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Abstract

Actor-critic algorithms for deep multi-agent reinforcement learning (MARL) typi-
cally employ a policy update that responds to the current strategies of other agents.
While being straightforward, this approach does not account for the updates of
other agents at the same update step, resulting in miscoordination. In this paper,
we introduce the K-Level Policy Gradient (KPG), a method that recursively up-
dates each agent against the updated policies of other agents, speeding up the
discovery of effective coordinated policies. We theoretically prove that KPG with
finite iterates achieves monotonic convergence to a local Nash equilibrium under
certain conditions. We provide principled implementations of KPG by applying it
to the deep MARL algorithms MAPPO, MADDPG, and FACMAC. Empirically,
we demonstrate superior performance over existing deep MARL algorithms in
StarCraft II and multi-agent MuJoCo.

1 Introduction

Deep multi-agent reinforcement learning (MARL) research has made strides towards solving prac-
tical problems such as cooperative robotics [1], transportation management [2] and network traffic
optimization [3]. While deep RL algorithms have garnered impressive results in complex single-agent
control problems [4, 5], multi-agent systems present unique challenges. Roadblocks in MARL
research include exploding joint state-action spaces and non-stationarity due to concurrent learn-
ing [6, 7].

Another challenge caused by simultaneous learning in MARL is a lack of mutual consistency, as
each agent update does not account for the updates of other agents at the same update step, leading
to miscoordination. To enhance the learning dynamics in MARL systems, we propose K-level
Policy Gradients (KPG), a method which can be applied to any existing multi-agent policy gradient
algorithm which can utilize a centralized policy gradient update. Most game-theoretic frameworks
assume mutual consistency between agents; that is, each player’s beliefs are consistent with what
other players will actually do [8]. In practical scenarios, agents must infer the strategies of others
using modeling or recurrent reasoning. The cognitive hierarchies framework formalizes k-level
thinking as an iterative decision process whereby agents respond to the strategies they believe other
agents will take, in accordance with other agent’s updated strategies based on the same recursive
reasoning: ‘I think that you think that I think...” [9]. The prior distribution with which an agent
acts is typically defined as recursion level k=0. MARL algorithms that update against the k=0
strategies of other agents can therefore be considered level k=1. KPG enables agents to update
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their policies recursively against the updated policies of other agents, allowing them to utilize higher
orders of k-level reasoning. Aided with an enhanced notion of mutual consistency, multi-agent
systems are therefore able to converge faster on coordination problems. The intuition behind this
algorithm is inspired by human behavior: research on theory of mind suggests that humans often
model the decision-making processes of other humans in order to successfully collaborate on complex
tasks [10, 11].

Research in both on-policy and off-policy MARL methods have produced impressive results from the
extension of single-agent RL methods. In this work, we demonstrate the effectiveness of centralized
learning with KPG across several metrics in on-policy and off-policy settings. We first conduct a
theoretical study of the algorithm in the idealized case, followed by a theorem that demonstrates
the convergence of KPG with finite iterates to a local Nash equilibrium under reasonable conditions.
We accompany our theoretical analysis with an illustrative example in a simple toy problem. Fi-
nally, we present a comparison of KPG against existing deep MARL algorithms in three complex
multi-agent coordination environments: the multi-agent StarCraft II environment in JaxMARL [12]
(SMAX), the StarCraft II micromanagement benchmark in PyYMARL [13] (SMAC), and multi-agent
MuJoCo (MAMuJoCo) [14]. Note that SMAX and SMAC have different dynamics and should be
considered separate baselines. In order to demonstrate the effectiveness of KPG in deep MARL, we
practically implement it on top of the competitive MARL algorithms MAPPO [15], FACMAC [14],
and MADDPG [16], which we denote K-MAPPO, K-FACMAC, and K-MADDPG respectively.

2 Related works

Policy gradient methods in multi agent reinforcement learning Policy gradient methods in co-
operative MARL often fall within the CTDE regime [17] by conditioning on global state information
and centralized actions during training. Algorithms such as MADDPG [16] utilize a multi-agent deter-
ministic policy gradient using a centralized critic to exhibit more robust behavior than decentralized
DDPG agents. Foerster et al. [18] similarly propose COMA, which uses a counterfactual baseline
term to alleviate the noise in their centralized gradients, a common problem in cooperative MARL
leading to difficulties in credit assignment. Concerned with credit assignment noise, Du et al. [19]
implement a framework that learns a separate proxy reward in order to discriminatingly credit agents
in multi-agent actor-critic methods. Certain actor-critic MARL algorithms such as FACMAC[14]
borrow from the rich literature on multi-agent value decomposition methods [20-25] which attempt
to improve credit assignment by decomposing global value estimates into factored ones.

Yu et al. [15] conduct a comprehensive study examining the performance of MAPPO, a CTDE variant
of PPO which conditions its advantage estimation on global state information. While the policy
gradient methods mentioned have displayed impressive results, they suffer from instability caused by
a lack of mutual consistency, since they all update agents without taking the simultaneous updates of
other agents into account.

LOLA [26] comes the closest to our approach methodologically, as it utilizes higher-order gradient
terms to incorporate the future opponent policy into the learning update of each agent. This might be
considered a k=2 level update. COLA [27] addresses the high variance and difficult computation
of higher-level LOLA iterates by minimizing a differentiable consistency measure, requiring only
second-order derivatives. POLA [28] builds on LOLA further, reinterpreting it as a proximal
operator by penalizing divergence over policy behavior. This helps mitigate LOLA’s sensitivity to
parameterizations. While LOLA, COLA, and POLA are evaluated in the deep setting with two-player
reciprocity-based games, their viability in more complex cooperative environments has not yet been
sufficiently examined. We show in this work that the informed updates of KPG are more stable
than POLA and can be successfully applied to achieve SOTA performance in complex environments.
M-FOS [29] scales opponent shaping to general-sum games; while using a similar paradigm to LOLA,
we do not benchmark against M-FOS as we consider its meta-game formulation out of the scope of
this paper.

K -level reasoning in reinforcement learning K-level thinking has proven useful in several
multi-agent opponent modeling scenarios. Notably, the cognitive hierarchies framework [9] has
been combined extensively with deep RL techniques for the training of self-driving vehicles which
must cooperate within a heterogeneous population of peer vehicles [30-36]. Cui et al. [37] propose
a synchronous hierarchical k-level reasoning method known as SyKLRBR which obtains SOTA
performance in multi-agent Hanabi [38].
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Figure 1: Schematic illustration of the K-level Policy Gradient (KPG) update for two agents.

Finally, Liu and Pavel [39] propose Level k£ gradient play, a recursive reasoning algorithm which
stabilizes GAN training [40]. We extend their findings on the Semi-Proximal Point Method in this
work to N-player, general sum games.

3 Preliminaries

We consider a multi-agent extension of a Markov decision process (MDP) [41] known as a Markov
game [42], defined by atuple G = (Z,S, A, P, R,7,N,t). T ={1,..., N} is the set of agents, S
is the state space, A = X;c7A; is the joint action space of the agents. At each timestep, agent ¢
samples an action a; € A; from policy 7; (a;|s) parameterized by 8; € R4 The joint action of all
agents a from the joint policy 7(.|s) determines the next state according to the joint state transition
function P (s'|s,a). R = {Ry,..., Ry} are the set of agent reward functions. Each agent ¢ has a
learning rate 7); and receives rewards according to its reward function R; (s, a, s’). ~y is the discount
factor and ¢ is the initial state distribution. A (Z)and X (Z) refer to the maximum and minimum
max man

eigenvalues of a matrix Z respectively. Each agent aims to maximize its own discounted objective

Ji(6;,6_)= E lz vfn,i] : (1
t=0

T LT, T — i, P

where _; and 6_; refer to the other agent policies and parameters respectively, r; ; is the reward
agent ¢ receives at time ¢, and 7 refers to the trajectories induced under the agent policies, ¢, and P.

4 K-level policy gradients

In practice, Vg, J; (8;,0_;) can be estimated in a variety of ways, such as sample-based estimates
of the policy gradient [16, 43] or using the performance difference lemma [44]. The optimization
performed by agent 7 is a response to the action distribution of the other agents before they have made
) (1

an update. The update for the initial parameters 01(.0 for agent 4 results in a k=1 policy denoted 8, ’,

where the superscript denotes the degree of k-level thinking (we drop the superscript for 950) from
now on for brevity when possible). We can write the k=1 policy gradient update as:
01" « 0; +1,Ve,Ji (0;,0_;) Vi€ L. 2)

The generalized update in (2) is the standard one used in multi-agent policy gradient methods. The
k=1 policy obtained in this way does not account for the fact that the other agent policies were also
updated in the same step. This update step can be taken once again from the initial parameters of
each agent while considering the k=1 policies of the other agents, allowing us to reach recursion
level k=2:

02 « 0, +1:Ve,, J; (9,», 0(}3) Viel, 3)



This procedure can be applied recursively K times, with each agent responding to the other agents at
the previous k-level. Notably, the final K -level policy of each agent is still only one gradient step
away from the initial actor parameters, since each recursive update is applied to the same initial actor
parameters 6. The k-level updates are not moving further in parameter space, but rather finding
a gradient direction that is more consistent with the updates of the other agents. We show the
full recursive reasoning procedure in Algorithm 1, with a schematic illustration in Figure 1 in the
case of two agents.

Algorithm 1 K-Level Policy Gradients (KPG)

Input: Initial actor parameters 8; & actor learning rates 7;, Vi € Z; recursive reasoning steps K
for each update step do
for k =1to K do
ng) +— 0; + ngiJi(Bi, g(fi_l)), Viel
end for
return 01(-1(), Viel
end for

4.1 Theoretical analysis

In this section, we present a theoretical study which shows that under certain conditions, KPG
converges monotonically to a local Nash equilibrium, even with finite K iterates. Firstly, we
demonstrate how an unbiased, infinite application of Algorithm 1 leads to perfect anticipation of
other agents’ future strategies.

Assumption 4.1. The gradient Vg, J; (0;,0_;) is L;-Lipschitz with respect to 0_;, i.e.

Ve, Ji (0i,0_i1) — Ve, Ji (0:,0_i2)| < Li||0_i1—0_;2]|,v0;,0_;, “
where 6_; ; and 6_; 5 are two arbitrary points in the joint parameter space of the other agents.
We define the maximum objective function Lipschitzness L := max{L;} and the maximum agent

K3
learning rate n := max {7, }. We define also the maximum objective function gradient across all agent
3

parameters and objective functions V4, := max ||V, J;(0;,0_;)]|.

,04,0—4
Theorem 4.2. Suppose Assumption 4.1 holds. We define the combined agent parameter vector

6:=[64,.., Hn]T e RE: % Let 0 be the combined agent parameter vector after k steps of KPG
reasoning. For k-level KPG, consecutive update steps are bounded:

109 = 0%V < (L) (= 1) Ve ®

Assume the maximum learning rate 7 satisfies 1 < ﬁ Then, the sequence {O(k)}z"zo is a
convergent sequence. Since 0 exists in a complete subspace of RX: % the convergent sequence
{H(k)}z‘;o is Cauchy, i.e.,

AC eN:Ve>0,(a>b>C = [0 —0W| < o). (6)

Since every Cauchy sequence has a limit, we denote the limit Of{O(k) 12, as klim k) = (),
—00

According to Theorem 4.2, applying the update in Algorithm 1 with k=oo defines the following
implicit algorithm:

01 « 0:+1:Vo,J; (6,6)) Vi€ T, @)

which we denote the Generalized Semi-Proximal Point Method (GSPPM). The implication of the
GSPPM is that the update of each agent responds exactly to the updated strategies of the other agents,
maintaining mutual consistency. Liu and Pavel [39] similarly establish the SPPM in 2-player minimax
games, and we extend their findings to N-player general sum games in this work.

Following from Theorem 4.2, we show that the convergence of GSPPM iterates in a non-convex
non-concave strategy space can be analyzed via the game Jacobian around a local stationary point:



Theorem 4.3. Let 0™ be a stationary point in an N-player general sum game. This stationary point is
a local Nash equilibrium, i.e. a point at which no agent’s objective function has a non-zero gradient
under a unilateral change in policy. Let ) be a block matrix of the agent learning rates n;. Let the
components of the Hessian of each objective function at 0™ be denoted

Vo0, Ji(0707,) Vo Ji(6;0,)\ (A B,
Vo .0.0i(0;0°,) Vi o Ji(676))  \B] C;)°

Furthermore, let A be the diagonal block matrix of all A; matrices, and B be the diagonal block
matrix of all B; matrices:

A = diag(A,,...,A,), B =diag(B,...,B,)

Let D be a complement-selection matrix for each set of agent parameters 0; such that
T
DO =10_4,..,0_,]

Suppose n < ﬁ such that the GSPPM iterates {ng)}zozo form a Cauchy sequence. Then, there

exists a neighborhood U € RX: % around 6 such that if GSPPM starts in U, the iterates {Hgk) J 3l
satisfy:

- A (I +nA)?
0\ —o¥|| < 2 __________|l0 — 6% 8
[ I< S EDEo O ®)
Moreover, for any m satisfying
A (I +nA)?
max 1 9
N (I—nBD) = ©)

min
the iterates converge asymptotically to 0™.

Hence, GSPPM iterates reach an e-Nash equilibrium, i.e., an arbitrarily close e-bound around the
stationary point [45], under the conditions of Theorems 4.2 and 4.3.

Theorem 4.4. Suppose the conditions of Theorem 4.3 apply. Then, the distance of finite iterates
{ng)} generated by KPG satisfy

169 =672 < (A (I+nA)+2 A (I+nA) ) (nBD))[0—-6"|* (10
+2 A (I+1A) A (nBD)(]|6 - 67(|Vinaz) (11)
+ X\ (nBD)?||6%~Y —9*|2. (12)

Moreover, for any m satisfying
A (nBD)* <1, (13)

the KPG iterates converge asymptotically to ™.

Thus, KPG iterates with finite k reach an e-Nash equilibrium under the conditions of Theorems 4.2, 4.3
and 4.4.

4.2 Tllustrative example

We illustrate the effectiveness of KPG by studying a simple continuous cooperative game with two
point agents taking continuous actions in a 2D space. The agents have one parameter each and
produce a one-dimensional action (the angle of their next move).

The highest reward is achieved when the chosen direction of each agent points towards the future
location of the other agent. Assuming the agents move kinematically and have no momentum, this
game has a known optimal solution: moving towards each other in a straight line. Therefore, the
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Figure 2: An illustrative continuous cooperative game with two point agents using k-level policy
gradient ascent.

two agents should cooperate to meet as quickly as possible (see Appendix B for details). However,
the naive policy update for this game is for each agent to choose its next action to intercept with the
previous action of the other agent. The top two figures of Figure 2a illustrate this problem: each
agent’s new action (red arrows) points towards the destination of the other agent under the other
agent’s old policy (yellow arrows). Hence, the naive update leads to a lack of mutual consistency
since each agent does not consider the other agent’s update.

Figure 2a bottom left shows the policy update after 2 levels of
recursion: now the agents update to intercept the other agent after oz —_—
the other agent’s naive policy update, resulting in better coordination.
As the number of recursions increases, the policies converge on an
e-Nash bound of the optimal solution.
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Figure 2b shows the progression of the agent parameters with gra-
dient ascent and momentum; we use the true gradient and objective
function J (61, 02). The benefits of KPG recursion are evinced by
the fact that increasing k-levels (darker points) exhibit monotonic
convergence to the optimal parameters 67, 05 at each update step,
as supported by Theorem 4.4. Figure 3 shows the distance from the Figure 3: Monotonic conver-
Nash equilibrium for one update step with KPG near the stationary gence to GSPPM for one up-
point in Figure 2b. date step with KPG.
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4.3 Algorithmic implementation of the k-level policy gradient

The KPG formulation is based on the recursive computation of the

k-level policy gradient Vg, J(0;, 0(161-)). However, unlike our illustrative example in Sec. 4.2, this
quantity can generally only be estimated, e.g. through environment interactions. We here propose
two implementations of KPG on top of existing algorithms that bridge the gap between its theoretical
formulation and its application for deep RL problems. In particular, we show how the k-level policy
gradient can be estimated using only the data collected by the initial joint policy 7(®) before the
update, hence avoiding the need for additional environment interactions during the k-level reasoning
process.

K-MAPPO (on-policy). We integrate KPG into the state-of-the-art algorithm MAPPO [15] by
building on the surrogate objective provided by PPO [46]. MAPPO utilizes a surrogate loss with

w (where 7; is the
m; o (ails)

policy being updated), which does not consider the update of the other agents. We extend this ratio to

state-conditioned advantage estimation and an IS ratio, 75 4(6;,0_;) =



include the updated policies:

k k
(o, _ milails) - mH(asils)  milads)  w(ails)
Ts,a(ei; 071' ) - (0) = ©) . ©) . (]4)
0 (als) 7 (ails) 7 (a_4|s)
In turn, this allows us to estimate the k-level policy gradient for each agent ¢ as:
Vo, Ji(0:,0%)) ~ Vo, LEMFO(6,,01)) =
15)

")

= E(5,0)onm©® |:VQ1. min (TS,G(BZ', 0(_1?)7 clip(rs,q(6;, 0(_1?), 1—e 1+ e)) AT (s, a)} ,

where A;T(O) (s,a) is the advantage function of agent ¢ under the O-level policies. Intuitively, the
k-level IS ratio in Eq. 14 can be seen as weighting the original surrogate loss; if the joint probability
ratio of the other agent updates exceeds 1, it increases the magnitude of the gradient that would have
been taken without considering their updates, and vice-versa. A comprehensive derivation of the
K-MAPPO surrogate objective is available in the Appendix.

K-MADDPG & K-FACMAC (off-policy). In the case of off-policy approaches such as MAD-
DPG [16], we can estimate the k-level policy gradient by leveraging an explicitly learned centralized
Q-function. Analogously to how MADDPG relies on the gradient of the learned Q-function to execute
a policy improvement step, we propose the following gradient estimate:

()
k K-MADDPG k i

Vo, Ji(0:,0")) ~ Vo L} 0,0%))= B |VeQ (sana)|, (16)

5,0~y T

where D is a buffer of stored transitions and Qf(o) is agent ¢’s action value function under the joint

k=0 level policy. In other words, we adjust the policy improvement step at each k-level reasoning
(k)

step by resampling the actions of the other agents from the newly updated policies 7", , whereas

o= 7%‘(0) remains fixed. We also provide a theoretical motivation of this approximation in the

Appendix. Note that the same principle can be applied to more sophisticated off-policy algorithms
such as FACMAC.

S Experimental results

In this section, we demonstrate the effectiveness of KPG in deep MARL when applied to actor-critic
algorithms. In the SMAX environment, we benchmark K2-MAPPO (MAPPO with k=2 levels of
recursion) against several actor-critic and value-based algorithms. Due to the highly parallelized
nature of SMAX [12], MAPPO performs well in terms of performance and wall-clock time, making
it a good candidate to demonstrate the benefits of recursive reasoning. In the SMAC and MAMuJoCo
environments, we demonstrate the effectiveness of K2-FACMAC, as FACMAC achieves SOTA
performance among off-policy multi-agent methods. In our experiments, we find that k=2 levels of
policy recursion achieves most of the attainable performance benefits, with higher levels of recursion
yielding small further improvements.

In addition to MAPPO and FACMAC, we benchmark against QMIX/COMIX due to their prevalence
in MARL research and competitive performance, and POLA due to its use of higher-order opponent
updates. We implement Outer-POLA with generalized advantage estimation as seen in Zhao et al. [28].
In SMAX, we also benchmark against VDN due to its relevance as a centralized value-based method
and IPPO/IQL as examples of decentralized training. In SMAC and MAMuJoCo, we additionally
benchmark against MADDPG with a centralized and monolithic critic. Note that our results may
appear slightly different to previous works with SMAC/SMAX [23, 22] since previous works choose
to report median instead of mean win rates, which reduces the impact of failing seeds, especially on
certain difficult maps like Corridor.

K2-MAPPO outperforms related baselines in SMAX Figure 4 compares the test win rate of
K2-MAPPO against related baselines on 11 SMAX maps (8 SMACvI1-based and 3 SMACv2-based).
Notably, K2-MAPPO performs equal or better than other baselines on 9 out of 11 maps, and is the
only algorithm to solve 3s5z and 27m_vs_30m with 100% accuracy. K 2-MAPPO also maintains a
consistent advantage over MAPPO, demonstrating the viability of recursive reasoning. The effects



Win Rate

Samples (1e6)

(a) 2s3z

0.6

Win Rate
IS
S

o
)

0 2 4 6 8
Samples (1e6)

(e) 10m_vs_11m

Win Rate

2

10

Win Rate

Samples (1e6)

(b) 3s_vs_5z

Win Rate

Win Rate

0 2 4 6 8
Samples (1e6)

(c) 3s5z

Win Rate

Samples (1e6)

(g) Sm_vs_6m

0.6

Win Rate
o
S

I
N

6 10 0 2
ples (1e6)

4 6
Samples (1e6)

K2MAPPO
MAPPO
IPPO
POLA
QMIX
2 VDN
— QL

Win Rate

0 2 4 3 8
Samples (1e6)

(d) 3s5z_vs_3s6z

Win Rate

"o 2 4 6 8
Samples (1e6)

(h) 27m_vs_30m

10

0 2 4 6 8 10
Samples (1e6)
(f) 6h_vs_8z
0.6
g
504
o<
£
=
0.2
0.0
4 6 8 10 0 4
Samples (1e6) Sam|

(i) smacv2_5_units (j) smacv2_10_units (k) smacv2_20_units

Figure 4: Mean win rate and standard error of K2-MAPPO and baselines on SMAX maps across 10
seeds. Note that 27m_vs_30m is very large and could only be benchmarked with PPO-based methods
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Figure 5: Mean win rate and standard error of K2-FACMAC and baselines on SMAC maps across
10 seeds.

of recursive reasoning are seen in higher overall performance as well as faster convergence, as
K2-MAPPO often reaches its maximum performance sooner than other methods. Despite utilizing
opponent-shaping, POLA failed to match the performance of K2-MAPPO in every map except
3s5z_vs_3s6z. It is likely that the typical formulation of POLA, which performs well on 2-player
reciprocity-based games, does not generalize well to more complex environments with many agents.

K2-FACMAC outperforms related baselines in SMAC and MAMuJoCo Figure 5 compares the
win rate of K2-FACMAC and related baselines across 8 SMAC maps (Figure 5), with a focus on
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Hard and Super Hard maps. K 2-FACMAC achieves higher or equal final success rates compared to
baselines in every scenario. Using recursive reasoning, also achieves its maximum win rate sooner in
maps which show equal final win rates (MMM, 3s_vs_5z, 6h_vs_8z). K2-FACMAC particularly
stands out in Corridor (Figure 5f) and 3s5z_vs_3s6z (Figure 5h), two notoriously difficult SMAC
maps in which K 2-FACMAC is the only algorithm to surpass a 5% success rate. Note that MAPPO
performs much worse on SMAC maps than SMAX maps due to SMAC being CPU-based and less
parallelizable, resulting in far less sample availability (2e6 for each map rather than 1e7 in SMAX).

Figure 6 compares the performance of K2-FACMAC against the baselines on four selected MAMu-
JoCo environments. In all four environments, /{2-FACMAC achieves superior performance at the
end of training and tends to reach its peak performance earlier. In Ant 2x4 (Figure 6¢), learning a
solution is difficult due to the asymmetric positioning of the agents which control opposing diagonal
halves of a 4-legged Ant agent. When observing the final learned policies, only K 2-FACMAC, FAC-
MAC, and COMIX demonstrate a positive improvement over the initial policy. K2-FACMAC and
FACMAC both achieve the same level of maximum performance during training, with K2-FACMAC
maintaining an advantage despite the unstable learning dynamics. K2-FACMAC also achieves the
only policy in Walker 2x3 (Figure 6d) which adequately solves the task, obtaining SOTA performance
on this very difficult locomotion benchmark.

k=2 level KPG attains most of the available benefits Figure 7 compares the test performance of
higher-level KPG applied to FACMAC and MADDPG upto k=5 in HalfCheetah-2x3 (MAMuJoCo)
and MMM (SMAC). Note the performance increases over nominal MADDPG and FACMAC when
KPG is applied, supporting the claim that our approach can reliably improve any centralized policy
gradient algorithm. While the wall clock time increases fairly linearly as the number of policy
recursions increases (Table 2 in Appendix F), the additional benefits of increasing K saturate quickly
after k = 2. Despite this, higher k-levels do exhibit monotonic performance increases and remain
stable. Interestingly, Figure 7c demonstrates a situation where higher-level recursions above k = 2
are necessary for the algorithm to find a better policy mode.

6 Conclusion and discussion

We present K-Level Policy Gradients, an approach which harnesses the game theoretical paradigm
of k-level thinking to improve the convergence of multi-agent policy gradient algorithms. We
show that KPG in the limit (the Generalized Semi-Proximal Point Method) converges to a fixed



point for N-player, general sum games. Furthermore, we show that our algorithm reaches an e-
Nash equilibrium with a finite sequence of iterates under certain conditions. Our empirical results
demonstrate KPG’s ability to outperform existing MARL algorithms in the deep setting when applied
to MAPPO, FACMAC, and MADDPG, enabling a further stepping stone to real-world applications
of MARL. Future work in this area will consist of an analysis of KPG in the competitive setting and
the applications of k-level thinking to other MARL approaches such as message passing.

Limitations. The biggest practical limitation of KPG is its computational expense, since the
number of backpropagation steps at each update scales linearly with k. In the future, we hope
to reduce the computational expense of KPG using policy estimation methods such as opponent-
policy modeling [47] or parameter-based value estimation [48].
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A  Proofs

A.1 Proof of Theorem 4.2

Recall Assumption 4.1 and Algorithm 1. We first analyze the pattern in successive updates of 6 as k
increases.

Consider level K = 1 KPG:
0,7 =0, +n0: Vo, J (01,0, ;) Viel (17)
The jump between szl and 6, is

1077 — 04ll = nil| Ve, Ji(0:,0_;)|| VieT. (18)

Thus, for all agents

165" — 0l < > 11637 — 0uill =D mill Vo, Ji(8:,6-0)]
i=1

=1
<Y |IVe,Ji(6:,6)| (19)
=1
< nmmmax||Ve, J;(0;,60_;)|
<V max.

Now consider level K = 2 KPG:
0,7° = 0. +n0:Ve,J(0.:,07=}) Viel (20)

The jump between 872 and =" is

10572 — 057 | = [10e,: + 1: Ve, Ji(04.:,05=%) — Oei — 1iVe, Ji(014,04,—1) |
=1i|Vo,Ji(04,i,0,3) — Vo, Ji(Bti,0:,-) @1
< 771‘Li||9§:,1i -0, || Viel.

Thus, for all agents

n
k=2 k=1 k=2 k=1
16572 — 0;= | < > (10877 — 017 |
=1

n
< mLi|6;= - 6r |

=1
< ZmLi Z 1655 — 645l

i=1 i (22)
= mLi > n;lVe,J;(01,6. ;)

i=1 i

§;§:7hLi0l_:”nv%mm
=1

< ngLn(n__l)V%naw
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Now consider level K = 3 KPG:

0,7° = 0.+ 1 Ve, J(0:,07=7) Viel (23)

The jump between 0%=2 and 0¥~ is

16757 — 653°1 = m:| Ve, J~(9m,0k ?) = Vo, Ji(6:4,6 )|

t,—1i

(24)
<nLof= — o7l vie
Thus, for all agents
5= =621 < > 116y — 677
i=1
< L0 - 6.7
i=1
< ZmLi Z 16552 — 657
i=1 j#i
<D miLi Y L1675 — 61
i=1 i (25)
<Y mLi Yy miLp Yy 1655 — 0l
i=1 i I#]
= ZmL STniLi Y 0l Ve, Jn(Btm, 01—l
=1 J#i I#j
= Z’?zL ZWJL an”vB m(Ot.m, 0t —m)||
=1 J#i l#j

< 7]3L2n(n — 1)2Vmaz.

We see by induction that any consecutive states during the K — level procedure are bounded by

167 — 07| < n(nL)*'n(n — 1) Vi (26)

Letn < £ ( ) such that the difference between between two K -steps is a contraction. Consider the
difference ||@¢ — 87|, where a > b > 0:
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loF=" =6 =11 > (61 o= |

j=b+1
k=j k=j—1
N [ A
j=b+1
< Z U(UL)j_ln(n - 1)j_1vmaa:
j=b+1
< nVimaz Z (n— 1)3‘*1Lj*1 7
j=b+1
< nViaz Z (n— 1)3‘*1LJ‘*1 7

j=b+1

Thus, for any € > 0, we can solve for b such that n(nL)*~'n(n — 1)~V <€, or

INeEN:Ve>0,(a>b>N = [|6" —6°| <e).

27)
2 v
J=b+1
ot =om).
Jj=b+1
(28)

Hence {01C 172, is a Cauchy sequence. Since 8, lies in a complete subspace of R2: % the Cauchy

sequence has a limit: lim 8% = 5°.
k—o0

A.2 Proof of Theorem 4.3

O

Let us define ém- =6;, —6; and 0, = [ét,l, ...étm]T for all + € Z. It follows by linearizing the

system about the stationary point 8™,

O1110=0::+1:Ve,Ji(0:0_;) — 0
~ (1413 . Jil07,07),mV3, 5 Ji(67,67,)) (

= ét,z‘ + WiAiét,i + niBiét+1,—i
ét+1 = ét + nAét + nBDétJrl.

0
t+1,—i

) First order Taylor expansion

(29)

By analyzing the distance r, of the GSPPM iterates from the stationary point,

riyy = [0

— 0, (I +nA) (I —nBD)"T(I —nBD) (I +nA)d,

A (I +mnA)?

max

="N{I-nBD2'"

min

A (I+nA)?

max

Thus, for any {n;} satisfying N U=mBD)

local Nash equilibrium.

A.3 Proof of Theorem 4.4

& ko ak
Let us define 6, ; = Of’i —07and 6, =

system about the stationary point 8™,
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(30)

< 1, GSPPM iterates converge asymptotically to the

O

0; 1, éfn]T for all ¢ € Z. It follows by linearizing the



~k
0,11, =0:i+nVe, Ji(et,ief;li) - 0"
~ 1+ TIiV(Qai7eiJi(0i ,07,), 771'V129i764‘]i(9i ,07,)) <ékt’1> First order Taylor expansion
t—i
~ ~ ~k—1
=0 +1iAi0; +n:Bi0,; _;
~k N ~ Ak—
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By analyzing the distance r of the KPG iterates from the stationary point,

Ak
(r)* =116,
Ak—1

~T A~ AT

=0, (I+nA)T(I1+nA)8,+6, (I+nA)"nBD8,
~k— ~ ~k— ~k—

+ (6, YTDTB T (I +nA)é, + (6, YT D'BTyTnBDO, (32)

< ( A (I+nAP +2 A (I+7A) ) (nBD)> (r9)2+

max ax

2m)<\1x(I + ’r[A)m)\ (nBD) (rgvmaz) + m)l\m(nBD)2(Tic—1)2.

ax

. . . . N
defining the bound of the finite-k iterates to the stationary point 6 .

Hence, for any {n;} satisfying \ (nBD)? < 1, KPG iterates converge asymptotically to the local
Nash Equilibrium. O

B Details of the illustrative example

We report the full details of the toy problem introduced in Sec. 4.2, which we here refer to as the
Meet-up problem.

Environment properties. The problem is designed as a simple 2-player continuous cooperative
game in a 2D space. The state of the game s = (s1, s2) € R* encodes the location of the two players,
with s; € R2. For the sake of simplicity, agents can only move by a fixed distance step of 1 around
their current position, towards a chosen direction. The initial state of the two agents is deterministic
and fixed to ¢ = (11 = (0,0), t2 = (3,2)). We assume undiscounted returns (y = 1) and terminate
an episode when the agents effectively meet each other as a result of their actions.

Policy parameterization. Although one-dimensional continuous actions are trivially tractable for
one-step games, sequential decision making problems demand finding policies that respond optimally
for any possible configuration s of the game. Here, we reduce the complexity of the problem by
conveniently parameterizing each agent as single-parameter policies. In particular, we define an agent
action as a 1-DoF unit vector a; € R?, and parameterize the deterministic policy of agent i with
0; € R, as

CSin @7 _
ri(s) = {(COS 0;,sin ;)" if, s =1 (33)

77 (s) if, s #£¢

K3

S_;—S8;

il Paw— is the optimal policy that goes straight towards the other agent. In other
words, we assume that both agents will act optimally after taking the first action, and we only
parametrize the agents decisions at the starting state. This design choice allows to easily study the
joint policy space directly, as well as computing the closed-form solution of the return J(-) (see
below).

where, 77 (s)
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Solving the Meet-up problem with KPG. We design the reward function of the Meet-up problem
to reward each agent for getting closer to the other agent after the effect of both actions. We achieve
this by computing the cosine similarity between the agent’s action a; and the actual direction that
would have led closest to the other agent:

I
S_; — S

Ri(s,a,8') =a; -7f(s;,8 ;) —1=a; 1. (34)

1875 = sill
Here, we denote the joint action as a = (a1, as), and the next state as s’ = (s1 + a1, $2 + a2). Note
that a —1 offset is added so that both the reward signal and the return J;(6;, 6_;) of each agent is
always < 0. In turn, this makes the computation of the optimal value function V*(s) of this game
trivial: the strategy of moving towards each other in a straight line leads to returns of 0 from any state
s; since this is the maximum return, this joint policy must also be optimal, and V*(s) = 0 Vs is the
unique optimal value function. We now derive the analytical form of J;(6;,0_;), as needed by KPG
to compute the recursive gradient updates. Given that both agents are assumed to act optimally in any
state besides the starting state, we can conveniently write the return as

Ji(0:,0—;) = Ri(v,a,s") + Vi(s')

= Ri(t,a,8) +V*(s') = (35)
= R;(1,a,s")
where s’ is the resulting state after the players’ first actions a; = (cosfy,sin6) and ay =

(cos 09, sin 65). Following this, we may therefore compute the gradient of the return for any pair of
agent policies 1, 6 in closed form:

V@i Ji(ei, 972*) = V@i Ri(l,7 a, S/)
=V, ( a; - (Liy s_;) )
= Vo, () i (1 sL)
ei *
=V () mt st

—sin6; "
- < cos 0; ) RHCES)

In conclusion, Eq. 36 allows us to compute the recursive K-level reasoning steps with the true
analytical gradient of the return, as shown in Algorithm 1 of the main manuscript.

(36)

C Practical Implementation of the /{-Level Policy Gradient

The performance difference lemma (PDL) [44] can be extended to the k-level multi-agent
setting [49, 50].

Lemma C.1. It can be shown that for agent 1,

1
il wE) = M ) = TR e (AT

(s,a)] &)
1
- 1-— ’)/E(s,a)wdﬂ""w(—oi) AR

i

T (0)

AT (s a>] SENEH)

where T; is the policy of agent i, 71'@2 is the 0-level joint policy of the other agents, J;(.) is agent
i’s objective function, a is the joint action, AEO)(S, a) is agent i’s advantage function, and d®) is
the discounted state distribution. This is the version of the PDL used by MAPPO; since it does not
consider the update of the other agents, they are treated like part of the environment.

Now consider the PDL when updating against k-level agents:
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e N g (0 (o) _ L O
Jz(Tl'z,TlLi) Jz(ﬂ'i 771'71‘)—1_7 (S,G)Ndwi’"(*ki)’ﬂi,ﬂ-(fg [Ai (S,a)} 39)
(k)
1 T T, (0)
= ) AT (s,a)|,  (40)
L= Gapd™ ™= @ ) | 70 1) ]

which includes a correction ratio accounting for the change in action distribution of the k-level
agents. Note that both cases feature a mismatch in the discounted state distribution d of the PDL and
the sample distribution (d™™~%); this mismatch is ignored in practice.

The deterministic policy gradient can be estimated for k-level policies. Centralized deterministic
policy gradient algorithms utilize an action-value function trained using off-policy transitions. In our

implementation of K-MADDPG and K-FACMAC, we use an off-policy critic Qf(o) (s,.,.), which
estimates the action-value function for agent ¢ under the £ = 0 policies of all the agents. Since the

critic is trained using off-policy data, it is reasonably well-estimated for higher k-level updates which
(k) (k)

—1i —1

) for each agent 4, since the joint k-level actions a

only obtained by policies one gradient step away from 7"(—01') . This is similar to Peng et al. [14], where
the centralized critic is trained using off-policy actions and used to estimate the action-value function

for the online actions of all agents to prevent relative overgeneralization.

. L (0
are obtained by estimating QT (s, a;, @ are

D Environment Details

All SMAX maps were configured according to the default settings seen in Rutherford et al. [12]. All
MAMulJoCo environments and agents are configured according to the default configurations used
in Peng et al. [14] where they were introduced. Each agent observes the positions of its own body
parts, receives a common team reward that depends on the task, and controls only its joints. The exact
configurations and rewards can be seen at https://robotics.farama.org/envs/MaMuJoCo/.
All experiments using SMAC mostly used the default team configurations, rewards, and observations
as the SMAC benchmark [13]. The state space was modified slightly by including the last actions of
each agent (using the inbuilt feature in the StarCraft II environment) as this was found to stabilize
learning for all algorithms.

E Experimental Details

E.1 SMAX

Each baseline is run with the settings seen in Rutherford et al. [12]. Each baseline uses 1e7 total
training steps and is trained against the ‘HeuristicEnemySMAX’ Al, updated every 128 steps, and uses
a v of 0.99. Off-policy algorithms (QMIX, VDN, IQL) are trained with 16 parallel environments
with a buffer size of 5000 and a batch size of 32. Each uses Adam optimizers with a learning rate
of be — 5, and performs e-greedy exploration during training time with and e that decays from 1
to 0.05 over the first 10% of total steps (learning is also paused until the e decay is concluded).
Neural networks use a hidden size of 512 and relu activations, hard target updates every 10 updates,
8 update epochs, and a reward scale of 10 (the reward scale of the original SMAC environments).
The maximum gradient norm is constrained to be 10. In QMIX, the mixer embedding dimension
is 64, the mixer hypernet hidden dimension is 256, and the initial scale of the kernel weights of the
mixer weights is set to 0.001. Baselines are evaluated every 5% of total steps for 128 steps across
512 environments. On-policy algorithms (K-MAPPO, MAPPO, IPPO, POLA) are trained with 64
parallel environments. Each uses Adam optimizers with a learning rate of 4e — 3 which is annealed
to 0 over the entire course of training. Neural networks use a hidden size of 128 and relu activations,
2 minibatch updates, and 2 update epochs. The maximum gradient norm is constrained to be 0.5.
The value of A for the GAE is set to 0.95, the value of € for surrogate clipping is 0.2, the value loss
coefficient is 0.5, and no entropy bonus is provided.
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E.2 Multi-Agent MuJoCo and SMAC

For each algorithm, we evaluate the performance in the following manner: we pause training after
10,000 steps and run a fixed number of independent test episodes (10 for MAMuJoCo and 32 for
SMAC). During these test episodes, each agent acts greedily in a decentralized fashion (DDPG agents
don’t use action noise, DQN agents don’t select random actions, etc.). The mean performance of
the agents is reported in MAMuJoCo (the performance for each agent is identical since they share a
common objective) and the mean success rate is reported for SMAC. Note that we chose to report
the mean success rate rather than the median, as certain SMAC maps (especially Super Hard maps)
commonly result in very success rates. Using the mean success rate better reflects the difficulty of
these maps, as the median success rate can sometimes skew results to look more positive than they
should. We set v = 0.99 for all experiments.

Since our results are primarily obtained by applying KPG to FACMAC, we mostly kept the algorithmic
implementation standards used in FACMAC for reproducibility. We use parameter sharing for all
actor and critic networks to speed up learning. All actor, critic, mixer, and Q-networks have target
networks.

In torch environments, we find that RMSProp provides the most stable updates, since the momentum
effects of Adam appear to mitigate the benefits of KPG by carrying over a running average of
gradients from previous timesteps (which does not help when KPG’s benefit is a better gradient for
the current timestep.) As a practical detail, note also that at the end of each non-final intermediate
gradient step taken by KPG, the statistics of the optimizer must be reset to what they were at the
beginning of that timestep, as the carryover effects of any optimizer from the previous timestep must
apply to each K-level gradient independently.

To clarify our implementation of K-FACMAC, we provide Algorithm 2 below, which provides further
details on K'-level action sampling, intermediate fitting using optimizers, and resets of the actors and
optimizers after each K-level step except the final one.

MAMuJoCo The architecture of all deep Q-networks is an MLP with 2 hidden layers with 400
and 300 units respectively. In all actor-critic methods, the architecture of the shared actor and critic
networks is an MLP with 2 hidden layers with 400 and 300 hidden units respectively. All hidden
layers for all networks use ReLU activations. All critic networks provide raw outputs while actor
networks have a tanh activation at the output. Actor networks and DQNs receive the local observations
of that agent as an input, appended with a one-hot vector due to the parameter sharing. All centralized
critics and mixing networks are conditioned on the global state provided by the environment.

Each episode has a maximum length of 1000 steps. The total training time for each algorithm is set to
2 million steps. To improve initial exploration, each agent takes 10,000 random steps at the beginning
of each run. During training we apply uncorrelated, mean-zero noise with a standard deviation of 0.1
to further encourage exploration. Each agent has a replay buffer with a maximum size of 1 million
and trains with a batch size of 100 after every new sample. Target networks are updated using Polyak
averaging with 7 = 0.001. All neural networks are trained using the Adam optimizer [51] (except for
KPG which uses RMSProp) with a learning rate of 0.001.

SMAC The architecture of all shared deep Q-networks is a DRQN with a recurrent layer comprised
of a GRU with a 64-dimensional hidden state, with fully connected layers on either side. In all
actor-critic methods, the architecture of all shared actors is a recurrent MLP comprised of a GRU with
a 64-dimensional hidden state, with fully connected layers on either side. We train the GRU networks
on batches of 32 fully unrolled episodes (with 0-padding to account for temporal mismatch between
episodes). The architecture of all shared critic networks is an MLP with 2 hidden layers with 64 units.
All networks use ReLU activations for the hidden layers. All actor critic methods select discrete
actions using the Gumbel-Softmax estimator [52] in order to turn continuous softmaxed logits into
discrete one-hot actions while retaining the ability to backpropagate through the network. Actor
networks and DRQNs receive the local observations of that agent as an input, appended with the last
action taken by the agent, as well as a one-hot vector due to the parameter sharing. All agents use
e-greedy action selection and we anneal € from 0.5 to 0.05 over 50k training steps. The replay buffer
contains the most recent 5000 episodes. All target networks are updated hard every 200 training steps.
All networks are trained using Adam (except for KPG which uses RMSProp) with a learning rate
of 0.0025 for the actor network and 0.0005 for the critic network (except for QMIX which uses the
learning rates specified in Samvelyan et al. [13] as they have already been tuned for SMAC).
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Algorithm 2 K-FACMAC

Input: Initial actor parameters 6;; Initial critic parameters ¢;; Initial mixer parameters 1); Actor
targets 8;; Critic targets ¢,; Mixer target 1; Actor optimizers §2;; Critic and mixer update function
F(); recursive reasoning steps k'; Vi € T
for each update step do

Update critics and mixer using F({¢, ;}, ¢, {0¢,s}) {typical FACMAC critic and mixer update}

Save initial actor parameters 0,¢gct; < 01 Vi €L

Save initial actor optimizer states Qyeser; <= 2 Vi € Z

Sample 0O-level actions a¥=0 ~ 0, ;, Vi € T

for j = 1to k' do

Sample O-level actions a; ~ 0, ; ,Vi € L

Update actor parameters ijj — Qi(ag, ali? -1
optimizer states}
if j # K/ then
Sample j-level actions a*=7 ~ Off] Viel
Reset actor parameters 0 ; < Orcseti, Vi €L
Reset actor optimizers £y ; <— Qpeget,i» Vi €L
end if
end for o
Update targets 8;, ¢;, 9, Vi € T
0t+1,i — 0?714:16/, Viel
end for

,0¢ ), Vi € T {this implicitly updates the

Table 1: Final mean performance and success rate improvement w.r.t. FACMAC for K2-FACMAC
and baselines across MAMuJoCo and SMAC maps.

Algorithm MAMuJoCo SMAC
FACMAC +0.0% +0.0%
COMIX/QMIX -53% —26%
MADDPG —238% —85%
POLA —106% —88%
K2-FACMAC +114% +98%

F Additional Results

K2-FACMAC doubles the performance of FACMAC on average. Table 1 shows the average
performance and success rate changes for each algorithm relative to FACMAC. Note that the extreme
jump for K2-FACMAC over FACMAC is skewed higher in these experiments due to the number
of difficult environments which FACMAC never solved reasonably, such as Walker2d, Sm_vs_6m,
Corridor, and 6h_vs_8z.

Table 2: Mean wall clock increases to run K-FACMAC and K-MADDPG relative to nominal
FACMAC and MADDPG, respectively.

K-Level | FACMAC MADDPG
2 +28% +27%
3 +55% +52%
4 +84% +84%
5 +106% +99%
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