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ABSTRACT

One effective way to ease the deployment of deep neural networks on resource
constrained devices is Knowledge Distillation (KD), which boosts the accuracy
of a low-capacity student model by mimicking the learnt information of a high-
capacity teacher (either a single model or a multi-model ensemble). Although
great progress has been attained on KD research, existing efforts are primarily
invested to design better distillation losses by using soft logits or intermediate
feature representations of the teacher as the extra supervision. In this paper, we
present Explicit Connection Distillation (ECD), a new KD framework, which ad-
dresses the knowledge distillation problem in a novel perspective of bridging dense
intermediate feature connections between a student network and its correspond-
ing teacher generated automatically in the training, achieving knowledge transfer
goal via direct cross-network layer-to-layer gradients propagation. ECD has two
interdependent modules. In the first module, given a student network, an auxiliary
teacher architecture is temporarily generated conditioned on strengthening feature
representations of basic convolutions of the student network via replacing them
with dynamic additive convolutions and keeping the other layers unchanged in
structure. The teacher generated in this way guarantees its superior capacity and
makes a perfect feature alignment (both in input and output dimensions) to the stu-
dent at every convolutional layer. In the second module, dense feature connections
between the aligned convolutional layers from the student to its auxiliary teacher
are introduced, which allows explicit layer-to-layer gradients propagation from the
teacher to the student via the merged model training from scratch. Intriguingly,
as feature connection direction is one-way, all feature connections together with
the auxiliary teacher merely exist during training phase. Experiments on popular
image classification tasks validate the effectiveness of our method. Code will be
made publicly available.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved great success in tackling a variety of visual recognition
tasks (Krizhevsky et al., 2012; Girshick et al., 2014; Long et al., 2015). Despite the appealing perfor-
mance, the prevailing DNN models usually have large numbers of parameters, leading to heavy costs
of memory and computation. Conventional techniques such as pruning weights from networks (Han
et al., 2015; Li et al., 2017) and quantizing networks to use low-bit parameters (Courbariaux et al.,
2015; Rastegari et al., 2016; Zhou et al., 2016) have proven to be effective for mitigating this compu-
tational burden. More recently, Knowledge Distillation (KD), another promising solution family to
get compact yet accurate models, has attracted increasing attention.

The goal of KD is to transfer the learnt information (knowledge) of a high-capacity DNN model or an
ensemble of multiple DNN models (teacher) to a low-capacity target DNN model (student), striking
better accuracy-efficiency tradeoffs at runtime. There exist numerous KD methods to address the
knowledge transfer from the teacher to the student. Many of them use a two-stage training process
which begins with training a teacher model and keeping it fixed, and then learns a target student
model by forcing it to match the outputted knowledge from the pre-trained teacher model. Various
types of knowledge have been explored, such as outputted logits (Ba & Caruana, 2014; Hinton et al.,
2015), intermediate feature representations (Romero et al., 2015; Zagoruyko & Komodakis, 2017),
and relational information of model outputs or representations (Park et al., 2019; Tian et al., 2020).
Instead of defining new types of knowledge, the other methods adopt one-stage training process,
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jointly training the student and teacher/peer models using bidirectional knowledge distillation (Zhang
et al., 2018a; Yao & Sun, 2020) or on-the-fly ensemble distillation (Lan et al., 2018; Anil et al.,
2018) or multi-exit distillation (Phuong & Lampert, 2019). Both two-stage and one-stage KD
methods as above typically treat the knowledge transfer as an optimization problem of formulating
robust distillation loss functions via introducing more informative knowledge supervisions and more
effective knowledge matching strategies.

Instead of extracting informative knowledge and designing alternative distillation loss functions to
fit a desired knowledge transfer optimization objective as existing KD methods, we investigate a
new technical perspective in this paper: casting the knowledge distillation problem into designing
auxiliary connection paths between the student and teacher networks to enable explicit layer-to-layer
gradients distillation from the teacher to the student via training them from scratch simultaneously.
We are partially inspired by recent advances on DNN architecture engineering, which show that
designing sophisticated feature connection paths such as residual connections (He et al., 2016) and
dense connections (Huang et al., 2017) across neighboring layers can allow better information and
gradients flow throughout a single network, making the training easy to have significantly improved
performance in model accuracy and convergence. We conjecture this simple principle would also
be crucial to open the door to develop a totally new knowledge distillation framework if we can
merge the student and teacher into a single network temporarily during training phase, and can
also separate them easily after training. To explore this hypothesis, we present Explicit Connection
Distillation (ECD), a very simple knowledge distillation framework. Specifically, we decompose
the design of ECD into two interdependent modules, namely auxiliary teacher generation and dense
feature connection distillation. Recent works (Liu et al., 2020; Yue et al., 2020) show that searching a
good alignment of structural feature channels between the student and teacher networks can bring
improved knowledge distillation performance under the premise that a pre-trained teacher model is
available. Regarding the first module of ECD, we hope the generated teacher can make a perfect
structure alignment (both in input and output feature dimensions of every convolutional layer) to
the student network in an easier manner (no need of time-consuming searching procedure as used
in (Liu et al., 2020; Yue et al., 2020)) while can attain superior model capacity. To this goal, we
retain all structural units of the student network in constructing the teacher architecture, except for
replacing original convolutions by dynamic additive convolutions (Yang et al., 2019) which have
proven to be very effective for enhancing model capacity in network architecture engineering research.
Regarding the second module of ECD, we hope knowledge distillation can be realized through the
explicit layer-to-layer flows of gradients from the teacher to the student instead of the conventional
mimicking procedure. To this goal, we add dense feature connections from the convolutional layers of
the student to those aligned layers of the auxiliary teacher, and train the merged model from scratch.
After training, all feature connections can be naturally removed as their connection direction is only
from the student to its auxiliary teacher which also exists merely in training phase.

Beyond the common wisdom of knowledge distillation that requires the knowledge mimicking
process between the student and teacher networks, our ECD sheds new insight: by considering
knowledge distillation from a novel student-to-teacher merging, co-training and splitting viewpoint,
direct feature connections from the student to its well-aligned auxiliary teacher (generated from the
student in an automatic manner) can also achieve competitive performance to improve low-capacity
student models, as validated by extensive experiments on CIFAR-100 and ImageNet datasets.

2 RELATED WORK

In this section, we make a brief summary of existing knowledge distillation works.

Two-stage KD methods. The idea of training a compact model to mimic the functions learnt by a
larger ensemble of models is firstly proposed in (Bucilǎ et al., 2006). Ba & Caruana (2014) extends
this idea, showing that shallower yet wider neural networks can also approximate the functions
previously learnt by deep ones. Hinton et al. (2015) presents the famous Knowledge Distillation
(KD) method, which adopts a teacher-student framework for transferring learnt soft knowledge from
a high-capacity teacher to a low-capacity target student network. In this framework, the teacher is
pre-trained and fixed, and then its soft logits on the training data are used as the extra supervision
to guide the training of the student besides the ground truth labels. FitNets (Romero et al., 2015)
shows the intermediate feature representations learnt by the teacher can be used as the complementary
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knowledge to soft logits, enhancing knowledge distillation performance to some extent. Zagoruyko &
Komodakis (2017) proposes to use spatial attention activations instead of intermediate feature maps.
Recent works further show the relations (Park et al., 2019) and higher order dependencies (Tian
et al., 2020) of learnt logits or intermediate feature representations by the teacher capture important
structural information, which are more effective knowledge to augment the knowledge distillation
process. Following the teacher-student framework as above, many other works such as (Yim et al.,
2017; Lee et al., 2018; Kim et al., 2018) attempt to further improve knowledge representations and
matching losses.

One-stage KD methods. Unlike two-stage KD methods that rely on a pre-trained teacher model
and one-way knowledge transfer from the teacher to the student, one-stage KD methods simplifying
the knowledge distillation process by training all models simultaneously. Deep mutual learning
(DML) (Zhang et al., 2018a) considers the teacher as a peer of the target student, showing that the
outputted logits of the student can be used to assist the training of the teacher by a peer-teaching
strategy. In (Yao & Sun, 2020), the authors further show that deep mutual learning can also be boosted
by intermediate soft outputs, just like that in two-stage KD methods. Guo et al. (2020) follows the
basic framework of DML but replaces the mutual distillation (student-to-student) by the ensemble
(over students)-to-students distillation. ONE (Lan et al., 2018) presents an on-the-fly ensemble
distillation method in which a stronger ensemble teacher learnt over a multi-branch network is used
to enhance the training of every branch. Anil et al. (2018) extends this idea to accelerate large-scale
distributed neural network training applications. Wu & Gong (2020) follows the basic framework
of ONE but jointly uses the mutual distillation (student-to-student) and the ensemble-to-students
distillation. Other improved variants include but are not limited to (Phuong & Lampert, 2019; Malinin
et al., 2020).

Other KD variants. Besides model compression, there also exist a lot of works using knowledge
distillation methodology to handle other applications. Self-distillation methods (Furlanello et al.,
2018; Bagherinezhad et al., 2015) explore the benefits of KD techniques to improve the model
training, assuming only a single network is available. Lopes et al. (2015) and Chen et al. (2019)
address data-free knowledge distillation where the original training data are no longer accessible
due to safety or privacy concerns. Goldblum et al. (2020) and Chung et al. (2020) extend the idea of
KD to study how adversarial robustness of the teacher model can be transferred to the student. Li
& Hoiem (2016) and Hou et al. (2018) combine KD with fine-tuning and retrospection to handle
life-long learning scenarios. Adapting KD to other tasks such as multi-modal visual recognition and
natural language processing is explored in (Garcia et al., 2018; Kim & Rush, 2016).

3 EXPLICIT CONNECTION DISTILLATION

In this section, we describe the formulation of the proposed Explicit Connection Distillation (ECD)
framework, and detail how to design and implement its two key components: auxiliary teacher
generation and dense feature connection distillation.

3.1 CONVENTIONAL KD FORMULATION

For a better understanding of our method, we start with the formulation of conventional KD methods.
Let S, T and θS , θT denote a target student model, its teacher (either a single model or an ensemble
of multiple models) and their parameters correspondingly, and let x denote training data, and let
Q be a set of layer location pairs where knowledge mimicking process between two networks is
introduced. Regarding one-stage KD methods, where the student and teacher models are trained
jointly, the overall objective function to be optimized can be defined as

LKD = LCE(θS , x) + LCE(θT , x) + λ
∑
q∈Q

d(fqS(x), fqT (x)), (1)

where LCE(θS , x) and LCE(θT , x) are the standard cross-entropy loss functions of the student model
and the teacher model, respectively. d is the loss for knowledge mimicking, which measures the
distance of learnt knowledge fqS(x), fqT (x) at all specific layer location pairs between the student
and teacher models. As we discussed in introduction section, intermediate feature representations,
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Figure 1: A schematic overview of the training stage and inference stage of our ECD. In the training
phase, the teacher network is automatically generated by taking the student as the reference, and then
both networks are merged by adding dense feature connections and co-trained from scratch. In the
inference phase, in order to obtain the prediction (p), only the student network is needed which is
simply split from the teacher.

soft logits, and their relations from learnt models are popularly used as the knowledge. λ is a
tunable weighting factor to balance loss terms, which is usually initialized to a relatively large value
and decays during training. Simply removing the loss term LCE(θT , x) from Equation (1) gets the
objective function of two-stage KD methods, as in them the teacher model is pre-trained and fixed.

3.2 FORMULATION OF ECD

The goal of our ECD is to realize knowledge transfer from the teacher to the student without need
of the common knowledge mimicking process described above, making KD design as simple as
possible. That is, for ECD, the optimization objective is

LECD = LCE(θS , x) + LCE(θT , x). (2)

As illustrated in Figure 1, merely given a student network and training data, our ECD achieves such a
goal by a smart teacher-generating, student-to-teacher merging, co-training and splitting framework,
consisting of two interdependent modules:

• Auxiliary teacher generation module (in § 3.3): A teacher model, which structurally
aligns with the given student at any network depth, is generated automatically from the
student. Thus there is no longer any need to prepare large teacher architectures.

• Dense feature connection distillation module (in § 3.4): The student model is temporarily
merged with the teacher by adding explicit layer-to-layer connections to the teacher. The
knowledge is transferred to the student during co-training of the merged model. Thus there
is no longer any need to design distillation losses and tune λ to balance different losses.

3.3 AUXILIARY TEACHER GENERATION

Unlike existing KD methods which usually need to prepare different teacher architectures for their
corresponding student networks, in our method, a teacher model is generated automatically from the
student by the auxiliary teacher generation module. To guarantee superior capacity of the generated
teacher network and make a perfect structure alignment to the student network simultaneously, this
module retains all structural units of any given student network in generating auxiliary teacher
architecture, but replaces original convolutions by dynamic additive convolutions. This new type of
convolution is recently proposed in (Yang et al., 2019), which has proven to be very effective for
enhancing model capacity in network architecture engineering research. We extend it to construct
the desired teacher which can naturally align with the student structure, and thus is compatible to
our overall design goal. Denote convolutional kernels in the student network as KS =

{
W l
}
, l ∈

1, · · · , L, where L is the number of convolutional layers. The generated kernels in the teacher network
can be written as KT = {

∑n
i=1 α

l
iW̄

l
i }, l ∈ 1, · · · , L, where for the lth layer and the ith kernel W̄ l

i

it has the same shape withW l, n is the kernel number, and we set it to 8/16 as suggested in (Yang
et al., 2019), which will be also discussed in Table 13, and αl

i is a learnable weight conditioned
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on the input feature maps. Note that the set of αl
i values are automatically learnt with a softmax

function or a sigmoid function conditioned on the transformed features of the input channels. We
experimentally used a softmax function, thus each αl

i is within [0, 1] and their sum is equal to 1.
Thanks to additive property, by replacing normal convolutions with dynamic additive convolutions,
both input and output feature dimensions of every convolutional layer between the teacher and student
networks are the same completely. You are referred to the block tagged as “teacher” in Figure 1 for a
clear understanding of this generation process.

3.4 DENSE FEATURE CONNECTION DISTILLATION

Once the teacher and student networks are perfectly aligned at every convolutional layer, then
effective knowledge distillation process of our method is realized by dense feature connections from
the student to the teacher which merges two networks temporarily and enables co-training from
scratch. As illustrated in Figure 1, we add skip connections to bridge both models, formulated as
φ̂l

T = φl
T + φl

S , l ∈ 1, · · · , L, where φl
S and φl

T are the feature maps after the lth convolutional
layer of the student and teacher models, respectively, and φ̂l

T is the new feature maps of the teacher
after addition. We call this module dense feature connection distillation which is simple and neat, yet
can well enhances the learning performance of the student model due to the backward gradient flows
from the teacher. After training, all skip connections can be naturally removed as their connection
direction is only from the student to its auxiliary teacher which also exists only in training phase.

3.5 UNDERSTANDING ECD

From the optimization objective of Equation 2, a common understanding of our method is the joint
optimization will improve the training of the teacher as the student is merged into the teacher by the
dense layer-to-layer feature aggregation progressively. It is true the teacher model is consistently
improved as can be seen from the results in Table 16, but comparatively the improvement to the
student model is usually larger. We can explain this in a reverse thinking: during the joint training,
note that the student and the teacher are merged into one single network by dense layer-to-layer
feature connections from the student to the teacher, that means during the inference the teacher will
depend on the student but the student does not depend on the teacher (stripping away the teacher from
the student). In such a perspective, by Equation 2, the teacher can be naturally treated as the auxiliary
supervision to the student, which is well in line with the Deep Supervision (DS) methodology (Lee
et al., 2015) in terms of both the mathematical formulation and the inference execution. In the DS
methodology, it directly uses individual auxiliary supervisions added to several intermediate layers of
a CNN model to ease gradients propagation, and they are discarded during inference. However, they
usually bring marginal improvement on modern CNNs as reported (Huang et al., 2018; Zhang et al.,
2018b; Sun & Yao, 2019). In a sharp contrast to existing DS methods, in our ECD, the teacher acting
as the auxiliary supervision is not only based on its own structure generated with a perfect feature
alignment (both in input and output dimensions) to the student at every convolutional layers, but also
is based on the dense layer-to-layer feature aggregation from the student to the teacher progressively,
enabling dense backward layer-to-layer gradients propagation from the teacher to the student and
boosting the training of the student. Therefore, our method extends the deep supervision methodology
in a new perspective on developing KD research.

4 EXPERIMENTS

In this section, we evaluate our method on CIFAR-100 and ImageNet classification datasets, and
compare the performance against existing knowledge distillation methods. For fair comparisons, we
use the public codes of different KD methods, and adopt the same training and data preprocessing
settings throughout the experiments. All experiments are implemented with PyTorch. To our ECD,
we add Conv1×1 on each connection path as we find it slightly improves the distillation performance
(see ablative study part). Based on ECD, we also apply another ensemble distillation on the outputted
logits from the two heads of the merged model to further boost the performance of each head, which
is named as ECD*. Full implementation details are referred to Appendix.
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Table 1: Main experimental results on the CIFAR-100 dataset. † means using learning rate warm-up
to smooth the training process. We report top-1 “mean (std)” accuracies (%) over 3 runs.

Model Student Teacher ECD Gain ECD* Gain*

ResNet20 68.78 (0.22) 71.05 (0.35) 70.75 (0.29) 1.97 71.07 (0.13) 2.29
ResNet32 70.80 (0.15) 72.78 (0.44) 72.40 (0.14) 1.60 73.09 (0.14) 2.29
ResNet44 71.88 (0.13) 73.48 (0.48) 73.53 (0.16) 1.65 74.08 (0.51) 2.20
ResNet56 72.29 (0.17) 73.79 (0.51) 73.94 (0.08) 1.65 74.88 (0.05) 2.59
ResNet110 73.15 (0.45) 75.32 (0.64) 75.11 (0.14) 1.96 75.47 (0.56) 2.32
ResNet164 76.64 (0.61) 78.78 (0.73) 77.94 (0.39) 1.30 78.34 (0.79) 1.70
ResNet110† 74.41 (0.09) 75.68 (0.21) 75.59 (0.10) 1.18 76.46 (0.20) 2.05
ResNet164† 77.15 (0.10) 78.47 (0.11) 78.33 (0.12) 1.18 78.64 (0.19) 1.49
WRN-40-1 71.44 (0.14) 72.48 (0.23) 72.55 (0.17) 1.11 72.83 (0.05) 1.39
WRN-40-2 75.96 (0.12) 77.23 (0.19) 76.55 (0.15) 0.59 76.64 (0.07) 0.68

4.1 EXPERIMENTS ON CIFAR-100

Dataset. CIFAR-100 (Krizhevsky & Hinton, 2009), containing 50,000 training images and 10,000
test images with 100 classes, is the most popular classification dataset for evaluating the performance
of knowledge distillation methods.

Implementation. We performed experiments on prevalent ResNets (He et al., 2016) of different
depths and WRNs (Zagoruyko & Komodakis, 2016) of different widths with the typical training
settings (see Appendix for details). For auxiliary teacher models, we replace the standard convolutions
in BasicBlock or Bottleneck of the student with dynamic additive convolutions (with n = 16
following (Yang et al., 2019)). For the experiments of each setting, we run each method 3 times and
report top-1 “mean (std)” accuracies.

Main results. In Table 1, we provide average results for baselines, teachers and our method ECD.
Note that results of baselines are slightly higher than those reported in the original papers. For our
ECD experiments, we uniformly apply feature connections in the first two stages of ResNets or
WRNs (we also provide ablative experiments to analyze where to add connection paths). Regarding to
ResNet backbones, we observe 1.2% ∼ 2.0% absolute accuracy gains for ECD, and 1.5% ∼ 2.6% for
ECD*. This shows that our design is effective for BasicBlock and Bottleneck structures with different
depths. Besides, on WRN backbones, ECD and ECD* outperform baselines with 0.6% ∼ 1.1%
and 0.7% ∼ 1.4% margins, respectively. In summary, the proposed ECD noticeably improves the
performance of each student network, and ECD* further provides additional improvements. In most
cases, the students trained by our method show even better performance than the corresponding
teachers. These results verify the effectiveness of our proposed method. The performance is not that
strong for WRN-40-2, as this architecture has already widened the network channels.

Table 2: Results comparison with state-of-the-art two-stage and one-stage KD methods. See Appendix
for specific settings of these methods. We report top-1 “mean (std)” accuracies (%) over 3 runs.

Two-stage

Student 68.78 (0.22) 70.80 (0.15) 71.44 (0.14)
(ResNet20) (ResNet32) (WRN-40-1)

Teacher 73.15 73.15 73.23
(ResNet110) (ResNet110) (WRN-40-2)

KD 70.42 (0.16) 72.08 (0.18) 73.23 (0.23)
FitNet 70.36 (0.16) 72.09 (0.36) 71.98 (0.19)
AT 70.22 (0.03) 71.64 (0.32) 71.74 (0.10)
FSP 69.95 (0.11) 71.69 (0.06) 71.61 (0.03)
SP 70.35 (0.07) 72.11 (0.32) 72.47 (0.30)
VID 70.14 (0.11) 71.64 (0.30) 71.68 (0.33)
PKT 70.06 (0.08) 71.66 (0.05) 72.51 (0.18)
FT 71.14 (0.37) 72.82 (0.10) 71.65 (0.09)
NST 70.12 (0.06) 71.76 (0.36) 71.31 (0.40)
RKD 70.24 (0.09) 71.93 (0.19) 71.63 (0.21)
CC 70.37 (0.19) 71.67 (0.18) 71.44 (0.09)
CRD 70.82 (0.12) 72.84 (0.65) 72.73 (0.18)

One-stage

Student 68.78 (0.22) 70.80 (0.15) 71.44 (0.14)
(ResNet20) (ResNet32) (WRN-40-1)

Teacher 74.43 (0.21) 75.27 (0.11) 73.99 (0.12)
(ResNet110) (ResNet110) (WRN-40-2)

DML 70.47 (0.25) 72.57 (0.23) 72.44 (0.21)

Teacher 72.55 (0.18) 74.82 (0.08) N/A
(Ensemble) (Ensemble) (Ensemble)

ONE 70.55 (0.07) 72.29 (0.12) N/A

Teacher 71.05 (0.35) 72.78 (0.44) 72.48 (0.23)
(Generated) (Generated) (Generated)

ECD 70.75 (0.18) 72.40 (0.14) 72.55 (0.17)
ECD* 71.07 (0.12) 73.09 (0.14) 72.83 (0.05)
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Table 3: Results on the ImagNet dataset. We report top-1 accuracies (%).

Model Student Teacher ECD Gain ECD* Gain*

ResNet18 69.53 72.86 70.33 0.80 70.78 1.25
ResNet50 (0.5×) 71.41 75.27 72.19 0.78 72.48 1.07

Comparison with SOTAs. In Table 2, we compare our method with state-of-the-art knowledge
distillation methods under the same training settings with ours. For ResNet20 and WRN-40-1, the
automatically generated teachers of our method reach 71.05% and 72.48% accuracies (as previously
shown in Table 1), which are much lower than the teachers used for other methods (73.15% and
76.23%), yet our method is able to achieve very competitive performance. For ResNet32, under the
comparable capacity of the teach model (ours 72.78% vs. others 73.15%), our ECD* outperforms all
the other methods with obvious margins.

4.2 EXPERIMENTS ON IMAGENET

Dataset. We additionally performed experiments on the ImageNet dataset (ILSVRC12) (Russakovsky
et al., 2015), which is known as the most challenging image classification dataset containing about
1.2 million training images and 50 thousand validation images, and each image belongs to one of
1000 categories.

Implementation. Experiments are also conducted on prevalent ResNets. For auxiliary teacher
models, we replace the standard convolutions in BasicBlock or Bottleneck of the student with
dynamic additive convolutions (with n = 8 following (Yang et al., 2019)). We chose ResNet18 and
Resnet50-half models, because they are often evaluated in knowledge distillation and the auxiliary
teacher model and the student model have a suitable performance gap. Implementation details are
available in Appendix A.1.

Results. Table 3 reports the performance of our method on ImageNet. ECD and ECD* improve
baseline models by 0.8% and over 1.0% absolute gains in top-1 accuracy respectively, which support
the benefit of our method on the large-scale dataset.

4.3 ABLATION STUDY

In this section, we isolate the influence of each element of our method, as well as compare with
possible variants. All experiments are conducted on CIFAR-100 dataset. We use ECD but not ECD*,
and do not use learning rate warm-up throughout all experiments for a better ablation study. For the
experiments of each setting, we run our method 3 times and report top-1 “mean (std)” accuracies.

Location of connections. We explore the influence of the locations to add dense feature connections.
This is very important because the semantics and robustness of different locations are different. We
consider different settings by adding our dense feature connections to at most three blocks (including
the block Conv2_x, Conv3_x, and Conv4_x, denoted as C2, C3 and C4 respectively) on CIFAR100.
Detailed results are shown in Table 4. We observe that adding connections in both Conv2_x and
Conv3_x brings the best performance improvement, followed by adding connections in Conv2_x
alone. These results indicate that adding connections in shallow layers such as Conv2_x and Conv3_x
can migrate information well, while Conv4_x extracts higher-level semantics and thus may be less

Table 4: Comparison of ECD with dense feature connections added to different blocks. In the table,
C2, C3 and C4 refer to Conv2_x, Conv3_x and Conv4_x, respectively. We report top-1 “mean (std)”
accuracies (%) over 3 runs.

Connection ResNet20 ResNet110 WRN-40-1

Baseline 68.78 (0.22) 73.15 (0.33) 71.44 (0.14)
C2 70.36 (0.03) 75.00 (0.35) 72.00 (0.39)
C3 70.12 (0.12) 74.41 (0.12) 72.14 (0.38)
C4 69.75 (0.12) 73.85 (0.60) 71.32 (0.37)
C2+C3 70.75 (0.29) 75.11 (0.14) 72.55 (0.17)
C2+C3+C4 69.90 (0.10) 73.75 (0.21) 70.93 (0.18)
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Table 5: Results comparison of our ECD and using feature losses. “stage-wise” means feature
supervision after each stage, which is consistent with many typical KD methods, and the distillation
loss factor here is set to 10−2; “block-wise” refers to supervision on the same blocks where we add
connections in our ECD, and the distillation loss factor here is set to 10−4. We report top-1 “mean
(std)” accuracies (%) over 3 runs.

Model ResNet20 ResNet110 WRN-40-1

Baseline 68.78 (0.22) 73.15 (0.45) 71.44 (0.14)
l2-loss (stage wise) 70.42 (0.16) 74.64 (0.34) 72.10 (0.22)
l2-loss (block wise) 70.12 (0.10) 74.32 (0.26) 71.64 (0.15)
ECD 70.75 (0.18) 75.11 (0.12) 72.55 (0.17)

Table 6: Comparison with adding Conv1×1 on each connection path. We report top-1 “mean (std)”
accuracies (%) over 3 runs.

Transformation ResNet20 ResNet110 WRN-40-1

Baseline 68.78 (0.22) 73.15 (0.45) 71.44 (0.14)
None 70.42 (0.17) 75.07 (0.21) 72.13 (0.06)
Conv1×1 70.75 (0.18) 75.11 (0.12) 72.55 (0.17)

robust, which limits the effect of connection supervision. To some extent, this is consistent with
multi-task learning and multi-branch network designs (Lan et al., 2018; Anil et al., 2018) where the
shallow network is shared and the higher level network is divided into separate branches.

Comparison with using feature loss. Recall that the distance of intermediate features between
the student and teacher models is popularly used in existing KD methods to formulate feature
loss (Romero et al., 2015; Zagoruyko & Komodakis, 2017). Instead of using feature loss, we
simply use dense feature connections. In Table 5, we compare the performance of feature loss and
dense feature connections under the same generated teacher. The results show that in our proposed
framework, using dense connections is superior to using feature loss.

Impact of the connection transformation. In Table 6, we compare the performance when using
direct connection and adding a Conv1×1 layer to each connection for improved alignment in
feature semantics. We observe that adding Conv1×1 achieves slightly higher results than direct
connection. That means direct connections without any transformation like Conv1×1 still get
promising knowledge distillation performance. This is mainly due to our first module for auxiliary
teacher generation. By replacing normal convolutions with dynamic additive convolutions, the teacher
is well aligned to the student in network depth, and the input and output feature dimensions of every
convolutional layer between the teacher and student networks are the same completely.

Auxiliary teacher structure design. As described in § 3.3, the teacher is generated automatically
through replacing the convolutional kernels in the student by a linear combination of several kernels.
As the knowledge is transferred from the generated teacher to the student, the capability of the
teacher could affect the improvements. In Table 7, we compare our default setting (dynamic additive
convolution, abbreviated as DAConv) with two other attention based alternatives SE (Hu et al., 2018)
and CBAM (Woo et al., 2018). We find that under our proposed framework, generating teacher using
attention modules such as SE and CBAM can also bring noticeable improvements over the student
networks. Comparatively, our default setting achieves higher performance than these two alternatives.

Embedding visualization. To verify whether the student learns useful features during the ECD
training, we provide visualization of T-SNE object embeddings in Figure 2. The figure illustrates
that comparing with the baseline student model, applying ECD training helps learn more scattered
embeddings, which provably affirms the advantage of our ECD.

Combination experiment with DML and ED. In this part, we compare our ECD with two typical
response-based distillation methods including mutual distillation (DML) (Zhang et al., 2018a) and
Ensemble Distillation (ED) (Lan et al., 2018). As shown in Table 8, our ECD with response-based
distillation methods like DML and ED can achieve additional performance improvements. At the
same time, we observe that the performance of the teacher model during ECD training is greatly
improved as it is merged with student features. Under such stronger supervision of the teacher model,

8
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Table 7: Comparison of auxiliary teacher generation with different methods. DAConv refers to our
default setting. We report top-1 “mean (std)” accuracies (%) over 3 runs.

Hyper-Conv Method ResNet20 ResNet110 WRN-40-1

Baseline 68.78 (0.22) 73.15 (0.45) 71.44 (0.14)

SE
Teacher 70.23 (0.33) 74.98 (0.31) 72.06 (0.23)
ECD 70.05 (0.17) 74.96 (0.79) 72.05 (0.17)

CBAM
Teacher 70.45 (0.13) 75.50 (0.11) 72.26 (0.16)
ECD 70.08 (0.13) 74.94 (0.59) 72.26 (0.07)

DAConv
Teacher 71.05 (0.35) 75.32 (0.64) 72.48 (0.23)
ECD 70.75 (0.29) 75.11 (0.14) 72.55 (0.17)

Table 8: Combination experiment with DML and ED, where S represents the student model, T
represents the teacher model and T+ represents the teacher model connected with the features of the
student model under ECD training. For the training time of ResNet20 in the experiment, DML cost
5.40 gpu-hours and ECD cost 5.27 gpu-hours on a single NVIDIA TITAN RTX. Under the same
teacher-student model, our ECD will be slightly faster than DML because ECD does not need to
calculate additional loss.

Vanilla DML ED

Model S T S T S T Ensemble

ResNet20 68.78 (0.22) 71.05 (0.35) 70.21 (0.08) 72.96 (0.13) 70.82 (0.19) 73.14 (0.14) 73.44 (0.18)
ResNet32 70.80 (0.15) 72.78 (0.44) 72.11 (0.07) 74.91 (0.11) 72.31 (0.13) 75.16 (0.12) 75.53 (0.12)

ECD ECD+DML ECD+ED

Model S T+ S T+ S T+ Ensemble

ResNet20 70.75 (0.29) 72.40 (0.24) 70.87 (0.14) 73.01 (0.15) 71.07 (0.13) 73.41 (0.12) 73.50 (0.16)
ResNet32 72.40 (0.14) 74.83 (0.13) 72.78 (0.16) 75.08 (0.11) 73.09 (0.14) 75.28 (0.16) 75.71 (0.07)

the performance of student model is improved greatly, which is one of the reasons why our ECD
can achieve better performance. In previous experiments, we mainly report the performance of the
combination of ECD and ED, namely ECD*.

                                                           TeacherStudent Student (ECD)

Figure 2: Visualization of object embeddings for the student, the student with ECD connections, and
the teacher, by using T-SNE. Results are obtained based on CIFAR-10 with ResNet44.

In Appendix, we provide additional experiments, e.g. combining our method with labeling smoothing.
More comparisons and discussions can also be found in Appendix.

5 CONCLUSION

In this paper, we present Explicit Connection Distillation (ECD), a new knowledge distillation
framework, which addresses the knowledge distillation problem in a novel perspective of bridging
dense intermediate feature connections between a student network and its corresponding teacher
which is generated automatically in the training. ECD achieves knowledge transfer goal via direct
cross-network layer-to-layer gradients propagation, without need to define distillation losses and
assume a pre-trained teacher model to be available. We hope our work can inspire the future research
on knowledge distillation designs.
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A APPENDIX

A.1 MAIN EXPERIMENTAL SETTINGS

In this section, we provide detailed settings of the experiments conducted on the CIFAR-100 and
ImageNet datasets.

A.1.1 DETAILED EXPERIMENTAL SETTINGS ON CIFAR-100

The experiment was carried out on the CIFAR-100 dataset without additional data augmentation.
The network is trained for 200 epochs, the batch size is 128, the weight decay is 5× 10−4, and the
optimizer is SGD. For ResNets, we set the initial learning rate to 0.1, which decays by 0.1 at epochs
100 and 150. For WRNs, we do not adopt dropout, and the initial learning rate is set to 0.1, which
decays by 0.1 at epochs 60, 120, and 160. The auxiliary teacher is expanded from 3×3 convolutional
kernels (in the block of the original network) to dynamic additive convolutional kernels, and the
number of multiplexing weight is 16. The Conv2_x and Conv3_x blocks of models have dense
feature connections as shown in Table 9. Features after 3×3 convolution and after the block will
be connected to the same position on the teacher network as shown in Figure 3. The features of the
connected parts can be aligned better with the channel semantically with a little gain brought by 1×1
convolutions. For ECD*, a learnable ensemble is applied on both outputted logits of the student and
the teacher.

A.1.2 DETAILED EXPERIMENTAL SETTINGS ON IMAGENET

In the ImageNet experiments, the student model is trained with 100 training epochs, which is common
setting1. The batch size is set to 256 and the multi-step learning rate is initialized to 0.1, which decays
by 0.1 at 30, 60, and 90 epochs. The auxiliary teacher has the same ResNet structure except that

1https://github.com/pytorch/examples/tree/master/imagenet
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the ordinary convolution is replaced with the dynamic additive convolution with the multiplexing
weight 8. In the training process, the features of Conv2_x, Conv3_x and Conv4_x blocks of the
student network are connected to the alignment positions of the auxiliary teacher enhanced by 1×1
convolution layers and BN layers. The output logits of the two output to supervise the training of the
two branch heads. In the experiment, we chose ResNet18 and Resnet50-half as shown in Table 10 to
verify the effectiveness of our method.
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Figure 3: The detailed structure diagram of dense feature connections in BasicBlock and Bottleneck
of ResNets, where DAConv refers to the dynamic additive convolution.

Table 9: Details of the convolutional blocks of the ResNet110, ResNet164 and WRN-40-2 backbones
evaluated on the CIFAR-100 dataset.

layer name output size ResNet110 ResNet164 WRN-40-2

conv1 32×32 3×3, 16 3×3, 16 3×3, 16

conv2_x 32×32
[
3× 3, 16
3× 3, 16

]
× 18

[
1× 1, 16
3× 3, 16
1× 1, 64

]
× 18

[
3× 3, 32
3× 3, 32

]
× 6

conv3_x 16×16
[
3× 3, 32
3× 3, 32

]
× 18

[
1× 1, 32
3× 3, 32
1× 1, 128

]
× 18

[
3× 3, 64
3× 3, 64

]
× 6

conv4_x 8×8
[
3× 3, 64
3× 3, 64

]
× 18

[
1× 1, 64
3× 3, 64
1× 1, 256

]
× 18

[
3× 3, 128
3× 3, 128

]
× 6

classifier 1×1 average pool, 100-d fc, softmax

A.2 COMPARISON EXPERIMENTS ON CIFAR-100

In order to make a fair comparison with existing knowledge distillation methods, we refer to the
original settings and CRD code zoo2 to implement various knowledge methods. The setting details,
including settings of the factor (λ) in Equation (1), are shown in Table 11. We adopt the same standard
training settings as our CIAFR-100 experiments in Table 1.

A.3 MORE DISCUSSIONS ABOUT ECD

ECD & label smoothing. Label smoothing is an effective regularization method. Noise is added
through soften one-hot labels, which reduces the weight of the real sample label category when
calculating the loss function, and suppresses over-fitting. Table 12 indicates that ECD can be
combined with label smoothing to provide additional improvements as well.

2https://github.com/HobbitLong/RepDistiller
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Table 10: Structures of convolutional blocks of the ResNet backbones for the ImageNet dataset.

layer name output size ResNet18 ResNet50 (0.5x)

conv1 112×112
7×7, 64, stride 7×7, 32, stride

3×3 max pool, stride

conv2_x 56×56
[
3× 3, 64
3× 3, 64

]
× 2

[
1× 1, 32
3× 3, 32
1× 1, 128

]
× 3

conv3_x 28×28
[
3× 3, 128
3× 3, 128

]
× 2

[
1× 1, 64
3× 3, 64
1× 1, 256

]
× 4

conv4_x 16×16
[
3× 3, 256
3× 3, 256

]
× 2

[
1× 1, 128
3× 3, 128
1× 1, 512

]
× 6

conv5_x 8×8
[
3× 3, 512
3× 3, 512

]
× 2

[
1× 1, 256
3× 3, 256
1× 1, 2048

]
× 3

classifier 1×1 average pool, 1000-d fc, softmax

Table 11: Brief implementation details of KD methods and settings of the distillation loss factor (λ).

Method factor (λ) Brief notes of Implementation details.

KD (Hinton et al., 2015) 0.1 The temperature factor T is 4.
FitNet (Romero et al., 2015) 0.1 One stage without hint layer.

AT (Zagoruyko & Komodakis, 2017) 1000 The sum of absolute values with power
p=2 is used as the attention.

FSP (Yim et al., 2017) 1
SP (Tung & Mori, 2019) 3000

VID (Ahn et al., 2019) 1 Hidden channel number is the same as
output channel, and remove BN in µ.

PKT (Passalis & Tefas, 2018) 1000
FT (Kim et al., 2018) 200
NST (Huang & Wang, 2017) 10 The polynomial kernel d is 2 and c is 0.
RKD (Park et al., 2019) (25,50) The distance is 50 and the angle is 25.
CC (Peng et al., 2019) 100
CRD (Tian et al., 2020) 0.8
DML (Zhang et al., 2018a) 1
ONE (Lan et al., 2018) 1 Ensemble distillation of three branches.

Table 12: Experiment results of applying Label Smoothing (LS) to ECD.

Method ResNet20 ResNet110 WRN-40-1

Baseline 68.78 (0.22) 73.15 (0.45) 71.44 (0.14)
Label smoothing 69.89 (0.16) 74.59 (0.31) 71.56 (0.08)
ECD 70.75 (0.29) 75.11 72.55 (0.17)
ECD + LS 71.03 (0.08) 75.13 (0.43) 72.66 (0.07)
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Multiplexing weight settings. In Table 13, we explore different settings of our ECD by changing
the multiplexing weight for DAConv. We observe that the number 16 seems to be the best choice, but
the distillation performance is not sensitive to the multiplexing weight (e.g. 72.12% v.s. 72.40% by
doubling the number from 8 to 16). Besides, by simply setting the multiplexing weight to 2 or 4, we
are still able to obtain obvious improvements.

Table 13: Experiment results of ResNet32 on CIFAR100 in different number of multiplexing weight
for DAConv. We report top-1 “mean (std)” accuracies (%) over 3 runs

Number of multiplexing weight

Model Baseline 2 4 8 16 32

ResNet32 70.80 (0.15) 71.47 (0.09) 71.87 (0.16) 72.12 (0.07) 72.40 (0.14) 71.86 (0.20)

More comparison experiments with other KD methods. As shown in Table 14, the performance
of our ECD and ECD* is quite good compared to other methods especially when combining with the
original KD. Furthermore, we experiment with more dense cross-network “multi-layer-to-single-layer”
feature connections in ECD, called ECD (dens), and the corresponding method combined with ED,
called ECD (dens)*. Note that “multi-layer” indicates the student layer (at the same depth with
the teacher layer) as well as its all previous layers. As shown in Table 14, our ECD (dens) and
ECD (dens)* achieve the best performance among these KD methods, indicating that the feature
connection in our ECD can effectively transmit feature distillation information. Also, we evaluate the
performance of our ECD when combining with FitNet (Romero et al. (2015)) or CRD (Tian et al.
(2020)), by adding FitNet loss or CRD loss during ECD training. We observe such combinations
bring additional improvements, which means our method is orthogonal to other distillation methods
such as FitNet and CRD. In Table 15, we refer to the results reported in CRD for two-stage KD
methods, and we implement one-stage KD methods under the same training setting with CRD. As
shown in Table 15, our ECD and ECD* achieve good performance, ECD (dens) and ECD (dens)*
obtain the best performance for ResNet20 and ResNet32. Besides, we observe that the combination
of ECD and other methods can achieve additional performance improvements.

Table 14: Results comparison with state-of-the-art two-stage KD methods and results of combining
two-stage KD methods with the original KD. Bold and underline denote the best and the second best
results, respectively. We report top-1 “mean (std)” accuracies (%) over 3 runs.

Teacher ResNet110 (73.15) ResNet110 (73.15) WRN-40-2 (76.23)
Student ResNet20 (68.78) ResNet32 (70.80) WRN-40-1 (71.53)

Method w/o KD w/ KD w/o KD w/ KD w/o KD w/ KD

FitNet 70.36 (0.16) 70.46 (0.11) 72.09 (0.36) 72.70 (0.17) 71.98 (0.19) 73.14 (0.19)
AT 70.22 (0.03) 70.90 (0.21) 71.64 (0.32) 72.51 (0.19) 71.74 (0.10) 72.79 (0.38)
SP 69.95 (0.11) 70.87 (0.15) 71.69 (0.06) 72.92 (0.24) 71.61 (0.03) 72.77 (0.15)
CC 70.35 (0.07) 71.04 (0.31) 72.11 (0.32) 72.92 (0.19) 72.47 (0.30) 72.73 (0.37)
VID 70.14 (0.11) 70.71 (0.39) 71.64 (0.30) 72.81 (0.24) 71.68 (0.33) 72.68 (0.27)
RKD 70.06 (0.08) 70.71 (0.09) 71.66 (0.05) 73.51 (0.31) 72.51 (0.18) 72.51 (0.35)
PKT 71.14 (0.37) 71.01 (0.05) 72.82 (0.10) 72.88 (0.10) 71.65 (0.09) 72.93 (0.19)
FT 70.12 (0.06) 71.49 (0.05) 71.76 (0.36) 72.92 (0.24) 71.31 (0.40) 72.69 (0.03)
FSP 70.24 (0.09) 70.60 (0.07) 71.93 (0.19) 72.88 (0.15) 71.63 (0.21) 72.71 (0.13)
NST 70.37 (0.19) 70.94 (0.06) 71.67 (0.18) 72.96 (0.24) 71.44 (0.09) 72.79 (0.23)
CRD 70.82 (0.12) 71.26 (0.09) 72.84 (0.65) 73.18 (0.13) 72.73 (0.18) 73.54 (0.22)

ECD 70.75 (0.18) 72.40 (0.14) 72.55 (0.17)
ECD* 71.07 (0.12) 73.09 (0.14) 72.83 (0.05)
ECD+FitNet 70.91 (0.16) 72.79 (0.21) 72.96 (0.12)
ECD+CRD 71.33 (0.09) 73.39 (0.11) 73.36 (0.16)

ECD (dens) 71.25 (0.13) 73.11 (0.17) 73.11 (0.21)
ECD (dens)* 72.44 (0.21) 74.19 (0.12) 73.76 (0.14)
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Table 15: Results comparison with state-of-the-art two-stage KD methods reported in CRD (Tian
et al. (2020)) under the training setting of the 240 epochs. Bold and underline denote the best and the
second best results, respectively.

Two-stage

Student 69.06 71.14 71.98
(ResNet20) (ResNet32) (WRN-40-1)

Teacher 74.31 74.31 75.61
(ResNet110) (ResNet110) (WRN-40-2)

KD 70.67 (0.27) 73.08 (0.18) 73.54 (0.20)
FitNet 68.99 (0.27) 71.06 (0.13) 72.24 (0.24)
AT 70.22 (0.16) 72.31 (0.08) 72.77 (0.10)
FSP 70.11 (0.16) 71.89 (0.11) N/A
SP 70.04 (0.21) 72.69 (0.41) 72.43 (0.27)
VID 70.16 (0.39) 72.61 (0.28) 73.30 (0.31)
PKT 70.25 (0.04) 72.61 (0.17) 73.45 (0.19)
FT 70.22 (0.10) 72.37 (0.31) 71.59 (0.15)
NST 69.53 (0.15) 71.96 (0.07) 72.24 (0.22)
RKD 69.25 (0.05) 71.82 (0.34) 72.22 (0.20)
CC 69.48 (0.19) 71.48 (0.21) 72.21 (0.25)
CRD 71.46 (0.09) 73.48 (0.13) 74.14 (0.22)

One-stage

Student 69.06 71.14 71.98
(ResNet20) (ResNet32) (WRN-40-1)

Teacher 74.68 (0.11) 75.53 (0.13) 75.74 (0.14)
(ResNet110) (ResNet110) (WRN-40-2)

DML 70.77 (0.20) 72.87 (0.17) 72.63 (0.15)

Teacher 72.85 (0.16) 75.21 (0.17) N/A
(Ensemble) (Ensemble) (Ensemble)

ONE 71.41 (0.22) 73.25 (0.13) N/A

Teacher 71.35 (0.28) 73.11 (0.36) 72.78 (0.12)
(Generated) (Generated) (Generated)

ECD 70.83 (0.10) 72.64 (0.15) 72.75 (0.07)
ECD* 71.56 (0.14) 73.48 (0.18) 73.78 (0.17)
ECD+FitNet 71.08 (0.16) 72.91 (0.21) 73.07 (0.12)
ECD+CRD 71.46 (0.09) 73.52 (0.11) 73.49 (0.16)
ECD (dens) 71.58 (0.21) 73.43 (0.18) 73.24 (0.11)
ECD (dens)* 72.23 (0.19) 74.35 (0.16) 73.99 (0.15)

More discussion for ECD training. As in Table 16, we record the best performance of each model
during ECD and ECD* training. We can find that the performance of the teacher model is significantly
improved by connected with the features of the student model under ECD training. So the student
model gets more improvements. And the performance of each model is further improved in ECD*
training.

Table 16: Detailed results on the CIFAR-100 dataset. † indicates using learning rate warm-up to
smooth the training process. S represents the student model, T represents the teacher model and T+
represents the teacher model connected with the features of the student model under ECD training.
We report top-1 “mean (std)” accuracies (%) over 3 runs.

Vanilla ECD ECD*

Model S T S T+ S T+ Ensemble

ResNet20 68.78 (0.22) 71.05 (0.35) 70.75 (0.29) 72.40 (0.24) 71.07 (0.13) 73.41 (0.12) 73.50 (0.16)
ResNet32 70.80 (0.15) 72.78 (0.44) 72.40 (0.14) 74.83 (0.13) 73.09 (0.14) 75.28 (0.16) 75.71 (0.07)
ResNet44 71.88 (0.13) 73.48 (0.48) 73.53 (0.16) 75.34 (0.06) 74.08 (0.51) 76.13 (0.12) 76.60 (0.17)
ResNet56 72.29 (0.17) 73.79 (0.51) 73.94 (0.08) 75.64 (0.09) 74.88 (0.05) 76.06 (0.15) 77.53 (0.23)
ResNet110 73.15 (0.45) 75.32 (0.64) 75.11 (0.14) 75.89 (0.10) 75.47 (0.56) 78.12 (0.16) 78.41 (0.64)
ResNet164 76.64 (0.61) 78.78 (0.73) 77.94 (0.39) 79.31 (0.21) 78.34 (0.79) 79.73 (0.10) 80.99 (0.17)
ResNet110† 74.41 (0.09) 75.68 (0.21) 75.59 (0.10) 76.52 (0.16) 76.46 (0.20) 78.09 (0.65) 78.89 (0.12)
ResNet164† 77.15 (0.10) 78.47 (0.11) 78.33 (0.12) 80.14 (0.20) 78.64 (0.19) 80.07 (0.20) 81.12 (0.13)
WRN-40-1 71.44 (0.14) 72.48 (0.23) 72.55 (0.17) 72.87 (0.09) 72.83 (0.05) 73.52 (0.12) 74.25 (0.15)
WRN-40-2 75.96 (0.12) 77.23 (0.19) 76.55 (0.15) 78.57 (0.19) 76.64 (0.07) 79.12 (0.14) 79.45 (0.17)

Attention map visualization. In our ECD, the feature information of the teacher model can be
transmitted to the student model through the feature connection. As shown in Figure 4, the attention
map of the student network is more similar to that of the teacher network under ECD training.
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                                      Student (ECD)StudentInput Teacher

Figure 4: Comparison on the Grad-CAM++ (Chattopadhyay et al. (2018)) visualization results
between the features of the student, the student with ECD connections, and the teacher network.
Results are obtained based on ImageNet with ResNet18. Target objects in the upper two images are
misclassified by the student network while correctly classified by the student with ECD connections.
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