
Under review as a conference paper at ICLR 2021

BLOCK SKIM TRANSFORMER
FOR EFFICIENT QUESTION ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformer-based encoder models have achieved promising results on natural
language processing (NLP) tasks including question answering (QA). Different
from sequence classification or language modeling tasks, hidden states at all
positions are used for the final classification in QA. However, we do not always
need all the context to answer the raised question. Following this idea, we proposed
Block Skim Transformer (BST ) to improve and accelerate the processing of
transformer QA models. The key idea of BST is to identify the context that must
be further processed and the blocks that could be safely discarded early on during
inference. Critically, we learn such information from self-attention weights. As a
result, the model hidden states are pruned at the sequence dimension, achieving
significant inference speedup. We also show that such extra training optimization
objection also improves model accuracy. As a plugin to the transformer based QA
models, BST is compatible to other model compression methods without changing
existing network architectures. BST improves QA models’ accuracies on different
datasets and achieves 1.6× speedup on BERTlarge model.

1 INTRODUCTION

With the rapid development of neural networks in NLP tasks, the Transformer (Vaswani et al., 2017)
that uses multi-head attention (MHA) mechanism is a recent huge leap (Goldberg, 2016). It has
become a standard building block of recent NLP models. The Transformer-based BERT (Devlin
et al., 2018) model further advances the model accuracy by introducing self-supervised pre-training
and has reached the state-of-the-art accuracy on many NLP tasks.

One of the most challenging tasks in NLP is question answering (QA) (Huang et al., 2020). Our key
insight is that when human beings are answering a question with a passage as a context, they do not
spend the same level of comprehension for each of the sentences equally across the paragraph. Most
of the contents are quickly skimmed over with little attention on it. However, in the Transformer
architecture, all tokens go through the same amount of computation, which suggests that we can
take advantage of that by discarding many of the tokens in the early layers of the Transformer.
This redundant nature of the transformer induces high execution overhead on the input sequence
dimension.

To mitigate the inefficiencies in QA tasks, we propose to assign more attention to some blocks that
are more likely to contain actual answer while terminating other blocks early during inference. By
doing so, we reduce the overhead of processing irrelevant texts and accelerate the model inference.
Meanwhile, by feeding the attention mechanism with the knowledge of the answer position directly
during training, the attention mechanism and QA model’s accuracy are improved.

In this paper, we provide the first empirical study on attention featuremap to show that an attention map
could carry enough information to locate the answer scope. We then propose Block Skim Transformer
(BST), a plug-and-play module to the transformer-based models, to accelerate transformer-based
models on QA tasks. By handling the attention weight matrices as feature maps, the CNN-based
Block Skim module extracts information from the attention mechanism to make a skim decision.
With the predicted block mask, BST skips irrelevant context blocks, which do not enter subsequent
layers’ computation. Besides, we devise a new training paradigm that jointly trains the Block Skim

1



Under review as a conference paper at ICLR 2021

objective with the native QA objective, where extra optimization signals regarding the question
position are given to the attention mechanism directly.

In our evaluation, we show BST improves the QA accuracy and F1 score on all the datasets and
models we evaluated. Specifically, BERTlarge is accelerated for 1.6× without any accuracy loss and
nearly 1.8× with less than 0.5% F1 score degradation.

This paper contributes to the following 3 aspects.

• We for the first time show that an attention map is effective for locating the answer position in the
input sequence.

• We propose Block Skim Transformer (BST), which leverages the attention mechanism to improve
and accelerate transformer models on QA tasks. The key is to extract information from the attention
mechanism during processing and intelligently predict what blocks to skim.

• We evaluate BST on several Transformer-based model architectures and QA datasets and demon-
strate BST ’s efficiency and generality.

2 RELATED WORK

Recurrent Models with Skimming. The idea to skip or skim irrelevant section or tokens of input
sequence has been studied in NLP models, especially recurrent neural networks (RNN) (Rumelhart
et al., 1986) and long short-term memory network (LSTM) (Hochreiter & Schmidhuber, 1997).
LSTM-Jump (Yu et al., 2017) uses the policy-gradient reinforcement learning method to train a
LSTM model that decides how many time steps to jump at each state. They also use hyper-parameters
to control the tokens before jump, maximum tokens to jump, and maximum number of jumping.
Skim-RNN (Seo et al., 2018) dynamically decides the dimensionality and RNN model size to be used
at next time step. In specific, they adopt two ”big” and ”small” RNN models and select the ”small”
one for skimming. Structural-Jump-LSTM (Hansen et al., 2018) use two agents to decide whether
jump a small step to next token or structurally to next punctuation. Skip-RNN (Campos et al., 2017)
learns to skip state updates thus results in reduced computation graph size. The difference of BST to
these works are two-fold. Firstly, the previous works make skimming decisions based on the hidden
states or embeddings during processing. However, we are the first to analyze and utilize the attention
relationship for skimming. Secondly, our work is based on Transformer model (Vaswani et al., 2017),
which has outperformed the recurrent type models on most NLP tasks.

Transformer with Input Reduction. On contrast to aforementioned recurrent models, in the pro-
cessing of Transformer-based model, all input sequence tokens are calculated in parallel. As such,
skimming can be regarded as reduction on sequence dimension. PoWER-BERT (Goyal et al., 2020)
extracts input sequence token-wise during processing based on attention scores to each token. During
the fine-tuning process for downstream tasks, Goyal et al. proposes soft-extract layer to train the
model jointly. Funnel-Transformer (Dai et al., 2020) proposes a novel pyramid architecture with
input sequence length dimension reduced gradually regardless of semantic clues. For tasks requiring
full sequence length output, like masked language modeling and extractive question answering,
Funnel-Transformer up-sample at the input dimension to recover. Universal Transformer (Dehghani
et al., 2018) proposes a dynamic halting mechanism that determines the refinement steps for each
token. Different from these works, BST utilizes attention information between question and token
pairs and skims the input sequence at the block granularity accordingly.

Efficient Transformer. There are also many attempts for designing efficient Transformers (Zhou
et al., 2020; Wu et al., 2019; Tay et al., 2020). Well studied model compression methods for
Transformer models include pruning (Guo et al., 2020), quantization (Wang & Zhang, 2020), distil-
lation (Sanh et al., 2019), weight sharing. Plenty of works and efforts focus on dedicated efficient
attention mechanism considering its quadratic complexity of sequence length (Kitaev et al., 2019;
Beltagy et al., 2020; Zaheer et al., 2020). BST is orthogonal to these techniques on the input dimen-
sion and therefore is compatible with them. We demonstrate this feasibility with the weight sharing
model Albert (Lan et al., 2019) in Sec. 5.

2



Under review as a conference paper at ICLR 2021

0 4 8 12 16 20 24
Layer

0.6

0.7

0.8

0.9

1.0

Lo
gi

st
ic

 R
eg

re
ss

io
n

Accuracy
F1

Figure 1: Accuracy and F1 score performance of logistic regression model predicting whether a block
contains answer. The logistic regression model is built with attention values between question and
target block as input feature.

3 PROBLEM FORMULATION: IS ATTENTION EFFECTIVE FOR SKIM

Transformer. Transformer model with multi-head self-attention mechanism calculates hidden states
for each position as a weighted sum of input hidden states. The weight vector is calculated by
parameterized linear projection query Q and key K as eq. 1. Given a sequence of input embeddings,
the output contextual embedding is composed by the input sequence with different attention at each
position.

Attention(Q,K) = So f tmax(
QKT
√

dk
), (1)

where Q,K are query and key matrix of input embeddings, dk is the length of a query or key vector.
Multiple parallel groups of such attention weights, also referred to as attention heads, make it possible
to attend to information at different positions.

QA is one of the ultimate downstream tasks in the NLP. Given a text document and a question about
the context, the answer is a contiguous span of the text. To predict the start and end position of the
input context given a question, the embedding of each certain token is processed for all transformer
layers in the encoder model. In many end-to-end open domain QA systems, information retrieval
is the advance procedure at coarse-grained passage or paragraph level. Under the characteristic of
extractive QA problem that answer spans are contiguous, our question is that whether we can utilize
such idea at fine-grained block granularity during the processing of transformer. Is the attention
weights effective for distinguish the answer blocks?

To answer the above question, we build a simple logistic regression model with attention matrix from
each layer to predict whether an input sentence block contains the answer. The attention matrices are
profiled from a BERTlarge SQuAD QA model and reduced to block level following Eq. 2 (Clark et al.,
2019). The attention from block [a,b] attending to block [c,d] is aggregated to one value. And the
attention between a block and the question sentence, special tokens "[CLS]" and "[SEP]" are
used to denote the attending relation of the block. Such 6-dimensional vector from all attention heads
in the layer are concatenated as the final classification feature. The result is shown in Fig. 1 with
attention matrices from different layers. Simple logistic regression with hand crafted feature from
attention weight achieves quite promising classification accuracy. This suggests that the attending
relationship between question and targets is indeed capable for figuring out answer position.

BlockAttention([a,b], [c,d]) =
1

b−a

b

∑
i=a

d

∑
j=c

Attention(i, j) (2)

3



Under review as a conference paper at ICLR 2021

Block Skim Module

Transformer Layer i

Attention
H Attention Heads

Softmax

Q K

x

V

x

Feed Forward

Linear

…… 

Block Skim Module

Attention Featuremap
shape=[n,n,H]

AvgPooling2*2

Conv3*3

Batch Normalization

AvgPooling2*2

Conv3*3

Batch Normalization

Conv1*1

Flatten shape=[n2/16]

Linear

Bi,0 Bi,1 …… Bi,m

(b) Block Skim Transformer

Attention 
Featuremap

Block Mask

(c)Block Skim Module

Transformer Layer 0

Input Sequence X

Transformer Layer i

Transformer Layer L

BST0

BSTi

BSTL

QA Prediction

Linear

LossQA LossBST

…… 

…… 

(a) Training Objective

Block Mask BL

Block Mask Bi

Block Mask B0

…… +

Losstotal

Figure 2: (a) The overview of Block Skimming Transformer. (b) A BST layer is composed of a
Transformer layer and a Block Skimming Module. (C) The CNN-based BSM module details.

4 BLOCK SKIMMING TRANSFORMER (BST)

4.1 ARCHITECTURE OVERVIEW OF BST

We propose the Block Skimming Transformer (BST) model to accelerate the question answering task
without degrading the answer accuracy. Unlike the conventional Transform-based model that uses all
input tokens throughout the entire layers, our BST model accurately identifies the irrelevant contexts
for the question in the early layers, and remove those irrelevant contexts in the following layers. As
such, our model reduces the computation requirement and enables fast question answering.

In Sec. 3, we have shown that it is feasible to identify those tokens that are irrelevant to the question
through a hand-crafted feature using the attentions relationship among tokens. However, using this
approach could significantly hurt the question answering task accuracy as we show later. As such, we
propose an end-to-end learnable feature extractor that captures the attention behavior better.

Fig. 2 shows the overall architecture of our BST model, where a layer is composed of a Transformer
layer and a learnable Block Skim Module (BSM). The BSM adopts the convolutional neural network
for feature extraction. The input is attention matrices of attention heads, which are treated as feature
maps of multiple input channels. The output is a block-level mask that corresponds to the relevance
of a block of input tokens to the question.

In each BSM module, we use convolution to collect local attending information and use pooling to
reduce the size of feature maps. Two 3×3 convolution and one 1×1 convolution are connected with
pooling operations intersected. For all the convolution operations, ReLU funcition (Hahnloser &
Seung, 2001) is used as activation function. To locate the answer context blocks, we use a linear
classification layer to calculate the score for each block. Also, two Batch Normalization layers (Ioffe
& Szegedy, 2015) are inserted to improve the model accuracy.

Formally, we denote the input sequence of a transformer layer as X = (x0,x1, . . . ,xn). Then the atten-
tion matrices of this layer are denoted as Attention(X). Given the attention output of a transformer
layer, the kth block prediction result B is represented as B = BST (Attention(X)), where BST is the
proposed architecture. The main functions of BST is expressed as Eq. 3.

BST (Attention) = Linear(Conv1×1(Conv3×3(Pool(Conv3×3(Pool(Attention)))))) (3)

4.2 JOINT TRAINING OF QA AND BLOCK-SKIM CLASSIFIERS

There are two types of classifiers in our BST model, where the first is the original QA classifier at the
last layer and the second is the block-level relevance classifier at each layer. We jointly train these
classifiers so that the training objective is to minimize the sum of all classifiers’ losses.

4



Under review as a conference paper at ICLR 2021

The loss function of each block-level classifier is calculated as the cross entropy loss against the
ground truth label whether a block contains answer tokens or not. Equation 4 gives the formal
definition. The total loss of the block-level classifier LBST is the sum of all blocks that only contain
passage tokens. The reason is that we only want to throw away blocks with irrelevant passage tokens
instead of questions. Blocks that have question tokens or padding tokens are not used in the training
process. To be more detailed, such blocks are pre-processed and dropped during the training process.

LBST = ∑
bi∈{passage blocks}

CELoss(bi,yi)

yi =

{
1 , block i has answer tokens
0 , block i has no answer tokens

(4)

To calculate the final total loss Ltotal , we introduce two hyper-parameters in Equation 5. We first use
the hyper-parameter α so that different models and settings could adjust the ratio between the QA
loss and block-level relevance classifier loss. We then use the other hyper-parameter β to balance the
loss from positive and negative relevance blocks because there are typically many more blocks that
contain no answer tokens (negative bocks) than the blocks that do contain answer tokens (positive
bocks). We explain how to tune those hyper-parameters for different models and settings later.

Ltotal = LQA +α ∑
ith layer

(βL i,y=1
BST +L i,y=0

BST ) (5)

Although we add the block-level relevance classification loss in the joint training, we do not actually
throw away any blocks because it can skip answer blocks and the QA task training becomes unstable.
In this sense, the block-level relevance classification loss can be viewed as a regularization method for
the QA training as we force attention heads to better distinguish the answer blocks and non-answer
blocks. As we show in the experiment, this regularization effect leads to accuracy improvement for
the QA task.

4.3 USING BST FOR QA

We now describe how to use the BST model to accelerate the QA task. In the above joint training
process, we add the BSM module in every layer. However, we only augment a specific layer with the
BSM module during the inference to save computation and avoid heavy changes to the underlying
Transformer model. As such, the layer index for augmenting is a hyper-parameter in our model.

Once the BSM-augmented layer is chosen, we split the input sequence by the block granularity,
which is another hyper-parameter in our model. The model skips a set of blocks according to the
BSM module results for the following layers. It should be noted that the BST training process does
not throw away any blocks because if a relevant block with answer tokens is rejected, the training of
the original QA task is confused and becomes unstable.

To maintain compatibility with the original Transformer model, we forward the skipped blocks
directly to the last layer for the QA classifier. With those design features, BST works as an add-on
component to the original Transformer model and is compatible with many Transformer variant
models as well as model compression methods. In specific, we will demonstrate that BST works well
with Transformer-based Roberta (Liu et al., 2019), which has a different pre-training objective and
sequence encoding, and Albert (Lan et al., 2019), which shares weights among layers for a reduced
model size.

We provide an analytical model to demonstrate the speedup potential of BST . Suppose that we insert
the BSM module at the layer l out of the total L layers, and a portion of k blocks remain for the
following layers. The performance speedup is formulated by Equation 6 if we ignore the computation
overhead in the BSM module. In fact, the computation of a single BSM module is much smaller than
Transformer layers. For example, if k = 1/3 blocks remain after l/L = 1/3 layers, we achieve a 1.8×
ideal speedup. Similarly, if k = 1/4 blocks remain after l/L = 1/4 layers, the ideal speedup is 2.29×.

speedup =
L ·N ·Tlayer

l ·N ·Tlayer +(L− l) ·N · k ·Tlayer
=

1
1− (1− l/L)(1− k)

(6)

5



Under review as a conference paper at ICLR 2021

QA BST classifier

baseline BST layer 4 middle layer
EM F1 EM F1 F1 F1

Transformer-based models with BST on SQuAD

BERTbase 81.14 88.52 81.38 88.69 80.99 89.37
BERTlarge 86.53 92.82 87.12 93.20 82.48 93.32
Robertabase 82.02 89.65 82.40 89.91 81.88 90.35
Robertalarge 86.03 92.81 86.17 92.95 78.93 86.56
Albertbase 82.13 89.78 82.18 89.78 84.30 90.25
Albertlarge 84.26 91.51 84.71 91.73 78.93 93.02
Avg. 83.68 90.85 83.99 91.04 81.38 90.48

BERTbase BST on QA datasets

SQuAD 81.14 88.52 81.38 88.69 80.99 89.37
NewsQA 51.45 66.57 52.28 67.43 53.74 67.02
TriviaQA 68.99 73.78 69.04 73.91 93.96 96.20
HotpotQA 58.76 75.56 59.55 75.93 69.67 75.36
Natural Questions 67.00 79.00 67.47 79.15 89.32 90.54
Avg. 65.47 76.69 65.94 77.02 77.54 83.70

Table 1: BST training results. (Upper) BST evaluated with different Transformer variant models and
model sizes. (Lower) BST evaluated with BERTbase on 5 QA datasets.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Dataset. We evaluate our method on 5 extractive QA datasets, including SQuAD 1.1 (Ra-
jpurkar et al., 2016), Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017),
NewsQA (Trischler et al., 2016) and HotpotQA (Yang et al., 2018). The diversity of these datasets
such as various passage lengths and different document sources lets us evaluate the general appli-
cability of the proposed BST method. We follow the setting of BERT model to use the structure of
Transformer encoder and a linear classification layer for all the datasets.

Model. As we mentioned earlier, BST works as a plugin module to the oracle Transformer model,
and therefore applicable to Transformer-based models. To illustrate this point, we apply our method
to three different models including BERT, Roberta (Liu et al., 2019) with a different pre-training
objective, and Albert (Lan et al., 2019) with parameter sharing layers. For all three models, we
evaluate the base setting with 12 heads and 12 layers and the large setting with 24 layers and 16 heads
as described in prior work (Devlin et al., 2018).

Training Setting. We implement the proposed method based on open-sourced library from Wolf
et al. (2019). For each baseline model, we use the released pre-trained checkpoints 1. We follow the
training setting used by Devlin et al. (2018) and Liu et al. (2019) to perform the fine-tuning on the
above extractive QA datasets. We initialize the learning rate to 3e−5 for BERT and Roberta and
5e−5 for Albert with a linear learning rate scheduler. For SQuAD dataset, we apply batch size 16
and maximum sequence length 384. And for the other datasets, we apply batch size 32 and maximum
sequence length 512. We perform all the experiments reported with random seed 42. We train a
baseline model and BST model with the same setting for two epochs and report accuracies from
MRQA task benchmark for comparison. We use four V100 GPUs with 32 GB memory for training
and report performance speedup on multiple different hardware platforms.

For the following experiments, we use the block size 32 unless explicitly mentioned. We set the
hyper-parameter β to 4 for all experiments and α to 1 except Albert. We use the α value of 0.05
for Albert. In the Albert model, the parameters of transformer layers are shared but BST modules

1We use pre-trained language model checkpoints released from https://huggingface.co/models

6

https://huggingface.co/models


Under review as a conference paper at ICLR 2021

87.00 87.25 87.50 87.75 88.00 88.25 88.50 88.75
F1

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Sp
ee

du
p

baseline

(a) BERTbase

layer 4
layer 6

90.0 90.5 91.0 91.5 92.0 92.5 93.0
F1

1.0

1.2

1.4

1.6

1.8

2.0

Sp
ee

du
p

baseline

(b) BERTlarge

layer 4
layer 6
layer 12

Figure 3: Speedup of BST on BERTbase and BERTlarge augmented at different layers.

in our method do not share parameters. As such, we decrease the loss from BST to prevent model
over-fitting and its impact on the QA task parameters.

Performance Evaluation. We measure the performance speedup of our method on the 2.20GHz
Intel Xeon(R) Silver 4210 CPU with the batch size of one. On the GPU, the batch size of one
could not fully utilize the GPU computation resource so the inference time is bottlenecked at the
memory. Our evaluation scenario closely resembles prior work (Wu et al., 2019) that targets the
mobile application domain. We evaluate BST with different layers and prediction thresholds of BST
classifier to explore the trade-off between performance speedup and model accuracy. For example, a
lower prediction threshold could lead to more skipped blocks, which means a better performance
speedup. On the other hand, it also increases the chance of skipping answer blocks, which hurts the
QA task accuracy.

5.2 BST AS A REGULARIZATION METHOD

We first evaluate BST model as a regularization method to improve the QA task accuracy. Specifically,
we compare the accuracy of three baseline models and their BST variants. In their BST versions, the
BSM modules only participate the training process, and are removed in the inference task.

The upper half of Tbl. 1 shows the accuracy comparison on SQuAD dataset. By only changing the
training process, BST improves the extractive QA accuracy for all baseline models. On average, BST
exceeds the baseline by 0.32% in exact match and by 0.19% in F1 score. The accuracy improvement
of BST is generally greater on large models. We attribute this to a stronger regularization effect for
larger models. The results show the wide applicability of our method to different models.

Tbl. 1 also demonstrates the BST classifier F1 score trained jointly (but not used in this setting) with
the baseline models. For simplicity, we only show the results of layer 4 and the middle layer (layer 6
for base and 12 for large model). On average, the block-level relevance classifier has a notably high
F1 score even at early layers (averaged 81.38%) and even higher scores at the middle layer.

The lower half of Tbl. 1 shows BERTlarge results on multiple QA datasets. BST outperforms the
baseline training objective on all datasets evaluated and exceeds with 0.52% exact match and 0.33%
F1 score on average. The results show the wide applicability of our method to different datasets with
varying difficulty and complexity. Meanwhile, we also observe a modest correlation between the
block-level relevance classifier and the QA task. In other words, the BST classifier tends to be higher
on datasets with a higher QA accuracy except for TriviaQA dataset.

5.3 QA TASK SPEEDUP WITH BST

We now demonstrate the BST’s ability to accelerate the QA task. Fig. 3 demonstrates the performance
speedup against F1 score evaluated with BERTbase and BERTlarge model on SQuAD dataset. By
tuning the prediction threshold of the BST classifier, we can trade-off between acceleration and
accuracy loss. Here we evaluate the BST classifier with 0,0.5,0.9,0.99 prediction threshold with

7



Under review as a conference paper at ICLR 2021

id Update
Transformer

Skim
Training BSM Augment

Layer
Block
Size

QA BST Classifier

EM F1 layer 4 layer 6

1 Baseline X - - - - 81.14 88.52 - -
2 Vanilla BST X X All 32 81.38 88.69 80.99 89.37
3 Freeze Transformer X All 32 81.14 88.52 79.60 78.41
4 Hand-crafted Feature X All 32 81.21 88.59 69.41 69.51
5 Augment One Layer X X 4 32 81.20 88.63 77.26 -
6 Skim Traning X X X 4 32 79.27 86.83 84.76 -

7 Block Size 1 X X All 1 81.22 88.60 75.83 85.03
8 Block Size 8 X X All 8 81.25 88.63 76.12 87.04
9 Block Size 16 X X All 16 81.35 88.75 78.41 82.51

10 Block Size 64 X X All 64 81.39 88.65 87.77 90.76
11 Block Size 128 X X All 128 80.90 88.33 91.36 92.79

Table 2: Ablation studies of the BST design components of BERTbase on SQuAD dataset.

classifier at layer 4 and the middle layer respectively. On BERTbase, BST achieves 1.38× speedup
with the same accuracy to the baseline. With a more aggressive skipping strategy, 1.4× speedup is
obtained with minor accuracy loss (less than 1.5%). On BERTlarge, BST achieves 1.6× speedup with
minor accuracy improvement and nearly 1.8× speedup with less than 0.5% F1 score degradation.

Generally, the specific layer for inserting the BSM module can be determined by hyper-parameter
search according to Eq. 6. As shown in Fig. 3, skipping the irrelevant blocks at layer 4 tends to be
better than that at the middle layer, which is layer 6 for BERTbase and layer 12 for BERTlarge. This is
because more computation is reduced when skipping at earlier layers and the BST classifier already
has a quite good prediction accuracy at early layers.

5.4 ABLATION STUDY

We compare our BST method with a series ablation of design components to study their individual
effect. The experiments are performed based on the same setting as Sec. 5.1. We perform the
experiments described in Tbl. 2, which has also the detailed results, and summarize the key finds as
follows.

• (3) Instead of joint training as described in Sec. 4.2, we perform a two-step training. We first
perform the fine-tuning for the QA task. We then perform the BSM module training with the
baseline QA model frozen. In other words, we only use the BST objective and only update the
weights in the BSM modules. Therefore, the QA accuracy remains the same as the baseline model,
which is lower than the joint training (id 3). Meanwhile, the BST classifier also has a lower
accuracy than the joint training especially at layer 6.

• (4) Instead of BSM module, we use the hand-crafted feature in Sec. 3. The resulted block-level
relevance classification accuracy is considerably lower than our learned BST model.

• (5) Instead of adding BST module to all layers, we only deploy it into one layer. The experiment
result shows that it is beneficial for the model to have BST loss added to every layer.

• (6) We skim blocks during the joint QA-BST training process. Because the mis-skimmed blocks
may confuse the QA optimization, this training strategy results in considerable accuracy loss.

• (7-11) We evaluate the accuracy with different block sizes. Specifically, when the block size is 1, it
is equivalent to skim at the token granularity. Our experimental result shows that the accuracy of
BST classifier is better when the block size is larger. On the other hand, a larger block size also
leads to less number of blocks and therefore the performance speedup becomes limited on the
studied datasets. To this end, we choose the block size of 32 as a design sweet spot.

6 CONCLUSION

In this work, we provide a plug-and-play module BST to Transformer and its variants for efficient QA
processing. Our empirical study shows that the attention mechanism in the form of a weighted feature
map can provide instructive information for locating the answer span. In fact, we find that an attention

8



Under review as a conference paper at ICLR 2021

map can distinguish between answers and other tokens. Leveraging this insight, we propose to learn
the attention in a supervised manner. In effect, BST terminates irrelevant blocks at early layers,
significantly reducing the computations. Besides, the proposed BST training objective provides
attention mechanism with extra learning signal and improves QA accuracy on all datasets and models
we evaluated. With the use of BST module, such distinction is strengthened in a supervised fashion.
This idea may be also applicable to other tasks and architectures.

REFERENCES

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Victor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, and Shih-Fu Chang. Skip RNN:
learning to skip state updates in recurrent neural networks. CoRR, abs/1708.06834, 2017. URL
http://arxiv.org/abs/1708.06834.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at?
an analysis of bert’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pp. 276–286, 2019.

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V Le. Funnel-transformer: Filtering out sequential
redundancy for efficient language processing. arXiv preprint arXiv:2006.03236, 2020.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yoav Goldberg. A primer on neural network models for natural language processing. Journal of
Artificial Intelligence Research, 57:345–420, 2016.

Saurabh Goyal, Anamitra Roy Choudhary, Venkatesan Chakaravarthy, Saurabh ManishRaje, Yogish
Sabharwal, and Ashish Verma. Power-bert: Accelerating bert inference for classification tasks.
arXiv preprint arXiv:2001.08950, 2020.

Cong Guo, Bo Yang Hsueh, Jingwen Leng, Yuxian Qiu, Yue Guan, Zehuan Wang, Xiaoying Jia,
Xipeng Li, Minyi Guo, and Yuhao Zhu. Accelerating sparse dnn models without hardware-support
via tile-wise sparsity. arXiv preprint arXiv:2008.13006, 2020.

Richard HR Hahnloser and H Sebastian Seung. Permitted and forbidden sets in symmetric threshold-
linear networks. In Advances in neural information processing systems, pp. 217–223, 2001.

Christian Hansen, Casper Hansen, Stephen Alstrup, Jakob Grue Simonsen, and Christina Lioma.
Neural speed reading with structural-jump-lstm. In International Conference on Learning Repre-
sentations, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Zhen Huang, Shiyi Xu, Minghao Hu, Xinyi Wang, Jinyan Qiu, Yongquan Fu, Yuncai Zhao, Yuxing
Peng, and Changjian Wang. Recent trends in deep learning based open-domain textual question
answering systems. IEEE Access, 8:94341–94356, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–
1611, 2017.

9

http://arxiv.org/abs/1708.06834


Under review as a conference paper at ICLR 2021

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP, 2016.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. Neural speed reading via skim-rnn.
In International Conference on Learning Representations, 2018.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
e-prints, pp. arXiv–2009, 2020.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and
Kaheer Suleman. Newsqa: A machine comprehension dataset. 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Chunpei Wang and Xiaowang Zhang. Q-bert: A bert-based framework for computing sparql similarity
in natural language. In Companion Proceedings of the Web Conference 2020, pp. 65–66, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771, 2019.

Zhanghao Wu, Zhijian Liu, Ji Lin, Yujun Lin, and Song Han. Lite transformer with long-short range
attention. In International Conference on Learning Representations, 2019.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In EMNLP, 2018.

Adams Wei Yu, Hongrae Lee, and Quoc Le. Learning to skim text. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1880–1890, 2017.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer
sequences. arXiv preprint arXiv:2007.14062, 2020.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience:
Fast and robust inference with early exit. arXiv, pp. arXiv–2006, 2020.

10


	Introduction
	Related Work
	Problem Formulation: Is Attention Effective for Skim
	Block Skimming Transformer (BST)
	Architecture Overview of BST
	Joint Training of QA and Block-Skim Classifiers
	Using BST for QA

	Experiment
	Experimental Setup
	BST as a Regularization Method
	QA Task Speedup with BST
	Ablation Study

	Conclusion

