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ABSTRACT

Bayesian optimal experimental design (BOED) aims to predict experiments that
can optimally reduce the uncertainty in the model parameters. However, in many
decision-critical applications, accurate parameter estimation does not necessarily
translate to better decision-making, as not all parameters may significantly affect
the efficacy of the decisions made in the presence of uncertainty. In this work, we
propose GoBOED (Goal-driven Bayesian Optimal Experimental Design) to di-
rectly optimize the experimental design to reduce the model uncertainty that crit-
ically affects the quality of the downstream decision-making task of interest. We
establish a computationally tractable connection between BOED and robust opti-
mal control based on an uncertain model through convex optimization. This new
integrated framework for robust control under uncertainty enables efficient gra-
dient computation through a decision layer in GoBOED. Leveraging amortized
variation inference, we create a differentiable pipeline that can identify optimal
experiments targeting decision value. Unlike traditional information-maximizing
designs, GoBOED can provide flexibility in experimental selection, as the experi-
ment with the lowest data acquisition cost may be prioritized when multiple exper-
iments lead to equivalent decision quality despite their difference in reducing the
parameter uncertainty. The application of GoBOED to real-world problems, such
as epidemic management and pharmacokinetic control, demonstrates the efficacy
of our proposed goal-driven experimental design approach.

1 INTRODUCTION

When experiments are expensive, time-consuming, or potentially dangerous, optimizing the exper-
iment becomes crucial. For example, for systems identification or dynamic model learning in such
scenarios, we need to carefully select the most informative experiments to accurately estimate the
model parameters that govern the system. Bayesian optimal experimental design (BOED) pro-
vides a systematic framework specifically designed for this purpose, allowing researchers to identify
maximally informative experimental designs (Chaloner & Verdinelli, 1995; Rainforth et al., 2024).
This approach has found applications across diverse fields including psychology (Bach, 2023), geo-
physics (Strutz & Curtis, 2024), and other domains where experimental resources are limited.

However, BOED comes with significant computational challenges. It inherently requires simulating
numerous scenarios to estimate the posterior distribution of the model parameters, often involving
complex calculations such as Kullback-Leibler (KL) divergence between distributions or covariance
matrix evaluations. To address these challenges, researchers have proposed various approaches, in-
cluding nested Monte Carlo methods (Rainforth et al., 2018) and computational frameworks (Ryan
et al., 2016). However, these methods require large numbers of samples for convergence, ultimately
perpetuating the computational burden. These substantial sampling requirements make BOED com-
putationally expensive in practice, limiting its applicability to complex real-world systems.

To tackle computational bottlenecks while approximating complicated posterior distributions pre-
cisely, researchers have developed numerous amortized Bayesian inference methods. These ap-
proaches include variational inference (Foster et al., 2019; 2020), normalizing flows (Dong et al.,
2025; Orozco et al., 2024), diffusion models (Iollo et al., 2025), and mutual information neural
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estimation (Kleinegesse & Gutmann, 2020). In cases where experiments are performed sequen-
tially, reinforcement learning techniques have proven particularly valuable, with several methods
proposed to adaptively optimize the experimental design using accumulated information gain for
every step (Foster et al., 2021; Ivanova et al., 2021; Blau et al., 2022).

Building on the BOED foundation, recent research has developed computationally efficient strate-
gies for robust decision-making under uncertainty in real-world applications. For example, optimal
control algorithms have been shown effective in epidemic management for developing policies that
reduce both public health and economic impacts (Linde et al., 2009; Nowzari et al., 2016; Paré
et al., 2020; Gardner et al., 2021). By focusing on the structure of the compartmental epidemio-
logical models before evaluating the final output, computationally efficient strategies based on the
Susceptible-Infected-Quarantined-Recovered (SIQR) model have been developed for optimal con-
trol of infectious disease while maintaining social functioning and minimizing disruptions under
resource constraints (Ma et al., 2023; Ofir et al., 2022). Another real-world example is for quan-
tifying how medicines are absorbed, distributed, metabolized, and eliminated in the body using
Pharmacokinetic (PK) models (Mould & Upton, 2013; Zou et al., 2020). Within PK modeling, dose
optimization is critical to maintain efficacy while minimizing adverse toxicity (Silva et al., 2025). A
detailed discussion of related work is provided in Appendix A.

However, all of these models are typically abstracted and significantly simplified, and the parameters
in these models are inherently uncertain, making accurate estimation critical for effective decision
making. Vitková et al. (2023) addressed parameter uncertainty by analyzing open-loop control cy-
cles. While robust control methods can accommodate parameter uncertainty and more general model
uncertainty (Nemirovski, 2012) , they often lead to overly conservative policies. Therefore, reducing
uncertainty by BOED is necessary for effective control outcomes.

Considering experimental design for the final operational goal of more effective decision-making
under uncertainty, we propose a new Goal-driven BOED (GoBOED) framework to strategically de-
sign experiments to reduce model uncertainty that most significantly affects decision outcomes. We
utilize variational inference methods to approximate accurate posterior distributions (Foster et al.,
2019), while employing convex optimization methods for optimal control (Talaei et al., 2024; Am-
bikapathi et al., 2015). Figure 1 visualizes our proposed GoBOED framework.

Our GoBOED has significantly reduced computational time while maintaining the interpretability
of the solution. At the optimal point, we can perform Lagrangian sensitivity analysis and use the
derivative information to guide experimental design. This allows us to efficiently identify infor-
mative experimental designs that have the greatest impact on decision-making processes, creating a
more direct bridge between experimental observation and control implementation in convex settings.

In summary, our main contributions are:
• We propose GoBOED to integrate Bayesian optimal experimental design with robust optimal

control under uncertainty governed by convex optimization, enabling effective and efficient ro-
bust decision-making under uncertainty.

• We develop computational strategies that efficiently train posterior distributions while simulta-
neously making decisions under uncertainty.

• The proposed method is applicable to a broader class of real-world control problems formu-
lated as convex optimization problems with uncertainty-aware complex system modeling, with
demonstrated performances in epidemic management and pharmacokinetic control.

2 BACKGROUND

2.1 BAYESIAN OPTIMAL EXPERIMENTAL DESIGN (BOED)

BOED is an information-theoretic approach to the problem of identifying which experiments are
most informative. It consists of a prior assumption about unknown model parameters θ ∈ Θ, design
variables ξ ∈ Ξ, a forward model f : Θ×Ξ → Y , and observations y ∈ Y given by y = f(θ, ξ)+ϵ,
where ϵ denotes noise, e.g., ϵ ∼ N (0, I).

Given these assumptions, we evaluate experimental designs by computing the expected information
gain (EIG). This involves calculating the KL divergence between the posterior and prior distribu-
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Figure 1: The figure illustrates how Bayesian Optimal Experimental Design (BOED) and robust
decision making interact. In BOED (left), observations from an experiment update the posterior,
and the (expected) posterior distribution then guides the design of the next experiment. The deci-
sion layer (center) maps the posterior to decision-relevant quantities (e.g., losses, risks, constraints)
and supports sensitivity analysis of how decisions vary with uncertainty. In the robust decision-
making module (right), a convex optimization uses this uncertainty representation to select actions
that perform well under uncertainty. Our method couples these components by embedding the robust
decision problem within the BOED loop: sensitivity analysis identifies regions of the posterior most
relevant for decisions, and the resulting robust decisions are used to prioritize the next experiment.

tions, and taking the expectation of this value with respect to the marginal likelihood. This formu-
lation can be reformulated to estimate EIG by sample average approximation (SAA) using Bayes’
rule:

EIG(ξ) := Ep(θ)p(y|θ,ξ)

[
log

p(y|θ, ξ)
p(y|ξ)

]
(1)

We then find the optimal experimental design ξ∗ = argmaxξ EIG(ξ) to identify the most informa-
tive experiment.

Since computing the posterior distribution and KL divergence between two distributions can be
computationally expensive, EIG has been often efficiently estimated using SAA with approximated
posterior distributions. As our paper focuses on real-world scientific problems and decision-aware
optimization, we employ variational inference (Foster et al., 2019; 2020). A key benefit of this
approach is that EIG with variational inference asymptotically converges to the true value as the
number of samples increases, ensuring the soundness of decision outputs alongside computational
efficiency.

When using variational inference, we can approximate the EIG by:

EIG(ξ) ≈ Ep(θ)p(y|θ,ξ)

[
log p(y|θ, ξ)− Eqϕ(θ|y,ξ)

[
log

p(y|θ, ξ)qϕ(θ|y, ξ)
p(θ)

]]
, (2)

where qϕ(θ|y, ξ) is an approximated posterior distribution, and ϕ represents neural network pa-
rameters for the variational inference network, which generates the posterior parameters based on
observation and design.

2.2 FROM BOED TO ROBUST DECISION-MAKING UNDER MODEL UNCERTAINTY

In many real-world applications, optimal decisions depend on uncertain model parameters θ. Stan-
dard robust decision-making accounts for this uncertainty when choosing an action, but here we
emphasize a complementary lever: BOED to actively reduce the uncertainty that matters for down-
stream decisions.

We first formalize the robust decision problem given a posterior. After running a design ξ and ob-
serving y, we obtain a posterior distribution over parameters θ, p(θ | y, ξ). Let J(q;θ) denote the
application cost corresponding to decision-making q given inferred model parameters θ (equiva-
lently, J(q | y, ξ) = Eθ∼p(θ|y,ξ)[ J(q;θ) ]). We seek a decision that is robust with respect to the
updated posterior:

q⋆ ∈ argmin
q∈Q

ρθ∼p(θ|y,ξ)
[
J(q;θ)

]
, (3)

where ρ is a risk functional (e.g., expectation or chance constraints).
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BOED chooses the design before observing y so that the posterior—hence the robust action in
equation 3—improves in the directions that matter for J(θ; q). The combining objective is

ξ⋆ ∈ argmin
ξ∈Ξ

Ep(y|ξ)

[
min
q∈Q

ρθ∼p(θ|y,ξ)
[
J(q;θ)

]]
, (4)

which is decision-focused: it prioritizes experiments that most reduce eventual robust loss, not just
overall parameter uncertainty. We illustrate with two applications: epidemic management and phar-
macokinetic control.

Optimal control for epidemiology Following Talaei et al. (2024), we study robust epidemi-
ological management based on a compartmental SIQR model. The population is divided into
susceptible (s), asymptomatic infected (xa), symptomatic infected (xs), and recovered (h). Let
d = [ s, xa, xs, h ]⊤ denote the state vector. The dynamics are

ḋ =M(β,γ, q)d,

where M represents the system matrix modeling epidemic infection dynamics, β = (βa, βs) are
the transmission rates for asymptomatic and symptomatic cases, γ = (γa, γs) are the corresponding
recovery rates, and q = (qa, qs) are the quarantine rates. Here β and γ are uncertain.

We optimize the quarantine strategy as described in Talaei et al. (2024). The objective function that
minimizes economic costs:

min
q∈[0,1)2

{
J(q;β,γ) =

(
za

1− qa
+

zs

1− qs

)}
s.t. λmax(M(β,γ, q)) ≤ −α,

where za represents the economic cost for asymptomatic quarantine, zs represents the economic
cost for symptomatic quarantine, λmax represents the largest eigenvalue of the matrix, and α > 0
is a constraint ensuring the stability of the system. We adopt the quarantine cost function proposed
by Talaei et al. (2024). Note that the objective function of this convex programming formulation
J(q;β,γ) is not directly dependent on SIQR model parameters. The detailed derivation of solution
can be found in Appendix D.1

Optimal dosing with pharmacokinetic models Considering pharmacokinetic (PK) control as
another example, the concentration at time t for a drug administered orally can be modeled using
the Bateman function (Bateman, 1910):

y(t) =
D · qc · ka
V · (ka − ke)

(
e−ke·t − e−ka·t

)
(1 + ϵmult) + ϵadd,

where V is the volume of distribution, qc is the dosing rate, ka is the absorption rate constant, ke is
the elimination rate constant, D is the dose administered, ϵmult is a multiplicative error term, and ϵadd
is an additive error term. This formulation captures the dynamics of drug absorption and elimination.

Given the drug’s potential toxicity, dosing should maintain systemic exposure within the therapeu-
tic window—avoiding toxic concentrations while not falling below the minimum effective con-
centration. We consider the maximum concentration Cmax and the area under the concentration
curve (AUC) as constraints and define a convex cost function J(q) to discourage high dosing, where
C1 and C2 are constant. The constrained problem can be written in the following forms,

min
qc∈[0,1]

C1 · qc + C2 · (qc)2 s.t. ymax(q
c;θ) ≤ ythresh, AUC(qc;θ) ≥ AUCmin.

Here θ denotes [ka, ke, V ] in the Bateman function, and the solution to this optimization formulation
can be found in Appendix D.2. We formulate an analogous convex optimization problem for the PK
model, mirroring the SIQR formulation.

3 METHODS

We develop an integrated framework, GoBOED, for goal-driven experimental design by bringing
together BOED (introduced in eq. (2)) and robust optimal control under model uncertainty through
convex optimization (described in eq. (3)). Our primary objective is to identify an optimal experi-
mental design ξ∗ that minimizes the expected controlled economic cost (i.e., the control objective),
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where the expectation is taken over posterior distributions of the parameters θ. This approach allows
us to update our beliefs with new observations and improve decision-making regarding goal-driven
optimal experiment and robust optimal control based on an uncertain model, following the method-
ology of Chaloner & Verdinelli (1995).

For a given experimental design ξ and observed data y, we formulate the optimization problem as:
min
q

Ep(θ|y,ξ)[J(q) s.t. Constraints(θ)] . (5)

Here, J(q) is the control cost, assumed convex in q, and it does not depend on θ directly; uncertainty
enters through the constraints in eq. (5). Under this convexity assumption we can carry out sensitivity
analysis of the optimizer with respect to q. The uncertain model parameters are collected in θ ∼
p(θ | y, ξ), and the key challenge is evaluating the chance term from the posterior. We address this
using importance sampling with a variational proposal as detailed below.

To approximate the posterior distribution, we employ stochastic variational inference. Specifically,
we approximate the true posterior p(θ|y, ξ) using a variational distribution qϕ(θ|y, ξ), where ϕ
denotes the variational parameters. The variational distribution is optimized by maximizing the
evidence lower bound (ELBO), which can be expressed as:

LV I(ϕ; y) = Eqϕ(θ|y,ξ) [log p(y|θ, ξ)]−DKL (qϕ(θ|y, ξ)∥p(θ)) . (6)

Once we have obtained the variational posterior qϕ(θ|y, ξ), we use it to estimate the expectation of
the constraints. Since qϕ may not exactly match the true posterior, we apply importance sampling to
correct for the discrepancy. For any function f(θ), the expectation under the true posterior can be
estimated as

Ep(θ|y,ξ)[f(θ)] ≈
∑N

i=1 f(θi)w(θi)∑N
i=1 w(θi)

, (7)

where (θi) are samples from qϕ(θ|y, ξ), and w(θi) =
p(y|θi,ξ)p(θi)
qϕ(θi|y,ξ) are importance weights.

In particular, for the constraint, we compute Constraints(Ep(θ|y,ξ)θ)] using the above formula with
f(θ) = θ. This allows us to evaluate the constraint and solve the optimization problem for each ξ
and y. Thus, our framework integrates BOED with optimal control under updated posterior distri-
bution uncertainty, leveraging variational inference and importance sampling.

3.1 ALTERNATIVE FORMULATION USING CHANCE CONSTRAINTS

To better incorporate the uncertainty in parameters θ for robust robust optimization, we apply an
alternative formulation using chance constraints, a powerful tool in optimization under uncertainty
ensuring that critical conditions hold with a specified probability (Charnes & Cooper, 1959; Miller
& Wagner, 1965). Given that the objective function is independent of θ in our formulations, we
can concentrate on the constraints with posterior samples θi ∼ p(θ|y, ξ), i = 1, ..., N . Directly
imposing constraints for each sample would be overly restrictive. Instead, we introduce a chance
constraint to ensure that each sample from the updated posterior distribution satisfies a stability
condition with high probability.

The alternative formulation, denoted LOC-CC, is defined as:
min
q

J(q) s.t. P(Constraints(θ) | y, ξ) ≥ η (8)

where θ comes from the posterior distribution p(θ|y, ξ), and η ∈ (0, 1) is the desired probability
level.

To evaluate the chance term in eq. (8) efficiently, we use importance sampling with a variational pro-
posal. Specifically, we set f(θ) = 1{Constraints(θ)|y, ξ} in eq. (7) to estimate P

(
Constraints(θ) |

y, ξ
)

stably.

1. Draw N samples {θi}Ni=1 from qϕ(θ | y, ξ).
2. Compute importance weights, and normalize it

wi =
p(θi) p(y | θi, ξ)
qϕ(θi | y, ξ)

, w̃i =
wi∑N
j=1 wj

.
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3. Estimate the posterior probability (given y, ξ):

P(Constraints(θ) | y, ξ) =

N∑
i=1

w̃i 1{Constraints(θ) | y, ξ} .

Using these importance-weighted samples, we impose the constraints and solve the resulting opti-
mization via convex optimization.

3.2 ROBUST CONTROL USING CONDITIONAL VALUE-AT-RISK (CVAR)

As an alternative to the scenario-based chance constraint in Appendix E.1.1, we control the tail of
constraint violations using Conditional Value-at-Risk (CVaR).

Let the feasibility event be P(Constraints(θ) | y, ξ) ≥ η. For samples {θi}Ni=1 from the posterior
distribution, define the per-sample violation vi(q;θi). We enforce

CVaRη

(
v(q;θ)

)
≤ 0 (9)

using the Rockafellar–Uryasev sample-average form with optional normalized weights w̄i:

si ≥ vi(q;θi)− τ, i = 1, . . . , N, τ +
1

1− η

N∑
i=1

w̄i si ≤ 0, (10)

with decision variables τ ∈ R and si ≥ 0. At optimality, si = (vi(q;θi) − τ)+, so only the upper
tail beyond the η-quantile contributes.

3.3 DIFFERENTIABLE DECISION LAYER

We embed the robust decision problem from Appendix B as a differentiable decision layer. Given
parameters θ, the layer solves the convex program and returns the optimal pair (q̂, J∗(q̂;θ)) to-
gether with the KKT multipliers λ̂ of the active constraints. Under standard regularity, J∗(q̂;θ) is
differentiable, and KKT sensitivity yields

∇θJ
∗(θ) = ∂θJ(q̂;θ) +

∑
i∈A

λ̂i ∇θ gi(q̂,θ; y, ξ),

where gi(q,θ; ξ) ≤ 0 are the constraints and A is the active set. (If J does not depend on θ, the first
term vanishes.)

With this decision layer, gradients with respect to the variational parameters ϕ and the design ξ
follow by the chain rule:

dJ∗

dψ
=

(
∇θJ

∗(θ)
)⊤ ∂θ
∂ψ

, ψ ∈ {ϕ, ξ},

with the reparameterization θ = h(ϵ; y, ξ, ϕ), ϵ ∼ p(ϵ) (see Section 3.5 for details). Any explicit
penalties that depend on ξ through the constraints are handled via ∇ξhi(q̂,θ; y, ξ).

In summary, the decision layer solves the inner problem once (forward) and differentiates via KKT
(backward), making the robust decision step directly compatible with end-to-end training. For im-
plementation, we use cvxpylayers Agrawal et al. (2019) to map the convex optimization result
directly to the target output.

3.4 FORMULATION OF THE OPTIMIZATION PROBLEM

By combining convex optimization with stochastic variational inference in the previous section,
we achieve robust decision making under model parameter uncertainty. Our next objective is to
determine the optimal experimental design ξ∗ and corresponding variational parameters ϕ∗ that
jointly minimize the expected cost of decision making while ensuring accurate approximation of the
posterior distribution for parameters θ. We compute the expectation over the marginal likelihood,
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following approaches similar to Krishnan & Tickoo (2020a); Lacoste–Julien et al. (2011), because
the posterior distribution depends on a specific observation.

We formulate our optimization problem as:

(ξ∗, ϕ∗) = arg min
ξ∈Ξ,ϕ

Ep(y|ξ) [LOC(y, ξ;ϕ)− LVI(ϕ; y, ξ)] , (11)

where LOC = minq Eqϕ(θ|y,ξ)[J(q) + Constraints(θ)].

3.4.1 GRADIENT ESTIMATION

To optimize ϕ, we use reparameterization (Burda et al., 2015; Foster et al., 2020) to stabilize
training and to differentiate the variational objective w.r.t. ϕ. We maximize eq. (6) by writing
θi = g(ϵi; y, ξ, ϕ), where g represents variational encoder, and ϵi ∼ p(ϵ) is a standard normal
random variable. The gradient is approximated via Monte Carlo estimation as described in (Foster
et al., 2019)

For design variable ξ, we set our robust decision–making loss function L(ξ) =
Ep(y|ξ)[LOC(y, ξ;ϕ)]. By chain rule, the gradient with respect to ξ can be written in the follow-
ing forms,

∂L

∂ξ
= Ep(y|ξ)

[
∂LOC(y, ξ;ϕ)

∂ξ
+ LOC(y, ξ;ϕ)

∂ log p(y|ξ)
∂ξ

]
(12)

The first term, ∂LOC(y,ξ;ϕ)
∂ξ , can be computed using implicit differentiation through decision layer,

as described in Section 3.3.

The second term, LOC(y, ξ;ϕ)
∂ log p(y|ξ)

∂ξ , is straightforward to compute once an observation model
(e.g., Poisson or Gaussian noise) is specified.

3.5 OPTIMIZATION OF EXPERIMENTAL DESIGN

When the forward model is expensive to solve, recomputing a variational posterior at every candidate
design is prohibitive. We therefore train a single amortized variational network that maps a design–
observation pair (ξ, y) to the parameters of a posterior qϕ(θ | ξ, y) in one shot, and then use this
network for gradient-based design optimization. This enables highly efficient experimental design.

Amortized VI (one-shot training). The amortizer takes (ξ, y) as input, lifts them into a shared
latent space of width d, and fuses the signals with a single-head attention block (queries from y,
keys from ξ, values from both). qϕ(θ | ξ, y) (see Appendix C for architecture). We train ϕ once
using simulated trajectories {ξt, yt}t∈T and maximize the summed ELBO,

L̂VI(ϕ) =
1

|T |
∑
t∈T

Eθ∼qϕ(·|ξt,yt)

[
log p(yt | θ, ξt) + log p(θ)− log qϕ(θ | ξt, yt)

]
,

which corresponds to eq. (6) evaluated across all t ∈ T . The attention layer aggregates informa-
tion across multiple designs without discarding earlier contributions, avoiding reliance on a fixed
handcrafted summary.

Design gradients via reparameterization. After training, the amortizer produces variational pa-
rameters γϕ(ξ, y) for a family qϕ(θ | ξ, y). Assuming the family is reparameterizable, samples can
be written as a deterministic transformation of base noise:

θs(ξ, y) = hϕ
(
εs; γϕ(ξ, y), ξ, y

)
, εs ∼ r(ε) (e.g., N (0, I)).

This yields pathwise derivatives ∂θs(ξ, y)/∂ξ, which we propagate through the decision layer (see
Section 3.3).

Computational benefit. This procedure concentrates simulation cost in a single offline training
phase. Once qϕ is learned, design optimization only involves forward passes through the amortizer
and standard autodiff, yielding efficient and accurate gradients for ξ without repeatedly solving the
forward model or re-fitting a variational posterior.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4 RESULTS

We present numerical experiments on robust decision-making for goal-driven experimental design
for two use cases, in order to demonstrate the effiacy and the general applicability of the proposed
GoBOED framework: epidemic management (SIQR) and pharmacokinetic (PK) control, both under
model uncertainty. Detailed model parameters and solver settings are provided in Appendix F.

To compare GoBOED with standard BOED baselines, we study the problem of choosing a single
observation time. Let T denote the time horizon and let ξ ∈ {0, 1}T be a one-hot design vector
with

∑T
t=1 ξt = 1; the unique index t⋆ with ξt⋆ = 1 is the chosen measurement time. We collect

exactly one measurement at t⋆ and use this datum to update the posterior over model parameters.
Because both the SIQR and PK settings are time-indexed, this formulation applies to both. At t⋆, we
observe the counts of asymptomatic and symptomatic infections for the SIQR model and the drug
concentration in blood for the PK model; measurement noise is modeled as Poisson or Gaussian,
respectively, depending on the data modality.

Our goal is to select the single measurement time that best supports downstream decision-making.
Traditional BOED via EIG targets maximal reduction in parameter uncertainty, whereas the robust
optimal control objective is sensitive to particular parameter combinations and system dynamics.
Accordingly, for each candidate design ξ we compute and visualize both the EIG and the robust
optimal control cost over the entire design space. The resulting design objective surfaces for the
SIQR (top) and PK models (bottom) are shown in Figure 2.

We estimate EIG (cf. eq. (1)) using nested Monte Carlo with 5,000 outer samples (over y) and 3,000
inner samples for the marginal likelihood. The BOED-selected optimal observation times are day 5
for the SIQR model and hour 17 for the PK model.

Robust optimal control in the presence of model uncertainty. We solve the chance-constrained
problem in eq. (8), enforcing a 90% probability of constraint satisfaction under the posterior induced
by a given observation time. Empirically, designs with larger EIG reduce constraint uncertainty and
thereby yield lower optimal cost in both examples. For SIQR, the objective is relatively flat for
observation times between days 4 and 8; for PK, observing later (roughly 15–23 hours) reduces the
dose required to meet the therapeutic targets. Unless otherwise noted, we draw 500 datasets y and,
for each y, 40 posterior samples of θ (128 for PK).

CVaR-based constraints. We also consider the CVaR formulation in eq. (9): for SIQR we con-
strain the CVaR of the dominant eigenvalue, and for PK we constrain the CVaR of Cmax relative to
its threshold. We set the level to α = 0.9 (controlling the expected violation over the worst 10%
of posterior realizations). The qualitative trends mirror those under chance constraints: higher-EIG
designs generally achieve lower robust cost; SIQR exhibits a plateau around days 4–8, and in PK a
later observation (e.g., near 24 hours) further reduces the dose required to achieve the target perfor-
mance. We use the same sampling budgets as above (500 draws of y; 40 posterior draws per y, or
128 for PK).

These results highlight a key insight: maximizing EIG alone does not necessarily optimize
constraint-aware economic performance. Instead, our approach identifies a broad near-optimal win-
dow for SIQR—approximately days 4–8—within which observation timing can be chosen with
minimal loss in both information gain and economic efficiency. For PK dose optimization, we
similarly find a wide near-optimal window (about 15–23 hours). Within this window, latter obser-
vations (toward 22–23 hours) generally yield robust control with lower cost than the BOED-optimal
17 hours while achieving comparable EIG. This scheduling flexibility is practically valuable when
exact timing for observation measurements is restricted due to logistical or operational constraints.

Gradient-based search over discrete times. We treat the observation time as a scalar t ∈
{1, . . . , T} (equivalently, a one-hot ξ(t)) and directly optimize t using automatic differentiation
(AD). Starting from a mid-point integer t0 = ⌊(T + 1)/2⌋, we compute the AD gradient of the
robust objective with respect to t and take projected gradient steps:

ℓk =
∂J(t)

∂t

∣∣∣
t=tk

, tk+1 = Π[1,T ]

(
tk − ηk ℓk

)
, t̂k+1 = round(tk+1),
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(a) EIG (SIQR) (b) Chance constraints (SIQR) (c) CVaR (SIQR)

(d) EIG (PK) (e) Chance constraints (PK) (f) CVaR (PK)

Figure 2: Comparison of experimental design metrics and control strategies across two models. Top
row: SIQR epidemiological model—(a) expected information gain (EIG) over observation time ξ;
(b) expected optimal cost under chance constraints with confidence level η = 0.9; (c) expected op-
timal cost under CVaR. Bottom row: pharmacokinetic (PK) model—(d) EIG; (e) chance constraints
(η = 0.9); (f) CVaR. The horizontal axis is observation time ξ; the vertical axis shows EIG or ex-
pected optimal control costs. While the BOED-optimal design typically pinpoints a specific time,
the goal-driven robust objective admits a broader near-optimal window—offering greater scheduling
flexibility under real-world constraints.

where Π[1,T ] clips to the feasible interval and ηk is the step size. After each update, we evaluate the
design at the integer index t̂k+1 by recomputing the posterior induced by a single observation at t̂k+1

and then re-evaluating the robust optimal cost J(t̂k+1). We repeat these steps until convergence.

For the SIQR model, the proposed procedure converges near the BOED design by day 5, with days
6–7 showing similarly small gradient norms. For the PK model, it selects the 22-hour design for both
the CVaR and chance-constrained criteria, which aligned with the plot Figure 2. We also confirmed
a monotonic decrease in the gradient norm, consistent with the trend observed in the associated plot.

5 CONCLUSION

We developed a computational methodology that jointly trains a posterior approximation and opti-
mizes uncertainty-aware, goal-driven experimental decisions that enables robust optimal manage-
ment/control under model uncertainty. By bridging convex optimal control with BOED, the frame-
work supports real-world deployments that could meaningfully influence epidemic response strate-
gies and dosing optimization while improving computational efficiency. Applying the method to
large-scale epidemiology, clinical, and drug discovery datasets—and integrating it into production
workflows–remains important future work.

Limitations. Our framework assumes convex optimization, which enables differentiation through
the control layer via Lagrangian sensitivity analysis. This assumption is both a strength and a con-
straint: for non-convex objectives we typically obtain only locally optimal solutions, increasing op-
timization difficulty. Performance also depends on the quality of variational inference; inaccuracies
in the learned posterior can degrade decisions and undermine reliability, particularly in real-world
settings. Future work should strengthen robustness and expand posterior expressivity—for example,
by leveraging generative families such as diffusion and flow based models.

LLM Usage: This manuscript was copy-edited for grammar and style using ChatGPT (OpenAI;
accessed September 2025). The authors drafted all text and iteratively reviewed and revised AI-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

suggested edits. All ideas, methods, analyses, and conclusions were developed solely by the authors,
who accept full responsibility for the final content. No confidential or reviewer-only material was
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A RELATED WORK

Goal-oriented Bayesian optimal experimental design Recent advances in BOED have shifted fo-
cus from parameter estimation to optimizing for specific quantities of interest (QoIs) — measurable
outcomes that directly impact decision-making. For linear models, Attia et al. (2018) established the
framework for goal-oriented optimal design of experiments (GOODE) that simplifies computational
evaluation for experimental design. Building on this work, Neuberger et al. (2024) introduced a
“Gq-optimality” criterion based on quadratic approximation of goal functionals for PDE-governed
linear inverse problems. Additionally, for Bayesian linear inverse problems, Madhavan et al. (2025)
developed a control-oriented approach that connects optimal control and sensor placement while
prioritizing uncertainty reduction in controlled state variables. The linearity in these models makes
the problems mathematically tractable and computationally efficient to solve. However, many real-
world systems, including epidemic models, exhibit significant nonlinearities that require more so-
phisticated approaches.

For handling non-linear models, Zhong et al. (2024) created a computational framework using
nested Monte Carlo estimators, Markov chain Monte Carlo (MCMC), kernel density estimation,
and Bayesian optimization to address both non-linear observation models and prediction models.
Similarly, Bickford Smith et al. (2023) proposed the expected predictive information gain (EPIG),
an acquisition function that measures information gain in the space of predictions rather than param-
eters. Taking a different approach, Huang et al. (2024) introduced a decision-aware framework with
a transformer neural decision process that simultaneously generates experimental designs and infers
decisions in a unified workflow. For causal discovery problems, Tigas et al. (2022) developed meth-
ods to optimize intervention timing for large nonlinear structural causal models. Collectively, these
works represent a paradigm shift toward experimental designs that optimize directly for decision-
relevant outcomes rather than intermediate parameter estimates.

Bayesian decision theory Bayesian decision theory, which applies observed data to update pos-
terior distributions for optimal decision-making, was formalized in Chaloner & Verdinelli (1995).
Building on this foundation, Lacoste–Julien et al. (2011) developed a method that calibrates approx-
imate inference techniques according to specific decision tasks using the Expectation-Maximization
algorithm. For modern machine learning applications, Krishnan & Tickoo (2020b) introduced a dif-
ferentiable approach that balances accuracy against uncertainty calibration, enabling models to learn
well-calibrated uncertainties while improving performance. Addressing computational efficiency
challenges, Gordon et al. (2018) developed a framework that uses few-shot learning to simplify
posterior inference of task-specific parameters, eliminating the need for gradient-based optimization
during testing. These advances have progressively made Bayesian decision-making more practical
for complex problems with computational constraints.

Robust decision-making With the growing interest in goal-oriented BOED, robust decision-making
has been studied in many application domains. For example, compartmental network-based ap-
proaches (e.g., SIQR model) are widely adopted in epidemic management. Two main control strate-
gies dominate current research: optimal control to minimize infection rates (Lee et al., 2010; Hayhoe
et al., 2021; Khanafer & Başar, 2014; Liu & Buss, 2020; Bock & Jayathunga, 2018) and spectral op-
timization for resource allocation (Hota et al., 2021; Mai et al., 2018; Smith & Bullo, 2023; Preciado
et al., 2014; Enyioha et al., 2015). A significant challenge with these approaches is their computa-
tional complexity, as many of the underlying problems are NP-complete or NP-hard (Mieghem et al.,
2011). In a parallel vein, PK models play a crucial role in optimizing drug dosing and improving pa-
tient outcomes by quantitatively linking individual variability to clinical efficacy and safety (Agema
et al., 2025; Lai et al., 2022). These models help guide dose selection and treatment personalization,
especially under uncertainty in drug absorption, metabolism, and patient response (Zavřelová et al.,
2025; Norris, 2023).

B QUARANTINE OPTIMIZATION AND LAGRANGIAN FORMULATION

The goal of our quarantine strategy is to minimize implementation costs while effectively controlling
disease stability. To achieve this, we define the following objective function:

J(qa, qs) =
za

1− qa
+

zs

1− qs
,
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and we solve the following minimization problem:

min
qa,qs

J(qa, qs)

subject to the constraints:

λmax(M(t0,βi,γi)) ≤ −α for i = 1, . . . , N,

0 ≤ qa ≤ 1,

0 ≤ qs ≤ 1,

where βi and γi are sampled from the posterior distribution p(β,γ|y, ξ), andN denotes the number
of samples.

To address this constrained optimization problem, we introduce the Lagrangian:

L =
za

1− qa
+

zs

1− qs
+

N∑
i=1

λi(λmax(M(t0,βi,γi)) + α)

− µ1q
a + µ2(q

a − 1)− µ3q
s + µ4(q

s − 1),

where λi are Lagrange multipliers associated with the eigenvalue constraints, and µi are multipliers
for the box constraints on qa and qs. The optimal solution must satisfy the Karush-Kuhn-Tucker
(KKT) conditions, which we outline below.

B.1 KKT CONDITIONS

Stationarity The stationarity conditions are derived by taking partial derivatives of the La-
grangian:

∂L
∂qa

=
za

(1− qa)2
+

N∑
i=1

λi
∂λmax(M(t0,βi,γi))

∂qa
+ µ2 − µ1 = 0,

∂L
∂qs

=
zs

(1− qs)2
+

N∑
i=1

λi
∂λmax(M(t0,βi,γi))

∂qs
+ µ4 − µ3 = 0.

Primal feasibility The primal feasibility conditions ensure the constraints hold:

λmax(M(t0,βi,γi)) ≤ −α for i = 1, . . . , N,

0 ≤ qa ≤ 1,

0 ≤ qs ≤ 1.

Dual feasibility The Lagrange multipliers must be non-negative:

λi ≥ 0 for i = 1, . . . , N, and µ1, µ2, µ3, µ4 ≥ 0.

Complementary slackness The complementary slackness conditions are:

λi (λmax(M(t0,βi,γi)) + α) = 0 for i = 1, . . . , N,

µ1q
a = 0,

µ2(1− qa) = 0,

µ3q
s = 0,

µ4(1− qs) = 0.

Assuming an interior solution, the multipliers for the box constraints at the optimal point become
µi = 0. The KKT conditions simplify to:

za

(1− q̂a)2
+

N∑
i=1

λ̂i
∂λmax(M(t0,βi,γi))

∂qa
= 0,
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zs

(1− q̂s)2
+

N∑
i=1

λ̂i
∂λmax(M(t0,βi,γi))

∂qs
= 0,

λmax(M(t0,βi∗ ,γi∗)) = −α for specific i∗,

where λ̂i represents for the Lagrangians at the optimal point, and i∗ indicates the specific boundary
condition corresponding to the optimal point.

We compute the optimal values q̂a, q̂s, and λ̂i∗ using convex optimization via semidefinite program-
ming. This is feasible because J is a convex function with respect to qa and qs, and the largest
eigenvalue constraint can be reformulated as a set of linear matrix inequalities. For implementation
details, see Appendix C.

B.2 DERIVATIVE OF THE OPTIMUM COST J∗ WITH RESPECT TO MODEL PARAMETERS

We can compute the gradient of the optimum cost J∗ with respect to the model parameters β and γ.
Using the envelope theorem, the derivative with respect to βa

i is:

∂J∗

∂βa
i

=

N∑
j=1

∂λ̂j(λmax(M(t0),βj ,γj) + α)

∂βa
i

= λ̂i ·
∂λmax(M(t0,βi,γi))

∂βa
i

.

Similarly, the derivatives with respect to other parameters are:

∂J∗

∂γsi
= λ̂i ·

∂λmax(M(t0,βi,γi))

∂γsi
,

∂J∗

∂γai
= λ̂i ·

∂λmax(M(t0,βi,γi))

∂γai
,

∂J∗

∂βs
i

= λ̂i ·
∂λmax(M(t0,βi,γi))

∂βs
i

.

Since the optimal solution often lies on specific boundaries where λ̂i∗ ̸= 0 and λ̂i = 0 for i ̸= i∗,
the gradient depends only on the samples directly influencing the solution.

B.3 DERIVATIVE OF THE CONSTRAINT h(y, ξ) WITH RESPECT TO EXPERIMENTAL DESIGN ξ

The constraint term is defined as:

h(y, ξ) =

N∑
i=1

λi (λmax(M(t0,βi,γi)) + α)− µ1q
a + µ2(q

a − 1)− µ3q
s + µ4(q

s − 1).

Its gradient with respect to ξ at the optimal point is:

∇ξh(y, ξ) =

N∑
i=1

λ̂i

(
∂λmax

∂βa
i

· ∇ξβ
a
i +

∂λmax

∂βs
i

· ∇ξβ
s
i +

∂λmax

∂γai
· ∇ξγ

a
i +

∂λmax

∂γsi
· ∇ξγ

s
i

)
. (13)

The partial derivative ∂λmax
∂βa

i
is given by Talaei et al. (2024) as:

∂λmax

∂βa
i

=
vTmax

(
∂M(t0,βi)

∂βa
i

)
umax

vTmaxumax
,

where vmax and umax are the left and right eigenvectors of the largest eigenvalue, respectively. The
terms ∇ξβ

a
i , ∇ξβ

s
i , ∇ξγ

a
i , and ∇ξγ

s
i are computed via automatic differentiation from the variational

network.
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B.4 MARGINAL LIKELIHOOD GRADIENT

To compute the log-likelihood gradient with respect to ξ in ??, we assume a Poisson observation
model (suitable for count data) with rate parameter λ = 0.95 · ytrue(ξ). The gradient is:

∂

∂ξ
log p(yobs|ξ) =

(
yobs

0.95 · ytrue(ξ)
− 1

)
· 0.95 · ∂ytrue(ξ)

∂ξ
.

This expression helps quantify how changes in ξ affect the likelihood of the observed data. The term
∂ytrue(ξ)

∂ξ can be approximated using finite difference methods, such as the central difference method.

C OPTIMIZATION FOR OPTIMAL CONTROL AND NEURAL NETWORK FOR
VARIATIONAL INFERENCE DETAILS

We utilize SCS O’Donoghue et al. (2023) and MOSEK ApS (2025) to express the semi-definite
programming problem and use MOSEK’s implementation of the interior point method with default
settings for optimization

Architecture. Let ξ ∈ Ξ denote the design and y ∈ Y the observation. Both are mapped into a
shared latent space using linear tokenizers that produce M tokens of width d:

Eξ : RDξ → RM×d, Ey : RDy → RM×d, Zξ = Eξ(ξ), Zy = Ey(y),

where in PK we set Dξ = 1, Dy = 1, M = 8, and d = 64. Queries and keys are linear projections
of the token sequences,

qj =Wq zy,j ∈ Rd, ki =Wk zξ,i ∈ Rd,

and values fuse per-token key and query latents via a small MLP,

vi = Ψ
(
[ zξ,i, zy,i ]

)
∈ Rd, i, j ∈ {1, . . . ,M}.

Single-head dot-product cross-attention over tokens is

aji =
exp

(
q⊤j ki/

√
d
)∑M

i′=1 exp
(
q⊤j ki′/

√
d
) , cj =

M∑
i=1

aji vi ∈ Rd.

We mean-pool the query contexts and pass through a light trunk MLP:

s =
1

M

M∑
j=1

cj , h = MLPtrunk(s) ∈ Rd.

Two heads with skip connections produce log-space parameters for a diagonal LogNormal posterior,

µ̃ =Wℓ,2 ϕ(Wℓ,1h) +Wℓ,skiph,

σ̃ =Ws,2 ϕ(Ws,1h) +Ws,skiph,

which we bound elementwise:

µ = µ0 + ∆max tanh(µ̃), σ = σmin + (σmax − σmin)σ
(
σ̃
)
.

Here ϕ is GELU, µ0 is the prior log-mean (used as a residual center), ∆max bounds deviations, and
0 < σmin < σmax bound the log-space standard deviations.

Training Configuration: GPU: NVIDIA A100.
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D MODELS

D.1 OPTIMAL CONTROL FOR EPIDEMIOLOGY

Building on the BOED framework, we consider robust epidemiology control as an example. Our
method leverages the framework established by Talaei et al. (2024). The epidemiology model is
governed by a SIQR spread disease network, where state variables represent different compartments
of the population: susceptible (s), asymptomatic infected (xa), symptomatic infected (xs) and re-
covered (h).  ṡ

ẋa

ẋs

ḣ

 =

0 −βas −βss 0
0 βas− ϵ− γa − qa βss 0
0 ϵ −γs − qs 0
0 γa γs 0


 s
xa

xs

h

 . (14)

Here, βa and βs are transmission rates for asymptomatic and symptomatic cases, ϵ is the rate at
which asymptomatic cases develop symptoms, γa and γs are recovery rates for asymptomatic and
symptomatic cases, and qa and qs are quarantine rates for asymptomatic and symptomatic individu-
als.

Following Ma et al. (2023), we decouple the dynamics of ẋ from ṡ and ḣ, allowing us to focus on
the matrix M(t0) which captures the essential infection dynamics at initial time t0:

M(t0) =

(
βas(t0)− ϵ− γa − qa βss(t0)

ϵ −γs − qs

)
(15)

To optimize the quarantine strategy as described in Talaei et al. (2024), we utilize an objective
function that minimizes economic costs:

min
qa,qs

J(qa, qs) =
za

1− qa
+

zs

1− qs
(16)

s.t. λmax(M(t0)) ≤ −α, (17)
0 ≤ qa ≤ 1, (18)
0 ≤ qs ≤ 1, (19)

where za represents the economic cost for asymptomatic quarantine, zs represents the economic
cost for symptomatic quarantine, and α > 0 is a constraint ensuring the stability of the system.

The detailed solution for this minimization problem is provided in Appendix B. This approach al-
lows us to determine optimal quarantine rates without explicitly integrating the SIQR differential
equations. Instead, by analyzing the eigenvalues of the system and applying convex optimization,
we can efficiently identify the optimal quarantine strategy that minimizes economic costs.

D.2 OPTIMAL CONTROL FOR PHARMACOKINETIC MODEL

We further consider PK model as another example. The concentration at time t for a drug adminis-
tered orally can be modeled using the Bateman function (Bateman, 1910):

y(t) =
D · ka

V · (ka − ke)

(
e−ke·t − e−ka·t

)
(1 + ϵmult) + ϵadd,

where V is the volume of distribution, ka is the absorption rate constant, ke is the elimination rate
constant, D is the dose administered, ϵmult is a multiplicative error term, and ϵadd is additive error
term. This formulation captures the dynamics of drug absorption and elimination.

Given the drug’s potential toxicity, dosing should maintain systemic exposure within the therapeutic
window—avoiding toxic concentrations while not falling below the minimum effective concentra-
tion. We can calculate the time at which the maximum drug concentration occurs, denoted tmax, can
be found by setting the derivative ∂y/∂t = 0, which yields:

tmax =
ln(ka/ke)

ka − ke
.

18
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The maximum concentration, Cmax, is obtained by evaluating y(t) at tmax:

ymax =
D

V

(
ke
ka

) ke
−ke+ka

(1 + ϵmult) + ϵadd.

For cumulative exposure, the area under the concentration curve (AUC) is given by:

AUC =

∫ ∞

0

y(t)dt =
D

V · ke
,

assuming complete absorption.

We define a convex cost function J(q) (e.g., J(q) = c q to discourage high dosing). The constrained
problem can be written in the following forms,

min
0≤q≤1

J(q) (20)

s.t. ymax(q,θ) ≤ ythresh,

AUC(q,θ) ≥ AUCmin.

E ROBUST DECISION MAKING

E.1 SIQR MODEL

We develop an integrated framework, GoBOED, for epidemic management by bringing together
BOED (introduced in eq. (2)) and optimal control through convex optimization (described in
eq. (16)). Our primary objective is to identify an optimal experimental design ξ∗ that minimizes
the expected controlled economic cost, where the expectation is taken over posterior distributions
of the parameters β = (βa, βs) and γ = (γa, γs). This approach allows us to update our beliefs
with new observations and improve decision-making, following the methodology of Chaloner &
Verdinelli (1995).

For a given experimental design ξ and observed data y, we formulate the optimization problem as:

min
qa,qs

Ep(β,γ|y,ξ) [J(q
a, qs)] (21)

s.t. λmax

(
Ep(β,γ|y,ξ) [M(t0,β,γ)]

)
≤ −α,

0 ≤ qa ≤ 1,

0 ≤ qs ≤ 1.

(22)

Here, J(qa, qs) represents the economic cost, which does not directly depend on β or γ but is
constrained by the constraints in eq. (22). Thus, the optimization problem simplifies to minimiz-
ing J(qa, qs) subject to the constraints, where the key challenge lies in evaluating the eigenvalue
constraint. This constraint requires computing the expectation of the matrix M(t0,β,γ) over the
posterior distribution p(β,γ|y, ξ).
To approximate the posterior distribution, we employ stochastic variational inference. Specifically,
we approximate the true posterior p(β,γ|y, ξ) using a variational distribution qϕ(β,γ|y, ξ), where
ϕ denotes the variational parameters. The variational distribution is optimized by maximizing the
evidence lower bound (ELBO), which can be expressed as:

LV I(ϕ; y) = Eqϕ(β,γ|y,ξ) [log p(y|β,γ, ξ)]−DKL (qϕ(β,γ|y, ξ)∥p(β,γ)) . (23)

Once we have obtained the variational posterior qϕ(β,γ|y, ξ), we use it to estimate the expectation
in the eigenvalue constraint. Since qϕ may not exactly match the true posterior, we apply importance
sampling to correct for the discrepancy. For any function f(β,γ), the expectation under the true
posterior can be estimated as

Ep(β,γ|y,ξ)[f(β,γ)] ≈
∑N

i=1 f(βi,γi)w(βi,γi)∑N
i=1 w(βi,γi)

, (24)
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where (βi,γi) are samples from qϕ(β,γ|y, ξ), and w(βi,γi) = p(y|βi,γi,ξ)p(βi,γi)
qϕ(βi,γi|y,ξ) are the impor-

tance weights.

In particular, for the eigenvalue constraint, we compute Ep(β,γ|y,ξ)[M(t0,β,γ)] using the above
formula with f(β,γ) = M(t0,β,γ). This allows us to evaluate the constraint and solve the op-
timization problem for each ξ and y. Thus, our framework integrates BOED with optimal control
under posterior distribution uncertainty, leveraging variational inference and importance sampling.

E.1.1 ALTERNATIVE FORMULATION USING CHANCE CONSTRAINTS

To address the uncertainty in parameters β and γ robustly, we propose an alternative formulation
using chance constraints. Chance constraints are a powerful tool in optimization under uncertainty,
ensuring that critical conditions hold with a specified probability (Charnes & Cooper, 1959; Miller
& Wagner, 1965). This approach simplifies our problem by focusing on the eigenvalue constraint
while managing parameter uncertainty effectively.

Given that the objective function is independent of β and γ, we can reformulate the optimization
problem to concentrate on the maximum eigenvalue conditions with the posterior samples. Directly
imposing eigenvalue constraints for each sample would be overly restrictive. Instead, we introduce
a chance constraint to ensure that the maximum eigenvalue of the matrix M(t0,β,γ) satisfies a
stability condition with high probability.

The alternative formulation, denoted LOC-CC, is defined as:

min
qa,qs

J(qa, qs) (25)

s.t. P (λmax(M(t0,β,γ)) ≤ −α| y, ξ) ≥ η, (26)
0 ≤ qa ≤ 1, (27)
0 ≤ qs ≤ 1, (28)

where (β,γ) comes from the posterior distribution p(β,γ|y, ξ), and η ∈ (0, 1) is the desired prob-
ability level.

To evaluate the chance constraint eq. (26) efficiently, we employ importance sampling with varia-
tional inference. We set f(β,γ) in eq. (24) to be the indicator function I(λmax(M(t0,β,γ)) ≤
−α), allowing us to evaluate P (λmax(M(t0,β,γ)) ≤ −α| y, ξ). This formulation enables us to
directly assess the constraint and optimize the economic cost accordingly. Without this approach,
samples far from the mean would make the constraint evaluation numerically unstable and poten-
tially cause the optimization to diverge. The procedure is implemented as follows:

1. Draw N samples {(βi,γi)}Ni=1 from qϕ(β,γ|y, ξ).

2. Compute importance weights: wi =
p(βi,γi)p(y|βi,γi,ξ)

q(βi,γi|y,ξ) .

3. Normalize the weights: w̃i =
wi∑N

j=1 wj
.

4. Estimate the conditional probability for a given y and ξ:

P (λmax(M(t0,β,γ)) ≤ −α|y, ξ) ≈
N∑
i=1

w̃iI(λmax(M(t0,βi,γi)) ≤ −α),

where I(·) is the indicator function.

With the selected posterior samples, we can formulate constraints on the largest eigenvalue and
solve the resulting optimization problem using convex optimization in a semidefinite programming
framework.

E.1.2 CVAR-BASED ROBUST CONTROL

As an alternative to the scenario-based chance constraint in Appendix E.1.1, we control the tail of
constraint violations using Conditional Value-at-Risk (CVaR).
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Let the feasibility event be

P
(
λmax

(
M(t0,β,γ, q

a, qs)
)
≤ −α

∣∣ y, ξ) ≥ η.

For samples {(βi,γi)}Ni=1 (posterior or variational), define the per-sample violation

gi(q
a, qs) := λmax

(
M(t0,βi,γi, q

a, qs)
)
+ α.

We enforce CVaRη

(
g(Ξ, q)

)
≤ 0 using the Rockafellar–Uryasev sample-average form with optional

normalized weights w̄i (default w̄i =
1
N ):

si ≥ gi(q
a, qs)− τ, i = 1, . . . , N, τ +

1

1− η

N∑
i=1

w̄i si ≤ 0, (29)

with decision variables τ ∈ R and si ≥ 0. At optimality, si = (gi(q
a, qs)− τ)+, so only the upper

tail beyond the η-quantile contributes.

Our robust controls are then obtained by solving the convex program

min
qa,qs, τ, {si}

J(qa, qs)

s.t. si ≥ gi(q
a, qs)− τ, si ≥ 0, i = 1, . . . , N,

τ +
1

1− η

N∑
i=1

w̄i si ≤ 0,

0 ≤ qa ≤ 1, 0 ≤ qs ≤ 1,

(30)

where J(qa, qs) is the same convex objective as in Appendix E.1.1. The specific form of gi is model
dependent; in our case it is implemented through a convex epigraph for the spectral violation, so
eq. (30) remains a tractable convex program.

E.2 PK MODEL

Parameter influence. Cmax ∝ D/V and increases with ka (faster absorption, smaller tmax),
decreases with ke (faster elimination), and is sensitive to the ratio ka/ke (flip–flop when ka < ke).

We follow the design–control split used in the SIQR GoBOED paper. Let ξ: e.g., blood sampling
schedule and/or formulation choice, used to learn θ = (ka, ke, V ) via posterior p(θ | y, ξ). q ∈
[0, 1]: a dose fraction, with D(q) = q D0 (replace by any convex mapping as needed). All risk and
exposure quantities below depend on q through D(q) and on θ.

E.2.1 POSTERIOR EXPECTATIONS VIA VI + IMPORTANCE WEIGHTING

Given a variational posterior qϕ(θ | y, ξ), expectations under the true posterior are estimated by
importance weighting:

Ep(θ|y,ξ)[f(θ)] ≈
N∑
i=1

w̃i f(θi), w̃i =
wi∑N
j=1 wj

, wi =
p(y | θi, ξ) p(θi)
qϕ(θi | y, ξ)

, θi ∼ qϕ.

(31)

E.2.2 CHANCE-CONSTRAINED CONTROL (PK ANALOGUE OF SIQR)

Choose a convex cost J(q) (e.g., J(q) = c q to discourage high dosing). The chance-constrained
problem mirrors the SIQR formulation:

min
0≤q≤1

J(q) (32)

s.t. P(Cmax(q,θ) ≤ Cthresh | y, ξ) ≥ η,

E[AUC(q,θ)] ≥ AUCmin.

The probability and expectation are evaluated using eq. (31) with f(θ) = 1{Cmax(q,θ) ≤ Cthresh}
and f(θ) = AUC(q,θ), respectively.
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E.2.3 CVAR-ROBUST CONTROL (EPIGRAPH FORM)

Define per-sample violation (optionally with a nonnegative safety margin α)

gi(q) = Cmax(q,θi) − Cthresh + α, i = 1, . . . , N, (33)

with normalized importance weights w̃i from eq. (31). Enforce CVaRη(g) ≤ 0 via

min
0≤q≤1, τ, si≥0

J(q) (34)

s.t. si ≥ gi(q)− τ, i = 1, . . . , N,

τ +
1

1− η

N∑
i=1

w̃i si ≤ 0,

E[AUC(q,θ)] ≥ AUCmin.

F NUMERICAL RESULTS

For our implementation of the SIQR model, we adopted the parameterization framework estab-
lished by Talaei et al. (2024). We specified log-normal prior distributions for both transmission and
recovery rates in units of counts per day. Specifically, we assigned log-normal distributions to the
transmission rates for asymptomatic individuals (βa) and symptomatic individuals (βs), as well as
to the recovery rates for asymptomatic individuals (γa) and symptomatic individuals (γs). The nat-
ural logarithm of these distributions have means of (0.5, 0.8, 0.2, 0.2) respectively, with a standard
deviation of (0.5, 0.5, 0.3, 0.3) for each parameter. The stability parameter (α) was fixed at 0.05.
The economic cost parameters za, zs were set to (0.4, 0.6).

Using these parameters, we solved the SIQR model. The design variable ξ ∈ [1, 100] represents
the observation day. At this observation point, we measure yobs, which consists of counts of asymp-
tomatic and symptomatic infected individuals. We model these observed values using a Poisson
distribution where the rate parameter λ equals 0.95 · ytrue(ξ), with ytrue(ξ) being the actual model-
predicted values at time ξ. We then train the posterior distribution using the observed data yobs and
design variable ξ. When computing the optimization problem for the optimal economic cost, we
use ApS (2025) for convex optimization. More details of optimization and training are provided in
Appendix C.

For our implementation of the PK model, we adopted the parameterization framework established
by Kleinegesse & Gutmann (2021). We specified log-normal prior distributions for ka, ke, V .
Specifically, we assigned log-normal distributions for the parameters. The natural logarithm of
these distributions have means of (0, log(0.1), log(20.0)) respectively, with a standard deviation of
(0.05, 0.05, 0.05) for each parameter.
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