2 6.56e-3 3.45e-2 2.05e-2 5.85e-3 3.47e-3 3.53e-3 1.91e-3 4.26e-3 6.53e-4 4.09e-3 3.39e-3

31-40 Baseline 5.69e-3 4.25e-3 1.42e-3 1.84e-2 7.45e-3 7.34e-3 6.65e-3 3.99e-3 8.26e-3 4.99e-3 7.99e-4 4.64e-3 4.72e-3
CFL 1.91e-2 1.43e-2 7.72e-3 2.37e-2 1.62e-2 5.42e-3 3.71e-3 3.00e-3 1.85e-3 3.93e-3 6.51e-4 4.11e-3 3.23e-3
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f(x)=6*x^3 f(x)=382*x +12*x^2 f(x)=2*x^2 +2*x^3
f(x)=181*x+13*x^2

+4*x^3+3*x^4

Figure 22: The fitted curves of LLaMa-2 on composition combinations of learned functions (x,x2,x3

and x4)

1.00*sin(2x)+1.00*cos(2x)f(x)=-0.78*sin(x) +0.95*cos(2x)f(x)=0.04*sin(3x) f(x)=-0.90*cos(x)-0.10* cos(2x)
f(x)=1.00*sin(x)-1.00* cos(x)+

Figure 23: Function curves of the ComFuncLearner and Baseline model tested on the convex
combinations of base polynomials.

D.6 GENERALIZATION ON OTHER STRUCTURES

We conduct further experiments with other model architectures, including MLP and KAN. The results
are presented in Table 18, 19 and Figure 24, 25.

We are surprised to find that the generalization behavior observed in transformers persists in these
other network architectures. This opens up exciting avenues for future research. It is important to
note that this should not be strictly termed "in-context learning" for MLP and KAN. Since these
models require fixed input and output dimensions, our experimental setup necessitates feeding 39 (x,
f(x)) pairs along with the 40-th x as input, and the model predicts only the 40th f(x). This differs from
the sequential prediction capability of transformers in ICL. However, we believe that our findings
regarding generalization limitations may extend beyond transformers and ICL, potentially applying
to other deep learning architectures and tasks.

f(x)=1.00*sin(x) f(x)=-0.69*sin(2x)-0.38*cos(2x) f(x)=-0.25*cos(x)-0.20*cos(2x)
f(x)=0.69*sin(x)-0.00*cos(x)-
0.11*sin(2x)-0.23*cos(2x)

Figure 24: Function curves of models trained on MLP architecture. The setting is the same as Section
3.

31



Published as a conference paper at ICLR 2025

Table 18: SE of models trained on MLP architecture. The setting is the same as Section 3.

Range Model s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

1-10 Baseline 3.07e-1 1.77e-2 1.67e-2 1.32e-1 1.18e-1 7.83e-3 8.70e-4 1.03e-3 1.41e-3 2.52e-4 3.06e-3 2.64e-4 2.10e-3
CFL 5.98e-2 1.34e-3 1.57e-3 2.16e-2 2.11e-2 4.42e-4 1.59e-4 1.86e-4 2.88e-4 7.21e-5 3.78e-4 4.61e-5 2.24e-4

11-20 Baseline 3.00e-1 1.19e-2 1.01e-2 1.47e-1 1.17e-1 4.59e-3 9.85e-4 9.64e-4 3.36e-3 4.16e-4 2.91e-3 2.70e-4 1.93e-3
CFL 4.89e-2 9.13e-4 2.08e-3 3.08e-2 2.07e-2 6.89e-4 1.57e-4 2.16e-4 2.60e-4 7.99e-5 2.81e-4 5.83e-5 2.49e-4

21-30 Baseline 3.89e-1 1.00e-2 8.93e-3 1.76e-1 1.46e-1 5.79e-3 8.44e-4 9.00e-4 1.56e-3 4.24e-4 2.35e-3 2.76e-4 1.74e-3
CFL 4.70e-2 1.88e-3 1.72e-3 1.78e-2 1.71e-2 5.90e-4 1.67e-4 1.91e-4 2.40e-4 6.67e-5 3.28e-4 4.41e-5 2.32e-4

31-40 Baseline 1.82e-1 2.23e-2 1.71e-2 1.76e-1 9.93e-2 4.59e-3 8.41e-4 1.05e-3 2.25e-3 3.90e-4 3.86e-3 2.54e-4 1.89e-3
CFL 3.65e-2 9.05e-4 2.13e-3 2.48e-2 1.61e-2 3.23e-4 1.42e-4 1.78e-4 2.86e-4 5.08e-5 2.65e-4 4.65e-5 1.84e-4

f(x)=0.97*sin(x) f(x)=-0.36*sin(2x)-0.16*cos(2x) f(x)=-1.00*cos(x)+0.26*cos(2x)
f(x)=-1.00*sin(x)+1.00*cos(x)-
0.57*sin(2x)-0.53*cos(2x)

Figure 25: Function curves of models trained on KAN architecture. The setting is the same as Section
3.

Table 19: SE table of models trained on KAN architecture. The setting is the same as Section 3.

Range Model s(x) c(x) s(2x) c(2x) MeanB s(x)&c(x) s(x)&s(2x) s(x)&c(2x) c(x)&s(2x) c(x)&c(2x) s(2x)&c(2x) ComAll MeanC

1-10 Baseline 1.25e-2 2.26e-2 2.34e-2 9.50e-3 1.70e-2 3.98e-3 5.84e-3 4.42e-3 6.48e-3 1.19e-3 3.59e-3 2.92e-3 4.06e-3
CFL 7.50e-4 9.26e-4 1.79e-3 6.65e-4 1.04e-3 3.41e-4 2.73e-4 3.26e-4 4.93e-4 1.26e-4 2.58e-4 2.15e-4 2.90e-4

11-20 Baseline 9.84e-3 1.14e-2 2.31e-2 8.17e-3 1.32e-2 2.85e-3 3.95e-3 2.88e-3 4.63e-3 9.22e-4 2.31e-3 2.10e-3 2.81e-3
CFL 8.46e-4 1.27e-3 7.93e-4 3.85e-4 8.23e-3 2.52e-4 2.36e-4 4.16e-4 3.82e-4 1.09e-4 2.53e-4 2.03e-4 2.64e-4

21-30 Baseline 1.62e-2 3.59e-2 6.94e-2 1.32e-2 3.37e-2 6.01e-3 6.18e-3 6.18e-3 9.09e-3 1.86e-3 4.98e-3 3.60e-3 5.41e-3
CFL 7.85e-4 1.22e-3 1.30e-3 7.76e-4 1.02e-3 3.81e-4 3.82e-4 4.17e-4 4.37e-4 1.34e-4 2.93e-4 2.33e-4 3.25e-4

31-40 Baseline 1.10e-2 1.88e-2 2.68e-2 9.97e-3 1.67e-2 3.62e-3 4.88e-3 4.11e-3 5.18e-3 1.03e-3 2.76e-3 2.22e-3 3.40e-3
CFL 7.16e-4 7.69e-4 7.34e-4 6.34e-4 7.13e-4 3.57e-4 2.50e-4 2.95e-4 3.28e-4 1.39e-4 3.36e-4 2.94e-4 2.86e-4
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