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ADAFLOW: EFFICIENT LONG VIDEO EDITING VIA
ADAPTIVE ATTENTION SLIMMING AND KEYFRAME
SELECTION
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Keyframes

Source video

Prompt: A black sheep stands in a grassy field, gazing directly at the camera.

Prompt: A white sheep stands against a vibrant, autumn-colored backdrop, gazing at the viewer.

Prompt: A white sheep portrayed in vibrant Van Gogh brushstrokes stands vividly against a swirling grassy backdrop.

Figure 1: The proposed AdaFlow can support the text-driven video editing of more than 1k frames
in one inference, which can be the change of the primary subjects, background, or overall style of
the video. Meanwhile, AdaFlow can also adaptively select the representative frames in different
video clips for keyframe translation, ensuring the continuity and quality of long video editing.

ABSTRACT

Text-driven video editing is an emerging research hot spot in deep learning. De-
spite great progress, long video editing is still notoriously challenging mainly due
to excessive memory overhead. To tackle this problem, recent efforts have sim-
plified this task into a two-step process of keyframe translation and interpola-
tion generation, enabling the editing of more frames. However, the token-wise
keyframe translation still plagues the upper limit of video length. In this paper,
we propose a novel and training-free approach towards efficient and effective long
video editing, termed AdaFlow. We first reveal that not all tokens of video frames
hold equal importance for keyframe-consistency editing, based on which we pro-
pose an Adaptive Attention Slimming scheme for AdaFlow to squeeze the KV se-
quence of extended self-attention. This enhancement allows AdaFlow to increase
the number of keyframes for translations by an order of magnitude. In addition,
an Adaptive Keyframe Selection scheme is also equipped to select the represen-
tative frames for joint editing, further improving generation quality. With these
innovative designs, AdaFlow achieves high-quality long video editing of minutes
in one inference, i.e., more than 1k frames on one A800 GPU, which is about
ten times longer than the compared methods. To validate AdaFlow, we also build
a new benchmark for long video editing with high-quality annotations, termed
LongV-EVAL. The experimental results show that our AdaFlow can achieve obvi-
ous advantages in both the efficiency and quality of long video editing. Our code
is anonymously released at https://anonymous.4open.science/r/AdaFlow-C28F.
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1 INTRODUCTION

Recent years have witnessed the great success of diffusion-based models in high-quality text-driven
image generation and editing (Ho et al., 2020; Hertz et al., 2022; Couairon et al., 2022; Tumanyan
et al., 2023; Brooks et al., 2023; Tewel et al., 2024). More recently, the rapid development of im-
age diffusion models also sparks an influx of attention to text-driven video editing (Geyer et al.,
2023; Cong et al., 2023; Qi et al., 2023). As a milestone in the research of AI Generated Con-
tent (AIGC), text-driven video editing can well broaden the application scope of diffusion models,
such as animation creation, virtual try-on, and video effects enhancement. However, compared
with the well-studied image editing, text-driven video editing is still far from satisfactory due to its
high requirement of frame-wise consistency (Wu et al., 2023b; Qi et al., 2023; Yang et al., 2023;
2024). Meanwhile, its extremely high demand for computation resources also greatly hinders devel-
opment (Cong et al., 2023; Wu et al., 2023b; Kara et al., 2024).

Most existing methods (Cong et al., 2023; Wu et al., 2023b; Kara et al., 2024; Liu et al., 2024) can
only support video editing of a few seconds, and long video editing is still notoriously challenging.
In particular, current research often resorts to the well-trained image diffusion models for video
editing via test-time tuning (Wu et al., 2023b; Liu et al., 2024) or training-free paradigms (Ceylan
et al., 2023; Cong et al., 2023; Kara et al., 2024). To maintain the smoothness and consistency of
edited videos, these methods primarily extend the self-attention module in diffusion models to all
video frames, commonly referred to as extended self-attention (Geyer et al., 2023; Wu et al., 2023b).
Despite its effectiveness, this solution will lead to a quadratic increase in computation as the number
of video frames grows, and the token-based representations of these video frames further greatly
exacerbate the memory footprint. For instance, the editing of ten video frames needs to compute
extended self-attention on up to 40k visual tokens in the diffusion model (Geyer et al., 2023). As a
result, processing only a few video frames will require a prohibitive GPU memory footprint, making
existing approaches can only conduct video editing of several seconds.

To alleviate this issue, recent endeavors focus on factorizing video editing into a two-step genera-
tion task (Geyer et al., 2023; Yang et al., 2023; 2024). The first step is keyframe translation, which
samples the video keyframes to perform extended self-attention. Afterwards, all frames are fed to
the diffusion model for editing based on the translated keyframe information, often termed inter-
polation generation (Geyer et al., 2023). Compared to the direct editing on all video frames, this
two-step solution only needs to perform the quadratic computation of extended self-attention for the
keyframes, thus improving the number of overall editing frames from a dozen to nearly one hundred
frames (Geyer et al., 2023). However, the basic mechanism of extended self-attention is still left un-
explored, making these approaches (Geyer et al., 2023; Yang et al., 2023; 2024) still hard to achieve
minute-long video editing in one inference. Moreover, the naive uniform sampling of keyframes
(Geyer et al., 2023) also does not consider the change of video content, e.g., the motion of objects
or the transitions of the scene, and a large sampling interval will inevitably undermine video quality.

In this paper, we propose a novel and training-free method called AdaFlow for high-quality long
video editing. In particular, we first observe that during extended self-attention, not all visual to-
kens of a video frame are equally important for maintaining frame consistency and video continuity.
Only the tokens of the frame correspond to the query matter. In this case, Adaptive Attention Slim-
ming is proposed to squeeze the less important ones in the KV sequence of extended self-attention,
thereby greatly alleviating the computation burden. Meanwhile, AdaFlow also introduces an Adap-
tive Keyframe Selection to pick up the frames that can well represent the edited video content, thus
avoiding the translation of redundant keyframes and improving the utilization of computation re-
sources. With these innovative designs, AdaFlow can improve the number of video frames edited
by an order of magnitude, realizing true long video editing.

To well validate the proposed AdaFlow, we also propose a new long video editing benchmark to
complement the existing evaluation system, termed LongV-EVAL. This benchmark consists of 75
videos, and they are about one minute long and cover various scenes, such as humans, landscapes,
indoor settings and animals. For LongV-EVAL, we meticulously design a data annotation process,
which applies multimodal large language models (Achiam et al., 2023; Lin et al., 2023) to generate
three high-quality editing prompts for each video. These prompts focus on different aspects of the
video, such as primary subjects, background, overall style, and so on. In terms of evaluation metrics,
we follow (Sun et al., 2024) to evaluate the edited videos from the aspects of frame quality, video
quality, object consistency, and semantic consistency on LongV-EVAL.
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To validate AdaFlow, we conduct extensive experiments on the proposed LongV-EVAL benchmark,
and also compare AdaFlow with a set of advanced video editing methods (Yang et al., 2023; Geyer
et al., 2023; Cong et al., 2023; Yang et al., 2024; Kara et al., 2024). Both qualitative and quantitative
results show that our AdaFlow has obvious advantages over the compared methods in terms of the
efficiency and quality of long video editing. More importantly, AdaFlow can effectively conduct
various high-quality edits for videos of more than 1000 frames on a single GPU, e.g., changing the
main object, background or overall style.

Conclusively, the contribution of this paper is threefold:

• We propose a novel and training-free video editing method called AdaFlow with two inno-
vative designs, namely Adaptive Attention Slimming and Adaptive Keyframe Selection.

• The proposed AdaFlow is capable of long video editing of more than 1000 frames in one
inference on a single GPU, and it also supports various editing tasks, such as the change to
the background, foreground, overall styles, and so on.

• We also build a high-quality benchmark to complement the lack of long video editing eval-
uation, termed LongV-EVAL. On this benchmark, our AdaFlow shows obvious advantages
over the compared methods in terms of efficiency and quality.

2 RELATED WORKS

2.1 DIFFUSION-BASED IMAGE AND VIDEO GENERATION

Diffusion models have gained significant traction in image and video generation (Rombach et al.,
2022; Croitoru et al., 2023; Guo et al., 2023; Blattmann et al., 2023; Wang et al., 2024; Peng et al.,
2024). In image generation, DDPM (Ho et al., 2020) and its variants (Song et al., 2020; Dhari-
wal & Nichol, 2021; Nichol & Dhariwal, 2021; Rombach et al., 2022; Croitoru et al., 2023; Guo
et al., 2023) have demonstrated impressive results in producing detailed and realistic images. They
iteratively refine noisy images, progressively improving quality and coherence.

In addition, recent advances (Ho et al., 2022a;b; Wu et al., 2023b; Blattmann et al., 2023; Wang et al.,
2024) have extended diffusion models to video generation, where temporal consistency is crucial.
These methods build upon the success of image-based diffusion models by incorporating temporal
attention mechanisms to ensure consistency across frames. However, challenges persist, particularly
with long video generation, due to the computational and memory demands of processing hundreds
or thousands of frames. To address this, some methods adopt a divide-and-conquer approach, while
others adopt a temporal autoregressive approach (Li et al., 2024).

2.2 TEXT-DRIVEN VIDEO EDITING

With the success of image and video generation, an increasing number of works have applied pre-
trained text-to-image diffusion models to video editing (Wang et al., 2023; Wu et al., 2023b; Ma
et al., 2024; Liu et al., 2024), with the primary challenge being maintaining temporal consistency
across frames. Zero-shot video editing methods have gained attention for addressing this issue.
FateZero (Qi et al., 2023) introduced an attention blending module, combining attention maps from
the source and edited videos during the denoising process to improve consistency. TokenFlow
(Geyer et al., 2023) computes frame feature correspondences via nearest neighbors, which is similar
to optical flow, enhancing coherence. Similarly, Flatten (Cong et al., 2023) proposed flow-guided
attention that uses optical flow to guide attention for smoother editing. Video-P2P (Liu et al., 2024)
adapted classic image editing methods to video, but editing even an 8-frame video takes over ten
minutes, making it impractical for real-world applications.

Although these methods offer effective solutions for video editing, they struggle with long videos
having thousands of frames. InsV2V (Cheng et al., 2023) directly trains a video-to-video model and
proposes a method for long video editing, but it only edits about 20-30 frames (∼ 1s) at a time and
stitches them together, resulting in cumulative errors and quality decline after several iterations.

In addition to processing long videos, great content modification is also a main obstacle of video
editing (Cong et al., 2023; Geyer et al., 2023), such as structural modifications or adding new objects.
Most motion-flow-based methods (Cong et al., 2023; Geyer et al., 2023) as well as our AdaFlow are
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Prompt: A blue and white bird with a yellow beak perches on a branch, gazing downward.

Figure 2: The framework of the proposed AdaFlow. (a) The pipeline of AdaFlow for long video
editing. Given a source video and the text editing prompt, AdaFlow first applies Adaptive Keyframe
Selection (AKS) to adaptively divide the video into clips according to its content and then sam-
ple frames for keyframe translation. Afterwards, Adaptive Attention Slimming (AAS) is applied to
reduce the redundant tokens in Extended Self-Attention for keyframe translation, thereby increas-
ing the number of frames edited. Finally, the editing information of the keyframes is propagated
throughout the entire video. (b) Adaptive Keyframe Selection (AKS) truncates video clips accord-
ing to the frame-wise DIFT similarities and selects the adaptive keyframes according to video clips.
(c) Adaptive Attention Slimming removes the redundant tokens of frames in the K,V sequence for
Extended Self-attention, thereby greatly saving the GPU memory footprint for keyframe translation.

limited to this target under the training-free setting. In particular, this challenge often requires large-
scale training or test-time tuning (Wu et al., 2023b; Qi et al., 2023; Gu et al., 2024), such as FateZero
(Qi et al., 2023) that performs significant structural editing with test-time tuning, which is orthogonal
to the contribution of this paper.

3 PRELIMINARY

Diffusion Models. Denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) is a generative
network that aims at reconstructing a forward Markov chain {x1, . . . , xT }. For a data distribution
x0 ∼ q(x0), the Markov transition q(xt|xt−1) follows a Gaussian distribution with a variance sched-
ule βt ∈ (0, 1):

q (xt | xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)
. (1)

To generate the Markov chain {x0, . . . , xT }, DDPM employs a reverse mechanism with an ini-
tial distribution p(xT ) = N (xT ; 0, I) and Gaussian transitions. A neural network ϵθ is trained to
estimate the noise, ensuring that the reverse mechanism approximates the forward process:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, τ , t) ,Σθ (xt, τ , t)) , (2)

where τ denotes the text prompt. The parameters µθ and Σθ are inferred by the denoising model ϵθ.
Latent diffusion (Rombach et al., 2022) alleviates the computational demands by executing these
processes within the latent space of a variational autoencoder (Kingma, 2013).

Diffusion Features. Diffusion Features (DIFT) can extract the correspondence of images from
the diffusion network ϵθ without explicit supervision (Tang et al., 2023). Starting from noise z, a
series of images xt are generated by gradual denoising through a reverse diffusion process. At each
timestep t, the output of each layer of ϵθ can be used as a feature. Larger t and earlier network
layers produce more semantically aware features, while smaller t and later layers focus more on
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low-level details. To extract DIFT from an existing image, Tang et al. (2023) propose adding noise
of timestep t to the real image, then inputting it into the network ϵθ along with t to extract the latent
of the intermediate layer as DIFT. This method predicts corresponding points between two images,
and can even generate correct correspondences across different domains.

Extended Self-Attention. To ensure video smoothness and coherence, the self-attention block of
an image diffusion model must edit all frames simultaneously (Wu et al., 2023b; Geyer et al., 2023).
In this case, Extended Self-Attention (ESA) is introduced to maintain the coherence and temporal
consistency of the video. For the latent of the i-th frame at timestep t, denoted as zit, the attention
score is computed between the i-th frame and all other n frames. Mathematically, the extended
self-attention can be formulated as

Attention(Qi,K1:n, V1:n) = Softmax
(
QiK

T
1:n√
d

)
· V1:n, (3)

where Qi = WQzit,K1:n = WKz1:nt , V1:n = WV z1:nt . Here, WQ, WK , and WV are the weighted
matrices identical to those used in the self-attention layers of the image diffusion model.

4 METHOD

Given a source video of n frames, I = [I1, ..., In], Ii ∈ RH×W , where H ×W denotes the resolu-
tion, and a text prompt P describing the editing task, we first use a pre-trained text-to-image diffu-
sion model ϵθ to extract its diffusion features, denoted as F = [F1, ...,Fn], Fi ∈ Rh×w×d. Based
on the obtained diffusion features F , AdaFlow employs Adaptive Keyframe Selection (Sec.4.1) to
divide the video into multiple clips based on the content. For each clip that consists of consecu-
tive frames with similar content, one frame is then sampled as a keyframe at each timestep, and all
keyframes are edited simultaneously using ϵθ. To edit videos as long as possible, AdaFlow then ap-
plies Adaptive Attention Slimming to reduce the length of KV sequences in extended self-attention
for keyframe translation (Sec. 4.2). Finally, the information from translated keyframes is propagated
to the remaining frames to ensure smoothness and continuity throughout the edited video, which is
denoted as J = [J1, ...,Jn] (Sec. 4.3).

Pre-processing. Given the source video I, we first use a pre-trained text-to-image diffusion model
ϵθ to extract the diffusion features of each frame Ii, resulting in F = [F1, ...,Fn]. Afterwards, we
use the diffusion model ϵθ to perform DDIM inversion (Song et al., 2020) on each frame Ii to obtain
a sequence of latents, which will be used in the subsequent editing.

4.1 ADAPTIVE KEYFRAME SELECTION

Keyframe selection is critical for long video editing, which however is often ignored in previous
works (Wu et al., 2023b; Cong et al., 2023; Liu et al., 2024). When the visual content of a given
video changes rapidly, keyframe samplings at shorter intervals are usually required to ensure the
editing quality (Geyer et al., 2023), but it will result in a large number of redundant frames for
editing. To address this issue, we propose Adaptive Keyframe Selection (AKS) based on the video
content. In particular, consecutive and similar frames are grouped into clips allowing for more
informed keyframe sampling. In periods where the visual content changes rapidly, keyframes can
be selected more densely, whereas fewer frames are required for clips with less dynamic content. In
this case, AKS can retain editing quality while reducing the computational burden, particularly for
videos with little variation.

In practice, Adaptive Keyframe Selection (AKS) resorts to DIFT features for frame-wise similarity.
DIFT can effectively match corresponding points between images (Tang et al., 2023). It is shown that
when two images are not very similar, the confidence level of the matching decreases significantly.
Based on this principle, AKS uses DIFT to quickly assess the degree of change in a video. As shown
in Fig.2 (b), we can obtain a heatmap to represent the temporal dynamics (Brooks et al., 2022)
between frames using DIFT. When there is a noticeable shift in the angle of objects in the frame or
a sudden appearance of new objects, these regions will show brighter colors in the heatmap.

Concretely, to compute the heatmap Hi,j ∈ Rh×w of the temporal dynamics between the i-th frame
and the j-th frame, we compute the token-wise cosine similarity using their DIFT features. For a
token p in the i-th frame and a token q in the j-th frame, whose feature vectors are fp

i ∈ Fi and
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fq
j ∈ Fj , the cosine similarity CS(·) is computed by

CS(fp
i , f

q
j ) =

fp
i · fq

j

∥fp
i ∥∥f

q
j ∥

. (4)

Then the token q∗ most similar to the token p is obtained by
q∗ = argmax

q∈Tj

CS(fp
i , f

q
j ), (5)

where Tj denotes all tokens corresponding to the j-th frame.

Finally, the value corresponding to token p in the heatmap is

Hp
i,j = CS(fp

i , f
q∗

j ). (6)

Algorithm 1 Adaptive Video Partitioning

Require:
F : DIFT for each frame,
n: Number of frames,
l: Sliding window size,
s: Step size,
ms: Mean threshold,
ws: Window threshold.

1: segments = [ ]
2: i = 1, j = 2
3: while j < n do
4: calculate Hi,j with Fi, Fj

5: if mean(Hi,j) < ms
or not window check(Hi,j , l, s, ws) then

6: segments.append(i)
7: i = j + 1
8: j = i+ 1
9: else

10: j = j + 1
11: end if
12: end while
13: return segments

After obtaining the heatmaps of a video, we can
use them to segment clips that consist of con-
secutive frames with similar content, of which
procedure is described in Algorithm 1. In
principle, we determine the partition points of
the video by calculating the similarity between
video frames. Specifically, we traverse the se-
quence of video frames and calculate the sim-
ilarity heatmap for the frame pair. If the mean
value of the heatmap between a pair of frames
is smaller than a defined threshold, or if the
sliding window finds the mean value below the
threshold at any point, the current frame will
be marked as the start of a new clip. Then, we
continue traversing from the next possible start-
ing point until the entire video is processed. Fi-
nally, we obtain the starting indices of all clips
S = {s1, ..., sM}, where M represents the to-
tal number of clips.

In Appendix E, we visualize the content-aware
video partitioning with a y − t plot. As shown
in Fig.7, the adaptively partitioned video clips
are similar within each part, but the partitioning
points are accurately positioned where the video content undergoes rapid changes.

After partitioning, we can directly select a frame from each partition at each timestep, obtaining a
total of M keyframes, denoted as K = [Ik1

, ..., IkM
], which satisfies si ≤ ki < si+1.

4.2 ADAPTIVE ATTENTION SLIMMING

As mentioned in Section 3, we use extended self-attention for keyframe translation, thereby ensuring
the smoothness and continuity of edited videos. However, extended self-attention involves the con-
catenation of KV tokens of all frames, resulting in a quadratic increase in computation. Moreover,
the extremely high GPU memory footprint becomes a bottleneck for long video editing. Besides,
if the number of keyframes is severely limited, it will significantly hinder the length of the editable
video and adversely affect the editing quality. To address this issue, we propose a novel Adaptive
Attention Slimming (AAS) method to reduce the KV sequence of extended self-attention, which can
significantly improve computational efficiency without affecting video editing quality.

Concretely, given one keyframe Iki
, similar to Eq.6, we use DIFT to calculate M co-

sine similarity heatmaps between this keyframe and all other keyframes, denoted as H =
{Hk1,ki

, Hk2,ki
, . . . ,HkM ,ki

}. From these heatmaps, we select the m pixel positions with the high-
est values. For K and V in extended self-attention, we retain only the tokens corresponding to these
m positions and obtain new K̃k1:kM

and Ṽk1:kM
, of which length is much shorter than the default

ones. Afterwards, the slimmed Extended Self-attention is defined by

Attention(Qi, K̃k1:kM
, Ṽk1:kM

) = Softmax

(
QiK̃

T
k1:kM√
d

)
· Ṽk1:kM

. (7)
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For ease of subsequent calculations, we abbreviate Attention(Qi, K̃k1:kM
, Ṽk1:kM

) as Ai.

In Appendix D, we visualize the relationship between the retained tokens in the key/value pairs and
the query. It can be intuitively observed that the KV tokens more related to the query frames are
retained more, while the ones different from the query are often discarded. It is because over longer
time spans, more content becomes dissimilar to the query, and attending to these contents does not
significantly improve the generation quality and consistency of the query frames. Conversely, frames
closer to the query are crucial for maintaining the video’s coherence. Therefore, the proposed AAS
can save computational resources and minimize the impact on video editing quality.

4.3 FEATURE-MATCHED LATENT PROPAGATION

Similar to TokenFlow (Geyer et al., 2023), we propagate the generation of keyframes to non-
keyframes based on the token correspondences obtained from the source video, thus generating
a continuous and smooth video. However, unlike TokenFlow (Geyer et al., 2023), which requires
the calculations of token correspondences at each timestep and every self-attention operation, our
method only needs to compute the correspondences once before editing, and saves them for the use
in following timesteps. This setting greatly simplifies the computational process.

Specifically, given the source video and the obtained video clips, we compute token correspondences
between every two frames within the same clip. The formula for calculating the spatial position p of
the i-th frame corresponding to the j-th frame is the same as Eq.5. For convenience, we express the
correspondence between the position p in the i-th frame and the position q∗ in the j-th frame as

ϕij(p) = q∗. (8)

For each non-keyframe i, there is a keyframe j within the same video clip. Through the calculation
above, we can map each token in Ai to a corresponding token in Aj , which can be expressed as

Ai[p] = Aj [ϕij(p)]. (9)

For cases where there may be an inconsistent size between Fi and the output latent of self-attention
Ai, a simple resize operation is sufficient and will not affect the generation quality.

Note that, due to the principle of motion-flow-based video editing (Geyer et al., 2023; Cong et al.,
2023), our AdaFlow is still limited to the significant editing of video content, such as structural
modifications or adding new objects.

5 EXPERIMENTS

5.1 LONG VIDEO EDITING EVALUATION BENCHMARK

In this paper, we also propose a new long video editing benchmark considering the lack of spe-
cific evaluation of text-driven long video editing, termed LongV-EVAL. Concretely, we collected
75 videos of approximately 1 minute in length, which cover various domains such as landscapes,
people, and animals. We then annotate the videos using Video-LLaVA (Lin et al., 2023) and GPT-4
(Achiam et al., 2023), generating three high-quality video editing prompts for each video. These
three prompts focus on different aspects of editing, i.e., the change to foreground, background or
overall style. More details of this benchmark are described in Appendix A.

In terms of evaluation, we follow Sun et al. (2024) to use four quantitative evaluation metrics: (1)
Frames Quality (FQ): Before considering all video frames together, the quality of each individual
frame forms the foundation for determining the overall video quality. We use the LAION aesthetic
predictor (Schuhmann et al., 2021), which is aligned with human rankings, for image-level quality
assessment. This predictor estimates aspects such as composition, richness, artistry, and visual ap-
peal of the images. We take the average aesthetic score of all frames as the overall quality score of
the video. (2) Video Quality (VQ): We use the DOVER score (Wu et al., 2023a) for video-level
quality assessment. DOVER is the most advanced video evaluation method trained on a large-scale
human-ranked video dataset. It can evaluate aspects such as artifacts, distortions, blurriness, and
incoherence. (3) Object Consistency (OC): In addition to evaluating overall video quality, main-
taining object consistency in long video editing is also important. We use DINO (Caron et al., 2021),
a self-supervised pre-trained image embedding model, to calculate frame-to-frame similarity at the
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Table 1: Comparisons between AdaFlow and the state-of-the-art methods on LongV-EVAL. Here,
Mins/Video denotes the average number of minutes of video editing. FQ, VQ, OC, and SC denote
frame quality, video quality, object consistency, and semantic consistency, respectively.

Method FQ↑ VQ↑ OC↑ SC↑ Mins/Video↓

Rerender(Yang et al., 2023) 5.36 0.638 0.942 0.961 52
TokenFlow(Geyer et al., 2023) 5.30 0.808 0.947 0.966 40
FLATTEN(Cong et al., 2023) 5.05 0.637 0.882 0.931 80
RAVE(Kara et al., 2024) 5.17 0.677 0.861 0.909 83
FRESCO(Yang et al., 2024) 5.65 0.820 0.930 0.954 47

AdaFlow (ours) 5.43 0.839 0.953 0.969 24

Table 2: User study. 18 participants are asked to evaluate the edited videos of different methods in
terms of video quality and temporal consistency. The values are the percentages of choices.

Metrics Rerender TokenFlow FLATTEN FRESCO RAVE AdaFlow (Ours)
Video Quality 0.0% 12.5% 1.8% 4.5% 3.6% 77.7%
Temporal Consistency 0.0% 10.7% 1.8% 11.6% 0.0% 75.9%

object level. (4) Semantic Consistency (SC): CLIP (Radford et al., 2021) visual embeddings are
widely used to capture the semantic information of images. The cosine similarity of CLIP embed-
dings between adjacent frames is a standard metric for evaluating the frame-to-frame consistency
and overall smoothness of a video.

5.2 EXPERIMENTAL SETUPS

In our experiments, we use the official pre-trained weights of Stable Diffusion (SD) 2.1 (Rombach
et al., 2022) as the text-to-image model. We employ DDIM Inversion with 50 timesteps and denois-
ing with 50 timesteps. For image editing, we adopt PnP-Diffusion (Tumanyan et al., 2023). When
extracting DIFT, we select the features corresponding to t=0 for each frame of the source video
(Tang et al., 2023), which are extracted from the intermediate layer of the 2D Unet Decoder. Dur-
ing editing, the video resolution is set to 384x672. For keyframe selection, the average similarity
threshold is set to 0.75, and the similarity threshold within the sliding window is set to 0.6. The
sliding window has a side length of 42 pixels, with a step size of 21 pixels per slide. For joint editing
of keyframes, if the number of keyframes exceeds 14, pruning is initiated. We consistently retain
the token count corresponding to 14 frames, with the degree of pruning increasing as the number of
keyframes increases. All our experiments are conducted on an NVIDIA A800 80GB GPU.

In our experiments, we mainly compare our AdaFlow with five advanced video editing methods,
including Rerender (Yang et al., 2023), TokenFlow (Geyer et al., 2023), FLATTEN (Cong et al.,
2023), FRESCO (Yang et al., 2024), and RAVE (Kara et al., 2024). For these baselines, we use
the default settings provided in their official GitHub repositories. Since TokenFlow, FLATTEN, and
RAVE are unable to edit long videos in a single inference, we segment the long videos for editing.
Based on their computational resource usage, we edit 128, 32, and 16 frames at a time.

5.3 QUANTITATIVE ANALYSIS

In Tab.1, we first quantitatively compare the proposed AdaFlow with a set of the latest video editing
methods (Yang et al., 2023; Geyer et al., 2023; Cong et al., 2023; Yang et al., 2024; Kara et al., 2024)
on LongV-EVAL. In particular, we accomplish the long video editing of the compared methods in
multiple inferences due to the limit of GPU memory. As can be seen, our AdaFlow achieves better
performance than the compared methods in terms of video quality, object consistency, and seman-
tic consistency. Although it is slightly inferior to FRESCO (Yang et al., 2024) in frame quality,
FRESCO has a large gap between the edited video and the source video, according to the visualiza-
tion of Fig.3. In addition to delivering excellent editing quality, our AdaFlow not only enables the
editing of longer videos but also achieves much higher efficiency through its innovative designs. As
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A blue and white bird with a yellow beak perches on a branch, gazing downward.

Watercolor hues transform a playful dog in tall grass into a vibrant, artistic scene.

A man rides a bicycle down a pathway lined with vibrant, autumn-colored trees.

Frame 0 Frame 150 Frame 300 Frame 450 Frame 600 Frame 750 Frame 900 Frame 1050 Frame 1200

Frame 0 Frame 100 Frame 200 Frame 300 Frame 400 Frame 500 Frame 600 Frame 700 Frame 800

Frame 0 Frame 150 Frame 300 Frame 450 Frame 600 Frame 750 Frame 900 Frame 1050 Frame 1200

Figure 3: Comparisons of AdaFlow with a set of advanced video editing methods. The red box refers
to the failed editing of the methods, e.g., the changes of objects or background, or the inconsistency
between frames. Compared with the other methods, our AdaFlow can not only process videos of up
to 1k frames in one inference but also can well keep the quality and continuity of edited videos.

shown in the last column of Tab.1, our method takes an average of 24 minutes to edit a video, while
the baselines take at least 40 minutes, almost twice as long as ours.

In addition to the measurable metrics of LongV-EVAL, we also conduct a comprehensive user study
to compare our AdaFlow with other methods in Tab.2. In practice, we invited 18 participants to
choose their preferred videos edited by different methods based on two metrics, i.e., video quality
and temporal consistency. We randomly selected 20 sets of video-text data for the user study. Each
set contains 6 videos for comparison, so each participant needs to view 120 long videos and make
40 choices. The specific evaluation criteria are given in Appendix C. Considering the participants’
attention span, we believe this is an appropriate amount of data. As shown in Tab.2, it is evident
that our method is the most favored in terms of two metrics. Overall, these results well validate the
efficiency and effectiveness of our AdaFlow for long video editing.

5.4 QUALITATIVE RESULTS

To better evaluate the effectiveness of our AdaFlow, we visualize its key steps in Fig.1 and also
compare its results with a set of the latest video editing methods in Fig.3. As shown in Fig.1, for a
video approximately 1000 frames long, AdaFlow adaptively segments the video clips based on con-
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White cat and blanket transformed into a 

vibrant, abstract Picasso-style artwork.

Figure 4: Ablation Study for Adaptive Keyframe Selection (AKS). AKS can capture the abrupt
changes of edited videos to ensure the editing quality, e.g., the appearance of the car (left), or the cat
yawning suddenly (right). Without AKS, the rapidly changing parts of the video are often blurry.

tent, and then selects keyframes (Row 2) accurately and effectively perform text-guided keyframe
translation. For instance, transforming a white sheep into a black sheep (Row 3), changing a lush
green scene into an autumn atmosphere (Row 4), or translating the video into the Van Gogh style
(Row 5). Each edit strictly follows the text prompt and maintains the consistency with the source
video for the parts that do not require changing. More visualization can be found in Appendix B.

In Fig.3, we compare the edited videos by AdaFlow with those of Rerender (Yang et al., 2023),
FRESCO (Yang et al., 2024), and TokenFlow (Geyer et al., 2023). As observed, Rerender can
sometimes over-edit, resulting in strange bright spots or objects that are not in the source video.
FRESCO demonstrates good temporal consistency, but it always alters the background even though
the prompt doesn’t mention it. This case significantly hinders the controllability of video editing.
The editing results of TokenFlow, which also follows a two-step editing, are close to AdaFlow
in frame quality but much inferior in temporal consistency when editing long videos. As marked
by the red boxes, the editing also shows the lack of temporal consistency and defective editing
quality by TokenFlow. It can be observed that the bird’s beak often changes in the first editing
results, indicating temporal inconsistency. In the last example, it also generates a red object that is
irrelevant to the prompt and does not exist in the source video. Compared to TokenFlow and the
other two baselines, our proposed AdaFlow can maintain consistency in long video editing tasks
while achieving high-quality edits. Conclusively, these results show that our AdaFlow can not only
achieve long video editing of more than 1k frames in one inference but also can obtain better video
quality and consistency than existing methods.

In Fig.4, we also ablate the effect of the Adaptive Keyframe Selection (AKS) in AdaFlow. It can
be seen that the example on the left figure shows a car quickly entering the video frame. With
AKS, AdaFlow can automatically select more keyframes of this content, significantly improving
image quality. The example on the right shows a constantly moving cat. Since uniform keyframe
sampling is difficult to deal with such motion scenes, the cats in the generated results are always
blurred. In contrast, when the cat suddenly yawns, AKS can automatically identify the rapid change
and sample keyframes at this point, resulting in much better generation quality for the suddenly
appearing tongue. Overall, these results confirm the effectiveness of our AdaFlow for editing videos
with obvious variations.

6 CONCLUSION

In this paper, we present a novel and training-free method for high-quality long video editing, termed
AdaFlow, which can effectively edit more than 1k video frames in one inference. By introducing the
innovative designs of Adaptive Attention Slimming and Adaptive Keyframe Selection, AdaFlow sig-
nificantly reduces computational resource consumption while enhancing the number of keyframes
that can be edited simultaneously. We also build a new benchmark called LongV-EVAL to com-
plement the evaluation of text-driven long video editing. Extensive experiments are conducted and
show that AdaFlow is more effective and efficient than the compared methods in long video editing.
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A DATASET ANNOTATING DETAILS

We collected 75 videos, each approximately one minute long with a frame rate of 20-30 fps, from
https://mixkit.co/, https://www.pexels.com, and https://pixabay.com. The video content spans vari-
ous subjects, including people, animals, and landscapes. To annotate these data with high-quality
editing prompts, we first input the video V and prompt P1 into Video-Llava (Lin et al., 2023), where
P1 is “Please add a caption to the video in great detail.” This generates a detailed textual description
C of the video.

Next, we input prompt P2 into GPT-4 (Achiam et al., 2023), where P2 has three different forms to
generate three distinct editing prompts for the same video. The forms of P2 are as follows:

• “I have a video caption: C. Imagine that you have modified the main object of the video
content (such as color change, similar object replacement, etc.). After editing, add a con-
cise one-sentence caption of the edited video (with emphasis on the edited part, no more
than 15 words), not the original video content. The answer should contain only the caption,
without any additional content.”

• “I have a video caption: C. Imagine that you have modified the background of the video
content (such as background tone replacement, similar background replacement, etc.). Af-
ter editing, add a concise one-sentence caption of the edited video (with emphasis on the
edited part, no more than 15 words), not the original video content. The answer should
contain only the caption, without any additional content.”

• “I have a video caption: C. Imagine that you have applied Van Gogh, Picasso, Da Vinci,
Mondrian, watercolors, comics, or drawings style transfer to the video. After editing, add a
concise one-sentence caption of the edited video (with emphasis on the style, no more than
15 words), not the original video content. The answer should contain only the caption,
without any additional content.”
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Small boat floats near the shore against a newly vibrant, sunset-colored sky.
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The video shows a white goat ambling through a vibrant field of red leaves.
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Frame 0 Frame 120 Frame 250 Frame 360 Frame 450 Frame 600 Frame 740 Frame 850

Frame 1000 Frame 1150 Frame 1280 Frame 1350 Frame 1460 Frame 1600 Frame 1700 Frame 1780

Sunset now features a surreal blue hue, enhancing the dreamlike ambiance over the tranquil waters.
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Figure 5: Additional Qualitative Results. Our method supports a wide variety of text-driven video
edits and maintains high editing quality and temporal consistency even for videos exceeding a thou-
sand frames.

This process results in three final editing prompts for each video.

B ADDITIONAL QUALITATIVE RESULTS

As shown in Fig.5, our method can edit over a thousand video frames on a single NVIDIA A800
(80GB) while maintaining temporal consistency and achieving high editing quality.
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Figure 6: We retain only the tokens corresponding to the regions shown in the figure for K and V
during the self-attention computation. In the scenario illustrated here, the eighth frame serves as the
query. It can be observed that the content closer to the query frame is automatically retained more,
while the content further away from the query frame is discarded more. This automatic selection can
save substantial computational resources while maintaining the continuity and consistency of video
generation.

t

y

Keyframes

Source video

· · · · · ·

Figure 7: y-t plot. We extracted a vertical column of pixels from the center of each video frame and
then sequentially stitched these columns together from left to right to get the y-t plot. The blue lines
in the figure indicate the points where the video is segmented.

C USER STUDY DETAILS

We randomly selected 20 video-text pairs from our dataset for a user study, comparing them with
the five baselines mentioned in the main text. For each pair, 50 participants were asked to evaluate
and select the best video from the six options based on the following criteria:

• Video Quality: The edited video should appear realistic and not easily identifiable as AI-
generated. Only the parts specified by the prompt should be edited, while the content not
mentioned in the prompt should remain consistent with the source video.

• Temporal Consistency: The same object should remain consistent at any point in the long
video, and the transitions between frames should be as smooth as in the source video.

D VISUALIZATION OF ADAPTIVE ATTENTION SLIMMING

As shown in Fig.6, the eighth frame serves as the query in this attention operation. By employing
our proposed method, a portion of the tokens can be automatically discarded to save computational
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resources. The content closer to the query frame is retained more, while the content further away
from the query frame is discarded more. This is because, with a larger period, a significant amount
of content dissimilar to the query appears in the frames, and attending to this content does not
contribute to the continuity and consistency of the video. Conversely, the content closer to the query
is crucial for maintaining the smoothness of the video. Therefore, using our proposed method not
only saves memory but also minimally impacts the quality of video generation.

E VISUALIZATION OF KEYFRAME SELECTION

To visualize the Adaptive Keyframe Selection, we extracted a vertical column of pixels from the
center of each video frame. We then sequentially stitched these columns together from left to right
to create a y-t diagram, as shown in Fig.7. The blue dashed lines in the figure indicate the points
where we segmented the video. It can be observed that each segmentation point corresponds to
a significant change in the video content. Moreover, the keyframes obtained from each segment
always contain different content. This demonstrates the effectiveness of our method.

F LIMITATIONS

Our method utilizes the motion information from the source video as a reference to generate non-
key frames. Therefore, our approach performs exceptionally well when the image structure remains
unchanged. However, it often produces unsatisfactory results when changes in object shapes are
required. Additionally, since our method is training-free and directly employs image editing tech-
niques, it primarily addresses the issue of temporal consistency. Consequently, the editing capability
of our method may be influenced by the performance of the image editing techniques used.

16


	Introduction
	Related Works
	Diffusion-based Image and Video Generation
	Text-driven Video Editing

	Preliminary
	Method
	Adaptive Keyframe Selection
	Adaptive Attention Slimming
	Feature-Matched Latent Propagation

	Experiments
	Long Video Editing Evaluation Benchmark
	Experimental Setups
	Quantitative Analysis
	Qualitative Results

	Conclusion
	Dataset Annotating Details
	Additional Qualitative Results
	User Study Details
	Visualization of Adaptive Attention Slimming
	Visualization of Keyframe Selection
	Limitations

