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ABSTRACT

In linear stochastic bandits, tasks with instantaneous hard constraints present sig-
nificant challenges, particularly when the feature space is non-convex or discrete.
This is especially relevant in applications such as financial management, recom-
mendation systems, and medical treatment selection, where safety constraints ap-
pear in non-convex forms or where decisions must often be made within non-
convex and discrete sets. In these systems, bandit methods rely on the ability
of feature functions to extract critical features. However, in contrast to the star-
convexity assumption commonly discussed in the literature, these feature func-
tions often lead to non-convex and more complex feature spaces. In this paper, we
investigate linear bandits and introduce a method that operates effectively in a non-
convex feature space while satisfying instantaneous hard constraints at each time
step. We demonstrate that our method, with high probability, achieves a regret of
o (d (1+I) VT ) and meets the instantaneous hard constraints, where d represents
the feature space dimension, 7' the total number of rounds, and 7 a safety related
parameter. The constant parameters € and ¢ are related to our localized assump-
tions around the origin and the optimal point. In contrast, standard safe linear
bandit algorithms that rely on the star-convexity assumption often result in linear
regret. Furthermore, our approach handles discrete action spaces while maintain-
ing a comparable regret bound. Moreover, we establish an information-theoretic

lower bound on the regret of (max{d\/f7 a%}) for T > 22¢, emphasizing the

critical role of ¢ and ¢ in the regret upper bound. Lastly, we provide numerical
results to validate our theoretical findings.

1 INTRODUCTION

The linear bandit (LB) problem is a framework in decision theory and machine learning designed to
address real-world scenarios with large, and potentially uncountable, decision sets (Abbasi- Yadkori
et al.,[2011; Russo & Van Royl 2014; Soare et al.,2014)). In this setting, the expected reward for an
action (or “arm”) is modeled as the inner product between a feature vector and an unknown parame-
ter. To maximize cumulative reward over a sequence of trials, an agent must balance two competing
objectives: exploration, where actions are chosen to estimate this unknown parameter, and exploita-
tion, where the agent uses the estimation to select actions that yield high rewards. Striking the right
balance between exploration and exploitation is key to optimizing rewards over time.

Many real-world applications impose strict limitations that require instantaneous hard constraints
to be satisfied at every time step |Shi et al.| (2023). For instance, in resource allocation, resource
constraints must be met in real-time to avoid stockouts or logistical failures. Similarly, in Al-driven
medical treatments, decisions must consistently prioritize safety (Xiong et al., [2024; Vamvoudakis
et al.,[2021; Thomas et al.l[2019). This work aims to address the problem of LB under instantaneous
hard constraints, specifically in non-convex and discrete feature spaces. Earlier studies, such as
Amani et al.|(2019); Moradipari et al.|(2021)); Pacchiano et al.|(2024), have shown that near-optimal
performance can be achieved in linear bandits with instantaneous hard constraints in convex or star-
convex feature spaces respectively. In these approaches, the agent initially constructs a conservative
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estimated safe set and begins interacting with the environment by sampling from this set. It then
gradually expands the estimated safe set toward the true safe set as it gathers more experience.

One might ask why we are interested in problems with non-convex and discrete feature spaces. The
reason is that many real-world applications inherently involve structures that convex and star-convex
assumptions fail to capture. Applications such as financial management, recommendation systems,
and medical treatment selection often involve action sets that are neither convex nor star-convex,
but rather composed of discrete or separated subsets (see Section[5.2)). Additionally, non-convexity
frequently arises in modern machine learning problems due to the use of function approximators
with non-linear feature functions, such as Deep Neural Networks (DNNs), Radial Basis Functions
(RBFs), and Fourier basis features (Sutton & Barto, 2018}; [Zhu et al., 2023 Mnih et al., 2016}
Kalashnikov et al.l |2018). In DNNs, for example, non-convex activation functions like ReL.U, Sig-
moid, and Tanh contribute to the overall non-convexity of the feature space.

A question arises: can the same conservative strategy used in convex and star-convex settings, as
discussed injAmani et al.|(2021)); Pacchiano et al.[(2024]), be directly applied to our case? The answer
is no, as applying this approach in non-convex spaces is not straightforward. In fact, conservative
strategies in such settings may introduce a bias toward suboptimal directions, leading to linear regret,
as shown in Fig. (See Section [] for a complete description of the simulation.) We refer to this
issue as non-convexity bias.
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(a) Regret for LC-LUCB (Pacchiano et al., [2024). (b) Regret for NCS-LUCB (ours).

Figure 1: Comparison of the average regret for NCS-LUCB (our method) and LC-LUCB in |Pacchi-
ano et al.[|(2024) over 10 trials.

To understand non-convexity bias, consider the following example: a LB problem with an action
set A = {a1,as,as,as} where ag is the optimal action as illustrated in Fig. Assume that the
agent initially knows the actions in the rectangle R are safe, specifically {a1, a2}, are safe but cannot
verify the safety of {as, a4}.

The core idea of the conservative strategy in LB, as proposed by |Amani et al.| (2021)); |[Pacchiano
et al. (2024) is that the agent can gather noisy information about the cost of az by playing action
a1, as both lie along the same direction, i.e., the z-axis. Similarly, the agent can estimate the cost of
a4 by playing action as, as both are aligned along the y-axis. Thus, a UCB-based bonus is used to
ensure the agent explores both the x- and y-directions by playing a; and as enough times, eventually
expanding the safe set to include the optimal action as.

In |/Amani et al.| (2021); [Pacchiano et al.| (2024), the bonus term for a; is designed based on the
distance between as and the current safe set’s boundary along the xz-axis. In the context of our
problem, the bonus term in|Amani et al.[(2021)); |Pacchiano et al|(2024) is calculated based on the
distance between a3 and the rectangle R, i.e., d;, mistakenly assuming a; lies on R. However, as
depicted in Fig. aq is far from R, and the distance between a; and ag, i.e., ds, is significantly
larger than d;. As a result, the bonus for a; is not large enough to incentivize the agent to play
a1, potentially biasing it toward playing as instead. Consequently, the agent may not explore the
z-direction sufficiently to estimate the cost of ag and verify its safety, leading to linear regret.
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To resolve this issue, the correct bonus should be based on d». This problem does not arise in convex
or star-convex settings, as these structures always ensure that d; = ds since all the points connecting
a1 and ag are in the action set. For a more detailed discussion on this bias, refer to Section[5.2}

Our contribution. In this work, we make the first attempt to design near-optimal safe algorithms for
linear bandit problems with instantaneous hard constraints in non-star-convex and discrete spaces.
In these problems, the reward and costs associated with each action a are modeled as linear functions
of a known, fixed feature mapping ¢(a), where ¢ : A — R< (Amani et al., 2019 [Pacchiano et al |
2024} Moradipari et al., 2021). We summarize our main contributions below:

1. We propose an algorithm, Non-Convex Safe Linear UCB (NCS-LUCB), for linear bandit problems
with non-convex feature spaces under instantaneous hard constraints. NCS-LUCB achieves a regret
of O (d(l + %)\/T ) with high probability, nearly matching the regret bounds in convex and star-
convex settings while ensuring safety at each step. These non-convex spaces adhere to specific local
assumptions around the initially known safe action and feature points near the constraint boundary,
as outlined in Assumption [3] Here, d is the feature space dimension, T is the total number of
rounds, and 7 is a safety-related parameter. The bounded constants € and ¢ are related to our local
assumptions around the origin and the optimal point. 7o the best of our knowledge, this is the first
result for non-convex and discrete settings under such local assumptions. In Appendix || we show
that our result also obtain the same regret bound for the linear contextual bandit without assuming
star convexity, thus, extending the result of\Pacchiano et al.|(2024).

2. We provide a lower bound on the regret of ) (max{d\/T , E%2}> for this problem, highlighting

the necessity of € and ¢ in the upper bound. This also implies that Assumption [3| cannot be further
relaxed.

3. To address the non-convexity bias, we introduce a new bonus term in Section E], ensuring that
the agent explores beyond suboptimal directions. This bonus is intentionally more optimistic than
those designed for convex and star-convex cases to maintain the optimism property in non-convex
spaces (see Lemmal|2). Despite this increased optimism, the bonus still leads to sublinear regret (see
Lemmaf).

Related works.Kazerouni et al.|(2017) studied linear bandits under the constraint that the cumulative
reward must exceed a baseline policy’s performance with high probability. |Amani et al. (2019)
extended this to linear bandits with convex decision sets and stage-wise hard constraints, proposing
a UCB-based method with two phases, achieving a regret of O(T%). Moradipari et al.| (2021)

assumed star-convex decision sets, applying Thompson Sampling to achieve a regret of O(d% @)
Pacchiano et al.|(2021) examined the linear bandit problem under a slightly more relaxed condition,
assuming the constraint is satisfied in expectation over the policy, rather than with high probability.
This approach yielded a regret of O(d @), and they also provided a lower bound to show that the
dependence of the upper bound on % is essential. |Pacchiano et al.[(2024) later showed similar results
under high-probability constraints. [Hutchinson et al.| (2024) introduced “directional optimism” for
linear bandits with instantaneous hard constraints, achieving improved regret for well-separated
problem instances. Other related works include |Gangrade et al.| (2024); |Afsharrad et al. (2024);
Zhou & Ji| (2022); IDeng et al.| (2022); |Agrawal et al.| (2016)); Khezeli & Bitar| (2020); [Moradipari
et al.| (2020); Camilleri et al.| (2022). For a more detailed discussion on related works, please refer
to Appendix

2 PROBLEM FORMULATION

In this paper, we focus on a constrained bandit problem, denoted as (A, r, ¢), operating in an online
setting over 7' € N rounds. Here, A represents the action space, and r and ¢ correspond to the
reward function and cost function at each step, respectively.

During round ¢ € [T, the learner interacts with the environment by selecting an action a; € A.
Subsequently, the learner observes a noisy reward #+(a;) = r(at) + 1, where r(.) : A — [0,1]
represents an unknown function, and 7; denotes a zero-mean o-sub-Gaussian random variable. In
addition, it observes a corresponding noisy cost é:(a;) = c(at) + ¢, where ¢(.) : A — [0, 1] is an
unknown cost function, and (; is a zero-mean o-sub-Gaussian random variable.
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Figure 2: (a) The bonus proposed in|Amani et al.|(2021); Pacchiano et al.|(2024)) is calculated based
on the distance between the optimal point a3 and the safety zone R, but this bonus does not ensure
sufficient exploration in the z-direction. A suitable bonus should be larger than ds. (b) A VC can
invest in different companies at various levels. This figure illustrates the case for two companies,
but the concept can be extended to more.

Notations. For any vector v € R?, the normalized vector is defined as v := mo» Where |I-|| denotes

the I norm. For any positive semi-definite matrix A, the operator ||v|| 4 defines the weighted norm
as |[v||a := VT Av. Forall T € N, [T] £ {1,...,T}. Also, for a mapping f(.) : R™ — R™ and a
set B C R™, we define f(B) 2 {y ¢ R" |3bec B: y= f(b)}.

Instantaneous hard constraint. In each round ¢, the learner is required to adhere to a hard con-
straint: ¢(a;) < 7, where 7 is a known positive constant that serves as the safety threshold. The
corresponding safe action set is defined as A% 2 {a € A : c¢(a) < 7}.

Performance metric. Let 7" represent the total number of rounds in which the agent interacts with
the environment, and {a;}7_, denote the actions selected by the agent during these rounds. The
agent’s performance is measured by regret as follows: Regret(T) £ Zil [r(a*) —r(at)], where a*
is the optimal action that maximizes the reward function r(.) while satisfying the safety constraint,

defined as a* £ arg max, ¢ gu 7(a).

Linear bandits. To handle the large and potentially infinite number of actions, we concentrate on
linear bandits. This choice enables us to employ linear function approximation methods to solve our
problem effectively.

Assumption 1 (Linear bandits (Amani et al.||2019; |Pacchiano et al.}|2024)) Consider a constrained
bandit problem denoted as (A, r, c), which is assumed to be a linear bandit problem with a feature
function ¢ : A — F C R% Specifically, there exist unknown vectors 0* and v* in R? such that for
any a € A, the reward and cost functions are given by r(a) = (¢(a), 0*) and c(a) = (¢(a),~v*),
respectively. Additionally, we assume, without loss of generality, that for all a € A, we have
llo(a)|| < L for some L € (0,1], and max(||0*||, |v*|) < Vd, where d is the dimension of the
feature space.

Assumption [T] encapsulates the linear relationship between both the cost and reward functions and
the feature map. It is important to note that, despite this linearity, the feature map ¢(.) itself may be
non-linear, and its image in the feature space can result in a non-convex space.

Initial safe action. Designing a safe bandit algorithm that achieves sublinear regret requires at least
one known safe action, as shown in Theorem 3 of|Shi et al.|(2023). This assumption is often valid in
real-world scenarios where a known, albeit suboptimal, safe strategy exists. In this paper, we adopt
a similar assumption, as stated below.

Assumption 2 (Zero Starting Point Assumption): There exists an action a® € A such that ¢(a°) =
0 € R%
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Remark 1 We highlight that for problems where the initial action is not at the origin and incurs
a non-zero cost Ty, the original problem can be converted to an equivalent one that satisfies As-
sumption [2| through a simple translation. In the new problem, the safety threshold is adjusted to
T — T0-

3 NON-CONVEX FEATURE SPACES

Non-convexity in feature space frequently arises in real-world bandit problems due to the inherent
complexity or discrete nature of decision spaces, as well as feature transformations ¢(.). Appli-
cations such as recommendation systems, financial management, and medical treatment selection
often involve action sets that are neither convex nor star-convex, but rather composed of discrete or
separated subsets. In this section, we define structures in the feature space commonly encountered
in these applications. We begin with the following definition:

Definition 1 Let F = {¢(a) € R? | a € A}.

We begin by examining continuous non-convex sets with local properties centered around ¢(a®) and
points near the optimal point ¢(a*) within the feature space. Beyond these localized properties, the
set may take on any arbitrary form.

Assumption 3 (Local Point Assumption) There exists 0 < ¢ < min{L, ﬁ} such that for all
x € F, we have ayry € F for some a € [€, ﬁ] Let x* = ¢(a*) denote the optimal point. Then,
either of the following conditions holds:

1. (p(a*),v*) <7 — 1, where) <t < L —¢ or

2. ax* € Fforalae [%ﬂvl}’ with0 < vsuch that . < L —e < 1.

Note that Assumption [3|is not only rich enough to capture both star-convex and convex structures,
but also applies to a wide range of non-convex and discrete real-world problems. In particular, when
¢(.) is the identity mapping, these conditions apply directly to the action set .A.

Why do we need the - and :-neighborhood conditions? Starting from the initial safe point,
the agent must explore a small region around this point (the origin) to gather information about
different directions. The (-neighborhood assumption ensures that the agent can explore a small area
around the optimal point, particularly when the optimal point lies on the boundary of the constraint.
Without this exploration, solving the problem would be impossible, as our lower bound in Theorem[?]
demonstrates the necessity for € and ¢ to be strictly positive.

Real-World Implications of Assumption[3] Consider an investment problem where a venture
capitalist (VC) needs to decide how to allocate its funds. Suppose the VC can invest at different
levels in a company and must determine how to hedge the associated risks. If the VC makes a small
investment, it risks losing only a small amount of money if the company goes bankrupt. However,
if the company does very well, the VC only owns a small portion, so the reward is also limited. The
reverse is true if the VC makes a large investment. The VC could hedge its bets by initially making
several small investments in different startups to gather information on how these investments per-
form. Once the VC identifies a promising startup, it can then take on more risk by making a larger
investment in that company. In this context, the smaller, safer investments represent the e-condition
in Assumption [3] meaning they are small and close to the origin (a safe point). On the other hand,
the larger, higher-risk investments in the profitable startup corresponds to the ¢-condition, which is
further from the origin, closer to the safety threshold, but with the potential for higher returns as its
closer to the optimal decision(See Fig. [2b). For more example please see Appendix [C]

Comparison of Assumption [3] and the Star-Convex Assumption in Pacchiano et al. (2024).
Assumption [3|is a local assumption, as it only imposes conditions on the neighborhoods around the
starting and optimal points, with € and ¢ being arbitrarily small. In contrast, star-convexity is a global
assumption, requiring that all lines connecting any feature point to the starting point lie within the
feature set 7. For a visual example, see Figs. [3a]and [3b]
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Figure 3: (a) H denotes the constraint’s boundry, where a is the initial safe point (origin), and a* is
the optimal point. Given that ag, a*, and a3 are fixed in the feature space, star-convexity as described
in|Pacchiano et al.|(2024)) requires that the lines connecting ag to a* and aq to a3 lie entirely within
F. (b) The Local Point Assumption only requires the points a1, as, and the line segment Lo to be
in the feature space F, without imposing the same requirement on the line segments L; and L.

4 QOUR APPROACH

Algorithm 1 Non-Convex Safe Linear UCB (NCS-LUCB)
Require: v, §, 7, A\, d
1: for episodet =1,...,7T do
22 A= d(a)plar) T+ AT
3 0r = (At)_lzi;a(é(av')rf(a#)
4 Yt = (At)ilzf—_:lld)(ar)cT(aT) .
5. Calculate estimated safe set : A; = ARS U AV according to Egs. (T) and
6: Take action a; = argmazqca, ($(a),b:) + bi(a), where b;(.) defined in Eq.(3).
7.
8:

: Play a; and observe its reward r; and cost ¢;.
end for

We introduce our algorithm, NCS-LUCB, as detailed in Algorithm [T} Inspired by the LC-LUCB
algorithm from [Pacchiano et al.| (2024)), our method significantly extends the approach to address
non-convex and discrete problems. Our approach leverages UCB exploration while taking a conser-
vative approach toward the costs associated with each action. A key innovation in our algorithm is a
novel form of reward shaping, specifically designed to address the inherent non-convexity challenges
within the feature space. Detailed explanations of the main steps are provided below.

Reward and safe-set estimation. We use Recursive Least Squares (RLS) to estimate the reward
and safety parameters in lines 2 — 4 of Algorithm[I] In line 5, we construct a conservative estimate
of the safe set of actions based on both the RLS estimation and the Cauchy-Schwarz inequality.
Specifically, ARS is defined as follows:

AR 2 {a e A (9(a), w) + Ballg(a) |1 < 7} (D
Theorem 2 from |Abbasi-Yadkori et al.| (2011) demonstrates that for any 6 € (0, 1), the choice of
1+T7L2 saf . o ..
f2 = oy [dlog (| —5>— | + V/Ad ensures that A; C A** holds with probability 1 — §. In addition
to ARLS, we also consider AVa defined as:

T

AVE 2 {a€ Al |d(a)] < 7

} 2
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Given Assumption[2]and the linearity of the problem (Assumption I}, the Cauchy-Schwarz inequal-
ity confirms that all actions in A V4 are safe, i.e., Ava C A%,

Bonus design. At step 6, we implement an optimism-based approach to encourage the agent to
select unexplored safe actions. The bonus expression is given by:

be(a) = Billp(a)ll (a1 +g (a), 3)
where the first term is a expression term used in uconstrained bandits literature, as discussed in
Abbasi-Yadkori et al.|(2011). However, in our case, since ¢* may not lie within the estimated safe
set A¢, we introduce a new bonus term, g} (.), to capture the distance between optimal point and the
estimated safe set, defined as follows:

. N - ) . 4)
gi (a) = v X ( 7+ 282 L{|¢(a) ]| (a2

Star-convex cases. In star-convex case, setting v = 1 in Eq. [ maintains the optlmlsm property.

This is because one can show that ag(a*) € ng(Af) holds for some a > T+252LH¢( S

Consequently, the distance between ¢(a*) and ¢(A;) is less than <1 — T+2ﬁ2LH¢Za*)H(At>—1

However, when F is no longer star-convex, a¢(a*) € ¢(A;) does not necessarily hold for all

0<a< z . In fact, setting ¥ = 1 introduces a bias toward suboptimal direc-
T+252L|‘¢(Q)H(At)fl

tions, which we refer to as the non-convexity bias. This bias ultimately leads to linear regret. We
elaborate on this bias in Section[5.21

Solving non-convexity bias. When F is non-convex, ¢(.A;) also becomes non-convex, making the
computation of the distance between ¢(a*) and ¢(.A;) intractable. However, to design an appropriate
bonus term, calculating this distance is still necessary. To address this, in Lemma 2} we show that
the distance between ¢(a*) and the features in the e-neighborhood of the origin acts as an upper
bound for the distance between ¢(a*) and ¢(.A;) and can be used instead for bonus design. In this
way, with an appropriate choice of v as discussed in the lemma, the designed bonus term restores
optimism, ensuring exploration in the optimal direction (see Appendix [E).

Note that, in addition to restoring optimism, it is crucial to ensure that gf (.) does not result in linear
regret. Accordingly, in Lemma 4} we demonstrate that g (.) converges to zero at an appropriate

rate, resulting in a regret cost of @(dg) in the upper bound.

Environment interaction. In step 7, the algorithm plays the selected action, observes the reward
and cost, and stores them for the next round. Steps 2—7 are repeated for 7" rounds.

5 ANALYSIS

In this section, we present the main results of our study. We prove that Algorithm [I] achieves a
sublinear regret. Also, we establish a lower bound that demonstrates the inherent impact of non-
convexity on the performance of any near-optimal algorithm.

5.1 MAIN RESULTS
Our first result is a high-probability, sublinear upper bound on the performance of Algorithm|[T}

Theorem 1 Consider a linear bandit problem under Assumptions and[3] In Algorithm[I} let

2
v="TH 0 = =0dlog (H_Zi) + VAd, and X = 1. Then, for any § € (0,1), with

probability at least 1 — 26 Algortzhmlremams safe, i.e., Ay C A, Vit € [T). Further, the regret
of Algorithm[I|with probability at least 1 — 20 satisfies the following upper bound:

Regrer(1) = @00+ %) \/2Td 10g(dHA75L2> 5)
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Comparison with Theorem 18 in Pacchiano et al. (2024). The key distinction between our upper
bound and that presented in |[Pacchiano et al.[(2024) is the coeffecicient é, where € and ¢ reflect our
local Assumption [3]in a non-convex space. Additionally, in our work, T represents the safety gap,
assuming our algorithm starts from the origin at each state, resulting in an initial safe action with
zero cost and a corresponding gap of 7.

Remark 2 We highlight that the result of Theorem|l|naturally extends to linear contextual bandits.
For further discussion, please refer to Appendix|J]

Adapting to unknown ¢. While the choice of v does not affect safety in Theorem |1} selecting it
appropriately is crucial for achieving sublinear regret. Theorem [I|defines v in terms of .. However,
when a meaningful lower bound for ¢ is unknown, the agent can adopt the Bandits over Bandits
(BOB) approach, as proposed by |Cheung et al.| (2019). This method employs a two-layer meta-
structure, where the base learner is NCS-LUCB, and the meta-learner adaptively selects ¢ based on
the cumulative rewards of the base learner. The full implementation and analysis of this technique
are beyond the scope of this work and are left for future research.

To the best of our knowledge, this is the first such result in literature for non-convex linear bandits.
Further in Theorem [2] we provide a minimax lower bound that verifies the role of ¢ and e in the
upper bound of Theorem I]

Theorem 2 (Lower bound of safe linear bandits with non-convex action space) Consider the setup
defined in Theorem Then, for all € € (0, %), and v € (0, i), and for all T > %, the following
information-theoretic lower bound holds for any safe algorithm:

1—2¢ 1—1
(

Regret(T) > max{%ﬁ, )%} (6)

L

Remark 3 Note that since Regret(T) < O (?) for all T = [23], we have: Regret(T) <

o} (ﬁ) which shows only a 61% gap between the lower and upper bounds.

5.2 NON-CONVEXITY BIAS

As discussed in Section[d] the non-convex nature of F prevents the agent from taking the step size

a = WW(@*)H toward the optimal point ¢(a*). In this section, we present a toy
Ay

example demonstrating how a bonus design focused solely on safety limitations, without accounting
for non-convexity, biases exploration towards suboptimal directions in a non-convex space. This
prevents the agent from expanding the safe set .A; toward the optimal point and ultimately results in
linear regret.

Toy example on non-convexity bias. Consider a non-convex safe linear bandit problem with the
1
action set A = {ao = [8} ,a1 = {8] , Q9 = M ,a3 = [(1)} }, a safety threshold of 7 = 0.95, and
3

a true reward vector 0* = 1 . Additionally, let v* = 8 with the transformation ¢(a) = a, i.e.,

an identity transformation. With this setup, the entire action set A is safe, i.e., A = {a € A |
(a,v*y <7 =0.95} = A, and the optimal action is as.

Now, suppose we design a safe algorithm where the agent knows 6* but must estimate ~v*. Moreover,
assume the agent knows that the maximum possible reward is less than 1,1i.e.,7* < 1. Attimet = 1,

the agent estimates the safety factor as y; = B] and the safe setas Ay, = {a € A | (a,1) <7 =

0.95}. As aresult, the agent believes that points of the form {g} or {g} , where o < 0.95, are safe.
Therefore, the estimated safe action set is A: = {ag, a1, a2}.

We now demonstrate how neglecting non-convexity biases the agent toward as, a suboptimal direc-
tion. As mentioned, algorithms designed for star-convex problems, such as LC-LUCB in |Pacchiano
et al.[(2024)), focus solely on safety limitations in their bonus design. This leads the agent to consider
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the distance from the safety region’s boundary to the optimal point when designing the bonus. With
the safety boundary along the x-axis set at max{a < 0.95} and r* < 1, the bonus for action a; on

the x-axis is computed as by (a1) =1 —0.95 = 21—0. Similarly, for action a2 on the y-axis, the bonus

is by (az) = % At time ¢ = 1, the agent evaluates the actions as follows:

1 2

(01,07 + bulan) = 5 + 55 < 3 = (0(02),07) < (6(a), 0%) + bifa), 9

where the last inequality holds because b;(.) > 0. This inequality holds for all ¢ € [T, as the bonus
term b, is non-increasing over time in UCB-based methods. Hence, the agent always prefers a2 over
ay for all t € [T, based on the selection criterion arg max,c 4, (a, 0*) + b:(a). However, this bias
toward a4 is problematic. Since a4 lies on the y-axis, the agent’s estimated safe set .4; never expands
in the z-direction. As a result, the optimal action a3, which is on the x-axis, remains outside .4; for
all £, leading to linear regret.

What is the correct strategy? An effective strategy is to account for both non-convexity and safety
limitations in the bonus design. The bonus should be based on the distance from the optimal point to
the nearest available action within the safety region, rather than to the boundary of the safety region.
Therefore, in our toy problem, the bonus for action a; should be based on the distance between
the optimal point and ay, i.e., by(a1) = r* — § = 2. This implies that the inequality in Eq. no
longer holds. As agent samples as over time, the term b;(as) becomes smaller, which guarantees
that the agent will play a; based on the selection criterion arg max,e 4, (a, 0*) + b(a). Note that,
in practice, calculating the distance to a non-convex set of actions is challenging. However, by
designing gy and setting v = TTLL, as shown in Lemma |2} our bonus will be optimistic enough to
address the bias problem while overcoming this computational challenge.

5.3 OUTLINE OF PROOF FOR THEOREM([]]

We outline the proof steps for Theorem [ and explain how our bonus design addresses the non-
convexity bias challenges mentioned in Section[5.2] For detailed proofs of Theorems|[T]and 2] please
refer to Appendix.

Step 1. Before proceeding, we introduce two important events:

Definition 2 The event &, is defined as: &1 = { A, C A% Vit € [T|}. Additionally, the event Es is
defined as € = {|(¢(a), ;) — (¢(a),07)| < Bil|d(a)]l(a,)-1, V(a,t) € A x [T}

Event & defines the set of outcomes where Algorithm [I| remains safe, while event & specifies
the outcomes where the estimation of the reward function is sufficiently accurate. Naturally, our
interest lies in scenarios where both events occur simultaneously. Lemmaﬂ] shows that, under the

settings outlined in Theorem (I} the intersection of these two events occurs with high probability
(Abbasi-Yadkori et al., [2011)).

Lemma 1 (Theorem 2 from|Abbasi-Yadkori et al.|(2011)) Under the setup of Theorem |l and for
any fixed § € (0, 3), the event € = & N &, holds with probability at least 1 — 26.

The proof can be found in Appendix D} Next, we prove the optimism property conditioned on the
event £ under the bonus design in Algorithm I}

Lemma 2 (Optimism): In algorithm[I| under the setup of Theorem[I} conditioned on the event &,
the inequality (¢(a*),0") < maxgea,{®(a),0:) + bi(a), V(t) € [T] holds.

The proof of Lemma 2] can be found in Appendix

Step 2. Our bonus design, along with Lemma 2] allows us to present the following decomposition
that upper bounds the regret:

Lemma 3 Conditioned on the event &, the regret of Algorithm[l|is upper bounded as follows:
Regret(T) < 28121 [|é(ar) || a1 + Zi19 (ar) -
T T2

®)



Under review as a conference paper at ICLR 2025

Note that 73 captures the effect of our new bonus term in Eq.(@). Term 7; appears in the uncon-
strained case, |Abbasi-Yadkori et al.|(2011)), and we can bound this term in the same way. Next, we
bound the term 75 as follows:

Lemma 4 Under the assumptions of Theorem (I} and conditioned on the event £, the following
holds: Ty = X1_1 g (a;) < 2222257 |[p(ar) | (a,)-1-

- LET

The proof of Lemma @] can be found in Appendix[G] Note that, the result of Lemma[d]enables us to
utilize Lemma 11 in[Abbasi-Yadkori et al.| (2011) to show the sublinearity of 75.

Step 3. Now, by combining the last two steps and upper bounding the normalized term obtained
in step 2, we can apply Lemma 11 from |Abbasi- Yadkori et al.| (2011) to obtain the final result.

6 NUMERICAL EXPERIMENTS

We conducted an experiment to evaluate the performance of the NCS-LUCB method and compare
it with LC-LUCB from |Pacchiano et al.| (2024). We considered a linear bandit scenario with
a discrete action set A 2= {ay,as,as,as,as}, where a; = [0.1,0]7, az = [0,04]7, a3 =
[0.8,0]T, ay = [0,0.7]7, and a5 = [1, 0]T. We set the parameters v* = [1, 0] T, 6* = [1, 1]T,
d =0.01,0 =0.01, 7 = 0.9, d = 2, T = 900000, and chose the identity mapping for ¢(.). In this
setup, as is considered unsafe, while the remaining actions are safe, i.e., A% = {a, as,a3,a4}.
Furthermore, a3 is the optimal action, making x the optimal direction and y a suboptimal direction.
For LC-LUCB, we set the bonus term as by(a) := af||¢(a)||(a,)-1, where & = (2 + 2) and

B8 =o04/d log(%) + /d, following Theorem 18 in [Pacchiano et al.| (2024). The regrets of NCS-

LUCB and LC-LUCB from [Pacchiano et al (2024) are shown in Figs. [Ib]and [Ta] respectively. Our
algorithm achieves sublinear regret, indicating the successful expansion of the estimated safe set
along the z-axis to include the optimal action as. In contrast, LC-LUCB converges to the suboptimal
point a4 and fails to expand its safe set along the x-axis to include the optimal point, resulting in
linear regret. Additionally, the frequency of actions played by each algorithm is shown in Figs.
and As observed, our algorithm predominantly selects a; and as, which lie in the x-axis.
However, LC-LUCB is biased toward the suboptimal y-axis, and mostly selects a4. Notably, neither
algorithm selects a5, which is an unsafe action.

7 CONCLUSION

In this paper, we developed an algorithm to address the challenges of non-convex spaces in linear
bandits with instantaneous hard constraints. Unlike previous works that relied on convexity and
star-convexity, we demonstrated that local assumptions around the starting safe point and the op-
timal point are sufficient for near-optimal performance. We provided an upper bound that nearly
matches the regret bounds under star-convexity and convexity assumptions, and a lower bound that
highlights the necessity of parameters related to local assumptions in the upper bound. Additionally,
our method also captures discrete cases with finite action spaces. An interesting area for future work
is the adaptation of our approach to gradient-based methods. This adjustment is crucial, as the max-
imization step in non-convex scenarios often becomes intractable in non-convex continuous cases.
Therefore, analyzing the impact of the non-convex optimization step on convergence is an essential
next step.
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Organization of appendix Appendix [A|includes figures supporting the numerical experiments
discussed in Section [6] Appendix [P| presents an additional case study for simulation. Appendix
Bl discusses related works. Appendix [C] provides additional real-world examples of Assumption
3l In Appendix [D] we provide the proof of Lemma [I] In Appendix [E} we provide the proof for
Lemma 2] We first state useful Lemmas [5] and [] in Appendix [E.I| where their proofs are provided
in Appendix [E3] Then, proof of Lemma 2] is provided in Appendix [E] Appendix [ contains the
proof for Lemma [3] while Appendix [G] provides the proof for Lemmad] The proof of Theorem [I]
is presented in Appendix [Hl Appendix [[contains our proof for Theorem[2] Appendix [J]extends our
work to linear contextual bandits. Exact same proof of linear bandits applies to the linear contextual
bandits setup as well, however, for sake of completeness the complete proof for linear contextual

bandits is provided in Appendices|[L]M] [N]

A SIMULATION FIGURES

This section provides supporting figures for the numerical experiments discussed in Section [6]

Average Action Selection Frequency (NCS-LUCB) Average Action Selection Frequency (LC-LUCB)
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Actions Actions
(a) Action selection frequency in NCS-LUCB (b) Action selection frequency in LC-LUCB
(ours). 2024).

Figure 4: NCS-LUCB (ours) primarily explores the optimal direction along the z-axis by sampling
from a; and as. In contrast, LC-LUCB from |Pacchiano et al.[(2024) is biased toward the suboptimal
y-axis, predominantly sampling from a, and a4. Each plot represents the average over 10 trials.

B RELATED WORKS

RL with instantaneous hard constraints Amani et al.|(2021) solved the RL problem with instan-
tenous constraint for linear MDP in star-convex spaces. Then, Amani & Yang| (2022), solved safe
problem for offline setup. Also,[Wachi et al.| (2021)) solved the problem for generalized linear mod-
els. In all of these problems it is assumed that an initial safe action is known for each state, and
safety is only related to unsafe actions (unsafe states does not exists). Then, studied
problems with unsafe states in star-convex setting. Lastly, (2024) relaxed the assumption
of a prior safe action is given to the algorithm but instead they can get sublinear constraint violation.
Thus, none of the above works have studied RL with instantaneous hard constraints for non-convex
feature spaces with local assumptions

RL with cumulative constraints: Lastly, RL problems with cumulative constraints are studied in

(2016)); [Vaswani et al.| (2022); [Ghosh et al.| (2022a); [Ding & Lavaeil (2023)); [Huang et al.|
(2023)).

C APPLIED EXAMPLES OF ASSUMPTION [3]

C.1 SMART BUILDING MANAGEMENT

Consider a smart building management scenario where the goal is to schedule jobs while ensuring
the total cost of the energy consumed remains below a set threshold. Each appliance can be operated
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in either low-power or high-power mode. Running all appliances at full power would ensure jobs
are completed quickly, but it risks causing an overload and exceeding the energy cost threshold. On
the other hand, operating appliances in low-power mode will always keep the energy cost within the
limit, but it is suboptimal in terms of job completion efficiency.

The manager might initially operate all appliances in low-power mode to gather information about
the building’s energy costs. Once sufficient information has been collected, the manager can se-
lectively switch some appliances to high-power mode to improve job performance, while keeping
others in low-power mode to ensure the total energy cost remains within the threshold. In this con-
text, running appliances in low-power mode aligns with the e-condition in Assumption 3] where the
system remains in a safer state and the energy cost is controlled. Conversely, operating some ap-
pliances at high power corresponds to the (-condition, which moves the system closer to the safety
threshold but offers the potential for better job scheduling performance.

C.2 AUTONOMOUS VEHICLE NAVIGATION: A NON-CONVEX PROBLEM.

Non-Convex Decision Set for Autonomous Vehicle Problem

m= Obstacle Zones
Feasible Driving Space

~@- Autonomous Vehicle
Goal Point N
Optimal Path A

Position Y
y

0 2 4 6 8 10
Position X

Figure 5: Autonomous vehicle with collision avoidance constraint is a non-convex problem.

The image depicts a navigation problem for an autonomous vehicle in a non-convex (and non-star-
convex) decision set. The vehicle starts at a designated point (blue dot) and aims to reach a goal
location (yellow star) while avoiding obstacle zones (red shapes), which represent regions where
traversal is prohibited. The feasible driving space (green region) highlights the area within which the
vehicle can operate, taking into account safety and physical constraints. The optimal path (orange
line) demonstrates the computed trajectory that the vehicle follows to minimize travel distance or
cost while adhering to the constraints. This visualization emphasizes the complexity of decision-
making in autonomous systems, where the decision space is shaped by non-convex obstacles and
feasible regions.

D PROOF OF LEMMA[I]
We can directly apply Theorem 2 from |Abbasi-Yadkori et al.|(2011) to show that each of the events

&1 and &; holds sepereatedly with a probability of at least 1 — §. Using the union bound, we find
that the event £ N & holds with a probability of at least 1 — 26.

E OPTIMISM

E.1 PRELIMNINARY RESULTS

Lemma 5 Under Assumptions and 3} conditioned on the event &, for all t € [T), we have
ap(a*) € ¢(As), where a > e.

The proof of this Lemma is provided in Appendix
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Lemma 6 Let

< —T ' *
- < LT, Then, underAssumptwns we have ag(a*) € ¢(A),

for some o € [m, 1].
The proof of this Lemma is provided in Appendix [E.3]

E.2 PROOF OF LEMMA[Z]

Pick an arbitrary action a’ € A;. Then, we will have:

max(@(a), br) + bi(a) = (d(a’), br) + be(a’)

)
= (¢(a),00) + Brllp(a) | s -1 + g7 (a)
Now, on the event £5 we will have:
((a’), 00) + Brll¢(a’)|x-1 + g7 (a') = (¢(a’), 07) + g7 (a'). (10)
Thus, combining Equations [0 and[I0] yields the following:
max(¢(a), 6:) + be(a) > (¢(a), %) + g7 (o) (11)
This brings us to analyze two sub-cases:
. . N . .
Sub-case one: Assume that — 62LH¢> s = 7 _H Then, by Lemma there exists an action

ao € Ay such that ¢(aq) = ap(a*), where v > e. Thus, by replacing a” with a, in Eq.(11) we
have:

max (¢(a),0;) + bi(a) > ($(aa), 0%) + 9 (aa) = a(p(a”), 0%) + ¢ (aa)- (12)

a€A,

Now, using the definition of gy (.) in Eq.(4 , and considering the fact that ||¢(a*)]| AL =
|lp(a*) )||A 1, we have the following:

9¢ (aa) ”X< 7+ 282 L||¢(a*) | (a,)-

T

T+t <
T+2B2L||p(a*)|l 1T T+L

By setting v =

, and considering that

we obtain the following:

(T—l—L)( L

L T—I—L) 12 (1_6) (14)

g¢ (aa) >

Since we assumed in our problem formulation that r(a) € [0, 1] for all @ € A, we obtain:
9¢ (aa) = (1 =€) = (1 = €)(p(a”),0) (15)
Now, combining Equations (T2) and (T3) yields:
max((a), 0r) +bi(a) 2 a(g(a”),07) + (1 — €)(¢(a”),07) = (¢(a”),67), (16)

where the last inequlity obtained by the fact that o > e. This completes the proof for sub-case one.
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Sub-case two: Now, assume that

—_— > Then, by Lemma [0 there exists an
TR, 2 T Y

action a,, € A; such that ¢(a,) = ap(a*), where a > L . Thus, by replacing o’
T+252L|\¢(a*)H(AU,1
with a,, in Eq.(TI), we have:

max (@(a), 0r) + b(a) > afp(a*),0%) + g (aq). (17)

ac A,

Now, similar to the sub-case one, by setting v = > 1, we have:

V( ) T+ « 1 T
gi Qo) = -
' L 7+ 2B2L|[¢(a*)(a,)

1-— T -« 1—a a*), 0"
2( YN >|<At>1>21 = =)o), 0

T+
L

(18)

where the last inequality is obtained by the fact that r(a) € [0,1] for all @ € A. Thus, combining
Equations (I7) and (T8) yields:

max (¢(a),0;) + bi(a) > a(p(a®),0%) + (1 — a)(d(a”),07) = ($(a”), 07). (19)

a€AL

This completes the proof for sub-case two as well as the Lemma[2]

E.3 PROOF OF LEMMAS [3] AND

T

Proof of Lemma By Assumption [3| there exists a positive number p € [e, ﬁ] such that
M|\¢Ea a1 € F. Now, choose oo = Hd>(a IECRIE Then, we have the following:

o) _ o)
leCa)l -~ lléas)]”
which implies that ag(a*) € F. By Assumption|[I] we have: ||¢(a*)|| < L < 1, which implies:

« > p > e. This implies that a¢(a*) € F for some o > e. It remains to show that ag(a*) € ¢(As)
for all ¢ € [T']. Note that we can write the following:

ag(a®) = (allp(a”)]]) x

o) 7
s =" 7

which by Eq. implies that a¢(a*) € ¢(.Aﬁ). Since AVa C A,, we have: ap(a*) € ¢p(As) as
well, i.e., there exists an a € A; such that ¢(a) = a¢(a*), where o > €. O

ladp(a®)|| = ||MH (20)

Proof of Lemma|6; We decompose the proof of this lemma into two cases:

Case 1: Assume that a* does not lie on the constraint’s boundary. Then, by Assumption[3]we have:
(¢p(a*),v*) < 7 — . Therefore, we can show that in this case, a* € A;. To prove our claim, note
that, on the event £, we have:

(6(a"), ) + Bellé(a) |1 < ($(a”),7") + 2Bl b(a”) 5+
— 7 — 4+ 286"y -

On the other hand, the condition

by Eq.(21), we have:

2L

T+L S m lmphes that 2ﬂ2LH¢(G‘*)”A:1 S L. ThUS,

(@(a*). ) + Bell (@)l or < 7 — 0+ 2Bal| (a0 < 7
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which implies a* € ARYS C A;. Thus, for o = 1, we have ap(a*) € ¢(A;), which completes the
proof for Case 1.

Case 2: Now, assume that a* lies on the constraint’s boundry, i.e., we have (¢p(a*),v*) = 7. We will

* — T . M M > T
show that ap(a*) € ¢(A;) for a —T+252L\|¢(a*)\IA;1 To prove this, note that since @ > -, by

Assumption 3] and because a* resides on the constraint’s boundary, we must have a¢(a*) € ¢(A),
i.e., there exists an action a, € A such that ¢(a,) = a¢(a*). Now, it remains to show that a,, € A;.
Conditioned on the event £, we have:

(9(aa), i) + B2llp(an)lls-1 = ag(a®),y) + Ball¢(a”) ||y

£y - o (22)
< a({6@) 7 + 260l ) < al(o(a) 7"} + 2L )
Now, by substituting (¢(a*),7*) = 7 and o = m in Eq. l) we have:
T
(¢(aa); ) + B2lld(aa)ll-1 < — T+ 2B L ¢(a*)||y 1) <7,
N T 28,90 [, ( ) @
which implies a, € AR"S C A;. This completes the proof of Case 2 and Lemmal6] O
F PROOF OF LEMMA 3]
Proof of the Lemma[3} By utilizing Lemma 2] we can infer:
Regret(T) = ST, {0(a),0°) = (ola0). 0% < ZLylo(en). 0 + bla) = (6100) 0%

=37 (p(ar), 0, — 0%) + 51||¢(at)”/\;1 + g (ay)

Now, conditioned on the event &, we have (¢(ay), 8, —0*) < B1|¢(ar) |72~ Thus, we can continue
Eq.(29) as follows:

Regret(T) < 28154 [|é(ar) a1 + Z{_197 (ar) (25)

This completes the proof. [

G PROOF OF LEMMA 4]

We begin by stating a Lemma that is helpful in the proof of Lemmaf]

Lemma 7 Under the setup of Theorem[I|and on the event &, for every selected action a; in Algo-
rithm|[]] it holds that € < |¢(ay)||,Vt € [T].

The proof of this Lemma is provided in Appendix [G.I] Now, we are ready for the proof of Lemma
4

Proof of LemmaE|: Using the expression for the g} (.) function, we have:

»T ¢ (a) =X u(l— K )

1=19¢ (at) t=1 T+ 262L||p(ar)||(a,)-2 26)
o(a -1 2085 L —
Gl 2 CBLY) vt 5an,

= (2B8:Lv) S
(262Lv) T 285 L) 6(a) | (a1

17



Under review as a conference paper at ICLR 2025

where the last inequality follows from the fact that 7 < 7 + 2B2L||¢(ar)||(a,)-1- Now, since
llp(a)ll(ay-1 = ||%H(At)—l’ we can apply Lemmaas follows:

(QﬁgLV) (262[41/)

Sio19i (ar) < Sizillelanllan - < =T lé(an)ll 5 27)

which completes the proof. [J

G.1 PROOF OF LEMMA[7]

To prove Lemma (7| we utilize a contradiction strategy. Assume that for some ¢ € [T], we have
[l¢(ar)|l < €. Note that by Assumption we have oy olar) e p(A), for some o € [e, %] Also,

lléCae)ll
since o < % we have: am € ¢(AV3) C ¢(Ay), i., there exists an @’ € A, such that
a ow, we show that at time ¢, Algorithm [1| will prefer to choose a’ instead o
! H¢( )H N h h Algorithm |1{ will pref h " d of

ag, which results in a contradiction and completes the proof. To show that the algorithm prefers to
choose a’, we consider the following:

((ar), 0:) + be(ar) = (P(ar), 0) + Brllp(ar)l -+ + g7 (ar) (28)

Now, conditioned on the event £, we have (a¢) = (Pp(ar), 0%) < (p(ar), 0)+F1||p(ar) ||A:1. Since
in our problem formulation we assume that 7(.) € [0, 1], we can say the following: /

0 <r(ar) <(¢(ar),0:) + Brlld(ar)l[y-1 < (((ar),0:) + 51||¢(at)||A;1)a (29)

N H¢( ol

where the last inequality follows from the fact that, according to the contradiction assumption, we
have [|¢(a;)|| < e, which implies 1 < . Now, combining Equations and , we have:

[e%

(#(ar), 0¢) + beay) < 7(@5(%)7 0¢) + 51H¢(at)||1r1) + 9/ (ar) (30)
[é(ad)l '
Now, substituting the definition of ¢(a’) = a% into Eq. , we get:
(dar), 0r) + bi(ar) < (9(a’), 01) + Bullo(a’) ][y 1 + g7 (ar) 3D

Now, using the definition of g; in Eq.(4), one can verify that g} (a’) = g¢¥(a:). Thus, we can
continue Eq. [3T]as follows:

(plar),0:) + be(ar) < (p(a’),0:) + be(a’). (32)

The last inequality in Eq. implies that in line 6 of Algorithm I} action a’ is preferred to action
at, which is contradiction and proves that ||¢(a:)|| > €, forall ¢ € [T]. O

H PROOF OF THEOREMI]
We apply Lemmas [3|and ] to get the following:

285 L
Regret(T) < ©1_ (26, + /82 v

Melan)lly (33)

Following the steps outlined in the proof of Theorem 3 in|Abbasi-Yadkori et al.| (2011), we proceed
as follows:

18
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SEallo@lay < TSl (34)

By Assumption giventhat L < land A = 1in Algorithm it can be shown that ||¢(a;)|| ,—1 < 1.
Consequently, the following inequality holds:

I¢(an) I3 < 2log(1+][@(ar)ll3 +)- (35)

Thus, by Equations[34] and [33] we have:

\/TE%”:1II¢(at)Il2At_1 < \/2T2,§T:1 log(1+[é(ar)][2 )

(36)
= \/ZT(log(det(AT)) — log(A?)).

where the last inequality is obtained by Lemma 11 from |Abbasi-Yadkori et al.| (2011). Now, con-
sidering that ||¢(a;)|| < L, it follows that the trace of At is bounded by d\ + T'L*. Since A7 is a
positive definite matrix, the determinant of Ay can be bounded by:

trace(Ar) d\+TL?

det(Ar) < (R < (B

Combining everything together yields:

/2T oger(A)) —log() < /27 o((PLETE ) —1og(a0)

(37)
d\ +TL? \/ d\ + TL>
=4/2Td] —)) =14/27Td1 _
J2rdton(BETE) os(PHTE)
Now, utilizing Equations (34) through (37), we conclude that:
d\ +TL?
Sicallé(an)|la 1< \/2leog(()\d)) (38)
Now, by integrating Equations (33)) and (38), we establish the desired upper bound as follows:
285 L d\+ TL?
Regret(T) < (26 + Bj Y \/QTd 1og((—:7d))D (39)
€T

I PROOF OF THEOREM 2]

To establish the lower bound, we consider a scenario with a single state, analogous to a Linear Safe
Bandit. Since the Bandit case is a subset of our RL problem, any lower bound derived for this
scenario also applies to our problem as well.

1.1 PRELIMINARY LEMMAS.

Our overall proof sketch is same as the Theorem 6 in [Pacchiano et al.|(2021) and Theorem 3 in (Shi
et al.| (2023). Here, however, we extend the approach to accommodate a continuous and non-convex
action space. We initiate with a divergence decomposition lemma adapted for continuous action
spaces.

Lemma 8 (Divergence decomposition for more general action spaces (Lattimore & Szepesvdri,
2020)). Consider a policy w, and let Py, = Py~ and P\, = Py, denote the measures on the
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canonical bandit model induced by T round of interconnection of policy w and environments V and
V respectively. Then the following holds:

KL(PV7 PV’) = EV [EleKL((Pat ) Qat)v (Pa’fa Qa/f))]ﬂ (40)

where P, and Q. represent the reward and cost distributions corresponding to the action a® re-

spectively.

Since in bandits we do not have states (or only have one state), setting the feature function as an
identity transformation makes the reward and cost linear functions of the actions, i.e., r(a) = (a, 6*)
and c¢(a) = (a,v*) for all @ € A. Assuming the noise in both reward and cost measurements is
standard Gaussian, i.e., (!, 7t ~ N (0, 1), the distributions for the observed rewards and costs also
become Gaussian:

Flat) ~ N(r(a'),1), é(a') ~N(e(a'),1), Vte[T].

Thus, the following Lemma facilitates the computation of divergence between two Gaussian distri-
butions:

Lemma 9 (Divergence between two Gaussians (Lattimore & Szepesvdri, 2020)). The divergence
between two Gaussians distributions with means [y, i1z € R and common variance o2 is given by:

_ 2
KMNwhﬁLNw%ang%gﬁl (41)

Before delving into the proof of Theorem [2| we rewrite the useful Lemma 11 from Pacchiano et al.
(2021). Define the binary relative entropy as follows:

da,y) 2 1og(5) + (1 = ) log(—

)

which forall z € [£,1] and y € (0, 1) satisfies d(z,y) > %log(ﬁ). We then present the following
lemma:

Lemma 10 (Lemma 11 in|Pacchiano et al.|(2021)) Consider the setup, definitions, and notations
of the constrained bandits defined in Lemma 8| For a bandit environment, we define Fr as the
filtration generated by the state-action sequences and the corresponding rewards and costs. Then,
for any event B that is Fp-measurable, the following holds:

KL(Py,Py) > d(Py(B),P, (B)) (42)

1.2  PROOF OF THEOREM[2|

Note that by Theorem 24.1 from [Lattimore & Szepesvari| (2020), we know that Regret(T) >
52> V/T. Now it is remained to show that for 7’ > 32¢ we have Regret(T) > 1=2¢(1=£)2 First,
we create two environments and demonstrate that for any policy, there exists an event B such that
d(Py(B),Py/(B)) is lower bounded by a constant. Next, we establish a connection between the
regret of the policy and the KL divergence of the two environments. Then, we apply Lemma[I0]to
derive our desired lower bound. Thus, we start by defining our environments.

Environment description.

Action-Set: We focus on the two-dimensional space where a, #*, and v* belong to R2. The
action space, denoted as A, is explicitly defined as the union of three distinct sub-spaces: A =
A1 U Ay U Ajz. These sub-spaces are defined as follows:

Ai = {(z,y) € R? : [z < e, [y| < ¢}
Ay:={(z,y) R 12 =0, 1 —v—1<y<1-v} (43)
Az i=={(z,y) eR*:y =0, -1 <z < —1+.},

where € and ¢ are the parameters specified in Assumption [3] Additionally, we assume L = 1 and
define v as a sufficiently small positive parameter, ensuring thate < 1 — v — ¢ and 2¢ < 1 — v. For
the purpose of this proof, we set v = %, which implies € < i and ¢ < i.

20



Under review as a conference paper at ICLR 2025

Our main goal, as stated in Theorem[2] is to demonstrate that the dependence of the upper bound de-
rived in Theorem|l|on the parameters ¢+ and ¢ is essential. Specifically, if these parameters approach
zero, the regret of any algorithm will tend towards infinity, at least for one environment adhering to
the structure outlined in Theorem Il

We are now prepared to describe two different environments, hereafter referred to as EnvI and Env2.
Envl: The reward and cost parameters for EnvI are defined as follows:

1

0= (L1 o= (7

0); T=1 (44)

In this environment, the safety constraint ¢(.) < 7 = 1 implies that A5 is the unsafe set of actions.
Also note that, the action (0,1 — ) emerges as the unique optimal action of Env].

Env2: For the Env2, the reward and cost parameters are defined as follows:
0; =07 =(-1,1); ~+5=(1,0); 7=1 (45)

The reward parameters of the two environments are identical; the primary distinction lies in the cost
parameters. With +3, it is evident the entire set A is safe, with (—1,0) as the unique optimal point,
which is located on the boundary of the constraint.

Proof steps We aim to demonstrate that for all 7' > 326 , the regret of any algorithm must be at

least B £ 1=2¢(1=£)2_ By contradiction, assume that there exists a safe-policy 7 that achieves a
regret lower than B in both Env] and Env2, ie., B > Regret(T'). Then, we define B as follows,

Definition 3 The Fr-measurable set of events B, is defined as follows:

2 (nflat) > 78V =9y, (46)

where {a'}]_, represents the sequence of actions generated by the policy 7 in Envl or Env2. Note

that a® is a two-dimensional vector, where a; and a?z are its corresponding x and y components, i.e.,

a' = (ay, a).

Considering the definition of 3, we establish the following Lemma:

Lemma 11 In Envi, under the assumption that B > Regret(T), the following inequality holds for
allT € N:
(1-v—e B

Py ({=L. _ilag| >T })21—71(1_7;_5)

47)

Proof: The proof of this Lemma can be found in Appendix [[.3].

Lemma [TT] provides a critical insight into the behavior of algorithms operating in EnvI. In fact,
this Lemma establishes a lower bound on the cumulative absolute values of the y-components of
the actions taken. This indicates that the algorithm consistently selects actions with significant large
components along the y-axis. Such a pattern is consistent with the location of the optimal action on
the y-axis. Consequently, any algorithm that achieves sublinear regret should mostly select actions
from the set A5 in Envl.

In contrast, the optimal action in Env2 lies along the x-axis, so we might expect a different pattern
of action selection, as reflected in the following Lemma:

Lemma 12 In Env2, under the assumption that B > Regret(T), the following inequality holds for
allT € N:
(1-v—e) B
Po({Silay| > T——} < o (48)
1
Proof: The detailed proof of this Lemma is available in Appendix
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Note that at the beginning of the proof, we set v = % According to Theorem [2| we select T' such
that T > 22 This choice of T ensures that: 7' > max(—2—, 2%8). As a result, employing
=9

v
Lemmas [[1] and [12] results in:

P (B)

Y

(49)

SR

P2 (B)

IN

Immediately after the inequalities obtained in Eq. (49), we can use Lemmas (8) to (I0) to derive the
following result:

Lemma 13 Under the assumption that B > Regret(T'), and noting that L = 1, for all T > % the
following inequality holds for the environment Envi:

(1-0)?

3 (50)

By [S1 |ak]] >

Proof: The detailed proof of this lemma is provided in Appendix

This Lemma provides a lower bound on the cumulative absolute values of the z-components of
actions taken in Env/ by policy 7. Notably, when |al | is non-zero, it implies that a’ belongs to A;
given that 7 is a safe algorithm. This means a' represents a non-optimal action. Thus, we can utilize
the lower bound in Eq. (50) to infer a lower bound for the regret of 7 in Envi. Thus, consider the
expression for the regret in Envi:

Regret(T) = E,[T(1 — v) — X7, (—al + aZ)]
=E[T(1 - v) = B (—af +ay) x (1{0 < |ag|} + 1{]ag| = 0})] (51)
(I-v) -

> Ey[T v) =3I (—al + al) x 1{0 < lak [}]

Now, for any safe algorithm in EnvI, whenever 0 < |a!| holds, we know that a® € A;. Thereby a’
incures a regret of at least 1 — v — 2¢. Consequently:

Regret(T) > Eq[T(1 —v) — Ele(—a; + ag) x 1{0 < |a%|}]

(52)
> Eq[(1 - v —26)211{0 < |ag[}] = (1 — v — 2€)E1[¥_,1{0 < |a [}]

t
Whenever a’ € A;, we have |al| < e which implies Iae—l‘ < 1{0 < |aL|}. Thus, we can continue
from Eq. (52) as follows:

B > Regret(T) > (1 — v — 2¢)E [2]_,1{0 < |al|}]

! 1-v—2¢) (1-2u)? (53)
> (1 —v— 2B, [5L, 1% > {
> ( v €)1 [Eiy c ] = B X L2
where the last inequality leverges Lemma[T3]
Substituting v = % into the last inequality, we obtain:
1 2
1_9 1 —
p> =2 0=V _p (54)
€ L

which results in a contradiction, as B cannot be strictly larger than itself. Thus, proof is complete.
d

1.3 PROOFS OF LEMMAS 13}

Proof of Lemma Under the assumption that B > Regret(7T'), we can write the following
inequalities:

B > Regret(T) = Ey[T(1 — v) — S, (05, a")] = B, [T(1 — v) = £{_; (—al, + a!)], (55)
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where [E; is the expectation regarding the measure induced by policy 7 and the environment’s dy-
namic in Env/ . Now we can continue the Eq. (55) as follows:

B>E(T(1—v) -3 (—al +al)]
=E[(T(1-v) - S (~d}, +a')) (56)
(-») L=y,

where 1{.} is an indicator function. Now, note that since the maximum reward that is achievable by
a safe action in Env/ is 1 — v, then we know that T'(1 — v) — ¥ (—al, 4 a!)) > 0. As aresult we
can continue the Eq. (56) as follows:

B>E[(T(1-v) - (-d} + a,))

< (U{SEJa) > T2y p1{sE el < T

(1-v) (1-v)

x (UELalay| > T =} + H{ELay| < 75— })] (57

(1-v)

>E(T(1 —v) =2 (—al + aZ)) x {2 la}| < T . 1.
But note that since —e < a',, one can extend the last inequality as follows:
T t T t (1 — I/)

B> E(T(1 - - ) = ST yal) x {5 o < TH )

(58)

>Ei[(T(1—v—¢€) — S al) x {EL |al | < T%}L

where the last inequality is obtained by the fact that 1{3/_, |a!| < Tl=v=9 e)} < 1{ZL]dl| <
T %} Now, we can continue as follows:

(1-v—e
B> Ei(T(1—v =€) = Syay) x 1{S{ Jay| < T——}]
(1-v—¢ (I1-v—e
=Ei[(T(1—v =€) = T———) x 1{Z{_y|ay <Tf}]
(l-v-o (1 ) (59)
— V- V—¢
= TfEl[l{Z 1‘at| < Tf}]
(1_1/_6) T t ( —V—G)
=T O (STl < T )
Now by applying the complement rule of a probability measure,
(I1-v—¢ (1—-v—e)
G21MI>T——5——n_1—muzlm|<T )
B (60)
zl-—a7
T —

Proof of Lemma Now, similar to the previous step, under the assumption that B > Regret(7T')
we will have:

B > Regret(T") = Eo[T — S{_, (05, a")] = Bo[T — £{_, (—al, + al))], 61)

where {a’}]_, is the sequence of actions generated by the policy 7 in Env2, and E is the expectation
regarding the measure induced by policy and environment’s dynamic in Env2.
Now, same as what we have done for Envl, we can continue the Eq. @]} as follows:

B> BT — X (—adl, + al)]

> Eo[(T — B (—al +al)) x 1{=L |f|>Tg}] (©2)
= 52 t=1 Ay ay =1/ 2

In Env2, whenever the event {X/_, |al| > T (1246)} occurs, it implies that at least a quarter of the
samples are taken from A4; U As. To estabhsh this, we employ a contradiction strategy. We assume
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that the fraction of samples taken from the region A; U A; is denoted by 7, and that 0 < r < i.
Noting that all samples from A3 have a zero y-component (a’; = 0). Thus, we have:

1
Siilal| < 1(1 —v)T (63)
Given that 2¢ < 1 — v we will have:

1 1 1 1
Siilal] < Z(l — V)T = 5(1 — )T — 1(1 V)T < -(1-v)T — 5T

N | =

(1—v—¢) ©4)

2
where the last inequality results in a contradiction, affirming our arguement.
Now, since at least i of samples are taken from .A; U.A5, and considering that the action yielding the
highest reward in this region (A; U A) is (0,1 — v), we can continue the inequality [62|as follows:

(1—v—e¢)

=T

B> Ey[(T — 5[ (—al +al)) x {S{_|a}| > T 5 H
1—p—
> EQ[(%T) x {5 [al] > pL=v=9) ; J 1y (65)
v T |t (1-v—g¢ v T .t (1-v—g¢
= JTE R oy | > To———=1} = TP ({Z ey [ > T-—F—1)
As aresult,
1—v— B
Bo({=T et > TS Y=y < B g (66)
2 uT

Proof of Lemma [I3] By Lemmas and using the inequalities obtained in Eq. we will
have:
KL(Py,Ps)

=k [EtT=1KL(N([<at’ 0T>v <at7’ﬁ>]T712)7 N(Ka’tv 0§>’ <at575>]T712)]

L2

BN £L, |aL?] > d(Py(B), Py(B)) >

(67)

N | =

where the last inequality is obtained by inequalities obtained in Equations and (@9).

Now, since L = 1, we know that |a’| < 1 which yields |a’|?> < |a!|. Combining all together and
using the Eq. (67),

(1=
L2

E1[2|ag]) > ;El [Sisilaz ] > d(P1(0), P2(0)) = 0 (68)

J  LINEAR CONTEXTUAL BANDITS

Linear contextual bandits can be considered a special case of linear MDP, when the horizon H = 1,
and there is no transition (Agrawal & Devanur, 2016} [Zhu et al., [2023]; |Ghosh et al.| 2022b; |/Amani
et al., [2021). Therfore, we denote the linear contextual bandits as (S, A, r, ¢), where S denotes the
set of context. Then we will have the following Assumption:

Assumption 4 (Linear bandits Amani et al.|((2019)), \Pacchiano et al.|(2024)) Consider a constrained
contextual bandits denoted as (S, A,r, c), which is assumed to be a linear contextual bandits with
a feature function ¢ : S x A — F C R Specifically, there exist unknown vectors 0*,v* €
R? such that for any pair (s,a) € S x A, the cost function, and reward function are given by:
r(s,a) = (¢(s,a),0%), and c(s,a) = (P(s,a),v*), respectively. Additionally, we assume without
loss of generality that for all (s,a) € S x A, we have ||¢(s,a)||< L for some L € (0,1], and
max(||6*[], |v*||) < Vd, where d is the dimension of the feature space.
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Similar to linear bandits, we assume that the agent has access to least one kown safe action at the
begining of the algorithm. Therefore, we adapt the Assumption [2| for linear contextual bandits as
follows

Assumption 5 (Zero starting point in in linear contextual bandits): For each s € S, there exists
an action a® € A such that ¢(s,a?) = 0 € R%

Since our focus is on non-convex spaces, we need to adapt Assumption [3]to the linear contextual
bandit setting. We begin with the following definition:

Definition 4 For each s € S, tet s = {¢(s,a) € R? | a € A}.
We are now ready to present our non-convex assumption for linear contextual bandits:

Assumption 6 (Local point assumption in linear contextual bandits ) There exists 0 < € <
min{L, ﬁ} such that for all s, and x € Fs, we have ayiy € F for some a € [e, ﬁ} Let

xt = ¢(s, al) denote the optimal point given the context s. Then, either of the following conditions
holds:

1. (¢(s,a%),v*y < T —1, where0 <1< L —¢ or

2. azt € Fsforalla € [%ﬂ,l], with 0 < vsuchthatt < L — e < 1.

We now present the following algorithm for non-convex linear contextual bandit settings with in-
stantaneous hard constraints:

Algorithm 2 Non-Convex Safe Linear Contextual UCB (NCSC-LUCB)
Require: v, 6, 7, A\, d
1: forepisodet =1,...,T do
2: Ay = Ei;lld)(s‘rv a‘r)(/b(s-n a’T)T + Al
: ot = (At)_lxi;ll¢(57w a’T)TT(STv a‘T)

3
4: Ve = (At)ilzfr_zllgﬁ(sﬂ af)cr(s‘ra a‘r)

5. Foreachs € S : Ay(s) & ARS(s) U A VA (s) according to Eq. (69)

6: Take action a; = argmaz.c 4, (s)(¢(s, a),8;) + bi(s, a), where b;(.) defined in Eq.(70).
7: Play a; and observe its reward r; and cost c;.

8: end for

where ARLS(s) | AV (s) are defined as follows:

A (s) £ {a € At (¢(s,0), ) + Balld(s,a)|[ o1 < 7}

AT (52 fa € A 005, < T2} ©

Also, the bonus b;(.) is defined as :

bt(sva) éﬂ1||¢(57a)H(At)*1+gzj(saa)a (70)

where g¥ (.), defined as follows:

-
g/ (s,a) v x| 1- (sa) ' .
i (s,0) ( 7+262L||¢>(8,a)||<m)1>

Now, we are ready to state our result for linear contextual bandits:
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Theorem 3 Consider a linear contextual bandit under Assumptions and|6] In Algorithm[2] let

PR

v=T B =B =o0/dlog (H?) + VAd, and A = 1. Then, for any § € (0, %), with the

probability of at least 1 — 26 Algortihm [Z] remains safe, i.e., Ay(s;) C A*Y¢, Yt € [T). Further,
the regret of Algorithm[2|with a probability of at least 1 — 2§ satisfies the the following upper bound:

2
Regret(T) < (281 + 262LV) \/2Tdbg(d)\—;fL), (72)
et

The proof steps of Theorem [3|follow the same structure as those of Theorem|[I} but we provide them
here for completeness.

Step 1. Let A% (s) £ {a € A| (¢(s,a),7*) < 7}. Then, we introduce two important events:

Definition 5 The event EC is defined as: EF = {A.(s) C A (s) V(s,t) € Sx[T]}. Additionally,
the event &5 is defined as €5 2 {|(6(s, ), 0r) — (6(5,),0%)] < Bu|$(s, @) (a1, ¥(5,a,) €
S x A X [T]}.

Then, the following Lemma shows that event £& N £ holds with a high probability:

Lemma 14 (Theorem 2 from|Abbasi-Yadkori et al. (2011)) Under the setup of Theorem 3| and for
any fixed § € (0, 3), the event EC = EF N ES holds with probability at least 1 — 24.

The proof can be found in Appendix [K]

Now, using Lemma|I4] we can prove the optimism property as stated in the following Lemma:

Lemma 15 (Optimism): In algorithm 2| under the setup of Theorem |3} conditioned on the event
EC, the inequality (¢(s,a*),0%) < maxge 4,(s)(0(85,a),0:) + bi(s,a), Y(s,t) € S x [T] holds.

Step 2. Our bonus design, along with Lemmal[T5] allows us to present the following decomposition
that upper bounds the regret:

Lemma 16 Conditioned on the event £C, the regret of Algorithm is upper bounded as follows:

Regret(T') < 2512?:1||¢(3t7at)”(m)—l + 3197 (se,a4) -
T T2

(73)

Terms 77 appears in the unconstrained case, [Abbasi-Yadkori et al.| (2011)), and we can bound it in
the same way. Next, we bound the term 7 as follows:

Lemma 17 Under the assumptions of Theorem 3| and conditioned on the event £, the following

holds: 26,L
1%
To = ST gY (si,a0) < =2

S llé(se, ar)lla,-1- (74)

Now, the result of Lemma enables us to utilize Lemma 11 in |Abbasi-Yadkori et al.| (2011)) to
show the sublinearity of 75.

Step 3. Now combining last two steps and upper bounding the normalized term obtained in step
2, we can apply Lemma 11 from |Abbasi-Yadkori et al.|(2011) to get the final result.

K PROOF OF LEMMA [14]

We can directly apply Theorem 2 from |Abbasi-Yadkori et al.|(2011) to show that each of the events
EC and &, holds sepereatedly with a probability of at least 1 — . Using the union bound, we find
that the event £& N £ holds with a probability of at least 1 — 2.
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L  OPTIMISM FOR LINEAR CONTEXTUAL BANDITS

L.1 PRELIMNINARY RESULTS

Lemma 18 Under Assumptions and@ conditioned on the event £, for all (s,t) € S x [T,
we have ad(s,a’) € (s, Ai(s)), where o > e.

The proof of this Lemma is provided in Appendix[L.3]

T"“ = T+2B:2L|p(s,a)l —1

Lemma 19 Let < L . Then, under Assumptions ﬂﬁ we have ad(s,a*) €
o(s, A(s)), for some o € |

1].
7’+252LH¢(5»¢1§)HA;1 ’ }
The proof of this Lemma is provided in Appendix [C3]
L.2 PROOF OF LEMMA T3]

Pick an arbitrary action a’ € A (s). Then, we will have:

max <¢(87 a)7 9t> + bt(87 a) > <¢(S> a/)v 9t> + bt(37 a/)
a€A(s) (75)
= <¢(87 a/)’ 9t> + BIHQS(S’ aI)HA;l + gty(sv a/)

Now, on the event £ we will have:

(0(s,a"),00) + Bull(s, a)ll -1 + 97 (5,0") = (d(s,a"),07) + g/ (s,d). (76)

Thus, combining Equations [75]and [76] yields the following:

aé{lf;)((s) <¢(87 a)7 0t> + by (87 a) > <¢(Sa a/)7 9*> + gilij (57 al) ()

This brings us to analyze two sub-cases:

Sub-case one: Assume that s < Then, by Lemma there exists an action
T+2B2 L] ¢(s,a3)ll . T“

an € Ai(s) such that ¢(s, an) = ad(s,al), where o > €. Thus, by replacing a’ with a, in Eq.(77)
we have:

max )<¢(s, a),0:) +bi(s, a) = (9(s,00),0%) + g/ (5, aa) = a{d(s,a),0%) + g/ (s, aa).
(78)
Now, using the definition of ¢} (.) in Eq. . and considering the fact that ||¢(s,a?)| AL =

[lad(s, al) ||A:1, we have the following:

-
g/ (s,a0) =v x | 1 "
7 ( ) < 7-—|—2ﬂ2L||¢( a*)l(a)- 1)

By setting v = TTJ”, and considering that

<
+262LH¢>(3 =N e Tﬂ we obtain the following:

(t+0), ¢

(

L T+t

9/ (8,a0) > y=1>(1—¢) (80)

Since we assumed in our problem formulation that (s, a) € [0, 1] for all @ € A, we obtain:
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9¢ (s,00) 2 (1 =€) = (1 —€)(¢(s,a5),07) (81)
Now, combining Equations and (8T) yields:

a&a;}((s)<¢(57a)a 9f> + bt(sva) Z O‘<¢(57a:)’ 0*> + (1 - €)<¢(Sa a:)v 9*> Z <¢(5’ a:)7 6*>a

(82)

where the last inequlity obtained by the fact that o > €. This completes the proof for sub-case one.

Sub-case two: Now, assume that z > —Z—. Then, by Lemma there exists an
T+26:L6(s.ap)l, -1 = T
t
action a, € A;(s) such that ¢(s,aq) = ad(s,al), where a > z . Thus, by

T+2;82L”¢(5x‘1§)”(/\t)71
replacing a’ with a,, in Eq.(77), we have:

ag,léﬁ}((a)<¢(87 a)v 0t> + bt(sv a) 2 04<¢(8, a:)v H*> + 92’(& aa)' (83)

Now, similar to the sub-case one, by setting v = TTJ” > 1, we have:

» T4+ T
97 (s,aq) = x| 1-— —
L 7+ 282 L[| $(s, af) (a1

(34)
>(1- S S1—a>(1- ). 6"
- ( T+ 262L||¢(8,a;)||(/\t)71 o 4= ( a)<¢(s a’s) >

where the last inequality is obtained by the fact that r(s, a) € [0, 1] for all ¢ € A. Thus, combining
Equations (83) and (84) yields:

a&%}({g)(gﬁ(s,a), 01) 4+ bi(s,a) > a(d(s,as),0%) + (1 — a)(p(s,al),0%) = (¢(s,ar),0%).

(85)

This completes the proof for sub-case two as well as the Lemma|[T3]

L.3 PROOF OF LEMMAS[T8]AND
Proof of Lemma By Assumption @ there exists a positive number 11 € [¢, 7=] such that
u%’z%” € Fs. Now, choose oo = m Then, we have the following:

X d)(S?ai) :l,L ¢(s7ai) ,
lo(s, a)ll " lio(s; ap)ll
which implies that a@(s,a}) € F,. By Assumption [I] we have: [|¢(s,a})|| < L < 1, which

implies: « > p > e. This implies that ag(s,a*) € F, for some o > €. It remains to show that
ap(s,a) € ¢(s, As(s)) forall (s,t) € S x [T]. Note that we can write the following:

ag(s, ag) = (af (s, a)|)

lag(s, ag)ll = ln——=7 1 = (86)

]
oG]~ * = Va

which by Eq.(69) implies that ag(s,a?) € gzﬁ(s,.A%(s)). Since Aﬁ(s) C A¢(s), we have:
ap(s,a¥) € ¢(s, Ai(s)) as well, i.e., there exists an a € A:(s) such that ¢(s,a) = a¢(s,a’),
where a > €.

¢(s, a3)
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Proof of Lemma[19% We decompose the proof of this lemma into two cases:

Case 1: Assume that a? does not lie on the constraint’s boundary. Then, by Assumption|§|we have:
(o(s,ak),v*) <7 — t. Therefore, we can show that in this case, a> € A;(s). To prove our claim,
note that, on the event £€, we have:

(0(s,a5), ) + Balld(s, a5) a1 < (D(s,a9),77) + 2Balld(s, af)ll

87
=7 — 1+ 28] 6(s,03)[ 51 "

< 1< .
On the other hand, the condition 7, < T+262L”¢(S TR implies that 28 L||é(s, a*) )||A 1<
Thus, by Eq.(87), we have:

(0(s,a2), %) + Ball (s, a)llyr < 7 — 1+ 281 6(s,a%) [y 1 < 7

which implies a* € ARS(s) C A;(s). Thus, for o = 1, we have a¢(s,a’) € ¢(s, As(s)), which
completes the proof for Case 1.

Case 2: Now, assume that a* lies on the constraint’s boundry, i.e., we have (¢(s,a),v*) = 7. We
will show that ap(s,a¥) € gb(s Ay(s)) for oo = . To prove thls note that since

+2ﬁ2LH¢(8 a1
a > = _H, by Assumption [3| and because a resides on the constraint’s boundary, we must have
ap(s,a) € ¢(s,.A), i.e., there exists an action a,, € A such that ¢(s,a,) = ad(s,a’). Now, it
remains to show that a,, € A;(s). Conditioned on the event £, we have:

(6(5:aa)s 1) + Ball 65, aa) |1 = ag(s, a5),7e) + Ballo(s, a5) [ 1

(88)
< (006,027 + 201005, 1) < (005,007 + 2R LFG T )
Now, by substituting (¢(s,a*),v*) = 7 and a = T A B in Eq. , we have:
T —_—
sy oy )y s Loy -1 = 2B2L ) t -1 S )
(0(s,aa),7e) + Ball(s, aa) [y 1 < T 2B Lot (7 +2B2Ll|¢(s, az)ll-1) < 7
(89)

which implies a, € AR"S(s) C A;(s). This completes the proof of Case 2 and Lemmal[19] OJ
M PROOF OF LEMMA
Proof of the Lemma([I6 By utilizing Lemma|[T3] we can infer:

Regret(T) = X7_, (¢(sy, asr),0%) — (p(s¢,a¢),0%) < S D5ty ar), 0p) + bi(se, ar) — (P(se, ar), 0%)

=1 (¢(se,ar), 0, — 6%) + Billo(se, ar)ll -1 + g7 (51, ar)
(90)

Now, conditioned on the event £, we have (¢(s¢, as),0; — 0*) < B1]|o(ss, at)HA:l. Thus, we can
continue Eq.(90) as follows:

Regret(T) < 261571 [¢(st,a0) |51 + Sy (50, a0) ODn

This completes the proof. []
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N PROOF OF LEMMA [17]

We begin by stating a Lemma that is helpful in the proof of Lemma 7}

Lemma 20 Under the setup of Theorem I and on the event £, for every selected action a; in
Algorithm[2) it holds that € < ||¢(s¢, ar)]|,Vt € [T].

The proof of this Lemma is provided in Appendix [N.I| Now, we are ready for the proof of Lemma
oz

Proof of Lemma Using the expression for the gf (.) function, we have:

ST g¥ (s1yar) = ST (1 - S >
t=19¢ (81, ar) =1V T+262L||¢(8t’at)”(/\t)_ ©2)
: 2651 S
— (2BoL1) ¥ lp(st, ae)llay)- < ( Bj_ v) ZtT:1||¢(5taat)||(At)*1a

T+252L||¢(Stv@t)||(m)*1

where the last inequality follows from the fact that 7 < 7 + 285 L||$(s¢, as)| (a,)-1. Now, since

lo(st, ae)ll(a)-1 = || Hi(zt,zgl\ [l (a,)-1, we can apply Lemmaas follows:

(Q/BQLV) (QBQLV)
T €T

Sii197 (s0,a0) < Siillé(se anllan -1 < Sicalle(se, ar)ll -1 ©3)

which completes the proof. [J

N.1 PROOF OF LEMMA [20]

To prove Lemma we utilize a contradiction strategy. Assume that for some ¢ € [T], we have
_P(st,ar)

[l¢(st, ae)|| < e. Note that by AssumptionEI, we have a -t Totscan € ¢(st, A), for some « € [e, ﬁ]

75 We have: a\lﬁgiiiﬁg\l € @(s¢, AVa(s)) C B(st, Ai(s)), ie., there exists an

a’ € Ay(s) such that ¢(s,a’) = II¢E§ ZZ;H Now, we show that at time ¢, Algorithmwill prefer to

choose a’ instead of a;, which results in a contradiction and completes the proof. To show that the
algorithm prefers to choose a’, we consider the following:

Also, since o <

(D(5¢,at),0;) + bi(s¢,a) = (D(5¢,a¢),0;) + 51||¢(5taat)||1\t—1 + g7 (¢, at) (94)

Now, conditioned on the event £, we have (s, ar) = (p(st,ar),0%) < (p(st,ar),01) +
B1llo(st, at)||A;1. Since in our problem formulation we assume that r(.) € [0,1], we can say
the following:

€

0 < 7(se,ar) < (D(se,ar),0) + Pul|@(se, a)l[y-1 < T6Gnadl

95)

where the last inequality follows from the fact that, according to the contradiction assumption, we
1lzave [¢(s¢, ar)|| < e, which implies 1 < ot Now, combining Equations and , we
ave:

(07

(d(s¢,at),0¢) + be(s¢,a¢) < m(@(&ﬂt% 0:) + B1]|P(st, at)”A;l) + g7 (s¢, ay) (96)
Now, substituting the definition of ¢(s;,a’) = % into Eq. 1%) we get:
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(D(st,ar),00) + b(se,ar) < (P(s¢,a’),0;) + 51”‘1’(5&@/)”1\;1 + g7 (¢, at) 7)

Now, using the definition of g¥ in Eq.(71), one can verify that g¥ (s;,a’) = g¥(s¢, a¢). Thus, we can
continue Eq. [97]as follows:

<¢(5t7at)79t> + bt(3t7at) < <¢(St, a/),9t> + bt(sha/)- (98)

The last inequality in Eq. implies that in line 6 of Algorithm[2] action o’ is preferred to action
at, which is contradiction and proves that ||¢(s¢, ar)|| > ¢, forall ¢t € [T]. O

O PROOF OF THEOREM 3]

We apply Lemmas [I6]and[T7|to get the following:

282 L
Regret(T) < ©7_, (26, + BQTV

g5t ar)llp 99)

Following the steps outlined in the proof of Theorem 3 in|Abbasi-Yadkori et al.| (2011), we proceed
as follows:

SEllé(s an)lly1 < TS 0 an) (100)

By Assumption , giventhat L < land A = lin Algorlthm it can be shown that || (s, at) ||A:1 <
1. Consequently, the following inequality holds:

19(se, an) 3+ < 2log(1+[[¢(se, ar) 1§ )- (101)
Thus, by Equations [T00] and [T0T] we have:

TR ora . < /75T Tog(1+[o(sr a0 30)

— \/ 2T (log(det(A7)) — log(Ad)).

where the last inequality is obtained by Lemma 11 from |Abbasi-Yadkori et al.|(2011)). Now, consid-
ering that ||¢(s¢, ar)|| < L, it follows that the trace of A7 is bounded by dA + T'L*. Since A is a
positive definite matrix, the determinant of Ay can be bounded by:

trace(Ar d\+TL?
teelr)yo o (AT e

(102)

det(Ar) < (
Combining everything together yields:

TL?
/2T oger(A) —log() < /27 0PI ) —1og(a0)
(103)
d\+TL? \/ d\ +TL?
= \/Zleog(()\d)) = 2leog((T))
Now, utilizing Equations (I00) through (I03)), we conclude that:
dA\+TL?
EtT:1||¢(5t7 at)“A;l < \/QTd 10%((T)) (104)

Now, by integrating Equations (99) and (I04), we establish the desired upper bound as follows:

2
Regret(T) < (261 + 2%51/) \/Qleog((d/\t\fL))D (105)
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P OTHER SIMULATION SCENARIOS

Action Set

1.0

0.5

225 Circle (radius= Epsilon)
275 Circle (radius= tau/sqrt(d))
Initial Safe Actions
@ Other Action points
@ Optimal Action
_1.04 ® Sub-Optimal Action
—— Plane <x, gamma=> = tau

T T T T
-1.0 -0.5 0.0 0.5 1.0
x

Figure 6: Action Space A, where yellow points represent the initial safe actions, the green point
a™ denotes the optimal action, and the red point as indicates the sub-optimal action. The plane
(v*,x) = 7 represents the constraint boundary.

We conducted an additional experiment to evaluate the performance of NCS-LUCB compared to
LC-LUCB from Pacchiano et al.| (2024). The setup includes #* = [1.0,1.0]T, v* = [0.3,0.41] T,
7 = 0.3, and the following action set (also depicted in Figure [6):

A= 0.1817| |—-0.1014| [0.0014| |-0.0889| |0.1003| |—0.5500| |—0.1586
~ 1 10.0816| * | 0.0930 |’|0.1000{" | 0.1723 |’ |0.0305| | 0.3120 |’ | 0.1468 |’

0.1362| (0.6816] |—0.2521| ]0.2800| {0.0093
0.7862| [0.5962| > | 0.0807 |’]0.1200|’|0.6499| [~

This implies that the optimal safe action is a* = [829183} . Our algorithm, NCS-LUCB, effectively

(106)

expands the estimated safe set toward the optimal action a* (see Figure [7a), achieving sublinear
regret (see Figure . In contrast, LC-LUCB fails to include a* in its estimated safe set. Instead,

2 L .
0.12|° resulting in a biased safe set
expansion (see Figure[7b) and linear regret (see Figure[8b). All unspecified parameters are consistent
with those used in the previous experiment.

it predominantly samples from the suboptimal action as =
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Estimated Safe Set for NCS-LUCB Algorithm Estimated Safe Set for LC-LUCB Algorithm
@B Optimal Action @B Optimal Action
1.0 @ sub-Optimal Action 101 @B sub-Optimal Action
— Plane <x, gamma> = tau — Plane <x, gamma> = tau

== Estimated Safe Set == Estimated Safe Set

0.5 1

> 0.0 > 0.0
-1.0 -1.0
(a) Safe Set Expansion in NCS-LUCB (b) Safe Set Expansion in LC-LUCB |Pacchiano et al.
(ours). (2024).

Figure 7: Blue-highlighted regions depict the estimated safe set expansion in both settings. NCS-
LUCB (ours) successfully expands the estimated safe set toward the optimal point a*, while LC-
LUCB from |Pacchiano et al.| (2024) is biased toward the suboptimal action ao and fails to include
the optimal point ™ in the safe set.

— NCS-LUCB (Our method) — LC-LUCB
60000 1
200000 4
50000 1
40000 150000
8 g
o
& 300001 £ 100000 4
20000 -
50000 -
10000 4
04 oA
6 ZDﬂbOD 400b00 600‘000 HDGbOD 6 ZOObOO 400b00 GOObOO BOObOO
Time Time
(a) Regret for NCS-LUCB (ours). (b) Regret for LC-LUCB |Pacchiano et al.|(2024)).

Figure 8: Comparison of the regret for NCS-LUCB (our method) and LC-LUCB inPacchiano et al.
(2024).
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