
The Elephant in the Room: Variable Dependency in
GNN-based SAT Solving

Zhiyuan Yan∗
Hong Kong University of Science and

Technology (Guangzhou)
Guangzhou, Guangdong, China

zyan760@connect.hkust-gz.edu.cn

Min Li
The Chinese University of Hong Kong

Hong Kong, China
mli@cse.cuhk.edu.hk

Zhengyuan Shi
The Chinese University of Hong Kong

Hong Kong, China
zyshi21@cse.cuhk.edu.hk

Wenjie Zhang
Peking University
Beijing, China

zhang_wen_jie@pku.edu.cn

Yingcong Chen
Hong Kong University of Science and

Technology (Guangzhou)
Guangzhou, Guangdong, China
yingcong.ian.chen@gmail.com

Hongce Zhang
Hong Kong University of Science and

Technology (Guangzhou)
Guangzhou, Guangdong, China

hongcezh@ust.hk

Abstract
Boolean satisfiability problem (SAT) is fundamental to many
applications. Existing works have used graph neural net-
works (GNNs) for (approximate) SAT solving. Typical GNN-
based end-to-end SAT solvers predict SAT solutions concur-
rently. We show that for a group of symmetric SAT problems,
the concurrent prediction is guaranteed to produce a wrong
answer because it neglects the dependency among Boolean
variables in SAT problems. We propose AsymSAT, a GNN-
based architecture which integrates recurrent neural net-
works to generate dependent predictions for variable assign-
ments. The experiment results show that dependent variable
prediction extends the solving capability of the GNN-based
method as it improves the number of solved SAT instances
on large test sets.

CCS Concepts: • Hardware → Theorem proving and SAT
solving.

Keywords: SAT Solving, Graph Neural Networks, Variable
Dependency

1 Introduction
Recently, there has been a growing interest in applying ma-
chine learning methods to solve the SAT problem end-to-end.
For example, the paper [6] proposed the NeuroSAT archi-
tecture to approach SAT solving as a binary classification
problem. NeuroSAT treats the input conjunctive norm form
(CNF) as a bipartite graph and uses the graph neural network
(GNN) to predict whether the set of CNF clauses is satisfi-
able or not. Amizadeh et al. considered the scenario when
the problem formulation is in the form of a circuit (namely
the Circuit-SAT problem) [1] and applied GNN-based graph
learning as well. These methods demonstrated the potential
of machine learning in SAT solving.
Although prior works show that it is possible to predict

SAT solutions from the graph structure of the problem for-
mulation, we identify an important flaw in these existing

GNN-based end-to-end SAT solving methods: there exists a
set of satisfiable CNF formulas (correspondingly, a set of satis-
fiable circuits for the Circuit-SAT problem) whose satisfying
assignments cannot be learned by the existing methods in [6]
or [1]. These CNF formulas (or circuits) have symmetric for-
mulations but asymmetric solutions. Here, symmetry means
swapping a pair of variables results in an equivalent CNF
formula or circuit, but in a satisfying assignment, these sym-
metric variables must take different values. Existing methods
predict Boolean assignments for 𝑎 and 𝑏 concurrently. The
concurrent prediction on each variable solely depends on
the graph embedding of the variable node. Meanwhile, 𝑎 and
𝑏 share the same embedding because they are symmetric in
CNF or circuit form so the predictions for 𝑎 and 𝑏 inevitably
become the same. To address this problem, we introduce
a recurrent neural network (RNN) in the SAT assignment
decoding layer. With the help of RNN, later predictions will
be able to “remember” prior variable assignments. We call
our new model AsymSAT.

Overall, our main contributions in this paper are:
• We identify the need of addressing variable depen-
dency in the existing GNN-based end-to-end SAT solv-
ing methods.

• We propose an improvement to the neural network
architecture to take dependency among variables into
consideration. Our AsymSATmodel uses RNN tomake
sequential predictions of SAT solutions.

• We demonstrate that AsymSAT achieves a higher ac-
curacy in SAT and Circuit-SAT solving compared to
prior works.

2 Variable Dependency in SAT Solving
Generally speaking, SAT and Circuit-SAT solving must con-
sider variable dependency. In other words, they must “re-
member” what predictions have been made so far. A simple
example is the 2-input XOR (𝑥 ⊕ 𝑦). Here, 𝑥 and 𝑦 are sym-
metric — if we swap them, we will get exactly the same



DAV ’23, July 16, 2023 , Paris, France Zhiyuan, et al.

x

y

(a) (b)

(c)

Figure 1. (a) XOR implemented by AND-gates and inverters; (b) the DAG representation of (a).

formula because XOR is commutative. However, we must
assign different values to 𝑥 and 𝑦 in order to get a 1 as the
result. If 𝑥 has been assigned as 1, then 𝑦 must be 0. This is
the dependency between these two variables.

Symmetry naturally exists in many SAT problems. Some-
times, it is part of the formula that is symmetric. A sym-
metric formula like 𝑥 ⊕ 𝑦 will result in a symmetric circuit
implemented by AND-gates and inverters (Figure 1). After
transforming such formula to CNF using Tseitin encoding,
we will also get a symmetric CNF formula.

It is not hard to see, symmetric nodes have symmetric pre-
decessors and successors. Therefore, when GNN-based SAT
solvers use message-passing to encode the graph structure,
symmetric nodes will have the same node embeddings, un-
less they are distinguished by initialization. However, pure
random initialization for all nodes provides no extra infor-
mation for the neural network to distinguish the symmetric
ones. On the other hand, a bias in initialization would in-
troduce artefact that does not generalize. Therefore, prior
works [1, 6, 9] all used equal initial embeddings and therefore,
they would not be able to distinguish symmetric nodes when
predicting SAT assignments. We accompany our argument
on random initialization with experimental results in the ap-
pendix. As a consequence, We argue that a GNN-based SAT
solver should sequentially predict variable assignments in
order to take variable dependency into consideration. This is
achieved by a recurrent neural network added in our model,
explained in the next section.

3 Our Methods
3.1 Problem formulation
Problem input.We expect the problem input to be a DAG
representing the structure of the circuit. CNF formulas may
be converted into the circuit form using [2]. There are only
AND gates and inverters (NOT gates) as they are sufficient to
express arbitrary Boolean functions. Formally, we expect the
problem input to be the form of 𝐺 =< 𝑉𝐺 , 𝑁𝐺 , 𝐸𝐺 >, where
𝑉𝐺 is a set of circuit nodes, 𝑁𝐺 is a function that maps each
node to the type of logic gate, and 𝐸𝐺 is the set of directed
edges of the circuit graph.
Problem output. The machine learning model should

predict a 0-1 assignment for each circuit input node. We

denote the assignments as 𝐿 ∈ {0, 1}𝑖 and 𝑖 is the number
of circuit input nodes. Each instance in the dataset is in the
form of (𝐺, 𝐿), where the 0-1 assignments are generated
by an external SAT solver that works as the oracle. In this
paper, we apply the supervised learning method with Cross-
Entropy for the loss function.

3.2 The Proposed GNN Architecture
In the high-level, we would like to build a machine-learning
model that learns the mapping from a circuit graph to the
0-1 assignment on input nodes: 𝑓 : 𝐺 → 𝐿.

Graph embedding layers. To better explain our GNN ar-
chitecture, we introduce the following notations. Each graph
node 𝑣 ∈ 𝑉𝐺 is associated with a 𝑑-dimensional hidden state
vector 𝑥𝑣 , which is iteratively updated based on the mes-
sages from neighboring nodes. During message-passing, we
distinguish the nodes that reach 𝑣 following a directed edge
(in other words, the predecessors) from those that leaves 𝑣
(the successors). We only use the messages from predeces-
sors in the forward pass, and likewise, the successors in the
backward pass. The incoming messages are aggregated by an
aggregator function A, which is invariant to permutation of
the elements in the input set. Finally, the aggregated message
is used to update the hidden state of 𝑣 by a standard GRU
function 𝐺𝑅𝑈 (·) [3].

In AsymSAT, message passing follows the topological or-
der. In the forward pass, messages flow from circuit input
nodes (which have no predecessors) to the only circuit out-
put node (which has no successors). The hidden state vectors
are updated sequentially. In the backward pass, messages
flow from the circuit output node to the circuit input nodes.
In each pass, the hidden state vectors are updated according
to the following rule:

𝑥
(𝑘+1)
𝑣 := 𝐺𝑅𝑈

(
𝑝𝑣,A

({
𝑚

(𝑘 )
𝑛 |𝑛 ∈ N (𝑣)

}))
(1)

Initially, 𝑝𝑣 = 𝑁𝐺 (𝑣), which is the node type vector of node 𝑣 .
So in the first forward pass, the type of a node is encoded into
the hidden state vector. In all remaining passes, 𝑝𝑣 = 𝑥

(𝑘 )
𝑣 ,

which is the hidden state vector resulted from the previous
pass. In Equation 1, N (𝑣) is either the predecessors or the
successors of 𝑣 . Their hidden state vectors are encoded into
messages𝑚 (𝑘 )

𝑛 by a learnable functionM : 𝑥 (𝑘 )
𝑛 →𝑚

(𝑘 )
𝑛 .



The Elephant in the Room: Variable Dependency in
GNN-based SAT Solving DAV ’23, July 16, 2023 , Paris, France

Table 1. Solution rate for the 𝑆𝑅(𝑛) problems

𝑆𝑅(3) 𝑆𝑅(4) 𝑆𝑅(5) 𝑆𝑅(6) 𝑆𝑅(7) 𝑆𝑅(8) 𝑆𝑅(9) 𝑆𝑅(10)

AsymSAT 98.30% 100.00% 93.23% 94.51% 81.56% 82.90% 88.95% 85.45%
NeuroSAT 87.70% 74.47% 63.10% 59.57% 52.94% 48.40% 49.73% 43.82%
DG-DAGRNN 10.21% 15.23% 5.21% 1.83% 8.38% 5.70% 4.07% 4.24%

SAT assignment decoding layers. In our AsymSAT, we
use a recurrent neural network (referred to as the R layer) to
generate sequential predictions on variable assignments, so
that the model output on a certain circuit input node depends
on the predictions of other nodes. We make this R layer bi-
directional to account for dependencies from both sides. A
subsequent MLP will work as a selector to decide which di-
rection is more preferred. Sequential prediction mimics clas-
sic (non-machine-learning-based) SAT solvers. These classic
SAT solvers like GRASP [5] or MiniSAT [8] pick decision
variables one after another. Regarding the aforementioned
XOR example, we expect this RNN layer will be able to learn
to predict different variable assignments for the two sym-
metric variables after training with such examples.

4 Experimental Evaluation
4.1 Data preparation
Overall, we prepare the following datasets:
Small-scale symmetric AIG with asymmetric solu-

tions. We manually construct 10 circuits with no more than
3 inputs. Within each circuit, there are at least two input
nodes that are symmetric but require distinct assignments.
We intentionally keep this training set small. If NeuroSAT
andDG-DAGRNN are capable of handling symmetric circuits
with asymmetric SAT solutions, they should easily reach a
high training accuracy on this small dataset.

Medium-size randomly generated CNF formulas.We
generate random CNF formulas in the same way as described
by [6]. We refer to this dataset as the 𝑆𝑅(𝑛) problem, where 𝑛
is the number of variables. CNF formula for 𝑆𝑅(𝑛) problems
can be converted into the circuit form using the principle of
Shannon’s Decomposition as suggested by [1].

4.2 Experimental setup and result
The dimension on the outcome of theR layer is 10 andwe use
the Adam optimizer during training process. For NeuroSAT,
and DG-DAGRNN, we follow the same configurations as
described in [6] and [1]. To our best knowledge, the source
code for the original DG-DAGRNN model is not publicly
available. We build this model following the instructions in
[1]. We train and test all three models on a server with a
NVIDIA GeForce RTX 3090 GPU.

Effectiveness of the RNN decoding layer. In this exper-
iment, we train our AsymSAT model, the NeuroSAT model

Table 2. Percentage of the symmetric circuit problem solved

Asym w. L Asym w.o. L NeuroSAT DG-DAGRNN

100.00% 0.00% 0.00% 0.00%

and the DG-DAGRNN model on the same 10 symmetric cir-
cuits and measure the training accuracy. We use LSTM as
the bi-directional RNN layer in AsymSAT. We also add one
case of removing the R layer in AsymSAT as comparison.
Table 2 illustrates the result for the symmetric circuits on
five different models. Just as we discussed in Section 2, DG-
DAGRNN and NeuroSAT cannot break the tie in symmetric
circuits or symmetric CNF formulas. And there is no way to
train these two models on this dataset. Thanks to the R layer
we introduced, our AsymSAT model can reach a solution
rate of 100.00% with either LSTM or GRU in the R layer.

Comparison on the 𝑺𝑹(𝒏) problems.We use 8𝐾 𝑆𝑅(𝑛)
problems sampled uniformly from 𝑆𝑅(𝑈 (3, 8)) to train the
three models. The test set contains 1.5𝐾 𝑆𝑅(𝑛) problems
(𝑛 is from 3 to 10). For AsymSAT and DG-DAGRNN, CNF
formulas are first converted into circuits to serve as themodel
input. Table 1 summarizes the performance measured on
the 𝑆𝑅(𝑛) problem. The result shows that AsymSAT model
has a better performance compared to NeuroSAT and DG-
DAGRNN on this dataset. Overall, AsymSAT can reach more
than 90% solution rate (averaged across 𝑆𝑅(3) to 𝑆𝑅(10)),
while NeuroSAT can only reach 60%. In our experiment,
the performance of DG-DAGRNN is non-competitive to the
other two andwe provide a detailed analysis of DG-DAGRNN
in Appendix A.
We also conduct the experiment on our own dataset —

large random circuits with more than 1K logic gates, which
is presented in Appendix B.

5 Conclusion
This paper addresses the need of considering variable depen-
dency when designing a machine-learning model for SAT
solving. This paper proposes using RNNs to make sequen-
tial predictions for SAT solving. Our experiments show that
this improvement extends the solving capability on sym-
metric Circuit-SAT problems and achieves a higher solution
rate on randomly generated SAT and Circuit-SAT instances
compared to concurrent GNN-based SAT solving methods.



DAV ’23, July 16, 2023 , Paris, France Zhiyuan, et al.

References
[1] Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. 2018. Learn-

ing to solve circuit-SAT: An unsupervised differentiable approach. In
International Conference on Learning Representations.

[2] Armin Biere. 2007. CNF2AIG. https://fmv.jku.at/cnf2aig/.
[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry

Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using RNN encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078 (2014).

[4] Swen Jacobs and Mouhammad Sakr. 2021. AIGEN: Random Generation
of Symbolic Transition Systems. In International Conference on Computer
Aided Verification. Springer, 435–446.

[5] Joao P. Marques-Silva and Karem A. Sakallah. 1999. GRASP: A search
algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 5
(1999), 506–521.

[6] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo
de Moura, and David L. Dill. 2018. Learning a SAT solver from single-bit
supervision. arXiv preprint arXiv:1802.03685 (2018).

[7] Claude E. Shannon. 1949. The Synthesis of Two-Terminal Switching
Circuits. The Bell System Technical Journal 28, 1 (1949), 59–98.

[8] Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a SAT solver
with conflict-clause minimization. SAT 2005, 53 (2005), 1–2.

[9] Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong,
and Lu Zhang. 2020. NLocalSAT: Boosting local search with solution
prediction. arXiv preprint arXiv:2001.09398 (2020).

A Appendix: Unsupervised Learning in
DG-DAGRNN

In our experiment, DG-DAGRNN performs the worst on the
circuits converted from CNF. We argue that (a) an unsuper-
vised learning approach in the prior work [1] suffers from
the absence of a tie breaker among symmetric nodes, and (b)
the smooth-min and smooth-max functions used to replace
AND gates and OR gates bring in the vanishing gradient
problem for some circuits. We justify these two arguments
below.

For the first argument, it is not hard to see, if we convert
a symmetric circuit into its differentiable counterpart by
replacing AND-gates and NOT-gates with smooth-min and
1 − 𝑧 functions, we will end up with a symmetric function.
Therefore, the gradient on the two symmetric input variables
will be the same. A gradient descent procedure will keep the
same variable assignment if the two input nodes initially
have the same assignment.
For the second argument, we know that the smooth-min

and smooth-max functions are defined as Equation 2. They
are referred to as the 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 functions in the following
text. They have a tunable parameter 𝜏 (the temperature). As
can be seen from Equation 2, when 𝜏 = +∞, both 𝑆𝑚𝑖𝑛 and
𝑆𝑚𝑎𝑥 functions become the arithmetic mean function. As
𝜏 → 0, 𝑆𝑚𝑎𝑥 (·) → max(·), and 𝑆𝑚𝑖𝑛 (·) → min(·).

𝑆𝑚𝑖𝑛 (𝑥1, ..., 𝑥𝑛) =
Σ𝑛𝑖=1𝑥𝑖𝑒

−𝑥𝑖/𝜏

Σ𝑛
𝑖=1𝑒

−𝑥𝑖/𝜏
,

𝑆𝑚𝑎𝑥 (𝑥1, ..., 𝑥𝑛) =
Σ𝑛𝑖=1𝑥𝑖𝑒

𝑥𝑖/𝜏

Σ𝑛
𝑖=1𝑒

𝑥𝑖/𝜏

(2)

Figure 2. Circuit structure when converting CNFs into cir-
cuit forms

In the training phase, 𝜏 gradually decreases so that 𝑆𝑚𝑎𝑥

and 𝑆𝑚𝑖𝑛 allow the gradients to flow back through all paths
in the beginning, while approximating the max and min
functions in the end. The problem lies in the fact that 𝑆𝑚𝑎𝑥

and 𝑆𝑚𝑖𝑛 functions are very similar to the arithmetic mean
functions when 𝜏 is large in the beginning. The gradients
from different back propagation paths can easily cancel each
other. Let’s consider a circuit graph generated by converting
problems in CNF format to circuit forms. The conversion
method was suggested in [1], which is based on Shannon’s
Decomposition [7]. The structure of the circuit is shown in
Figure 2, where for every input variable (e.g., 𝑣 in the figure),
there are an even number of paths to the output node and
one half of the paths will go through an additional NOT-gate.
If we consider the gradient on the loss function with respect
to a circuit input variable 𝑣 , we have:

𝜕𝑙𝑜𝑠𝑠

𝜕𝑣
=
𝜕𝑙𝑜𝑠𝑠

𝜕𝑜
· 𝜕𝑆𝑚𝑎𝑥,1

𝜕𝑥1,1
· 𝜕𝑆𝑚𝑖𝑛,2

𝜕𝑥2,1
+

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜
· 𝜕𝑆𝑚𝑎𝑥,1

𝜕𝑥1,2
· 𝜕𝑆𝑚𝑖𝑛,3

𝜕𝑥3,2
· (−1)

(3)

When 𝜏 → +∞, all of 𝜕𝑆𝑚𝑎𝑥,1
𝜕𝑥1,1

, 𝜕𝑆𝑚𝑎𝑥,1
𝜕𝑥1,2

, 𝜕𝑆𝑚𝑖𝑛,2
𝜕𝑥2,1

, and 𝜕𝑆𝑚𝑖𝑛,3
𝜕𝑥3,2

are very close to 1
2 , because the 𝑆𝑚𝑎𝑥 and 𝑆𝑚𝑖𝑛 functions are

similar to the arithmetic mean function. Note that there is a
sign on the second term introduced by the NOT-gate. So the
two terms can easily cancel each other, resulting in a near-0
gradient on variable 𝑣 . In a circuit generated according to
Shannon’s Decomposition, almost all circuit inputs will go
through such even number of paths to reach the output and
therefore, there is almost no gradient in the back propagation
when 𝜏 is large, and it is harder to train the network in the
early training iterations. If this is used with learning rate
decay, the later training iterations may not be able to fully
optimize the circuit input assignments as the learning rate
decreases. This possibly explains the experiment result of
DG-DAGRNN in Table 1.

https://fmv.jku.at/cnf2aig/


The Elephant in the Room: Variable Dependency in
GNN-based SAT Solving DAV ’23, July 16, 2023 , Paris, France

Table 3. Solution rate for the 𝑉 (𝑛) problems

𝑉 (3) 𝑉 (4) 𝑉 (5) 𝑉 (6) 𝑉 (7) 𝑉 (8) 𝑉 (9) 𝑉 (10)

AsymSAT 81.58% 67.50% 72.50% 55.50% 52.50% 60.00% 45.00% 47.50%
NeuroSAT 0.025% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DG-DAGRNN 35.00% 47.50% 47.50% 45.00% 30.00% 37.50% 37.50% 32.50%

Table 4. Solution rate for the larger 𝑉 (𝑛) problems

𝑉 (11) 𝑉 (12) 𝑉 (13) 𝑉 (14) 𝑉 (15)

AsymSAT trained on SR(3..10) 45.00% 60.00% 45.00% 45.00% 52.50%
AsymSAT trained on SR(3..10) + V(3..8) 47.50% 47.50% 45.00% 60.00% 57.50%

Table 5. The performance of random initialization vs. having an additional R layer

Symmetric Circuit 𝑆𝑅(10)

AsymSAT w. LSTM 100.00% 72.75%
AsymSAT w.o. R (Random Initialization) 00.00% 62.12%
AsymSAT w.o. R 00.00% 60.50%

B Appendix: Experiments on large
randomly generated AIGs.

Data preparation. We generate random AIGs using the
AIGEN tool [4], which was designed to create random test
circuits to check and profile the EDA tools. By default, AIGEN
generates sequential logic circuits (those with storage ele-
ments). We extract the combinational logic circuits from
the sequential logic circuits. We refer to this dataset as the
𝑉 (𝑛) problem, where 𝑛 stands for the number of circuit in-
put nodes. 𝑉 (𝑛) problems can be converted into CNF using
Tseitin transformation. Compared to 𝑆𝑅(𝑛) problems, 𝑉 (𝑛)
is a nontrivial dataset even when 𝑛 is relatively small. For
example, each 𝑉 (10) problem has more than 1K logic gates
on average. The corresponding CNF formulas contain more
than 1K variables, which is much larger than the largest
dataset 𝑆𝑅(40) used in the prior work [6].

Comparison on the 𝑽 (𝒏) problems. The training data
is a mixture of 8𝐾 𝑆𝑅(𝑛) problems, (𝑛 ranges from 3 to 10),
and 1.2𝐾 𝑉 (𝑛) problems (𝑛 ranges from 3 to 8). The test set
is 320𝑉 (𝑛) problems (𝑛 ranges from 3 to 10). Note that𝑉 (𝑛)
is a nontrivial dataset. On average, each 𝑉 (10) problem has
around 1K AND gates, more than those in circuits converted
from the 𝑆𝑅(10) problems (which each contain just about 200
AND gates). Even for the 𝑆𝑅(40) problems, there are only
approximately 600 - 800 AND gates per input. Therefore,
𝑉 (𝑛) problems can also demonstrate the generalization ca-
pability of the tested models. Although the indexing number
𝑛 is relatively smaller in the 𝑉 (𝑛) dataset, there are plenty
of logic gates in each circuit. These logic gates will add up to

the number of variables and clauses after Tseitin transforma-
tion. Therefore, the converted CNF inputs are challenging for
NeuroSAT. This explains the poor performance of NeuroSAT
in Table 3. We also show the generalizability of AsymSAT
on the 𝑉 (𝑛) dataset. On larger 𝑉 (𝑛) problems, for example,
𝑉 (15), which is about 128x the size of 𝑉 (8), AsymSAT still
maintains a solution rate around 50%. It is not significantly
affected by reducing the training set to only the 𝑆𝑅(𝑛) prob-
lems as shown by Table 4.

C Appendix: Random Initial Node
Embeddings in GNN-based SAT Solving

Random initialization seems to be a workaround that can
break the tie between two symmetric nodes. However, our
experiment shows it is not as effective as directly addressing
variable dependency through RNN.We use random initializa-
tion in AsymSAT (without R layer) to illustrate this. Table 5
summarizes the performance on symmetric circuits and the
𝑆𝑅(10) problem. Accuracy on symmetry circuits can hardly
get to 100% and it is not as good as AsymSAT with LSTM on
the medium-size 𝑆𝑅(10) problem.


	Abstract
	1 Introduction
	2 Variable Dependency in SAT Solving
	3 Our Methods
	3.1 Problem formulation
	3.2 The Proposed GNN Architecture

	4 Experimental Evaluation
	4.1 Data preparation
	4.2 Experimental setup and result

	5 Conclusion
	References
	A Appendix: Unsupervised Learning in DG-DAGRNN
	B Appendix: Experiments on large randomly generated AIGs.
	C Appendix: Random Initial Node Embeddings in GNN-based SAT Solving

