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ABSTRACT

In linear stochastic bandits, tasks with instantaneous hard constraints present sig-
nificant challenges, particularly when the feature space is non-convex or discrete.
This is especially relevant in applications such as financial management, recom-
mendation systems, and medical treatment selection, where safety constraints ap-
pear in non-convex forms or where decisions must often be made within non-
convex and discrete sets. In these systems, bandit methods rely on the ability
of feature functions to extract critical features. However, in contrast to the star-
convexity assumption commonly discussed in the literature, these feature func-
tions often lead to non-convex and more complex feature spaces. In this paper, we
investigate linear bandits and introduce a method that operates effectively in a non-
convex feature space while satisfying instantaneous hard constraints at each time
step. We demonstrate that our method, with high probability, achieves a regret of
Õ
(
d(1+ τ

ϵι )
√
T
)

and meets the instantaneous hard constraints, where d represents
the feature space dimension, T the total number of rounds, and τ a safety related
parameter. The constant parameters ϵ and ι are related to our localized assump-
tions around the origin and the optimal point. In contrast, standard safe linear
bandit algorithms that rely on the star-convexity assumption often result in linear
regret. Furthermore, our approach handles discrete action spaces while maintain-
ing a comparable regret bound. Moreover, we establish an information-theoretic
lower bound on the regret of Ω

(
max{d

√
T , 1

ϵι2 }
)

for T ≥ 32e
ϵι2 , emphasizing the

critical role of ϵ and ι in the regret upper bound. Lastly, we provide numerical
results to validate our theoretical findings.

1 INTRODUCTION

The linear bandit (LB) problem is a framework in decision theory and machine learning designed to
address real-world scenarios with large, and potentially uncountable, decision sets (Abbasi-Yadkori
et al., 2011; Russo & Van Roy, 2014; Soare et al., 2014). In this setting, the expected reward for an
action (or “arm”) is modeled as the inner product between a feature vector and an unknown parame-
ter. To maximize cumulative reward over a sequence of trials, an agent must balance two competing
objectives: exploration, where actions are chosen to estimate this unknown parameter, and exploita-
tion, where the agent uses the estimation to select actions that yield high rewards. Striking the right
balance between exploration and exploitation is key to optimizing rewards over time.

Many real-world applications impose strict limitations that require instantaneous hard constraints
to be satisfied at every time step Shi et al. (2023). For instance, in resource allocation, resource
constraints must be met in real-time to avoid stockouts or logistical failures. Similarly, in AI-driven
medical treatments, decisions must consistently prioritize safety (Xiong et al., 2024; Vamvoudakis
et al., 2021; Thomas et al., 2019). This work aims to address the problem of LB under instantaneous
hard constraints, specifically in non-convex and discrete feature spaces. Earlier studies, such as
Amani et al. (2019); Moradipari et al. (2021); Pacchiano et al. (2024), have shown that near-optimal
performance can be achieved in linear bandits with instantaneous hard constraints in convex or star-
convex feature spaces respectively. In these approaches, the agent initially constructs a conservative
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estimated safe set and begins interacting with the environment by sampling from this set. It then
gradually expands the estimated safe set toward the true safe set as it gathers more experience.

One might ask why we are interested in problems with non-convex and discrete feature spaces. The
reason is that many real-world applications inherently involve structures that convex and star-convex
assumptions fail to capture. Applications such as financial management, recommendation systems,
and medical treatment selection often involve action sets that are neither convex nor star-convex,
but rather composed of discrete or separated subsets (see Section 5.2). Additionally, non-convexity
frequently arises in modern machine learning problems due to the use of function approximators
with non-linear feature functions, such as Deep Neural Networks (DNNs), Radial Basis Functions
(RBFs), and Fourier basis features (Sutton & Barto, 2018; Zhu et al., 2023; Mnih et al., 2016;
Kalashnikov et al., 2018). In DNNs, for example, non-convex activation functions like ReLU, Sig-
moid, and Tanh contribute to the overall non-convexity of the feature space.

A question arises: can the same conservative strategy used in convex and star-convex settings, as
discussed in Amani et al. (2021); Pacchiano et al. (2024), be directly applied to our case? The answer
is no, as applying this approach in non-convex spaces is not straightforward. In fact, conservative
strategies in such settings may introduce a bias toward suboptimal directions, leading to linear regret,
as shown in Fig. 1a. (See Section 6 for a complete description of the simulation.) We refer to this
issue as non-convexity bias.

(a) Regret for LC-LUCB (Pacchiano et al., 2024). (b) Regret for NCS-LUCB (ours).

Figure 1: Comparison of the average regret for NCS-LUCB (our method) and LC-LUCB in Pacchi-
ano et al. (2024) over 10 trials.

To understand non-convexity bias, consider the following example: a LB problem with an action
set A = {a1, a2, a3, a4} where a3 is the optimal action as illustrated in Fig. 2a. Assume that the
agent initially knows the actions in the rectangle R are safe, specifically {a1, a2}, are safe but cannot
verify the safety of {a3, a4}.

The core idea of the conservative strategy in LB, as proposed by Amani et al. (2021); Pacchiano
et al. (2024) is that the agent can gather noisy information about the cost of a3 by playing action
a1, as both lie along the same direction, i.e., the x-axis. Similarly, the agent can estimate the cost of
a4 by playing action a2, as both are aligned along the y-axis. Thus, a UCB-based bonus is used to
ensure the agent explores both the x- and y-directions by playing a1 and a2 enough times, eventually
expanding the safe set to include the optimal action a3.

In Amani et al. (2021); Pacchiano et al. (2024), the bonus term for a1 is designed based on the
distance between a3 and the current safe set’s boundary along the x-axis. In the context of our
problem, the bonus term in Amani et al. (2021); Pacchiano et al. (2024) is calculated based on the
distance between a3 and the rectangle R, i.e., d1, mistakenly assuming a1 lies on R. However, as
depicted in Fig. 2a, a1 is far from R, and the distance between a1 and a3, i.e., d2, is significantly
larger than d1. As a result, the bonus for a1 is not large enough to incentivize the agent to play
a1, potentially biasing it toward playing a2 instead. Consequently, the agent may not explore the
x-direction sufficiently to estimate the cost of a3 and verify its safety, leading to linear regret.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To resolve this issue, the correct bonus should be based on d2. This problem does not arise in convex
or star-convex settings, as these structures always ensure that d1 = d2 since all the points connecting
a1 and a3 are in the action set. For a more detailed discussion on this bias, refer to Section 5.2.

Our contribution. In this work, we make the first attempt to design near-optimal safe algorithms for
linear bandit problems with instantaneous hard constraints in non-star-convex and discrete spaces.
In these problems, the reward and costs associated with each action a are modeled as linear functions
of a known, fixed feature mapping ϕ(a), where ϕ : A → Rd (Amani et al., 2019; Pacchiano et al.,
2024; Moradipari et al., 2021). We summarize our main contributions below:

1. We propose an algorithm, Non-Convex Safe Linear UCB (NCS-LUCB), for linear bandit problems
with non-convex feature spaces under instantaneous hard constraints. NCS-LUCB achieves a regret
of Õ

(
d(1 + 1

τϵι )
√
T
)

with high probability, nearly matching the regret bounds in convex and star-
convex settings while ensuring safety at each step. These non-convex spaces adhere to specific local
assumptions around the initially known safe action and feature points near the constraint boundary,
as outlined in Assumption 3. Here, d is the feature space dimension, T is the total number of
rounds, and τ is a safety-related parameter. The bounded constants ϵ and ι are related to our local
assumptions around the origin and the optimal point. To the best of our knowledge, this is the first
result for non-convex and discrete settings under such local assumptions. In Appendix J, we show
that our result also obtain the same regret bound for the linear contextual bandit without assuming
star convexity, thus, extending the result of Pacchiano et al. (2024).

2. We provide a lower bound on the regret of Ω
(
max{d

√
T , 1

ϵι2 }
)

for this problem, highlighting
the necessity of ϵ and ι in the upper bound. This also implies that Assumption 3 cannot be further
relaxed.

3. To address the non-convexity bias, we introduce a new bonus term in Section 4, ensuring that
the agent explores beyond suboptimal directions. This bonus is intentionally more optimistic than
those designed for convex and star-convex cases to maintain the optimism property in non-convex
spaces (see Lemma 2). Despite this increased optimism, the bonus still leads to sublinear regret (see
Lemma 4).

Related works.Kazerouni et al. (2017) studied linear bandits under the constraint that the cumulative
reward must exceed a baseline policy’s performance with high probability. Amani et al. (2019)
extended this to linear bandits with convex decision sets and stage-wise hard constraints, proposing
a UCB-based method with two phases, achieving a regret of Õ(T

2
3 ). Moradipari et al. (2021)

assumed star-convex decision sets, applying Thompson Sampling to achieve a regret of Õ(d
3
2

√
T
τ ).

Pacchiano et al. (2021) examined the linear bandit problem under a slightly more relaxed condition,
assuming the constraint is satisfied in expectation over the policy, rather than with high probability.
This approach yielded a regret of Õ(d

√
T
τ ), and they also provided a lower bound to show that the

dependence of the upper bound on 1
τ is essential. Pacchiano et al. (2024) later showed similar results

under high-probability constraints. Hutchinson et al. (2024) introduced ”directional optimism” for
linear bandits with instantaneous hard constraints, achieving improved regret for well-separated
problem instances. Other related works include Gangrade et al. (2024); Afsharrad et al. (2024);
Zhou & Ji (2022); Deng et al. (2022); Agrawal et al. (2016); Khezeli & Bitar (2020); Moradipari
et al. (2020); Camilleri et al. (2022). For a more detailed discussion on related works, please refer
to Appendix B.

2 PROBLEM FORMULATION

In this paper, we focus on a constrained bandit problem, denoted as (A, r, c), operating in an online
setting over T ∈ N rounds. Here, A represents the action space, and r and c correspond to the
reward function and cost function at each step, respectively.

During round t ∈ [T ], the learner interacts with the environment by selecting an action at ∈ A.
Subsequently, the learner observes a noisy reward r̂t(at) = r(at) + ηt, where r(.) : A → [0, 1]
represents an unknown function, and ηt denotes a zero-mean σ-sub-Gaussian random variable. In
addition, it observes a corresponding noisy cost ĉt(at) = c(at) + ζt, where c(.) : A → [0, 1] is an
unknown cost function, and ζt is a zero-mean σ-sub-Gaussian random variable.
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(a) (b)

Figure 2: (a) The bonus proposed in Amani et al. (2021); Pacchiano et al. (2024) is calculated based
on the distance between the optimal point a3 and the safety zone R, but this bonus does not ensure
sufficient exploration in the x-direction. A suitable bonus should be larger than d2. (b) A VC can
invest in different companies at various levels. This figure illustrates the case for two companies,
but the concept can be extended to more.

Notations. For any vector v ∈ R2, the normalized vector is defined as v := v
∥v∥ , where ∥.∥ denotes

the l2 norm. For any positive semi-definite matrix A, the operator ∥v∥A defines the weighted norm
as ∥v∥A :=

√
vTAv. For all T ∈ N, [T ] ≜ {1, . . . , T}. Also, for a mapping f(.) : Rm → Rn and a

set B ⊂ Rm, we define f(B) ≜ {y ∈ Rn | ∃b ∈ B : y = f(b)}.

Instantaneous hard constraint. In each round t, the learner is required to adhere to a hard con-
straint: c(at) ≤ τ , where τ is a known positive constant that serves as the safety threshold. The
corresponding safe action set is defined as Asafe ≜ {a ∈ A : c(a) ≤ τ}.

Performance metric. Let T represent the total number of rounds in which the agent interacts with
the environment, and {at}Tt=1 denote the actions selected by the agent during these rounds. The
agent’s performance is measured by regret as follows: Regret(T ) ≜

∑T
t=1[r(a

∗)− r(at)], where a∗
is the optimal action that maximizes the reward function r(.) while satisfying the safety constraint,
defined as a∗ ≜ argmaxa∈Asafe r(a).

Linear bandits. To handle the large and potentially infinite number of actions, we concentrate on
linear bandits. This choice enables us to employ linear function approximation methods to solve our
problem effectively.

Assumption 1 (Linear bandits (Amani et al., 2019; Pacchiano et al., 2024)) Consider a constrained
bandit problem denoted as (A, r, c), which is assumed to be a linear bandit problem with a feature
function ϕ : A → F ⊂ Rd. Specifically, there exist unknown vectors θ∗ and γ∗ in Rd such that for
any a ∈ A, the reward and cost functions are given by r(a) = ⟨ϕ(a), θ∗⟩ and c(a) = ⟨ϕ(a), γ∗⟩,
respectively. Additionally, we assume, without loss of generality, that for all a ∈ A, we have
∥ϕ(a)∥ ≤ L for some L ∈ (0, 1], and max(∥θ∗∥, ∥γ∗∥) ≤

√
d, where d is the dimension of the

feature space.

Assumption 1 encapsulates the linear relationship between both the cost and reward functions and
the feature map. It is important to note that, despite this linearity, the feature map ϕ(.) itself may be
non-linear, and its image in the feature space can result in a non-convex space.

Initial safe action. Designing a safe bandit algorithm that achieves sublinear regret requires at least
one known safe action, as shown in Theorem 3 of Shi et al. (2023). This assumption is often valid in
real-world scenarios where a known, albeit suboptimal, safe strategy exists. In this paper, we adopt
a similar assumption, as stated below.

Assumption 2 (Zero Starting Point Assumption): There exists an action a0 ∈ A such that ϕ(a0) =
0 ∈ Rd.

4
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Remark 1 We highlight that for problems where the initial action is not at the origin and incurs
a non-zero cost τ0, the original problem can be converted to an equivalent one that satisfies As-
sumption 2 through a simple translation. In the new problem, the safety threshold is adjusted to
τ − τ0.

3 NON-CONVEX FEATURE SPACES

Non-convexity in feature space frequently arises in real-world bandit problems due to the inherent
complexity or discrete nature of decision spaces, as well as feature transformations ϕ(.). Appli-
cations such as recommendation systems, financial management, and medical treatment selection
often involve action sets that are neither convex nor star-convex, but rather composed of discrete or
separated subsets. In this section, we define structures in the feature space commonly encountered
in these applications. We begin with the following definition:

Definition 1 Let F ≜ {ϕ(a) ∈ Rd | a ∈ A}.

We begin by examining continuous non-convex sets with local properties centered around ϕ(a0) and
points near the optimal point ϕ(a∗) within the feature space. Beyond these localized properties, the
set may take on any arbitrary form.

Assumption 3 (Local Point Assumption) There exists 0 < ϵ < min{L, τ√
d
} such that for all

x ∈ F , we have α x
∥x∥ ∈ F for some α ∈ [ϵ, τ√

d
]. Let x∗ = ϕ(a∗) denote the optimal point. Then,

either of the following conditions holds:

1. ⟨ϕ(a∗), γ∗⟩ ≤ τ − ι, where 0 < ι < L− ϵ, or

2. αx∗ ∈ F for all α ∈ [ τ
τ+ι , 1], with 0 < ι such that ι ≤ L− ϵ ≤ 1.

Note that Assumption 3 is not only rich enough to capture both star-convex and convex structures,
but also applies to a wide range of non-convex and discrete real-world problems. In particular, when
ϕ(.) is the identity mapping, these conditions apply directly to the action set A.

Why do we need the ϵ- and ι-neighborhood conditions? Starting from the initial safe point,
the agent must explore a small region around this point (the origin) to gather information about
different directions. The ι-neighborhood assumption ensures that the agent can explore a small area
around the optimal point, particularly when the optimal point lies on the boundary of the constraint.
Without this exploration, solving the problem would be impossible, as our lower bound in Theorem 2
demonstrates the necessity for ϵ and ι to be strictly positive.

Real-World Implications of Assumption 3. Consider an investment problem where a venture
capitalist (VC) needs to decide how to allocate its funds. Suppose the VC can invest at different
levels in a company and must determine how to hedge the associated risks. If the VC makes a small
investment, it risks losing only a small amount of money if the company goes bankrupt. However,
if the company does very well, the VC only owns a small portion, so the reward is also limited. The
reverse is true if the VC makes a large investment. The VC could hedge its bets by initially making
several small investments in different startups to gather information on how these investments per-
form. Once the VC identifies a promising startup, it can then take on more risk by making a larger
investment in that company. In this context, the smaller, safer investments represent the ϵ-condition
in Assumption 3, meaning they are small and close to the origin (a safe point). On the other hand,
the larger, higher-risk investments in the profitable startup corresponds to the ι-condition, which is
further from the origin, closer to the safety threshold, but with the potential for higher returns as its
closer to the optimal decision(See Fig. 2b). For more example please see Appendix C

Comparison of Assumption 3 and the Star-Convex Assumption in Pacchiano et al. (2024).
Assumption 3 is a local assumption, as it only imposes conditions on the neighborhoods around the
starting and optimal points, with ϵ and ι being arbitrarily small. In contrast, star-convexity is a global
assumption, requiring that all lines connecting any feature point to the starting point lie within the
feature set F . For a visual example, see Figs. 3a and 3b.

5
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(a) Star-Convexity Assumption (b) Local Point Assumption

Figure 3: (a) H denotes the constraint’s boundry, where a0 is the initial safe point (origin), and a∗ is
the optimal point. Given that a0, a∗, and a3 are fixed in the feature space, star-convexity as described
in Pacchiano et al. (2024) requires that the lines connecting a0 to a∗ and a0 to a3 lie entirely within
F . (b) The Local Point Assumption only requires the points a1, a2, and the line segment L2 to be
in the feature space F , without imposing the same requirement on the line segments L1 and L3.

4 OUR APPROACH

Algorithm 1 Non-Convex Safe Linear UCB (NCS-LUCB)

Require: ν, δ, τ, λ, d
1: for episode t = 1, . . . , T do
2: Λt = Σt−1

τ=1ϕ(aτ )ϕ(aτ )
⊤ + λI

3: θt = (Λt)
−1Σt−1

τ=1ϕ(aτ )rτ (aτ )
4: γt = (Λt)

−1Σt−1
τ=1ϕ(aτ )cτ (aτ )

5: Calculate estimated safe set : At ≜ ARLS
t ∪ A

τ√
d according to Eqs. (1) and (2)

6: Take action at = argmaxa∈At⟨ϕ(a), θt⟩+ bt(a), where bt(.) defined in Eq.(3).
7: Play at and observe its reward rt and cost ct.
8: end for

We introduce our algorithm, NCS-LUCB, as detailed in Algorithm 1. Inspired by the LC-LUCB
algorithm from Pacchiano et al. (2024), our method significantly extends the approach to address
non-convex and discrete problems. Our approach leverages UCB exploration while taking a conser-
vative approach toward the costs associated with each action. A key innovation in our algorithm is a
novel form of reward shaping, specifically designed to address the inherent non-convexity challenges
within the feature space. Detailed explanations of the main steps are provided below.

Reward and safe-set estimation. We use Recursive Least Squares (RLS) to estimate the reward
and safety parameters in lines 2− 4 of Algorithm 1. In line 5, we construct a conservative estimate
of the safe set of actions based on both the RLS estimation and the Cauchy-Schwarz inequality.
Specifically, ARLS

t is defined as follows:

ARLS
t ≜ {a ∈ A : ⟨ϕ(a), γt⟩+ β2∥ϕ(a)∥Λ−1

t
≤ τ} (1)

Theorem 2 from Abbasi-Yadkori et al. (2011) demonstrates that for any δ ∈ (0, 1), the choice of

β2 = σ

√
d log

(
1+TL2

λ

δ

)
+
√
λd ensures that At ⊂ Asafe holds with probability 1− δ. In addition

to ARLS
t , we also consider A

τ√
d defined as:

A
τ√
d ≜ {a ∈ A | ∥ϕ(a)∥ ≤ τ√

d
} (2)

6
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Given Assumption 2 and the linearity of the problem (Assumption 1), the Cauchy-Schwarz inequal-
ity confirms that all actions in A

τ√
d are safe, i.e., A

τ√
d ⊂ Asafe.

Bonus design. At step 6, we implement an optimism-based approach to encourage the agent to
select unexplored safe actions. The bonus expression is given by:

bt(a) ≜ β1∥ϕ(a)∥(Λt)−1+gνt (a), (3)
where the first term is a expression term used in uconstrained bandits literature, as discussed in
Abbasi-Yadkori et al. (2011). However, in our case, since a∗ may not lie within the estimated safe
set At, we introduce a new bonus term, gνt (.), to capture the distance between optimal point and the
estimated safe set, defined as follows:

gνt (a) ≜ ν ×

(
1− τ

τ + 2β2L∥ϕ(a)∥(Λt)−1

)
. (4)

Star-convex cases. In star-convex case, setting ν = 1 in Eq. 4 maintains the optimism property.
This is because one can show that αϕ(a∗) ∈ ϕ(At) holds for some α ≥ τ

τ+2β2L∥ϕ(a∗)∥(Λt)
−1

.

Consequently, the distance between ϕ(a∗) and ϕ(At) is less than
(
1− τ

τ+2β2L∥ϕ(a∗)∥(Λt)
−1

)
.

However, when F is no longer star-convex, αϕ(a∗) ∈ ϕ(At) does not necessarily hold for all
0 ≤ α ≤ τ

τ+2β2L∥ϕ(a)∥(Λt)
−1

. In fact, setting ν = 1 introduces a bias toward suboptimal direc-

tions, which we refer to as the non-convexity bias. This bias ultimately leads to linear regret. We
elaborate on this bias in Section 5.2.

Solving non-convexity bias. When F is non-convex, ϕ(At) also becomes non-convex, making the
computation of the distance between ϕ(a∗) and ϕ(At) intractable. However, to design an appropriate
bonus term, calculating this distance is still necessary. To address this, in Lemma 2, we show that
the distance between ϕ(a∗) and the features in the ϵ-neighborhood of the origin acts as an upper
bound for the distance between ϕ(a∗) and ϕ(At) and can be used instead for bonus design. In this
way, with an appropriate choice of ν as discussed in the lemma, the designed bonus term restores
optimism, ensuring exploration in the optimal direction (see Appendix E).

Note that, in addition to restoring optimism, it is crucial to ensure that gνt (.) does not result in linear
regret. Accordingly, in Lemma 4, we demonstrate that gνt (.) converges to zero at an appropriate
rate, resulting in a regret cost of Õ(d

√
τ

ϵι ) in the upper bound.

Environment interaction. In step 7, the algorithm plays the selected action, observes the reward
and cost, and stores them for the next round. Steps 2–7 are repeated for T rounds.

5 ANALYSIS

In this section, we present the main results of our study. We prove that Algorithm 1 achieves a
sublinear regret. Also, we establish a lower bound that demonstrates the inherent impact of non-
convexity on the performance of any near-optimal algorithm.

5.1 MAIN RESULTS

Our first result is a high-probability, sublinear upper bound on the performance of Algorithm 1.

Theorem 1 Consider a linear bandit problem under Assumptions 1, 2, and 3. In Algorithm 1, let

ν = τ+ι
ι , β1 = β2 = σ

√
d log

(
1+TL2

λ

δ

)
+

√
λd, and λ = 1. Then, for any δ ∈ (0, 1

2 ), with

probability at least 1−2δ Algortihm 1 remains safe, i.e., At ⊂ Asafe, ∀t ∈ [T ]. Further, the regret
of Algorithm 1 with probability at least 1− 2δ satisfies the following upper bound:

Regret(T ) ≤ (2β1 +
2β2L(τ + ι)

ϵιτ
)

√
2Td log(

dλ+ TL2

λd
) (5)

7
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Comparison with Theorem 18 in Pacchiano et al. (2024). The key distinction between our upper
bound and that presented in Pacchiano et al. (2024) is the coeffecicient 1

ϵι , where ϵ and ι reflect our
local Assumption 3 in a non-convex space. Additionally, in our work, τ represents the safety gap,
assuming our algorithm starts from the origin at each state, resulting in an initial safe action with
zero cost and a corresponding gap of τ .

Remark 2 We highlight that the result of Theorem 1 naturally extends to linear contextual bandits.
For further discussion, please refer to Appendix J.

Adapting to unknown ι. While the choice of ν does not affect safety in Theorem 1, selecting it
appropriately is crucial for achieving sublinear regret. Theorem 1 defines ν in terms of ι. However,
when a meaningful lower bound for ι is unknown, the agent can adopt the Bandits over Bandits
(BOB) approach, as proposed by Cheung et al. (2019). This method employs a two-layer meta-
structure, where the base learner is NCS-LUCB, and the meta-learner adaptively selects ι based on
the cumulative rewards of the base learner. The full implementation and analysis of this technique
are beyond the scope of this work and are left for future research.

To the best of our knowledge, this is the first such result in literature for non-convex linear bandits.
Further in Theorem 2, we provide a minimax lower bound that verifies the role of ι and ϵ in the
upper bound of Theorem 1.

Theorem 2 (Lower bound of safe linear bandits with non-convex action space) Consider the setup
defined in Theorem 1. Then, for all ϵ ∈ (0, 1

4 ), and ι ∈ (0, 1
4 ), and for all T ≥ 32e

ϵι2 , the following
information-theoretic lower bound holds for any safe algorithm:

Regret(T ) ≥ max{ d

8e2

√
T ,

1− 2ϵ

ϵ
(
1− ι

ι
)2}. (6)

Remark 3 Note that since Regret(T ) ≤ Õ
(√

T
ϵι

)
, for all T = ⌈ 1

ϵι2 ⌉, we have: Regret(T ) ≤
Õ
(

1
ϵ3/2ι2

)
, which shows only a 1

ϵ1/2
gap between the lower and upper bounds.

5.2 NON-CONVEXITY BIAS

As discussed in Section 4, the non-convex nature of F prevents the agent from taking the step size
α = τ

τ+2β2∥ϕ(a∗)∥
Λ
−1
t

∥ϕ(a∗)∥ toward the optimal point ϕ(a∗). In this section, we present a toy

example demonstrating how a bonus design focused solely on safety limitations, without accounting
for non-convexity, biases exploration towards suboptimal directions in a non-convex space. This
prevents the agent from expanding the safe set At toward the optimal point and ultimately results in
linear regret.

Toy example on non-convexity bias. Consider a non-convex safe linear bandit problem with the

action set A =

{
a0 =

[
0
0

]
, a1 =

[
1
3
0

]
, a2 =

[
0
2
3

]
, a3 =

[
1
0

]}
, a safety threshold of τ = 0.95, and

a true reward vector θ∗ =

[
1
1

]
. Additionally, let γ∗ =

[
0
0

]
with the transformation ϕ(a) = a, i.e.,

an identity transformation. With this setup, the entire action set A is safe, i.e., Asafe = {a ∈ A |
⟨a, γ∗⟩ ≤ τ = 0.95} = A, and the optimal action is a3.

Now, suppose we design a safe algorithm where the agent knows θ∗ but must estimate γ∗. Moreover,
assume the agent knows that the maximum possible reward is less than 1, i.e., r∗ ≤ 1. At time t = 1,

the agent estimates the safety factor as γ1 =

[
1
1

]
and the safe set as At = {a ∈ A | ⟨a, γt⟩ ≤ τ =

0.95}. As a result, the agent believes that points of the form
[
α
0

]
or
[
0
α

]
, where α ≤ 0.95, are safe.

Therefore, the estimated safe action set is At = {a0, a1, a2}.

We now demonstrate how neglecting non-convexity biases the agent toward a2, a suboptimal direc-
tion. As mentioned, algorithms designed for star-convex problems, such as LC-LUCB in Pacchiano
et al. (2024), focus solely on safety limitations in their bonus design. This leads the agent to consider
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the distance from the safety region’s boundary to the optimal point when designing the bonus. With
the safety boundary along the x-axis set at max{α ≤ 0.95} and r∗ ≤ 1, the bonus for action a1 on
the x-axis is computed as b1(a1) = 1− 0.95 = 1

20 . Similarly, for action a2 on the y-axis, the bonus
is b1(a2) = 1

20 . At time t = 1, the agent evaluates the actions as follows:

⟨a1, θ∗⟩+ bt(a1) =
1

3
+

1

20
≤ 2

3
= ⟨ϕ(a2), θ∗⟩ ≤ ⟨ϕ(a2), θ∗⟩+ bt(a2), (7)

where the last inequality holds because bt(.) ≥ 0. This inequality holds for all t ∈ [T ], as the bonus
term bt is non-increasing over time in UCB-based methods. Hence, the agent always prefers a2 over
a1 for all t ∈ [T ], based on the selection criterion argmaxa∈At⟨a, θ∗⟩ + bt(a). However, this bias
toward a2 is problematic. Since a2 lies on the y-axis, the agent’s estimated safe set At never expands
in the x-direction. As a result, the optimal action a3, which is on the x-axis, remains outside At for
all t, leading to linear regret.

What is the correct strategy? An effective strategy is to account for both non-convexity and safety
limitations in the bonus design. The bonus should be based on the distance from the optimal point to
the nearest available action within the safety region, rather than to the boundary of the safety region.
Therefore, in our toy problem, the bonus for action a1 should be based on the distance between
the optimal point and a1, i.e., bt(a1) = r∗ − 1

3 = 2
3 . This implies that the inequality in Eq.(7) no

longer holds. As agent samples a2 over time, the term bt(a2) becomes smaller, which guarantees
that the agent will play a1 based on the selection criterion argmaxa∈At

⟨a, θ∗⟩ + bt(a). Note that,
in practice, calculating the distance to a non-convex set of actions is challenging. However, by
designing gνt and setting ν = τ+ι

ι , as shown in Lemma 2, our bonus will be optimistic enough to
address the bias problem while overcoming this computational challenge.

5.3 OUTLINE OF PROOF FOR THEOREM 1

We outline the proof steps for Theorem 1 and explain how our bonus design addresses the non-
convexity bias challenges mentioned in Section 5.2. For detailed proofs of Theorems 1 and 2, please
refer to Appendix.

Step 1. Before proceeding, we introduce two important events:

Definition 2 The event E1 is defined as: E1 ≜ {At ⊂ Asafe ∀t ∈ [T ]}. Additionally, the event E2 is
defined as E2 ≜ {|⟨ϕ(a), θt⟩ − ⟨ϕ(a), θ∗⟩| ≤ β1∥ϕ(a)∥(Λt)−1 , ∀(a, t) ∈ A× [T ]}.

Event E1 defines the set of outcomes where Algorithm 1 remains safe, while event E2 specifies
the outcomes where the estimation of the reward function is sufficiently accurate. Naturally, our
interest lies in scenarios where both events occur simultaneously. Lemma 1 shows that, under the
settings outlined in Theorem 1, the intersection of these two events occurs with high probability
(Abbasi-Yadkori et al., 2011).

Lemma 1 (Theorem 2 from Abbasi-Yadkori et al. (2011)) Under the setup of Theorem 1, and for
any fixed δ ∈ (0, 1

2 ), the event E ≜ E1 ∩ E2 holds with probability at least 1− 2δ.

The proof can be found in Appendix D. Next, we prove the optimism property conditioned on the
event E under the bonus design in Algorithm 1.

Lemma 2 (Optimism): In algorithm 1, under the setup of Theorem 1, conditioned on the event E ,
the inequality ⟨ϕ(a∗), θ∗⟩ ≤ maxa∈At⟨ϕ(a), θt⟩+ bt(a), ∀(t) ∈ [T ] holds.

The proof of Lemma 2 can be found in Appendix E.

Step 2. Our bonus design, along with Lemma 2, allows us to present the following decomposition
that upper bounds the regret:

Lemma 3 Conditioned on the event E , the regret of Algorithm 1 is upper bounded as follows:

Regret(T ) ≤ 2β1Σ
T
t=1∥ϕ(at)∥(Λt)−1︸ ︷︷ ︸

T1

+ΣT
t=1g

ν
t (at)︸ ︷︷ ︸

T2

.
(8)

9
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Note that T2 captures the effect of our new bonus term in Eq.(4). Term T1 appears in the uncon-
strained case, Abbasi-Yadkori et al. (2011), and we can bound this term in the same way. Next, we
bound the term T2 as follows:

Lemma 4 Under the assumptions of Theorem 1, and conditioned on the event E , the following
holds: T2 = ΣT

t=1g
ν
t (at) ≤

2β2Lν
ιϵτ ΣT

t=1∥ϕ(at)∥(Λt)−1 .

The proof of Lemma 4 can be found in Appendix G. Note that, the result of Lemma 4 enables us to
utilize Lemma 11 in Abbasi-Yadkori et al. (2011) to show the sublinearity of T2.

Step 3. Now, by combining the last two steps and upper bounding the normalized term obtained
in step 2, we can apply Lemma 11 from Abbasi-Yadkori et al. (2011) to obtain the final result.

6 NUMERICAL EXPERIMENTS

We conducted an experiment to evaluate the performance of the NCS-LUCB method and compare
it with LC-LUCB from Pacchiano et al. (2024). 1 We considered a linear bandit scenario with
a discrete action set A ≜= {a1, a2, a3, a4, a5}, where a1 = [0.1, 0]⊤, a2 = [0, 0.4]⊤, a3 =
[0.8, 0]⊤, a4 = [0, 0.7]⊤, and a5 = [1, 0]⊤. We set the parameters γ∗ = [1, 0]⊤, θ∗ = [1, 1]⊤,
δ = 0.01, σ = 0.01, τ = 0.9, d = 2, T = 900000, and chose the identity mapping for ϕ(.). In this
setup, a5 is considered unsafe, while the remaining actions are safe, i.e., Asafe = {a1, a2, a3, a4}.
Furthermore, a3 is the optimal action, making x the optimal direction and y a suboptimal direction.
For LC-LUCB, we set the bonus term as bt(a) := αβ∥ϕ(a)∥(Λt)−1 , where α = ( 2τ + 2) and

β = σ
√
d log( 1+T

δ ) +
√
d, following Theorem 18 in Pacchiano et al. (2024). The regrets of NCS-

LUCB and LC-LUCB from Pacchiano et al. (2024) are shown in Figs. 1b and 1a, respectively. Our
algorithm achieves sublinear regret, indicating the successful expansion of the estimated safe set
along the x-axis to include the optimal action a3. In contrast, LC-LUCB converges to the suboptimal
point a4 and fails to expand its safe set along the x-axis to include the optimal point, resulting in
linear regret. Additionally, the frequency of actions played by each algorithm is shown in Figs.
4a and 4b. As observed, our algorithm predominantly selects a1 and a3, which lie in the x-axis.
However, LC-LUCB is biased toward the suboptimal y-axis, and mostly selects a4. Notably, neither
algorithm selects a5, which is an unsafe action.

7 CONCLUSION

In this paper, we developed an algorithm to address the challenges of non-convex spaces in linear
bandits with instantaneous hard constraints. Unlike previous works that relied on convexity and
star-convexity, we demonstrated that local assumptions around the starting safe point and the op-
timal point are sufficient for near-optimal performance. We provided an upper bound that nearly
matches the regret bounds under star-convexity and convexity assumptions, and a lower bound that
highlights the necessity of parameters related to local assumptions in the upper bound. Additionally,
our method also captures discrete cases with finite action spaces. An interesting area for future work
is the adaptation of our approach to gradient-based methods. This adjustment is crucial, as the max-
imization step in non-convex scenarios often becomes intractable in non-convex continuous cases.
Therefore, analyzing the impact of the non-convex optimization step on convergence is an essential
next step.
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Organization of appendix Appendix A includes figures supporting the numerical experiments
discussed in Section 6. Appendix P presents an additional case study for simulation. Appendix
B discusses related works. Appendix C provides additional real-world examples of Assumption
3. In Appendix D we provide the proof of Lemma 1. In Appendix E, we provide the proof for
Lemma 2. We first state useful Lemmas 5 and 6 in Appendix E.1 where their proofs are provided
in Appendix E.3. Then, proof of Lemma 2 is provided in Appendix E. Appendix F contains the
proof for Lemma 3, while Appendix G provides the proof for Lemma 4. The proof of Theorem 1
is presented in Appendix H. Appendix I contains our proof for Theorem 2. Appendix J extends our
work to linear contextual bandits. Exact same proof of linear bandits applies to the linear contextual
bandits setup as well, however, for sake of completeness the complete proof for linear contextual
bandits is provided in Appendices L M, N, O.

A SIMULATION FIGURES

This section provides supporting figures for the numerical experiments discussed in Section 6.

(a) Action selection frequency in NCS-LUCB
(ours).

(b) Action selection frequency in LC-LUCB Pac-
chiano et al. (2024).

Figure 4: NCS-LUCB (ours) primarily explores the optimal direction along the x-axis by sampling
from a1 and a3. In contrast, LC-LUCB from Pacchiano et al. (2024) is biased toward the suboptimal
y-axis, predominantly sampling from a2 and a4. Each plot represents the average over 10 trials.

B RELATED WORKS

RL with instantaneous hard constraints Amani et al. (2021) solved the RL problem with instan-
tenous constraint for linear MDP in star-convex spaces. Then, Amani & Yang (2022), solved safe
problem for offline setup. Also, Wachi et al. (2021) solved the problem for generalized linear mod-
els. In all of these problems it is assumed that an initial safe action is known for each state, and
safety is only related to unsafe actions (unsafe states does not exists). Then, Shi et al. (2023) studied
problems with unsafe states in star-convex setting. Lastly, Wei et al. (2024) relaxed the assumption
of a prior safe action is given to the algorithm but instead they can get sublinear constraint violation.
Thus, none of the above works have studied RL with instantaneous hard constraints for non-convex
feature spaces with local assumptions

RL with cumulative constraints: Lastly, RL problems with cumulative constraints are studied in
Wu et al. (2016); Vaswani et al. (2022); Ghosh et al. (2022a); Ding & Lavaei (2023); Huang et al.
(2023).

C APPLIED EXAMPLES OF ASSUMPTION 3

C.1 SMART BUILDING MANAGEMENT

Consider a smart building management scenario where the goal is to schedule jobs while ensuring
the total cost of the energy consumed remains below a set threshold. Each appliance can be operated
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in either low-power or high-power mode. Running all appliances at full power would ensure jobs
are completed quickly, but it risks causing an overload and exceeding the energy cost threshold. On
the other hand, operating appliances in low-power mode will always keep the energy cost within the
limit, but it is suboptimal in terms of job completion efficiency.

The manager might initially operate all appliances in low-power mode to gather information about
the building’s energy costs. Once sufficient information has been collected, the manager can se-
lectively switch some appliances to high-power mode to improve job performance, while keeping
others in low-power mode to ensure the total energy cost remains within the threshold. In this con-
text, running appliances in low-power mode aligns with the ϵ-condition in Assumption 3, where the
system remains in a safer state and the energy cost is controlled. Conversely, operating some ap-
pliances at high power corresponds to the ι-condition, which moves the system closer to the safety
threshold but offers the potential for better job scheduling performance.

C.2 AUTONOMOUS VEHICLE NAVIGATION: A NON-CONVEX PROBLEM.

Figure 5: Autonomous vehicle with collision avoidance constraint is a non-convex problem.

The image depicts a navigation problem for an autonomous vehicle in a non-convex (and non-star-
convex) decision set. The vehicle starts at a designated point (blue dot) and aims to reach a goal
location (yellow star) while avoiding obstacle zones (red shapes), which represent regions where
traversal is prohibited. The feasible driving space (green region) highlights the area within which the
vehicle can operate, taking into account safety and physical constraints. The optimal path (orange
line) demonstrates the computed trajectory that the vehicle follows to minimize travel distance or
cost while adhering to the constraints. This visualization emphasizes the complexity of decision-
making in autonomous systems, where the decision space is shaped by non-convex obstacles and
feasible regions.

D PROOF OF LEMMA 1

We can directly apply Theorem 2 from Abbasi-Yadkori et al. (2011) to show that each of the events
E1 and E2 holds sepereatedly with a probability of at least 1 − δ. Using the union bound, we find
that the event E1 ∩ E2 holds with a probability of at least 1− 2δ.

E OPTIMISM

E.1 PRELIMNINARY RESULTS

Lemma 5 Under Assumptions 1, 2, and 3, conditioned on the event E , for all t ∈ [T ], we have
αϕ(a∗) ∈ ϕ(At), where α ≥ ϵ.

The proof of this Lemma is provided in Appendix E.3.
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Lemma 6 Let τ
τ+ι ≤

τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

. Then, under Assumptions 1- 3, we have αϕ(a∗) ∈ ϕ(At),

for some α ∈
[

τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

, 1
]
.

The proof of this Lemma is provided in Appendix E.3.

E.2 PROOF OF LEMMA 2

Pick an arbitrary action a′ ∈ At. Then, we will have:

max
a∈At

⟨ϕ(a), θt⟩+ bt(a) ≥ ⟨ϕ(a′), θt⟩+ bt(a
′)

= ⟨ϕ(a′), θt⟩+ β1∥ϕ(a′)∥Λ−1
t

+ gνt (a
′)

(9)

Now, on the event E2 we will have:

⟨ϕ(a′), θt⟩+ β1∥ϕ(a′)∥Λ−1
t

+ gνt (a
′) ≥ ⟨ϕ(a′), θ∗⟩+ gνt (a

′). (10)

Thus, combining Equations 9 and 10 yields the following:

max
a∈At

⟨ϕ(a), θt⟩+ bt(a) ≥ ⟨ϕ(a′), θ∗⟩+ gνt (a
′) (11)

This brings us to analyze two sub-cases:

Sub-case one: Assume that τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

≤ τ
τ+ι . Then, by Lemma 5, there exists an action

aα ∈ At such that ϕ(aα) = αϕ(a∗), where α ≥ ϵ. Thus, by replacing a′ with aα in Eq.(11) we
have:

max
a∈At

⟨ϕ(a), θt⟩+ bt(a) ≥ ⟨ϕ(aα), θ∗⟩+ gνt (aα) = α⟨ϕ(a∗), θ∗⟩+ gνt (aα). (12)

Now, using the definition of gνt (.) in Eq.(4), and considering the fact that ∥ϕ(a∗)∥Λ−1
t

=

∥αϕ(a∗)∥Λ−1
t

, we have the following:

gνt (aα) = ν ×

(
1− τ

τ + 2β2L∥ϕ(a∗)∥(Λt)−1

)
(13)

By setting ν = τ+ι
ι , and considering that τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

≤ τ
τ+ι we obtain the following:

gνt (aα) ≥
(τ + ι)

ι
(

ι

τ + ι
) = 1 ≥ (1− ϵ) (14)

Since we assumed in our problem formulation that r(a) ∈ [0, 1] for all a ∈ A, we obtain:

gνt (aα) ≥ (1− ϵ) ≥ (1− ϵ)⟨ϕ(a∗), θ∗⟩ (15)

Now, combining Equations (12) and (15) yields:

max
a∈At

⟨ϕ(a), θt⟩+ bt(a) ≥ α⟨ϕ(a∗), θ∗⟩+ (1− ϵ)⟨ϕ(a∗), θ∗⟩ ≥ ⟨ϕ(a∗), θ∗⟩, (16)

where the last inequlity obtained by the fact that α ≥ ϵ. This completes the proof for sub-case one.
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Sub-case two: Now, assume that τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

≥ τ
τ+ι . Then, by Lemma 6, there exists an

action aα ∈ At such that ϕ(aα) = αϕ(a∗), where α ≥ τ

τ+2β2L∥ϕ(a∗)∥(Λt)
−1

. Thus, by replacing a′

with aα in Eq.(11), we have:

max
a∈At

⟨ϕ(a), θt⟩+ bt(a) ≥ α⟨ϕ(a∗), θ∗⟩+ gνt (aα). (17)

Now, similar to the sub-case one, by setting ν = τ+ι
ι ≥ 1, we have:

gνt (aα) =
τ + ι

ι
×

(
1− τ

τ + 2β2L∥ϕ(a∗)∥(Λt)−1

)

≥

(
1− τ

τ + 2β2L∥ϕ(a∗)∥(Λt)−1

)
≥ 1− α ≥ (1− α)⟨ϕ(a∗), θ∗⟩

(18)

where the last inequality is obtained by the fact that r(a) ∈ [0, 1] for all a ∈ A. Thus, combining
Equations (17) and (18) yields:

max
a∈At

⟨ϕ(a), θt⟩+ bt(a) ≥ α⟨ϕ(a∗), θ∗⟩+ (1− α)⟨ϕ(a∗), θ∗⟩ = ⟨ϕ(a∗), θ∗⟩. (19)

This completes the proof for sub-case two as well as the Lemma 2.

E.3 PROOF OF LEMMAS 5 AND 6

Proof of Lemma 5: By Assumption 3, there exists a positive number µ ∈ [ϵ, τ√
d
] such that

µ ϕ(a∗)
∥ϕ(a∗)∥ ∈ F . Now, choose α = µ

∥ϕ(a∗)∥ . Then, we have the following:

αϕ(a∗) = (α∥ϕ(a∗)∥)× ϕ(a∗)

∥ϕ(a∗)∥
= µ

ϕ(a∗)

∥ϕ(a∗)∥
,

which implies that αϕ(a∗) ∈ F . By Assumption 1, we have: ∥ϕ(a∗)∥ ≤ L ≤ 1, which implies:
α ≥ µ ≥ ϵ. This implies that αϕ(a∗) ∈ F for some α ≥ ϵ. It remains to show that αϕ(a∗) ∈ ϕ(At)
for all t ∈ [T ]. Note that we can write the following:

∥αϕ(a∗)∥ = ∥µ ϕ(a∗)

∥ϕ(a∗)∥
∥ = µ ≤ τ√

d
, (20)

which by Eq.(2) implies that αϕ(a∗) ∈ ϕ(A
τ√
d ). Since A

τ√
d ⊂ At, we have: αϕ(a∗) ∈ ϕ(At) as

well, i.e., there exists an a ∈ At such that ϕ(a) = αϕ(a∗), where α ≥ ϵ. □

Proof of Lemma 6: We decompose the proof of this lemma into two cases:

Case 1: Assume that a∗ does not lie on the constraint’s boundary. Then, by Assumption 3 we have:
⟨ϕ(a∗), γ∗⟩ ≤ τ − ι. Therefore, we can show that in this case, a∗ ∈ At. To prove our claim, note
that, on the event E , we have:

⟨ϕ(a∗), γt⟩+ β2∥ϕ(a∗)∥Λ−1
t

≤ ⟨ϕ(a∗), γ∗⟩+ 2β2∥ϕ(a∗)∥Λ−1
t

= τ − ι+ 2β2∥ϕ(a∗)∥Λ−1
t
.

(21)

On the other hand, the condition τ
τ+ι ≤

τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

implies that 2β2L∥ϕ(a∗)∥Λ−1
t
≤ ι. Thus,

by Eq.(21), we have:

⟨ϕ(a∗), γt⟩+ β2∥ϕ(a∗)∥Λ−1
t

≤ τ − ι+ 2β2∥ϕ(a∗)∥Λ−1
t

≤ τ
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which implies a∗ ∈ ARLS
t ⊂ At. Thus, for α = 1, we have αϕ(a∗) ∈ ϕ(At), which completes the

proof for Case 1.

Case 2: Now, assume that a∗ lies on the constraint’s boundry, i.e., we have ⟨ϕ(a∗), γ∗⟩ = τ . We will
show that αϕ(a∗) ∈ ϕ(At) for α = τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

. To prove this, note that since α ≥ τ
τ+ι , by

Assumption 3, and because a∗ resides on the constraint’s boundary, we must have αϕ(a∗) ∈ ϕ(A),
i.e., there exists an action aα ∈ A such that ϕ(aα) = αϕ(a∗). Now, it remains to show that aα ∈ At.
Conditioned on the event E , we have:

⟨ϕ(aα), γt⟩+ β2∥ϕ(aα)∥Λ−1
t

= αϕ(a∗), γt⟩+ β2∥ϕ(a∗)∥Λ−1
t

≤ α

(
⟨ϕ(a∗), γ∗⟩+ 2β2∥ϕ(a∗)∥Λ−1

t

)
≤ α

(
⟨ϕ(a∗), γ∗⟩+ 2β2L∥ϕ(a∗)∥Λ−1

t

) (22)

Now, by substituting ⟨ϕ(a∗), γ∗⟩ = τ and α = τ

τ+2β2L∥ϕ(a∗)∥
Λ
−1
t

in Eq. (22), we have:

⟨ϕ(aα), γt⟩+ β2∥ϕ(aα)∥Λ−1
t

≤ τ

τ + 2β2L∥ϕ(a∗)∥Λ−1
t

(
τ + 2β2L∥ϕ(a∗)∥Λ−1

t

)
≤ τ, (23)

which implies aα ∈ ARLS
t ⊂ At. This completes the proof of Case 2 and Lemma 6. □

F PROOF OF LEMMA 3

Proof of the Lemma 3: By utilizing Lemma 2, we can infer:

Regret(T ) = ΣT
t=1⟨ϕ(a∗), θ∗⟩ − ⟨ϕ(at), θ∗⟩ ≤ ΣT

t=1⟨ϕ(at), θt⟩+ bt(at)− ⟨ϕ(at), θ∗⟩
= ΣT

t=1⟨ϕ(at), θt − θ∗⟩+ β1∥ϕ(at)∥Λ−1
t

+ gνt (at)
(24)

Now, conditioned on the event E , we have ⟨ϕ(at), θt−θ∗⟩ ≤ β1∥ϕ(at)∥Λ−1
t

. Thus, we can continue
Eq.(24) as follows:

Regret(T ) ≤ 2β1Σ
T
t=1∥ϕ(at)∥Λ−1

t
+ΣT

t=1g
ν
t (at) (25)

This completes the proof. □

G PROOF OF LEMMA 4

We begin by stating a Lemma that is helpful in the proof of Lemma 4.

Lemma 7 Under the setup of Theorem 1 and on the event E , for every selected action at in Algo-
rithm 1, it holds that ϵ ≤ ∥ϕ(at)∥,∀t ∈ [T ].

The proof of this Lemma is provided in Appendix G.1. Now, we are ready for the proof of Lemma
4:

Proof of Lemma 4: Using the expression for the gνt (.) function, we have:

ΣT
t=1g

ν
t (at) = ΣT

t=1ν

(
1− τ

τ + 2β2L∥ϕ(at)∥(Λt)−1

)

= (2β2Lν) Σ
T
t=1

∥ϕ(at)∥(Λt)−1

τ + 2β2L∥ϕ(at)∥(Λt)−1

≤ (2β2Lν)

τ
ΣT

t=1∥ϕ(at)∥(Λt)−1 ,

(26)
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where the last inequality follows from the fact that τ ≤ τ + 2β2L∥ϕ(at)∥(Λt)−1 . Now, since
∥ϕ(at)∥(Λt)−1 = ∥ ϕ(at)

∥ϕ(at)∥∥(Λt)−1 , we can apply Lemma 7 as follows:

ΣT
t=1g

ν
t (at) ≤

(2β2Lν)

τ
ΣT

t=1∥ϕ(at)∥(Λt)−1 ≤ (2β2Lν)

ϵτ
ΣT

t=1∥ϕ(at)∥Λ−1
t
, (27)

which completes the proof. □

G.1 PROOF OF LEMMA 7

To prove Lemma 7, we utilize a contradiction strategy. Assume that for some t ∈ [T ], we have
∥ϕ(at)∥ < ϵ. Note that by Assumption 3, we have α ϕ(at)

∥ϕ(at)∥ ∈ ϕ(A), for some α ∈ [ϵ, τ√
d
]. Also,

since α ≤ τ√
d

, we have: α ϕ(at)
∥ϕ(at)∥ ∈ ϕ(A

τ√
d ) ⊂ ϕ(At), i.e., there exists an a′ ∈ At such that

ϕ(a′) = α ϕ(at)
∥ϕ(at)∥ . Now, we show that at time t, Algorithm 1 will prefer to choose a′ instead of

at, which results in a contradiction and completes the proof. To show that the algorithm prefers to
choose a′, we consider the following:

⟨ϕ(at), θt⟩+ bt(at) = ⟨ϕ(at), θt⟩+ β1∥ϕ(at)∥Λ−1
t

+ gνt (at) (28)

Now, conditioned on the event E , we have r(at) = ⟨ϕ(at), θ∗⟩ ≤ ⟨ϕ(at), θt⟩+β1∥ϕ(at)∥Λ−1
t

. Since
in our problem formulation we assume that r(.) ∈ [0, 1], we can say the following:

0 ≤ r(at) ≤ ⟨ϕ(at), θt⟩+ β1∥ϕ(at)∥Λ−1
t

≤ ϵ

∥ϕ(at)∥
(
⟨ϕ(at), θt⟩+ β1∥ϕ(at)∥Λ−1

t

)
, (29)

where the last inequality follows from the fact that, according to the contradiction assumption, we
have ∥ϕ(at)∥ ≤ ϵ, which implies 1 ≤ ϵ

∥ϕ(at)∥ . Now, combining Equations (28) and (29), we have:

⟨ϕ(at), θt⟩+ bt(at) ≤
α

∥ϕ(at)∥
(
⟨ϕ(at), θt⟩+ β1∥ϕ(at)∥Λ−1

t

)
+ gνt (at) (30)

Now, substituting the definition of ϕ(a′) = α ϕ(at)
∥ϕ(at)∥ into Eq. (30), we get:

⟨ϕ(at), θt⟩+ bt(at) ≤ ⟨ϕ(a′), θt⟩+ β1∥ϕ(a′)∥Λ−1
t

+ gνt (at) (31)

Now, using the definition of gνt in Eq.(4), one can verify that gνt (a
′) = gνt (at). Thus, we can

continue Eq. 31 as follows:

⟨ϕ(at), θt⟩+ bt(at) ≤ ⟨ϕ(a′), θt⟩+ bt(a
′). (32)

The last inequality in Eq. (32) implies that in line 6 of Algorithm 1, action a′ is preferred to action
at, which is contradiction and proves that ∥ϕ(at)∥ ≥ ϵ, for all t ∈ [T ]. □

H PROOF OF THEOREM 1

We apply Lemmas 3 and 4 to get the following:

Regret(T ) ≤ ΣT
t=1(2β1 +

2β2Lν

ιϵτ
)∥ϕ(at)∥Λ−1

t
(33)

Following the steps outlined in the proof of Theorem 3 in Abbasi-Yadkori et al. (2011), we proceed
as follows:
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ΣT
t=1∥ϕ(at)∥Λ−1

t
≤
√
TΣT

t=1∥ϕ(at)∥2Λ−1
t

(34)

By Assumption 1, given that L ≤ 1 and λ = 1 in Algorithm 1, it can be shown that ∥ϕ(at)∥Λ−1
t
≤ 1.

Consequently, the following inequality holds:

∥ϕ(at)∥2Λ−1
t
≤ 2 log(1+∥ϕ(at)∥2Λ−1

t
). (35)

Thus, by Equations 34 and 35 we have:

√
TΣT

t=1∥ϕ(at)∥2Λ−1
t

≤
√

2TΣT
t=1 log(1+∥ϕ(at)∥2Λ−1

t

)

=
√
2T (log(det(ΛT ))− log(λd)).

(36)

where the last inequality is obtained by Lemma 11 from Abbasi-Yadkori et al. (2011). Now, con-
sidering that ∥ϕ(at)∥ ≤ L, it follows that the trace of ΛT is bounded by dλ + TL2. Since ΛT is a
positive definite matrix, the determinant of ΛT can be bounded by:

det(ΛT ) ≤ (
trace(ΛT )

d
)d ≤ (

dλ+ TL2

d
)d.

Combining everything together yields:

√
2T (log(det(ΛT ))− log(λd)) ≤

√
2T (log((

dλ+ TL2

d
)d)− log(λd))

=

√
2Td log((

dλ+ TL2

λd
)) =

√
2Td log((

dλ+ TL2

λd
))

(37)

Now, utilizing Equations (34) through (37), we conclude that:

ΣT
t=1∥ϕ(at)∥Λ−1

t
≤
√

2Td log((
dλ+ TL2

λd
)) (38)

Now, by integrating Equations (33) and (38), we establish the desired upper bound as follows:

Regret(T ) ≤ (2β1 +
2β2Lν

ϵιτ
)

√
2Td log((

dλ+ TL2

λd
))□ (39)

I PROOF OF THEOREM 2

To establish the lower bound, we consider a scenario with a single state, analogous to a Linear Safe
Bandit. Since the Bandit case is a subset of our RL problem, any lower bound derived for this
scenario also applies to our problem as well.

I.1 PRELIMINARY LEMMAS.

Our overall proof sketch is same as the Theorem 6 in Pacchiano et al. (2021) and Theorem 3 in Shi
et al. (2023). Here, however, we extend the approach to accommodate a continuous and non-convex
action space. We initiate with a divergence decomposition lemma adapted for continuous action
spaces.

Lemma 8 (Divergence decomposition for more general action spaces (Lattimore & Szepesvári,
2020)). Consider a policy π, and let PV = PVπ and PV′ = PV′π denote the measures on the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

canonical bandit model induced by T round of interconnection of policy π and environments V and
V ′

respectively. Then the following holds:

KL(PV ,PV′ ) = EV [Σ
T
t=1KL((Pat , Qat), (Pa′t , Qa′t))], (40)

where Pat and Qat represent the reward and cost distributions corresponding to the action at re-
spectively.

Since in bandits we do not have states (or only have one state), setting the feature function as an
identity transformation makes the reward and cost linear functions of the actions, i.e., r(a) = ⟨a, θ∗⟩
and c(a) = ⟨a, γ∗⟩ for all a ∈ A. Assuming the noise in both reward and cost measurements is
standard Gaussian, i.e., ζt, ηt ∼ N (0, 1), the distributions for the observed rewards and costs also
become Gaussian:

r̂(at) ∼ N (r(at), 1), ĉ(at) ∼ N (c(at), 1), ∀t ∈ [T ].

Thus, the following Lemma facilitates the computation of divergence between two Gaussian distri-
butions:

Lemma 9 (Divergence between two Gaussians (Lattimore & Szepesvári, 2020)). The divergence
between two Gaussians distributions with means µ1, µ2 ∈ R and common variance σ2 is given by:

KL(N (µ1, σ
2),N (µ2, σ

2)) =
(µ1 − µ2)

2

2σ2
(41)

Before delving into the proof of Theorem 2, we rewrite the useful Lemma 11 from Pacchiano et al.
(2021). Define the binary relative entropy as follows:

d(x, y) ≜ x log(
x

y
) + (1− x) log(

1− x

1− y
)

which for all x ∈ [ 12 , 1] and y ∈ (0, 1) satisfies d(x, y) ≥ 1
2 log(

1
4y ). We then present the following

lemma:

Lemma 10 (Lemma 11 in Pacchiano et al. (2021)) Consider the setup, definitions, and notations
of the constrained bandits defined in Lemma 8. For a bandit environment, we define FT as the
filtration generated by the state-action sequences and the corresponding rewards and costs. Then,
for any event B that is FT -measurable, the following holds:

KL(PV ,PV′ ) ≥ d(PV(B),PV′ (B)) (42)

I.2 PROOF OF THEOREM 2

Note that by Theorem 24.1 from Lattimore & Szepesvári (2020), we know that Regret(T ) ≥
d

8e2

√
T . Now it is remained to show that for T ≥ 32e

ϵι2 we have Regret(T ) ≥ 1−2ϵ
ϵ ( 1−ι

ι )2. First,
we create two environments and demonstrate that for any policy, there exists an event B such that
d(PV(B),PV′(B)) is lower bounded by a constant. Next, we establish a connection between the
regret of the policy and the KL divergence of the two environments. Then, we apply Lemma 10 to
derive our desired lower bound. Thus, we start by defining our environments.

Environment description.

Action-Set: We focus on the two-dimensional space where a, θ∗, and γ∗ belong to R2. The
action space, denoted as A, is explicitly defined as the union of three distinct sub-spaces: A ≜
A1 ∪ A2 ∪ A3. These sub-spaces are defined as follows:

A1 := {(x, y) ∈ R2 : |x| ≤ ϵ, |y| ≤ ϵ}
A2 := {(x, y) ∈ R2 : x = 0, 1− ν − ι ≤ y ≤ 1− ν}
A3 :=:= {(x, y) ∈ R2 : y = 0, −1 ≤ x ≤ −1 + ι},

(43)

where ϵ and ι are the parameters specified in Assumption 3. Additionally, we assume L = 1 and
define ν as a sufficiently small positive parameter, ensuring that ϵ < 1− ν − ι and 2ϵ ≤ 1− ν. For
the purpose of this proof, we set ν = 1

2 , which implies ϵ ≤ 1
4 and ι ≤ 1

4 .
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Our main goal, as stated in Theorem 2, is to demonstrate that the dependence of the upper bound de-
rived in Theorem 1 on the parameters ι and ϵ is essential. Specifically, if these parameters approach
zero, the regret of any algorithm will tend towards infinity, at least for one environment adhering to
the structure outlined in Theorem 1.

We are now prepared to describe two different environments, hereafter referred to as Env1 and Env2.

Env1: The reward and cost parameters for Env1 are defined as follows:

θ∗1 = (−1, 1); γ∗
1 = (

1

1− ι
, 0); τ = 1 (44)

In this environment, the safety constraint c(.) ≤ τ = 1 implies that A3 is the unsafe set of actions.
Also note that, the action (0, 1− ν) emerges as the unique optimal action of Env1.

Env2: For the Env2, the reward and cost parameters are defined as follows:

θ∗2 = θ∗1 = (−1, 1); γ∗
2 = (1, 0); τ = 1 (45)

The reward parameters of the two environments are identical; the primary distinction lies in the cost
parameters. With γ∗

2 , it is evident the entire set A is safe, with (−1, 0) as the unique optimal point,
which is located on the boundary of the constraint.

Proof steps We aim to demonstrate that for all T ≥ 32e
ϵι2 , the regret of any algorithm must be at

least B ≜ 1−2ϵ
ϵ ( 1−ι

ι )2. By contradiction, assume that there exists a safe-policy π that achieves a
regret lower than B in both Env1 and Env2, i.e., B > Regret(T ). Then, we define B as follows,

Definition 3 The FT -measurable set of events B, is defined as follows:

B ≜ {ΣT
t=1|aty| > T

(1− ν − ϵ)

2
}, (46)

where {at}Tt=1 represents the sequence of actions generated by the policy π in Env1 or Env2. Note
that at is a two-dimensional vector, where atx and aty are its corresponding x and y components, i.e.,
at = (atx, a

t
y).

Considering the definition of B, we establish the following Lemma:

Lemma 11 In Env1, under the assumption that B > Regret(T ), the following inequality holds for
all T ∈ N:

P1({ΣT
t=1|aty| > T

(1− ν − ϵ)

2
}) ≥ 1− B

T (1−ν−ϵ)
2

(47)

Proof: The proof of this Lemma can be found in Appendix I.3 .

Lemma 11 provides a critical insight into the behavior of algorithms operating in Env1. In fact,
this Lemma establishes a lower bound on the cumulative absolute values of the y-components of
the actions taken. This indicates that the algorithm consistently selects actions with significant large
components along the y-axis. Such a pattern is consistent with the location of the optimal action on
the y-axis. Consequently, any algorithm that achieves sublinear regret should mostly select actions
from the set A2 in Env1.

In contrast, the optimal action in Env2 lies along the x-axis, so we might expect a different pattern
of action selection, as reflected in the following Lemma:

Lemma 12 In Env2, under the assumption that B > Regret(T ), the following inequality holds for
all T ∈ N:

P2({ΣT
t=1|aty| > T

(1− ν − ϵ)

2
}) ≤ B

ν
4T

(48)

Proof: The detailed proof of this Lemma is available in Appendix I.3.
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Note that at the beginning of the proof, we set ν = 1
2 . According to Theorem 2, we select T such

that T ≥ 32e
ϵι2 . This choice of T ensures that: T ≥ max( B

(1−ν−ϵ)
4

, 16eB
ν ). As a result, employing

Lemmas 11 and 12 results in:

P1(B) ≥
1

2

P2(B) ≤
1

4e

(49)

Immediately after the inequalities obtained in Eq. (49), we can use Lemmas (8) to (10) to derive the
following result:

Lemma 13 Under the assumption that B > Regret(T ), and noting that L = 1, for all T ≥ 32e
ϵι2 the

following inequality holds for the environment Env1:

E1[Σ
T
t=1|atx|] ≥

(1− ι)2

ι2
(50)

Proof: The detailed proof of this lemma is provided in Appendix I.3.

This Lemma provides a lower bound on the cumulative absolute values of the x-components of
actions taken in Env1 by policy π. Notably, when |atx| is non-zero, it implies that at belongs to A1

given that π is a safe algorithm. This means at represents a non-optimal action. Thus, we can utilize
the lower bound in Eq. (50) to infer a lower bound for the regret of π in Env1. Thus, consider the
expression for the regret in Env1:

Regret(T ) = E1[T (1− ν)− ΣT
t=1(−atx + aty)]

= E1[T (1− ν)− ΣT
t=1(−atx + aty)× (1{0 < |atx|}+ 1{|atx| = 0})]

≥ E1[T (1− ν)− ΣT
t=1(−atx + aty)× 1{0 < |atx|}]

(51)

Now, for any safe algorithm in Env1, whenever 0 < |atx| holds, we know that at ∈ A1. Thereby at

incures a regret of at least 1− ν − 2ϵ. Consequently:

Regret(T ) ≥ E1[T (1− ν)− ΣT
t=1(−atx + aty)× 1{0 < |atx|}]

≥ E1[(1− ν − 2ϵ)ΣT
t=11{0 < |atx|}] = (1− ν − 2ϵ)E1[Σ

T
t=11{0 < |atx|}]

(52)

Whenever at ∈ A1, we have |atx| ≤ ϵ which implies |at
x|
ϵ ≤ 1{0 < |atx|}. Thus, we can continue

from Eq. (52) as follows:

B > Regret(T ) ≥ (1− ν − 2ϵ)E1[Σ
T
t=11{0 < |atx|}]

≥ (1− ν − 2ϵ)E1[Σ
T
t=1

|atx|
ϵ

] ≥ (1− ν − 2ϵ)

ϵ
× (1− ι)2

ι2

(53)

where the last inequality leverges Lemma 13.

Substituting ν = 1
2 into the last inequality, we obtain:

B >
( 12 − 2ϵ)

ϵ
× (1− ι)2

ι2
= B (54)

which results in a contradiction, as B cannot be strictly larger than itself. Thus, proof is complete.
□

I.3 PROOFS OF LEMMAS 11, 12, 13.

Proof of Lemma 11: Under the assumption that B > Regret(T ), we can write the following
inequalities:

B > Regret(T ) = E1[T (1− ν)− ΣT
t=1⟨θ∗1 , at⟩] = E1[T (1− ν)− ΣT

t=1(−atx + aty)], (55)
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where E1 is the expectation regarding the measure induced by policy π and the environment’s dy-
namic in Env1 . Now we can continue the Eq. (55) as follows:

B > E1[T (1− ν)− ΣT
t=1(−atx + aty)]

= E1[(T (1− ν)− ΣT
t=1(−atx + aty))

× (1{ΣT
t=1|aty| > T

(1− ν)

2
}+ 1{ΣT

t=1|aty| ≤ T
(1− ν)

2
})],

(56)

where 1{.} is an indicator function. Now, note that since the maximum reward that is achievable by
a safe action in Env1 is 1− ν, then we know that T (1− ν)−ΣT

t=1(−atx + aty) ≥ 0. As a result we
can continue the Eq. (56) as follows:

B > E1[(T (1− ν)− ΣT
t=1(−atx + aty))

× (1{ΣT
t=1|aty| > T

(1− ν)

2
}+ 1{ΣT

t=1|aty| ≤ T
(1− ν)

2
})]

≥ E1[(T (1− ν)− ΣT
t=1(−atx + aty))× 1{ΣT

t=1|aty| ≤ T
(1− ν)

2
}].

(57)

But note that since −ϵ ≤ atx, one can extend the last inequality as follows:

B > E1[(T (1− ν − ϵ)− ΣT
t=1a

t
y)× 1{ΣT

t=1|aty| ≤ T
(1− ν)

2
}]

≥ E1[(T (1− ν − ϵ)− ΣT
t=1a

t
y)× 1{ΣT

t=1|aty| ≤ T
(1− ν − ϵ)

2
}],

(58)

where the last inequality is obtained by the fact that 1{ΣT
t=1|aty| ≤ T (1−ν−ϵ)

2 } ≤ 1{ΣT
t=1|aty| ≤

T (1−ν)
2 }. Now, we can continue as follows:

B > E1[(T (1− ν − ϵ)− ΣT
t=1a

t
y)× 1{ΣT

t=1|aty| ≤ T
(1− ν − ϵ)

2
}]

= E1[(T (1− ν − ϵ)− T
(1− ν − ϵ)

2
)× 1{ΣT

t=1|aty| ≤ T
(1− ν − ϵ)

2
}]

= T
(1− ν − ϵ)

2
E1[1{ΣT

t=1|aty| ≤ T
(1− ν − ϵ)

2
}]

= T
(1− ν − ϵ)

2
P1(Σ

T
t=1|aty| ≤ T

(1− ν − ϵ)

2
)

(59)

Now by applying the complement rule of a probability measure,

P1({ΣT
t=1|aty| > T

(1− ν − ϵ)

2
}) = 1− P1({ΣT

t=1|aty| ≤ T
(1− ν − ϵ)

2
})

≥ 1− B

T (1−ν−ϵ)
2

(60)

Proof of Lemma 12: Now, similar to the previous step, under the assumption that B ≥ Regret(T )
we will have:

B > Regret(T ) = E2[T − ΣT
t=1⟨θ∗2 , at⟩] = E2[T − ΣT

t=1(−atx + aty)], (61)

where {at}Tt=1 is the sequence of actions generated by the policy π in Env2, and E2 is the expectation
regarding the measure induced by policy and environment’s dynamic in Env2.

Now, same as what we have done for Env1, we can continue the Eq. (61) as follows:

B > E2[T − ΣT
t=1(−atx + aty)]

≥ E2[(T − ΣT
t=1(−atx + aty))× 1{ΣT

t=1|aty| > T
(1− ν − ϵ)

2
}]

(62)

In Env2, whenever the event {ΣT
t=1|aty| > T (1−ν−ϵ)

2 } occurs, it implies that at least a quarter of the
samples are taken from A1 ∪ A2. To establish this, we employ a contradiction strategy. We assume
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that the fraction of samples taken from the region A1 ∪ A2 is denoted by r, and that 0 ≤ r < 1
4 .

Noting that all samples from A3 have a zero y-component (aty = 0). Thus, we have:

ΣT
t=1|aty| <

1

4
(1− ν)T (63)

Given that 2ϵ ≤ 1− ν we will have:

ΣT
t=1|aty| <

1

4
(1− ν)T =

1

2
(1− ν)T − 1

4
(1− ν)T ≤ 1

2
(1− ν)T − 1

2
ϵT

= T
(1− ν − ϵ)

2

(64)

where the last inequality results in a contradiction, affirming our arguement.

Now, since at least 1
4 of samples are taken from A1∪A2, and considering that the action yielding the

highest reward in this region (A1 ∪ A2) is (0, 1− ν), we can continue the inequality 62 as follows:

B > E2[(T − ΣT
t=1(−atx + aty))× 1{ΣT

t=1|aty| > T
(1− ν − ϵ)

2
}]

≥ E2[(
ν

4
T )× 1{ΣT

t=1|aty| > T
(1− ν − ϵ)

2
}]

=
ν

4
TE2[1{ΣT

t=1|aty| > T
(1− ν − ϵ)

2
}] = ν

4
TP2({ΣT

t=1|aty| > T
(1− ν − ϵ)

2
})

(65)

As a result,

P2({ΣT
t=1|aty| > T

(1− ν − ϵ)

2
}) ≤ B

ν
4T

□ (66)

Proof of Lemma 13 By Lemmas 8 -10 and using the inequalities obtained in Eq. (49) we will
have:

KL(P1,P2)

= E1[Σ
T
t=1KL(N ([⟨at, θ∗1⟩, ⟨at, γ∗

1 ⟩]T , I2), N ([⟨at, θ∗2⟩, ⟨at, γ∗
2⟩]T , I2)]

=
ι2

2(1− ι)2
E1[Σ

T
t=1 |atx|2 ] ≥ d(P1(B),P2(B)) ≥

1

2

(67)

where the last inequality is obtained by inequalities obtained in Equations (49) and (49).

Now, since L = 1, we know that |atx| ≤ 1 which yields |atx|2 ≤ |atx|. Combining all together and
using the Eq. (67),

E1[Σ
T
t=1|atx|] ≥

2

2
E1[Σ

T
t=1|atx|2] ≥ d(P1(O),P2(O)) ≥ (1− ι)2

ι2
□ (68)

J LINEAR CONTEXTUAL BANDITS

Linear contextual bandits can be considered a special case of linear MDP, when the horizon H = 1,
and there is no transition (Agrawal & Devanur, 2016; Zhu et al., 2023; Ghosh et al., 2022b; Amani
et al., 2021). Therfore, we denote the linear contextual bandits as (S,A, r, c), where S denotes the
set of context. Then we will have the following Assumption:

Assumption 4 (Linear bandits Amani et al. (2019), Pacchiano et al. (2024)) Consider a constrained
contextual bandits denoted as (S,A, r, c), which is assumed to be a linear contextual bandits with
a feature function ϕ : S × A → F ⊂ Rd. Specifically, there exist unknown vectors θ∗, γ∗ ∈
Rd such that for any pair (s, a) ∈ S × A, the cost function, and reward function are given by:
r(s, a) = ⟨ϕ(s, a), θ∗⟩, and c(s, a) = ⟨ϕ(s, a), γ∗⟩, respectively. Additionally, we assume without
loss of generality that for all (s, a) ∈ S × A, we have ∥ϕ(s, a)∥≤ L for some L ∈ (0, 1], and
max(∥θ∗∥, ∥γ∗∥) ≤

√
d, where d is the dimension of the feature space.
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Similar to linear bandits, we assume that the agent has access to least one kown safe action at the
begining of the algorithm. Therefore, we adapt the Assumption 2 for linear contextual bandits as
follows

Assumption 5 (Zero starting point in in linear contextual bandits): For each s ∈ S , there exists
an action a0s ∈ A such that ϕ(s, a0s) = 0 ∈ Rd.

Since our focus is on non-convex spaces, we need to adapt Assumption 3 to the linear contextual
bandit setting. We begin with the following definition:

Definition 4 For each s ∈ S, tet Fs ≜ {ϕ(s, a) ∈ Rd | a ∈ A}.

We are now ready to present our non-convex assumption for linear contextual bandits:

Assumption 6 (Local point assumption in linear contextual bandits ) There exists 0 < ϵ <
min{L, τ√

d
} such that for all s, and x ∈ Fs, we have α x

∥x∥ ∈ Fs for some α ∈ [ϵ, τ√
d
]. Let

x∗
s = ϕ(s, a∗s) denote the optimal point given the context s. Then, either of the following conditions

holds:

1. ⟨ϕ(s, a∗s), γ∗⟩ ≤ τ − ι, where 0 < ι < L− ϵ, or

2. αx∗
s ∈ Fs for all α ∈ [ τ

τ+ι , 1], with 0 < ι such that ι ≤ L− ϵ ≤ 1.

We now present the following algorithm for non-convex linear contextual bandit settings with in-
stantaneous hard constraints:

Algorithm 2 Non-Convex Safe Linear Contextual UCB (NCSC-LUCB)

Require: ν, δ, τ, λ, d
1: for episode t = 1, . . . , T do
2: Λt = Σt−1

τ=1ϕ(sτ , aτ )ϕ(sτ , aτ )
⊤ + λI

3: θt = (Λt)
−1Σt−1

τ=1ϕ(sτ , aτ )rτ (sτ , aτ )
4: γt = (Λt)

−1Σt−1
τ=1ϕ(sτ , aτ )cτ (sτ , aτ )

5: For each s ∈ S : At(s) ≜ ARLS
t (s) ∪ A

τ√
d (s) according to Eq. (69)

6: Take action at = argmaxa∈At(s)⟨ϕ(s, a), θt⟩+ bt(s, a), where bt(.) defined in Eq.(70).
7: Play at and observe its reward rt and cost ct.
8: end for

where ARLS
t (s) , A

τ√
d (s) are defined as follows:

ARLS
t (s) ≜ {a ∈ A : ⟨ϕ(s, a), γt⟩+ β2∥ϕ(s, a)∥Λ−1

t
≤ τ}.

A
τ√
d (s) ≜ {a ∈ A | ∥ϕ(s, a)∥ ≤ τ√

d
}.

(69)

Also, the bonus bt(.) is defined as :

bt(s, a) ≜ β1∥ϕ(s, a)∥(Λt)−1+gνt (s, a), (70)

where gνt (.), defined as follows:

gνt (s, a) ≜ ν ×

(
1− τ

τ + 2β2L∥ϕ(s, a)∥(Λt)−1

)
. (71)

Now, we are ready to state our result for linear contextual bandits:
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Theorem 3 Consider a linear contextual bandit under Assumptions 4, 5, and 6. In Algorithm 2, let

ν = τ+ι
ι , β1 = β2 = σ

√
d log

(
1+TL2

λ

δ

)
+

√
λd, and λ = 1. Then, for any δ ∈ (0, 1

2 ), with the

probability of at least 1 − 2δ Algortihm 2 remains safe, i.e., At(st) ⊂ Asafe, ∀t ∈ [T ]. Further,
the regret of Algorithm 2 with a probability of at least 1−2δ satisfies the the following upper bound:

Regret(T ) ≤ (2β1 +
2β2Lν

ϵιτ
)

√
2Td log(

dλ+ TL2

λd
). (72)

The proof steps of Theorem 3 follow the same structure as those of Theorem 1, but we provide them
here for completeness.

Step 1. Let Asafe(s) ≜ {a ∈ A | ⟨ϕ(s, a), γ∗⟩ ≤ τ}. Then, we introduce two important events:

Definition 5 The event EC
1 is defined as: EC

1 ≜ {At(s) ⊂ Asafe(s) ∀(s, t) ∈ S×[T ]}. Additionally,
the event EC

2 is defined as EC
2 ≜ {|⟨ϕ(s, a), θt⟩ − ⟨ϕ(s, a), θ∗⟩| ≤ β1∥ϕ(s, a)∥(Λt)−1 , ∀(s, a, t) ∈

S ×A× [T ]}.

Then, the following Lemma shows that event EC
1 ∩ EC

2 holds with a high probability:

Lemma 14 (Theorem 2 from Abbasi-Yadkori et al. (2011)) Under the setup of Theorem 3 and for
any fixed δ ∈ (0, 1

2 ), the event EC ≜ EC
1 ∩ EC

2 holds with probability at least 1− 2δ.

The proof can be found in Appendix K.

Now, using Lemma 14, we can prove the optimism property as stated in the following Lemma:

Lemma 15 (Optimism): In algorithm 2, under the setup of Theorem 3, conditioned on the event
EC , the inequality ⟨ϕ(s, a∗), θ∗⟩ ≤ maxa∈At(s)⟨ϕ(s, a), θt⟩+ bt(s, a), ∀(s, t) ∈ S × [T ] holds.

Step 2. Our bonus design, along with Lemma 15, allows us to present the following decomposition
that upper bounds the regret:

Lemma 16 Conditioned on the event EC , the regret of Algorithm 2 is upper bounded as follows:

Regret(T ) ≤ 2β1Σ
T
t=1∥ϕ(st, at)∥(Λt)−1︸ ︷︷ ︸

T1

+ΣT
t=1g

ν
t (st, at)︸ ︷︷ ︸
T2

.
(73)

Terms T1 appears in the unconstrained case, Abbasi-Yadkori et al. (2011), and we can bound it in
the same way. Next, we bound the term T2 as follows:

Lemma 17 Under the assumptions of Theorem 3, and conditioned on the event EC , the following
holds:

T2 = ΣT
t=1g

ν
t (st, at) ≤

2β2Lν

ιϵτ
ΣT

t=1∥ϕ(st, at)∥(Λt)−1 . (74)

Now, the result of Lemma 17 enables us to utilize Lemma 11 in Abbasi-Yadkori et al. (2011) to
show the sublinearity of T2.

Step 3. Now combining last two steps and upper bounding the normalized term obtained in step
2, we can apply Lemma 11 from Abbasi-Yadkori et al. (2011) to get the final result.

K PROOF OF LEMMA 14

We can directly apply Theorem 2 from Abbasi-Yadkori et al. (2011) to show that each of the events
EC
1 and E2 holds sepereatedly with a probability of at least 1 − δ. Using the union bound, we find

that the event EC
1 ∩ EC

2 holds with a probability of at least 1− 2δ.
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L OPTIMISM FOR LINEAR CONTEXTUAL BANDITS

L.1 PRELIMNINARY RESULTS

Lemma 18 Under Assumptions 4, 5, and 6, conditioned on the event EC , for all (s, t) ∈ S × [T ],
we have αϕ(s, a∗s) ∈ ϕ(s,At(s)), where α ≥ ϵ.

The proof of this Lemma is provided in Appendix L.3.

Lemma 19 Let τ
τ+ι ≤ τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

. Then, under Assumptions 4- 6, we have αϕ(s, a∗) ∈

ϕ(s,At(s)), for some α ∈
[

τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

, 1
]
.

The proof of this Lemma is provided in Appendix L.3.

L.2 PROOF OF LEMMA 15

Pick an arbitrary action a′ ∈ At(s). Then, we will have:

max
a∈At(s)

⟨ϕ(s, a), θt⟩+ bt(s, a) ≥ ⟨ϕ(s, a′), θt⟩+ bt(s, a
′)

= ⟨ϕ(s, a′), θt⟩+ β1∥ϕ(s, a′)∥Λ−1
t

+ gνt (s, a
′)

(75)

Now, on the event EC
2 we will have:

⟨ϕ(s, a′), θt⟩+ β1∥ϕ(s, a′)∥Λ−1
t

+ gνt (s, a
′) ≥ ⟨ϕ(s, a′), θ∗⟩+ gνt (s, a

′). (76)

Thus, combining Equations 75 and 76 yields the following:

max
a∈At(s)

⟨ϕ(s, a), θt⟩+ bt(s, a) ≥ ⟨ϕ(s, a′), θ∗⟩+ gνt (s, a
′) (77)

This brings us to analyze two sub-cases:

Sub-case one: Assume that τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

≤ τ
τ+ι . Then, by Lemma 18, there exists an action

aα ∈ At(s) such that ϕ(s, aα) = αϕ(s, a∗s), where α ≥ ϵ. Thus, by replacing a′ with aα in Eq.(77)
we have:

max
a∈At(s)

⟨ϕ(s, a), θt⟩+ bt(s, a) ≥ ⟨ϕ(s, aα), θ∗⟩+ gνt (s, aα) = α⟨ϕ(s, a∗), θ∗⟩+ gνt (s, aα).

(78)

Now, using the definition of gνt (.) in Eq.(71), and considering the fact that ∥ϕ(s, a∗s)∥Λ−1
t

=

∥αϕ(s, a∗s)∥Λ−1
t

, we have the following:

gνt (s, aα) = ν ×

(
1− τ

τ + 2β2L∥ϕ(s, a∗)∥(Λt)−1

)
(79)

By setting ν = τ+ι
ι , and considering that τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

≤ τ
τ+ι we obtain the following:

gνt (s, aα) ≥
(τ + ι)

ι
(

ι

τ + ι
) = 1 ≥ (1− ϵ) (80)

Since we assumed in our problem formulation that r(s, a) ∈ [0, 1] for all a ∈ A, we obtain:
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gνt (s, aα) ≥ (1− ϵ) ≥ (1− ϵ)⟨ϕ(s, a∗s), θ∗⟩ (81)

Now, combining Equations (78) and (81) yields:

max
a∈At(s)

⟨ϕ(s, a), θt⟩+ bt(s, a) ≥ α⟨ϕ(s, a∗s), θ∗⟩+ (1− ϵ)⟨ϕ(s, a∗s), θ∗⟩ ≥ ⟨ϕ(s, a∗s), θ∗⟩,

(82)

where the last inequlity obtained by the fact that α ≥ ϵ. This completes the proof for sub-case one.

Sub-case two: Now, assume that τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

≥ τ
τ+ι . Then, by Lemma 19, there exists an

action aα ∈ At(s) such that ϕ(s, aα) = αϕ(s, a∗s), where α ≥ τ

τ+2β2L∥ϕ(s,a∗
s)∥(Λt)

−1
. Thus, by

replacing a′ with aα in Eq.(77), we have:

max
a∈At(s)

⟨ϕ(s, a), θt⟩+ bt(s, a) ≥ α⟨ϕ(s, a∗s), θ∗⟩+ gνt (s, aα). (83)

Now, similar to the sub-case one, by setting ν = τ+ι
ι ≥ 1, we have:

gνt (s, aα) =
τ + ι

ι
×

(
1− τ

τ + 2β2L∥ϕ(s, a∗s)∥(Λt)−1

)

≥

(
1− τ

τ + 2β2L∥ϕ(s, a∗s)∥(Λt)−1

)
≥ 1− α ≥ (1− α)⟨ϕ(s, a∗s), θ∗⟩

(84)

where the last inequality is obtained by the fact that r(s, a) ∈ [0, 1] for all a ∈ A. Thus, combining
Equations (83) and (84) yields:

max
a∈At(s)

⟨ϕ(s, a), θt⟩+ bt(s, a) ≥ α⟨ϕ(s, a∗s), θ∗⟩+ (1− α)⟨ϕ(s, a∗s), θ∗⟩ = ⟨ϕ(s, a∗s), θ∗⟩.

(85)

This completes the proof for sub-case two as well as the Lemma 15.

L.3 PROOF OF LEMMAS 18 AND 19

Proof of Lemma 18: By Assumption 6, there exists a positive number µ ∈ [ϵ, τ√
d
] such that

µ
ϕ(s,a∗

s)
∥ϕ(s,a∗

s)∥
∈ Fs. Now, choose α = µ

∥ϕ(s,a∗
s)∥

. Then, we have the following:

αϕ(s, a∗s) = (α∥ϕ(s, a∗s)∥)×
ϕ(s, a∗s)

∥ϕ(s, a∗s)∥
= µ

ϕ(s, a∗s)

∥ϕ(s, a∗s)∥
,

which implies that αϕ(s, a∗s) ∈ Fs. By Assumption 1, we have: ∥ϕ(s, a∗s)∥ ≤ L ≤ 1, which
implies: α ≥ µ ≥ ϵ. This implies that αϕ(s, a∗s) ∈ Fs for some α ≥ ϵ. It remains to show that
αϕ(s, a∗s) ∈ ϕ(s,At(s)) for all (s, t) ∈ S × [T ]. Note that we can write the following:

∥αϕ(s, a∗s)∥ = ∥µ ϕ(s, a∗s)

∥ϕ(s, a∗s)∥
∥ = µ ≤ τ√

d
, (86)

which by Eq.(69) implies that αϕ(s, a∗s) ∈ ϕ(s,A
τ√
d (s)). Since A

τ√
d (s) ⊂ At(s), we have:

αϕ(s, a∗s) ∈ ϕ(s,At(s)) as well, i.e., there exists an a ∈ At(s) such that ϕ(s, a) = αϕ(s, a∗s),
where α ≥ ϵ. □
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Proof of Lemma 19: We decompose the proof of this lemma into two cases:

Case 1: Assume that a∗s does not lie on the constraint’s boundary. Then, by Assumption 6 we have:
⟨ϕ(s, a∗s), γ∗⟩ ≤ τ − ι. Therefore, we can show that in this case, a∗s ∈ At(s). To prove our claim,
note that, on the event EC , we have:

⟨ϕ(s, a∗s), γt⟩+ β2∥ϕ(s, a∗s)∥Λ−1
t

≤ ⟨ϕ(s, a∗s), γ∗⟩+ 2β2∥ϕ(s, a∗s)∥Λ−1
t

= τ − ι+ 2β2∥ϕ(s, a∗s)∥Λ−1
t
.

(87)

On the other hand, the condition τ
τ+ι ≤ τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

implies that 2β2L∥ϕ(s, a∗s)∥Λ−1
t
≤ ι.

Thus, by Eq.(87), we have:

⟨ϕ(s, a∗s), γt⟩+ β2∥ϕ(s, a∗s)∥Λ−1
t

≤ τ − ι+ 2β2∥ϕ(s, a∗s)∥Λ−1
t

≤ τ

which implies a∗s ∈ ARLS
t (s) ⊂ At(s). Thus, for α = 1, we have αϕ(s, a∗s) ∈ ϕ(s,At(s)), which

completes the proof for Case 1.

Case 2: Now, assume that a∗s lies on the constraint’s boundry, i.e., we have ⟨ϕ(s, a∗s), γ∗⟩ = τ . We
will show that αϕ(s, a∗s) ∈ ϕ(s,At(s)) for α = τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

. To prove this, note that since

α ≥ τ
τ+ι , by Assumption 3, and because a∗s resides on the constraint’s boundary, we must have

αϕ(s, a∗s) ∈ ϕ(s,A), i.e., there exists an action aα ∈ A such that ϕ(s, aα) = αϕ(s, a∗s). Now, it
remains to show that aα ∈ At(s). Conditioned on the event EC , we have:

⟨ϕ(s, aα), γt⟩+ β2∥ϕ(s, aα)∥Λ−1
t

= αϕ(s, a∗s), γt⟩+ β2∥ϕ(s, a∗s)∥Λ−1
t

≤ α

(
⟨ϕ(s, a∗s), γ∗⟩+ 2β2∥ϕ(s, a∗s)∥Λ−1

t

)
≤ α

(
⟨ϕ(s, a∗s), γ∗⟩+ 2β2L∥ϕ(s, a∗s)∥Λ−1

t

) (88)

Now, by substituting ⟨ϕ(s, a∗s), γ∗⟩ = τ and α = τ

τ+2β2L∥ϕ(s,a∗
s)∥Λ

−1
t

in Eq. (88), we have:

⟨ϕ(s, aα), γt⟩+ β2∥ϕ(s, aα)∥Λ−1
t

≤ τ

τ + 2β2L∥ϕ(s, a∗s)∥Λ−1
t

(
τ + 2β2L∥ϕ(s, a∗s)∥Λ−1

t

)
≤ τ,

(89)

which implies aα ∈ ARLS
t (s) ⊂ At(s). This completes the proof of Case 2 and Lemma 19. □

M PROOF OF LEMMA 16

Proof of the Lemma 16: By utilizing Lemma 15, we can infer:

Regret(T ) = ΣT
t=1⟨ϕ(st, as∗t ), θ

∗⟩ − ⟨ϕ(st, at), θ∗⟩ ≤ ΣT
t=1⟨ϕ(st, at), θt⟩+ bt(st, at)− ⟨ϕ(st, at), θ∗⟩

= ΣT
t=1⟨ϕ(st, at), θt − θ∗⟩+ β1∥ϕ(st, at)∥Λ−1

t
+ gνt (st, at)

(90)

Now, conditioned on the event EC , we have ⟨ϕ(st, at), θt − θ∗⟩ ≤ β1∥ϕ(st, at)∥Λ−1
t

. Thus, we can
continue Eq.(90) as follows:

Regret(T ) ≤ 2β1Σ
T
t=1∥ϕ(st, at)∥Λ−1

t
+ΣT

t=1g
ν
t (st, at) (91)

This completes the proof. □
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N PROOF OF LEMMA 17

We begin by stating a Lemma that is helpful in the proof of Lemma 17.

Lemma 20 Under the setup of Theorem 3 and on the event EC , for every selected action at in
Algorithm 2, it holds that ϵ ≤ ∥ϕ(st, at)∥,∀t ∈ [T ].

The proof of this Lemma is provided in Appendix N.1. Now, we are ready for the proof of Lemma
17:

Proof of Lemma 17: Using the expression for the gνt (.) function, we have:

ΣT
t=1g

ν
t (st, at) = ΣT

t=1ν

(
1− τ

τ + 2β2L∥ϕ(st, at)∥(Λt)−1

)

= (2β2Lν) Σ
T
t=1

∥ϕ(st, at)∥(Λt)−1

τ + 2β2L∥ϕ(st, at)∥(Λt)−1

≤ (2β2Lν)

τ
ΣT

t=1∥ϕ(st, at)∥(Λt)−1 ,

(92)

where the last inequality follows from the fact that τ ≤ τ + 2β2L∥ϕ(st, at)∥(Λt)−1 . Now, since
∥ϕ(st, at)∥(Λt)−1 = ∥ ϕ(st,at)

∥ϕ(st,at)∥∥(Λt)−1 , we can apply Lemma 20 as follows:

ΣT
t=1g

ν
t (st, at) ≤

(2β2Lν)

τ
ΣT

t=1∥ϕ(st, at)∥(Λt)−1 ≤ (2β2Lν)

ϵτ
ΣT

t=1∥ϕ(st, at)∥Λ−1
t
, (93)

which completes the proof. □

N.1 PROOF OF LEMMA 20

To prove Lemma 20, we utilize a contradiction strategy. Assume that for some t ∈ [T ], we have
∥ϕ(st, at)∥ < ϵ. Note that by Assumption 6, we have α ϕ(st,at)

∥ϕ(st,at)∥ ∈ ϕ(st,A), for some α ∈ [ϵ, τ√
d
].

Also, since α ≤ τ√
d

, we have: α ϕ(st,at)
∥ϕ(st,at)∥ ∈ ϕ(st,A

τ√
d (s)) ⊂ ϕ(st,At(s)), i.e., there exists an

a′ ∈ At(s) such that ϕ(s, a′) = α ϕ(s,at)
∥ϕ(s,at)∥ . Now, we show that at time t, Algorithm 2 will prefer to

choose a′ instead of at, which results in a contradiction and completes the proof. To show that the
algorithm prefers to choose a′, we consider the following:

⟨ϕ(st, at), θt⟩+ bt(st, at) = ⟨ϕ(st, at), θt⟩+ β1∥ϕ(st, at)∥Λ−1
t

+ gνt (st, at) (94)

Now, conditioned on the event EC , we have r(st, at) = ⟨ϕ(st, at), θ∗⟩ ≤ ⟨ϕ(st, at), θt⟩ +
β1∥ϕ(st, at)∥Λ−1

t
. Since in our problem formulation we assume that r(.) ∈ [0, 1], we can say

the following:

0 ≤ r(st, at) ≤ ⟨ϕ(st, at), θt⟩+ β1∥ϕ(st, at)∥Λ−1
t

≤ ϵ

∥ϕ(st, at)∥
(
⟨ϕ(st, at), θt⟩+ β1∥ϕ(st, at)∥Λ−1

t

)
,

(95)

where the last inequality follows from the fact that, according to the contradiction assumption, we
have ∥ϕ(st, at)∥ ≤ ϵ, which implies 1 ≤ ϵ

∥ϕ(st,at)∥ . Now, combining Equations (94) and (95), we
have:

⟨ϕ(st, at), θt⟩+ bt(st, at) ≤
α

∥ϕ(st, at)∥
(
⟨ϕ(st, at), θt⟩+ β1∥ϕ(st, at)∥Λ−1

t

)
+ gνt (st, at) (96)

Now, substituting the definition of ϕ(st, a′) = α ϕ(st,at)
∥ϕ(st,at)∥ into Eq. (96), we get:
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⟨ϕ(st, at), θt⟩+ bt(st, at) ≤ ⟨ϕ(st, a′), θt⟩+ β1∥ϕ(st, a′)∥Λ−1
t

+ gνt (st, at) (97)

Now, using the definition of gνt in Eq.(71), one can verify that gνt (st, a
′) = gνt (st, at). Thus, we can

continue Eq. 97 as follows:

⟨ϕ(st, at), θt⟩+ bt(st, at) ≤ ⟨ϕ(st, a′), θt⟩+ bt(st, a
′). (98)

The last inequality in Eq. (98) implies that in line 6 of Algorithm 2, action a′ is preferred to action
at, which is contradiction and proves that ∥ϕ(st, at)∥ ≥ ϵ, for all t ∈ [T ]. □

O PROOF OF THEOREM 3

We apply Lemmas 16 and 17 to get the following:

Regret(T ) ≤ ΣT
t=1(2β1 +

2β2Lν

ιϵτ
)∥ϕ(st, at)∥Λ−1

t
(99)

Following the steps outlined in the proof of Theorem 3 in Abbasi-Yadkori et al. (2011), we proceed
as follows:

ΣT
t=1∥ϕ(st, at)∥Λ−1

t
≤
√
TΣT

t=1∥ϕ(st, at)∥2Λ−1
t

(100)

By Assumption 4, given that L ≤ 1 and λ = 1 in Algorithm 2, it can be shown that ∥ϕ(st, at)∥Λ−1
t
≤

1. Consequently, the following inequality holds:

∥ϕ(st, at)∥2Λ−1
t
≤ 2 log(1+∥ϕ(st, at)∥2Λ−1

t
). (101)

Thus, by Equations 100 and 101 we have:

√
TΣT

t=1∥ϕ(st, at)∥2Λ−1
t

≤
√

2TΣT
t=1 log(1+∥ϕ(st, at)∥2Λ−1

t

)

=
√

2T (log(det(ΛT ))− log(λd)).
(102)

where the last inequality is obtained by Lemma 11 from Abbasi-Yadkori et al. (2011). Now, consid-
ering that ∥ϕ(st, at)∥ ≤ L, it follows that the trace of ΛT is bounded by dλ + TL2. Since ΛT is a
positive definite matrix, the determinant of ΛT can be bounded by:

det(ΛT ) ≤ (
trace(ΛT )

d
)d ≤ (

dλ+ TL2

d
)d.

Combining everything together yields:

√
2T (log(det(ΛT ))− log(λd)) ≤

√
2T (log((

dλ+ TL2

d
)d)− log(λd))

=

√
2Td log((

dλ+ TL2

λd
)) =

√
2Td log((

dλ+ TL2

λd
))

(103)

Now, utilizing Equations (100) through (103), we conclude that:

ΣT
t=1∥ϕ(st, at)∥Λ−1

t
≤
√

2Td log((
dλ+ TL2

λd
)) (104)

Now, by integrating Equations (99) and (104), we establish the desired upper bound as follows:

Regret(T ) ≤ (2β1 +
2β2Lν

ϵιτ
)

√
2Td log((

dλ+ TL2

λd
))□ (105)
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P OTHER SIMULATION SCENARIOS

Figure 6: Action Space A, where yellow points represent the initial safe actions, the green point
a∗ denotes the optimal action, and the red point a2 indicates the sub-optimal action. The plane
⟨γ∗, x⟩ = τ represents the constraint boundary.

We conducted an additional experiment to evaluate the performance of NCS-LUCB compared to
LC-LUCB from Pacchiano et al. (2024). The setup includes θ∗ = [1.0, 1.0]⊤, γ∗ = [0.3, 0.41]⊤,
τ = 0.3, and the following action set (also depicted in Figure 6):

A =

{[
0.1817
0.0816

]
,

[
−0.1014
0.0930

]
,

[
0.0014
0.1000

]
,

[
−0.0889
0.1723

]
,

[
0.1003
0.0305

]
,

[
−0.5500
0.3120

]
,

[
−0.1586
0.1468

]
,[

0.1362
0.7862

]
,

[
0.6816
0.5962

]
,

[
−0.2521
0.0807

]
,

[
0.2800
0.1200

]
,

[
0.0093
0.6499

]}
.

(106)

This implies that the optimal safe action is a∗ =

[
0.0093
0.6499

]
. Our algorithm, NCS-LUCB, effectively

expands the estimated safe set toward the optimal action a∗ (see Figure 7a), achieving sublinear
regret (see Figure 8a). In contrast, LC-LUCB fails to include a∗ in its estimated safe set. Instead,

it predominantly samples from the suboptimal action a2 =

[
0.28
0.12

]
, resulting in a biased safe set

expansion (see Figure 7b) and linear regret (see Figure 8b). All unspecified parameters are consistent
with those used in the previous experiment.
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(a) Safe Set Expansion in NCS-LUCB
(ours).

(b) Safe Set Expansion in LC-LUCB Pacchiano et al.
(2024).

Figure 7: Blue-highlighted regions depict the estimated safe set expansion in both settings. NCS-
LUCB (ours) successfully expands the estimated safe set toward the optimal point a∗, while LC-
LUCB from Pacchiano et al. (2024) is biased toward the suboptimal action a2 and fails to include
the optimal point a∗ in the safe set.

(a) Regret for NCS-LUCB (ours). (b) Regret for LC-LUCB Pacchiano et al. (2024).

Figure 8: Comparison of the regret for NCS-LUCB (our method) and LC-LUCB inPacchiano et al.
(2024).
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