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Abstract

Gaussian mixture models (GMMs) are widely used in machine learning for tasks such as
clustering, classification, image reconstruction, and generative modelling. A key challenge
in working with GMMs is defining a computationally efficient and geometrically meaningful
metric. The mixture Wasserstein (MW) distance adapts the Wasserstein metric to GMMs
and has been applied in various domains, including domain adaptation, dataset comparison,
and reinforcement learning. However, its high computational cost—arising from repeated
Wasserstein distance computations involving matrix square root estimations and an expen-
sive linear program—limits its scalability to high-dimensional and large-scale problems. To
address this, we propose multiple novel slicing-based approximations to the MW distance
that significantly reduce computational complexity while preserving key optimal transport
properties. From a theoretical viewpoint, we establish several weak and strong equivalences
between the introduced metrics, and show the relations to the original MW distance and the
well-established sliced Wasserstein distance. Furthermore, we validate the effectiveness of
our approach through numerical experiments, demonstrating computational efficiency and
applications in clustering, perceptual image comparison, and GMM minimization.

1 Introduction

Gaussian mixture models (GMMs) are a fundamental tool in machine learning and statistics; widely used
in applications such as classification (Wan et al., 2019), clustering (Adipoetra & Martin, 2025; Zhang et al.,
2021), image reconstruction (Nguyen et al., 2023; Piening et al., 2024; Zoran & Weiss, 2011), 3d surface
representation (Zou & Sester, 2024), and generative modeling (Alberti et al., 2024; Hagemann & Neumayer,
2021). That is why defining a computationally efficient and geometrically meaningful metric on the space
of GMMs is valuable for many data-driven applications. The most prominent candidate for such tasks is
the mixture Wasserstein (MW) distance (Chen et al., 2018; 2016; Delon & Desolneux, 2020), which can be
interpreted as restriction of the classical Wasserstein distance to GMM transport plans. The main limitation
of the MW distance is its high computational cost. It consists of an ‘inner’ and an ‘outer’ optimal transport
problem. The inner problem requires the computation of all pairwise Wasserstein distances between the
components of the given GMMs. Despite having a closed-form solution, this step involves matrix square
root calculations, which becomes highly costly for high-dimensional data. The outer problem consists in
solving an optimal transport problem, whose cost matrix is determined by the inner problem. If both
GMMs have K Gaussian components, the minimization of the outer problem has a complexity of O(K3) for
exact solutions and O(K2 log(K)) for approximate solutions (Peyré & Cuturi, 2019). For this reason, the
MW distance becomes prohibitive for large-scale applications with high component numbers. To address
these challenges, we propose an acceleration approach leveraging projection techniques. Slicing the inner and
outer optimal transport problems, i.e., applying a double slicing, we significantly reduce the computational
burden while preserving the geometric properties of the MW distance. Additionally, our novel sliced MW
approach facilitates fast gradient-based optimization in the space of GMMs; making the resulting metric
particularly useful for machine learning applications.

1



Under review as submission to TMLR

1.1 Related Work

Sliced Probability Metrics A fundamental task in machine learning and computer vision is the mean-
ingful comparison of high-dimensional empirical data distributions. Geometrically meaningful metrics such
as the Wasserstein distance (Peyré & Cuturi, 2019; Santambrogio, 2015) are often computationally costly;
therefore, sliced probability divergences are increasingly popular. In case of the classical Wasserstein dis-
tance, the underlying high-dimensional transport problem is replaced by multiple 1d transport problems.
At the core, the 1d problems reduce to efficiently solvable assignment formulations (Bonneel et al., 2015;
Nadjahi et al., 2020), which surmount the original, expensive linear program. The reduced computational
cost makes the obtained sliced Wasserstein (SW) distance a valuable tool for image restoration (Tartavel
et al., 2016), generative modeling (Deshpande et al., 2018; Liutkus et al., 2019), GMM estimation (Kolouri
et al., 2018), and small-data classification tasks (Aldroubi et al., 2021; Beckmann et al., 2025; Moosmüller
& Cloninger, 2023). Beyond the classical Wasserstein distances on Euclidean spaces, the slicing idea can be
applied to more general divergences (Kolouri et al., 2022), the Stein discrepancy (Gong et al., 2021), the
maximum mean discrepancy (Hagemann et al., 2024; Hertrich et al., 2024), and the Wasserstein distance on
the sphere (Quellmalz et al., 2023; 2024).

Metrics between Probability Mixtures The most prominent mixtures of parametrized probability
measures are GMMs. Since the Wasserstein distance between GMMs with more than one component cannot
be computed in closed form, an alternative metric—the MW distance—has been introduced (Chen et al.,
2018; 2016; Delon & Desolneux, 2020). The MW distance has been successfully applied in various domains,
including the quality assessment of GMMs (Farnia et al., 2023), domain adaptation (Montesuma et al., 2024),
perceptual image evaluation (Luzi et al., 2023), single-cell data analysis (Lin et al., 2023), and reinforcement
learning (Ziesche & Rozo, 2023). Beyond GMMs, the MW distance has been extended to mixtures of non-
Gaussian probability measures (Alvarez-Melis & Fusi, 2020; Bing et al., 2022; Dusson et al., 2023; Wilson
et al., 2024). The extended versions have, in particular, applications in the comparison of labeled datasets
(Alvarez-Melis & Fusi, 2020). Upon completing our work, we became aware of two closely related preprints
on sliced optimal transport distances between mixtures of probability measures (Nguyen & Mueller, 2025;
Nguyen et al., 2025), which were developed independently and in parallel to our study. Notably, the proposed
metrics for GMMs differ from our sliced MW variants. Moreover, we provide the first theoretical comparison
of sliced MW versions with the original MW and SW distance. In particular, we establish forms of metric
equivalence.

1.2 Contribution

The main contributions of this paper, which are also schematically visualized in Figure 1, are as follows:

• Starting from the original MW distance, we propose (1) to use the SW distance for the inner transport
problem leading to the novel mixture sliced Wasserstein (MSW) distance and (2) to slice the entire
MW distance using 1d projections, which results in a sliced mixture Wasserstein (SMW) distance.
For the efficient computation of the latter, we propose a further slicing based on the identification
of 1d GMMs with 2d empirical measures. This procedure yields the new double-sliced mixture
Wasserstein (DSMW) distance. The new distances are closely related and significantly reduce the
computational complexity, while maintaining a background in optimal transport. Moreover, they
are well-defined metrics on the space of all GMMs; see Theorem 3.1.

• Providing a theoretical analysis, we show that, under mild conditions, the MW, MSW, SMW, and
DSMW distances are weakly equivalent, i.e., convergence of a sequence in one distance implies the
convergence in all others; see Theorem 3.4. Under the same mild conditions, we show that the SMW
and DSMW distances are actually strongly equivalent, i.e., the distances can be estimated by each
other; see Theorem 3.2. Unfortunately, this equivalence cannot be extended to the MW and MSW
distance; see Theorem 3.3.

• We compare the introduced metrics with the original SW distance. More precisely, we show that
our MSW and SMW distances are upper bounds for the SW distance. Consequently, the MSW and
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Figure 1: Relations between the considered GMM metrics; more precisely, between the proposed mixture
sliced Wasserstein (MSW), sliced mixture Wasserstein (SMW), double sliced mixture Wasserstein (DSMW)
distance and the original mixture Wasserstein (MW) and sliced Wasserstein (SW) distance. The SMW
distance can be bounded from above by the SW distance and a non-vanishing additive term ‘COV’ depending
on the involved covariances. Under mild conditions, the DSMW distance also induces the SW distance with
bounding constant CP depending on the considered subset of GMMs.

SMW distance introduce the usual weak convergence of measures (restricted to the space of GMMs);
see Proposition 3.6. For suitable subsets of GMMs, this property can also be established for the
DSMW distance; see Proposition 3.6.

• The efficiency and scalability of our slicing approaches are demonstrated through comprehensive
experiments that focus on a runtime comparison especially for high-dimensional GMMs with large
numbers of components and possible practical applications of the new distances.

1.3 Outline

The remainder of this paper is structured as follows: In Section 2, we review optimal transport distances,
especially, the original Wasserstein distance and its acceleration through the sliced Wasserstein distance.
Furthermore, we review the original MW distance for GMMs. In Section 3, we introduce our novel slicing-
based GMM metrics and provide theoretical results about the weak and strong equivalences. Moreover, we
study the relations of our distances to the MW and SW distance. In Section 4, we discuss the numerical
implementation and computational performance of our slicing procedures. In Section 5, the practical poten-
tial for clustering, perceptual evaluation, and gradient-based optimization is evaluated. Finally, Section 6
summarizes our findings and discusses future directions.

2 Preliminaries

2.1 Wasserstein and Sliced Wasserstein Distance

Optimal transport-based metrics like the Wasserstein distance and its variants gauge the similarity between
different probability measures living on a common measurable space. In the following, we restrict ourselves
to measures on Euclidean spaces. More precisely, for any X ⊂ Rd, the space of all Borel probability measures
on X with respect to the Euclidean metric is denoted by P(X). The subset of probability measures with
finite pth moment is defined by

Pp(X) :=
{

µ ∈ P(X)
∣∣∣ ∫

X

|x|p dµ(x) <∞
}

, 1 ≤ p <∞.

A measure µ ∈ P(X) is transferred to another domain X ′ ⊂ Rd′ via a mapping T : X → X ′ by it’s push-
forward: T♯ µ := µ ◦ T −1.

A transport plan between µ0, µ1 ∈ Pp(X) is a probability measure γ ∈ P(X ×X) whose marginals coincide
with the given probabilities. Mathematically, based on the canonical projections onto the ith component
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given by πi(x0, x1) := xi, the set of all transport plans between µ1 and µ2 reads as

Γ(µ0, µ1) :=
{

γ ∈ P(X ×X)
∣∣ π0,♯γ = µ0, π1,♯γ = µ1

}
.

Based on these plans, the p-Wasserstein distance—also known as p-Kantorovich–Rubinstein metric—between
µ0, µ1 ∈ Pp(Rd) is given by

Wp(µ0, µ1) := inf
γ∈Γ(µ0,µ1)

(∫
Rd×Rd

∥x0 − x1∥p dγ(x0, x1)
) 1

p

. (1)

The Wasserstein distance defines a metric; so (Pp(Rd), Wp) becomes a metric space (Santambrogio, 2015;
Villani, 2003).

For dimension d > 1, the computation of the Wasserstein distance is, in general, numerically challenging. In
the special case d = 1, the Wasserstein distance can, however, be calculated analytically (Villani, 2003). On
the basis of the cumulative distribution function:

Fµ(x) := µ
(
(−∞, x]

)
, x ∈ R,

and its generalized inverse:

F −1
µ (t) := inf

{
x ∈ R | Fµ(x) > t

}
, t ∈ (0, 1),

the Wasserstein distance has the closed-form solution:

Wp(µ0, µ1) =
(∫ 1

0
|F −1

µ0
(t)− F −1

µ1
(t)|p dt

) 1
p

. (2)

For empirical measure, the generalized inverse may be calculated using efficient sorting algorithms (Bonneel
et al., 2015; Nadjahi et al., 2020).

In order to exploit the computational benefits of the one-dimensional Wasserstein distance, the so-called
sliced Wasserstein distance is introduced in (Bonneel et al., 2015; Kolouri et al., 2016; 2019), which is closely
related to the Radon transform. Exploiting the slicing operator :

πθ : Rd → R : x 7→ θ · x, θ ∈ Sd−1,

where Sd−1 := {x ∈ Rd | ∥x∥ = 1} denotes the sphere, and • · • the Euclidean inner product, the sliced
p-Wasserstein distance between µ0, µ1 ∈ Pp(Rd) is defined as

SWp(µ0, µ1) :=
(∫

Sd−1
Wp

p(πθ,♯ µ0, πθ,♯ µ1) dθ
) 1

p

.

The spherical integral can be approximated using Monte Carlo methods (Bonneel et al., 2015; Nadjahi et al.,
2020) or Quasi-Monte Carlo methods (Hertrich et al., 2025; Nguyen et al., 2024).

From a topological point of view, the sliced Wasserstein and Wasserstein distance are closely related. On
the one side, SWp(µ0, µ1) ≤ Wp(µ0, µ1) for any µ0, µ1 ∈ Pp(Rd). On the other side, for compact subsets
X⊂Rd, both distances are p(d + 1)-strongly equivalent (Bonnotte, 2013), i.e., there exists a constant CX > 0
such that

SWp(µ0, µ1) ≤Wp(µ0, µ1) ≤ CX SW
1

p(d+1)
p (µ0, µ1) ∀µ0, µ1 ∈ P(X). (3)

Beyond compact sets, the sliced Wasserstein and Wasserstein distance are weakly equivalent (Nadjahi et al.,
2019; 2020), i.e., SWp(µn, µ) → 0 is equivalent to Wp(µn, µ) → 0 as n → ∞ for any sequence (µn)n∈N ⊂
Pp(Rd) and any measure µ ∈ Pp(Rd). Moreover, the convergence under W and SW imply weak convergence
µn ⇀ µ in P(Rd) (Nadjahi et al., 2019; 2020), i.e., for every continuous function ϕ : Rd → R vanishing at
infinity, it holds

lim
n→∞

∫
Rd

ϕ(x) dµn(x) =
∫
Rd

ϕ(x) dµ(x).
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2.2 Wasserstein Distance Between Gaussian Mixtures

Computing the Wasserstein distance between arbitrary probability distributions is numerically challenging,
but, in some specific cases, closed-form solutions are available (Santambrogio, 2015). One such instance is
the 2-Wasserstein distance between two Gaussian distributions µ0 ∼ N (m0, Σ0) and µ1 ∼ N (m1, Σ1) on Rd

with means mi ∈ Rd and covariance matrices Σi ∈ S+
d , which are symmetric and positive semi-definite in

Rd×d. For these measures, we have the explicit formula (Delon & Desolneux, 2020):

W2
2(µ0, µ1) = ∥m0 −m1∥2 + tr

(
Σ0 + Σ1 − 2

(
Σ

1
2
0 Σ1 Σ

1
2
0

) 1
2
)
. (4)

On the real line with µi ∼ N (mi, σ2
i ), this simplifies to

W2
2(µ0, µ1) = (m0 −m1)2 + (σ0 − σ1)2 = ∥(m0, σ0)− (m1, σ1)∥2

2. (5)

Unfortunately, there exists no explicit formula for Gaussian mixtures. Restricting the transport plans γ
in (1) to Gaussian mixtures as well, Delon and Desolneux (Delon & Desolneux, 2020) propose an adapted
Wasserstein metric that explicitly exploit the closed forms (4) and (5). More precisely, a finite Gaussian
mixture model (GMM) has the form

µ :=
K∑

k=1
ωkµk, µk ∼ N (mk, Σk), (6)

with weights ω := (ωk)K
k=1 in the probability simplex ∆K := {ω ∈ RK

≥0 | ω · 1K = 1}, where 1K ∈ RK

denotes the all-ones vector. The set of Gaussian mixtures on Rd with at most K components is denoted by
GMMd(K). Obviously, GMMd(K) ⊂ GMMd(K ′) for K < K ′. The collection of all finite Gaussian mixtures
is defined by

GMMd(∞) =
⋃

K>0
GMMd(K).

Using the discrete transport plans between ω0 ∈ ∆K0 and ω1 ∈ ∆K1 that are defined by

Γ(ω0, ω1) :=
{

γ ∈ RK0×K1
≥0

∣∣ γ 1K1 = ω0, γ⊤1K0 = ω1
}

,

the mixture (2-)Wasserstein (MW) distance (Chen et al., 2018; 2016; Delon & Desolneux, 2020) between
µ0 ∈ GMMd(K0) and µ1 ∈ GMMd(K1) with components as in (6) reads as

MW(µ0, µ1) := min
γ∈Γ(ω0,ω1)

( K0∑
k0=1

K1∑
k1=1

γk0,k1 W2
2(µk0

0 , µk1
1 )

) 1
2
. (7)

The MW distance is a geodesic metric on GMMd(∞) that is neither strongly nor weakly equivalent to the
2-Wasserstein distance (Delon & Desolneux, 2020). However, (Delon & Desolneux, 2020, Prop. 6) establishes
the lower and upper bounds

W2(µ0, µ1) ≤ MW(µ0, µ1)

≤W2(µ0, µ1) +

√√√√2
K0∑

k0=1
ωk0

0 tr(Σk0
0 ) +

√√√√2
K1∑

k1=1
ωk1

1 tr(Σk1
1 ). (8)

On the real line, the MW distance may be interpreted as (classical) Wasserstein distance on the parameter
space R×R≥0 of the Gaussian distributions. Mapping the parameters of µ ∈ GMM(K) to the point measure

ν(µ) =
K∑

k=1
ωk δ(mk,σk),
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where δ• denotes the Dirac measure, and using (5), we obtain

MW(µ0, µ1) = min
γ∈Γ(ω0,ω1)

( K0∑
k0=1

K1∑
k1=1

γk0,k1

∥∥(mk0
0 , σk0

0 )− (mk1
1 , σk1

1 )
∥∥2

) 1
2

= W2(ν(µ0), ν(µ1))

for all µ0 ∈ GMM1(K0) and µ1 ∈ GMM1(K1).

3 Sliced Distances for Gaussian Mixtures

From a computational point of view, there are two main disadvantages of the MW distance: 1. The com-
putation of the Wasserstein distance between two Gaussians for d > 1 requires the calculation of matrix
square roots and, therefore, of costly eigenvalue decompositions. 2. The outer optimal transport between
the Gaussian components becomes expensive for large numbers of components, even when using entropic
regularization (Cuturi, 2013). To overcome both issues, we propose different slicings of the MW distance.

3.1 Mixture Sliced and Sliced Mixture Distances

As a remedy to the first disadvantage—the computation of Wasserstein distances between Gaussians—, we
define the mixture sliced Wasserstein (MSW) distance:

MSW2(µ0, µ1) := min
γ∈Γ(ω0,ω1)

K0∑
k0=1

K1∑
k1=1

γk0,k1 SW2
2(µk0

0 , µk1
1 ),

where µ0 ∈ GMM(K0) and µ1 ∈ GMM(K1) have form (6). The MSW distance is especially useful for GMMs
with few high-dimensional components, where the slicing yields a significant speed-up, and where we are
interested in recovering a transport plan between Gaussian components. However, it still requires solving an
optimal transport problem, which becomes problematic for high numbers of components, and we therefore
aim for a ‘fully sliced’ distance.

As the first step in this direction, we instead consider the sliced mixture Wasserstein (SMW) distance:

SMW2(µ0, µ1) :=
∫
Sd−1

MW2(πθ,♯ µ0, πθ,♯ µ1) dθ =
∫
Sd−1

W2
2(νθ(µ0), νθ(µ1)) dθ,

where νθ(µi) := ν(πθ,♯ µi). Since πθ,♯ µi ∈ GMM1(Ki), the SMW distance is well-defined. However, this
does not offer computational advantages as it requires solving a non-trivial 2d optimal transport problem
for each projection. To speed up the computation, we switch to the sliced Wasserstein distance yielding the
double-sliced mixture Wasserstein (DSMW) distance:

DSMW2(µ0, µ1) :=
∫
Sd−1

SW2
2(νθ(µ0), νθ(µ1)) dθ.

This distance solves both computational issues since we have neither to deal with Wasserstein distance
between Gaussians nor to minimize an optimal transport problem. Instead, we can exploit the closed-form
solution (2) to compute the required Wasserstein distances between point measures on the line.
Theorem 3.1. MSW, SMW, and DSMW are metrics on GMMd(∞) satisfying

DSMW (µ0, µ1) ≤ SMW (µ0, µ1) ≤ MSW (µ0, µ1) ≤ MW (µ0, µ1), µ0, µ1 ∈ GMM(∞). (9)
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Proof. For any µi ∈ GMM(∞), i = 0, 1, there exists Ki ∈ N such that µi ∈ GMM(Ki). The first and last
inequalities directly follow from SW2(µ0, µ1) ≤W2(µ0, µ1). The remaining inequality can be established by

SMW2(µ0, µ1) =
∫
Sd−1

min
γ∈Γ(ω0,ω1)

K0∑
k0=1

K1∑
k1=1

γk0,k1 W2
2(πθ,♯ µk0

0 , πθ,♯ µk1
1 ) dθ

≤ min
γ∈Γ(ω0,ω1)

K0∑
k0=1

K1∑
k1=1

γk0,k1

∫
Sd−1

W2
2(πθ,♯ µk0

0 , πθ,♯ µk1
1 ) dθ = MSW2(µ0, µ1).

The positivity and symmetry of all distances are clear. The triangle inequalities for SMW and DSMW
directly follow from the triangle inequalities for W2 and SW2 together with the triangle inequality for the
2-norm on Sd−1. To show the triangle inequality for MSW, we consider µi ∈ GMMd(Ki), i = 0, 1, 2. Let
γ0,1,∗ and γ1,2,∗ realize MSW(µ0, µ1) and MSW(µ1, µ2) respectively, and choose η ∈ RK0×K1×K2

≥0 such that

K2∑
k2=1

ηk0,k1,k2 = γ0,1,∗
k0,k1

and
K0∑

k0=1
ηk0,k1,k2 = γ1,2,∗

k1,k2
.

The existence of such η is guaranteed by the so-called gluing lemma (Villani, 2003, Lem 7.6). Since γ0,2

given by γ0,2
k0,k2

:=
∑K1

k1=1 ηk0,k1,k2 satisfies γ0,2 ∈ Γ(ω0, ω2), we obtain

MSW(µ0, µ2) ≤

√√√√ K0∑
k0=1

K2∑
k2=1

γ0,2
jl SW2

2(µk0
0 , µk2

2 ) =

√√√√ K0∑
k0=1

K1∑
k1=1

K2∑
k2=1

ηk0,k1,k2SW2
2(µk0

0 , µk2
2 )

≤

√√√√ K0∑
k0=1

K1∑
k1=1

γ0,1,∗
k0,k1

SW2
2(µk0

0 , µk1
1 ) +

√√√√ K1∑
k1=1

K2∑
k2=1

γ1,2,∗
k1,k2

SW2
2(µk1

1 , µk2
2 )

= MSW(µ0, µ1) + MSW(µ1, µ2),

where we exploited the triangle inequality of SW2 and of the weighted 2-norm.

It remains to show the definiteness. If µ0 = µ1, then MW(µ0, µ1) = 0, which is inherited to the other
distances. Contrary, DSMW(µ0, µ1) = 0 implies SW2(νθ(µ0), νθ(µ1)) = 0 for a.e. θ ∈ Sd−1. Since SW2 is a
metric, we have νθ(µ0) = νθ(µ1) and πθ,♯(µ0) = πθ,♯(µ1) for a.e. θ. Hence

0 =
∫
Sd−1

W2(πθ,♯ µ0, πθ,♯ µ1) dθ = SW2(µ0, µ1)

implying µ0 = µ1. Due to (9), this is transferred to SMW and MSW.

3.2 Strong and Weak Equivalences

We next study the topologies induced by the proposed sliced metrics. More precisely, we are interested in
reverting the inequalities in Theorem 3.1 or, if this is not possible, in weak equivalences. For the majority of
the results in this section, we assume that the means and covariances of the involved Gaussians are contained
in a compact set. For a parameter set P ⊂ Rd × S+

d , we define

GMMd,P (K) := {µ ∈ GMMd(K) | (mk, Σk) ∈ P}.

This expression is again extended to GMMd,P (∞) by taking the union over all K ∈ N. From the view
of practical machine learning tasks, the compactness assumption is unproblematic as long as we consider
GMMs whose variances and means are bounded for instance. In this case, P can be chosen as sufficiently
large closed ball in Rd×S+

d . For compact P , we can transfer the strong equivalence (3) to SMW and DSMW.
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Theorem 3.2. SMW and DSMW are 6-strongly equivalent on GMMd,P (∞) with P ⊂ Rd × S+
d compact,

i.e., there exists CP > 0 such that

DSMW(µ0, µ1) ≤ SMW(µ0, µ1) ≤ CP DSMW(µ0, µ1) 1
6 ∀µ0, µ1 ∈ GMMd,P (∞).

Proof. For θ ∈ Sd−1, and µ :=
∑K

k=1 µk ∈ GMMd(K) with µk ∼ N (mk, Σk), we observe πθ,♯ µ ∈ GMM1(K),
where the means and standard deviations of the projected components πθ,♯ µk are given by mk

θ := θ · mk

and σk
θ := (θ⊤Σkθ) 1

2 , i.e., the parameters are transformed by Tθ(m, Σ) := (θ · m, (θ⊤Σ θ) 1
2 ). Due to the

compactness of P , we find X ⊂ R × R≥0 compact, such that Tθ(P ) ⊂ X for all θ ∈ Sd−1. Applying (3)
pointwisely and Jensen’s inequality, we have

SMW2(µ0, µ1) =
∫
Sd−1

W2
2(νθ(µ0), νθ(µ1)) dθ

≤ CX

∫
Sd−1

SW
1
3
2 (νθ(µ0), νθ(µ1)) dθ ≤ CX DSMW

1
3 (µ0, µ1)

for all µi ∈ GMMd(∞).

Generally, Wasserstein and sliced Wasserstein distances are not 1-strongly equivalent (Park & Slepčev, 2025).
Similarly, no 1-strong equivalence (3) can be encountered for MW and MSW. Moreover, the counterexample
in the following proof indicates that 1-strong equivalence may not even hold when restricting to Gaussians
whose parameters are contained in compact sets.
Proposition 3.3. MW and MSW are not 1-strongly equivalent on GMMd(K) with d > 1.

Proof. We restrict ourselves to the case d = 2 and follow a construction first presented in the errata of
(Bayraktar & Guo, 2021). More precisely, we consider

µϵ ∼ N
(
( 0

0 ), ( 1 0
0 ϵ )

)
and µ ∼ N

(
( 0

0 ), ( 1 0
0 0 )

)
.

Since MW ≡W2 and MSW ≡ SW2 on GMM2(1), the calculations in (Bayraktar & Guo, 2021) imply

MW(µϵ, µ)
MSW(µϵ, µ) = W2(µϵ, µ)

SW2(µϵ, µ)
= ϵ

(2 + ϵ)π − 2
∫ 2π

0 |cos2(ϕ)|(cos2(ϕ) + ϵ sin2(ϕ)) 1
2 dϕ

→∞.

Using L’Hôpital’s rule and Lebesgue’s dominated convergence theorem, we observe that the right-hand side
diverges for ϵ→ 0; so MW and MSW cannot be 1-strongly equivalent. The construction can be generalized
to d > 2 by extending the diagonals by ϵ and 0 respectively.

For GMMs with parameters in a compact set, for instance, GMMs with bounded means and variances, we
can establish the weak equivalence of the remaining distances. Intriguingly, the weak equivalence holds true
although SMW is not immediately related to MSW and MW. While we conjecture that the weak equivalence
holds true for all GMMs, the employed proof technique does not allow to skip the compactness assumption.
Theorem 3.4. DSMW, SMW, MSW, and MW are weakly equivalent on GMMd,P (K) with P ⊂ Rd × S+

d

compact, i.e.,

DSMW(µn, µ)→ 0 ⇔ SMW(µn, µ)→ 0 ⇔ MSW(µn, µ)→ 0 ⇔ MW(µn, µ)→ 0

as n→∞ for all (µn)n∈N ⊂ GMMd,P (K) and µ ∈ GMMd,P (K).

To show this statement, we require the following lemma ensuring that almost all (∀∀) projections of two
Gaussians do not collide.
Lemma 3.5. For non-equal µ0, µ1 ∈ GMMd(1), it holds

πθ,♯ µ0 ̸= πθ,♯ µ1 ∀∀θ ∈ Sd−1.

8
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Proof. We consider non-equal µi ∼ N (mi, Σi). If m0 ̸= m1, then θ · (m0−m1) ̸= 0 for a.e. θ ∈ Sd−1, yielding
the assertion. Otherwise, if m0 = m1 and Σ0 ̸= Σ1, then θ⊤(Σ0 −Σ1) θ = 0 implies θ ∈ ker(Σ0 −Σ1). Since
dim(ker(Σ0 − Σ1)) < d, θ ̸∈ ker(Σ0 − Σ1) ∩ Sd−1 almost surely, which finishes the proof.

Proof of Theorem 3.4. Let µn :=
∑K

k0=1 ωk0
n µk0

n and µ :=
∑K

k1=1 ωk1 µk1 in GMMd,P (K) satisfy

SMW2(µn, µ) =
∫
Sd−1

K∑
k0=1

K∑
k1=1

γn,θ,∗
k0,k1

W2
2(πθ,♯ µk0

n , πθ,♯ µk1) dθ → 0,

where γn,θ,∗ denotes the optimal MW plan for fixed θ ∈ Sd−1. Due to the L2(Sd−1) convergence, for any
subsequence of µn, we find a further subsequence (µnj

)j∈N such that
K∑

k0=1

K∑
k1=1

γ
nj ,θ,∗
k0,k1

W2
2(πθ,♯ µk0

nj
, πθ,♯ µk1)→ 0 ∀∀θ ∈ Sd−1 (10)

pointwisely. Since P is compact, (µnj
)j∈N can be chosen such that µk0

nj
converges to some µ̃k0 ∈ GMMd(1)

and ωk0
nj

to some ω̃k0 ∈ R≥0.

Assume that there exists µ̃k0 with ω̃k0 > 0 such that µ̃k0 ̸= µk1 for all k1 with ωk1 > 0. Due to Lemma 3.5,
we find θ ∈ Sd−1 such that (10) converges and

πθ,♯ µ̃k0 ̸= πθ,♯ µk1 ∀k1 ∈ {k | ωk > 0}.

Since W2
2(πθ,♯ µk0

nj
, πθ,♯ µk1) is thus bounded away from zero for nj large enough, the pointwise convergence

in (10) implies γ
nj ,θ,∗
k0,k1

→ 0 for all k1 ∈ {k | ωk > 0}, i.e., an entire row in γnj ,θ,∗ which sums up to a non-zero
weight vanishes. This, however, contradicts that γnj ,θ,∗ is a discrete transport plan. Consequently, µk0

nj

converges to a non-zero component of µ.

For any θ ∈ Sd−1 such that (10) hold true and πθ,♯ µ̃k0 ̸= πθ,♯ µk1 for the components with non-zero weights,
we observe

γ
nj ,θ,∗
k0,k1

→ 0
{

if µ̃k0 ̸= µk1 and ω̃k0 , ωk1 > 0,

or if ω̃k0 = 0,

and hence
γ

nj ,θ,∗
k0,k1

→ ω̃k0 if µ̃k0 = µk1 and ω̃k0 , ωk1 > 0.

Exploiting that the Wasserstein distances between all involved Gaussians in GMMd,P (1) are bounded, we
finally have

MW2(µn, µ) ≤
K∑

k0=1

K∑
k1=1

γ
nj ,θ,∗
k0,k1

W2
2(µk0

nj
, µk1)→ 0 as j →∞.

Because this holds true for any subsequence of (µn)n∈N, the assertion is established. The remaining impli-
cations follow from the inequalities in Theorem 3.1 and 3.2.

3.3 Weak Topology

Beyond computational speed-up, the sliced Wasserstein distance is closely related to the original Wasserstein
distance. Specifically, both imply weak convergence and thus induce the weak topology on P2(Rd), see
(Nadjahi et al., 2020). In this section, we aim to explore this property for our proposed sliced distances. In
a first step, we establish an analogue of (8) for SMW.
Proposition 3.6. For µi ∈ GMMd(Ki), MSW satisfies

SW2(µ0, µ1) ≤ SMW(µ0, µ1)

≤ SW2(µ0, µ1) +

√√√√√2
K0∑

k0=1
ωk0

0

∫
Sd−1

θ⊤Σk0
0 θ dθ +

√√√√√2
K1∑

k1=1
ωk1

1

∫
Sd−1

θ⊤Σk1
1 θ dθ.

9
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Proof. The lower bound follows from the definition of MSW and W2(µ0, µ1) ≤ MW (µ0, µ1). The upper
bound follows from applying (8) in the definition of MSW together with the triangle inequality on L2(Sd−1).

Since SW2 induces the weak topology, also MSW yields the weak convergence. Delon and Desolneux (Delon
& Desolneux, 2020) give an example that MW and W2 are not weakly equivalent and that the upper bound
in (8) is tight. This example carries over to SW2 and SMW. Owing to the additional slicing in DSMW,
which decreases SMW, Proposition 3.6 cannot be exploited to study the relation of DSMW to the weak
topology. For GMMs whose parameters are contained in a compact set, the following statement yields a first
approach in this direction.
Proposition 3.7. For P ⊂ Rd × S+

d compact, there exists Cp > 0 such that

SW6
2(µ0, µ1) ≤ CP DSMW(µ0, µ1) ∀µ0, µ1 ∈ GMMd,P (∞).

Proof. The statement immediately follows from combining the strong equivalence in Theorem 3.2 with the
lower bound in Proposition 3.6.

As SW2 metricizes weak convergence, limn→∞ DSMW(µn, µ) = 0 results in µn ⇀ µ on GMMd,P (∞).
Proposition 3.7 does not imply the strong equivalence of SW2 and DSMW on GMMd,P (∞) since the second
bound is not established. Beyond compact parameter sets, SW2 and DSMW are not even weakly equivalent.
Henceforth, 0d ∈ Rd denotes the all-zero vector, Id ∈ Rd×d the identity matrix, and Γ the gamma function.
Proposition 3.8. For mk0 ∈ Rd and σ > 0, let µ0 =

∑K0
k0=1

1
K0

δmk0
and µ1 ∼ N (0d, σ2Id) be given. Then

DSMW2(µ0, µ1) ≥ 2σ2π
d+2

2

Γ( d
2 )

.

Proof. Due to the uniqueness of the transport plan between an one-point measure and any other measure,
a direct calculation yields

DSMW2(µ0, µ1) =
∫
Sd−1

SW2
2(νθ(µ0), νθ(µ1)) dθ

=
∫
Sd−1

∫ 2π

0

1
K0

K0∑
k0=1

(
(θ ·mk0) cos(ϕ) + σ sin(ϕ)

)2 dϕ dθ

=
∫
Sd−1

∫ 2π

0

1
K0

K0∑
k0=1

[
(θ ·mk0)2 cos2(ϕ) + σ2 sin2(ϕ)

]
dϕ dθ.

Here, the mixed terms in the extensions of the squares vanish since they are integrals over odd functions.
Dropping the cosine terms, we obtain

DSMW2(µ0, µ1) ≥ 2σ2π
d
2

Γ( d
2 )

∫ 2π

0
sin2(ϕ) dϕ = 2σ2π

d+2
2

Γ( d
2 )

.

For a sequence of point measures µn approximating a Gaussian N (0d, σ2Id), i.e., limn→∞ SW2(µn, µ) = 0,
Proposition 3.8 implies limn→∞ DSMW(µn, µ) ≥ 2σ2π

d+2
2 /Γ( d

2 ) ̸= 0; so SW2 and DSMW cannot be weakly
equivalent.

In particular, this means that samples from a Gaussian do not yield a (weak) approximation.

10
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Algorithm 1 Implementation of MSW

Require: GMMs µi :=
∑Ki

ki=1 ωki
i µki

i with µki
i ∼ N (mki

i , Σki
i ) ▷ i := 0, 1

Require: number of projections L
1: for ki := 1, . . . , Ki, i := 0, 1 do

2: ck0,k1 := 1
L

L∑
ℓ=1

(θℓ ·mk0
0 − θℓ ·mk1

1 )2 +
(
(θ⊤

ℓ Σk0
0 θℓ)

1
2 − (θ⊤

ℓ Σk1
1 θℓ)

1
2
)2

▷ θℓ ← U(Sd−1)
3: end for
4: return minγ∈Γ(ω0,ω1)

∑K0
k0=1

∑K1
k1=1γk0,k1 ck0,k1 ▷ optimal transport solver

4 Numerical Analysis

In this section, we present the computational implementation of MSW and DSMW, a runtime comparison
with MW, and numerical experiments showcasing the potential of our novel sliced metrics. Experiments
were conducted on a system equipped with a 13th Gen Intel Core i5-13600K CPU and an NVIDIA GeForce
RTX 3060 GPU with 12 GB of memory. Our implementation1 is based on Python 3.12 and employs the
Python optimal transport library (POT) (Flamary et al., 2021) for optimal transport solvers and PyTorch
(Paszke et al., 2019) for automatic differentiation.

4.1 Implementation Details

A common, popular approach to implement the sliced Wasserstein distance relies on the so-called Monte
Carlo integration (Nadjahi et al., 2020). For this, we independently draw L random samples θℓ ∈ Sd−1 with
respect to the uniform distribution U(Sd−1) on the sphere (in pseudocode: θℓ ← U(Sd−1)) and approximate
the sliced p-Wasserstein distance by

ŜWp,L(µ0, µ1) :=
( 1

L

L∑
ℓ=1

Wp
p(πθℓ,♯ µ0, πθℓ,♯ µ1)

) 1
p

, (11)

where the Wasserstein distances on the line can, in general, be calculated via (2). Independent of the
dimension d, the Monte Carlo approximation converges with rate O(L− 1

2 ). More precisely, denoting the
uniform measure by u, we have the following estimate.
Theorem 4.1 ((Nadjahi et al., 2020, Thm 6)). For µ0, µ1 ∈ Pp(Rd), and independent samples θℓ, ℓ =
1, . . . , L, with respect to U(Sd−1), the expected absolute error is bounded by

Eθ1,...,θL
|ŜWp

p,L(µ0, µ1)− SWp
p(µ0, µ1)|

≤ 1√
L

(∫
Sd−1
|Wp

p(πθ,♯ µ0, πθ,♯ µ1)− SWp
p(µ0, µ1)|2 du(θ)

) 1
2
.

The term on the right-hand side may be interpreted as the standard deviation of the Wasserstein distance
Wp

p(πθ,♯ µ0, πθ,♯ µ1) on the line with respect to U(Sd−1). Incorporating the slicing of Gaussians and the
1d Wasserstein distance (5), we obtain a simple closed-form expression for the outer costs of MSW. The
corresponding transport problem may then be solved using POT (Flamary et al., 2021). The details of the
resulting MSW implementation are presented in Algorithm 1. The Monte Carlo integration may also be
replaced by quasi-Monte Carlo methods (Hertrich et al., 2025; Nguyen et al., 2024).

For the double slicing behind DSMW, we have to implement the following two major steps: 1. Determine
the parameters of the GMMs πθ,♯ µi, i.e., calculate νθ(µi) ∈ P2(R × R≥0). This step can be realized
by transforming the parameters of the Gaussian components via (m, Σ) 7→ (θ ·m, (θ⊤Σ θ) 1

2 ). 2. Slice the
resulting point measure in P2(R × R≥0). Using the standard parametrization of S1, we realize this step by

1Repository available upon acceptance. The code is included in the supplementary material.
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Algorithm 2 Implementation of DSMW

Require: GMMs µi :=
∑Ki

ki=1 ωki
i µki

i with µki
i ∼ N (mki

i , Σki
i ) ▷ i := 0, 1

Require: number of projections L
1: for ℓ := 1, . . . , L do
2: θℓ ← U(Sd−1), ϕℓ ← U([0, 2π))

3: ξi,ℓ :=
Ki∑

ki=1
ωki

i δ
p

ki
i,ℓ

, pki

i,ℓ := (θℓ ·mki
i ) cos(ϕℓ) + (θ⊤

ℓ Σki
i θℓ)

1
2 sin(ϕℓ)

▷ i := 0, 1
4: wℓ := W2

2(ξ0,ℓ, ξ1,ℓ) ▷ 1d optimal transport via (2)
5: end for
6: return 1

L

∑L
ℓ=1 wℓ

calculating the inner product with (cos ϕ, sin ϕ) where ϕ ∈ [0, 2π). Concatenation of both steps yields the
parameter transformation ξθ,ϕ : GMM(∞)→ P2(R) that is, for fixed θ ∈ Sd−1 and ϕ ∈ [0, 2π), given by

ξθ,ϕ(µ) :=
K∑

k=1
ωk δpk , pk := (θ ·mk) cos(ϕ) + (θ⊤Σk θ) 1

2 sin(ϕ).

Drawing L independent samples (θℓ, ϕℓ) with respect to the uniform measure U(Sd−1 × [0, 2π)), we propose
to approximate DSMW by

D̂SMWL(µ0, µ1) :=
( 1

L

L∑
ℓ=1

W2
2(ξθℓ,ϕℓ

(µ0), ξθℓ,ϕℓ
(µ1)

) 1
2
. (12)

The details of the implementation are given in Algorithm 2, where we again rely on POT (Flamary et al.,
2021) to compute the 1d optimal transports. Similarly to SWp, the simultaneous Monte Carlo integration
with respect to both slicing directions yields a convergence rate of O(L− 1

2 ).
Theorem 4.2. For µ0, µ1 ∈ GMMd(∞), and independent samples (θℓ, ϕℓ), ℓ = 1, . . . , L, with respect to
U(Sd−1 × [0, 2π)), the expected absolute error is bounded by

E(θ1,ϕ1),...,(θL,ϕL)|D̂SMW2
L(µ0, µ1)−DSMW2(µ0, µ1)|

≤ 1√
L

(∫
Sd−1×[0,2π]

|W2
2(ξθ,ϕ(µ0), ξθ,ϕ(µ1))−DSMW2(µ0, µ1)|2 du(θ, ϕ)

) 1
2
.

Proof. Applying Hölder’s inequality, and exploiting that the samples (θℓ, ϕℓ) are drawn independently, we
obtain

E(θ1,ϕ1),...,(θL,ϕL)|D̂SMW2
L(µ0, µ1)−DSMW2(µ0, µ1)|

=
∫
· · ·

∫
(Sd−1×[0,2π])L

|D̂SMW2
L(µ0, µ1)−DSMW2(µ0, µ1)|du(θ1, ϕ1) · · · du(θL, ϕL)

≤
(∫
· · ·

∫
(Sd−1×[0,2π])L

|D̂SMW2
L(µ0, µ1)−DSMW2(µ0, µ1)|2 du(θ1, ϕ1) · · · du(θL, ϕL)

) 1
2

=
( 1

L

L∑
ℓ=1

∫
Sd−1×[0,2π]

|W2
2(ξθℓ,ϕℓ

(µ0), ξθℓ,ϕℓ
(µ1))−DSMW2(µ0, µ1)|2 du(θℓ, ϕℓ)

) 1
2

= 1√
L

(∫
Sd−1×[0,2π]

|W2
2(ξθ,ϕ(µ0), ξθ,ϕ(µ1))−DSMW2(µ0, µ1)|2 du(θ, ϕ)

) 1
2
.

Similarly to the convergence rate for SWp, the integral on the right-hand side corresponds to the variance
of W2

2(ξθ,ϕ(µ0), ξθ,ϕ(µ1)) with respect to U(Sd−1 × [0, 2π)).

12
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components K

dim d 10 100 500
10 0.05±0.08 1.85±0.02 46.4±0.32
100 2.59±0.19 >60 >60
500 >60 >60 >60

MW

components K

dim d 10 100 500
10 0.02±0.00 1.67±0.02 41.57±0.27
100 2.74±0.35 >60 >60
500 >60 >60 >60

Entropic MW

components K

dim d 10 100 500
10 1.21±0.15 1.40±0.19 1.28±0.09
100 0.89±0.42 3.11±0.15 10.2±0.92
500 4.63±0.51 44.7±1.95 >60

MSW

components K

dim d 10 100 500
10 0.15±0.05 0.02±0.01 0.01±0.01
100 0.13±0.08 0.05±0.03 0.08±0.04
500 0.34±0.24 0.89±0.41 1.05±0.48

DSMW

Table 1: Average CPU computation time in seconds (mean plus-minus standard deviation) for GMMs with
varying dimensions d and component number K for MW, MSW, and DSMW. Additionally, we approximate
the outer transport behind MW using efficient Sinkhorn iterations with regularization parameter ϵ = 0.1
(entropic MW). The time for MW quickly surpasses 60 seconds, whereas MSW takes only seconds and DSMW
is calculated within a single second. The Monte Carlo iterations are stopped when reaching a precision of
10−3. Note that GPU usage achieves further acceleration in practice.

4.2 Runtime Comparison

To evaluate the computational speed-up of Algorithm 1 and 2, we present a side-by-side CPU time comparison
in Table 1. For each dimension d and component number K, we calculate MW, MSW, and DSMW for 10
pairs of random GMMs. The GMMs are generated with uniformly distributed weights in ∆K and uniform
means in [0, 10]d. Based on the Cholesky decomposition, the covariance matrices are generated as QQ⊤

based on lower triangular matrices Q with uniform entries in [0, 1]. The Monte Carlo estimates of SW2 (11)
for the MSW costs in Algorithm 1 and of DSMW (12) (Algorithm 2) are calculated up to a convergence.
More precisely, we stop the Monte Carlo iteration as soon as the mean precision attains

K0∑
k0=1

K1∑
k1=1

|ŜW2,L(µk0
0 , µk1

1 )− ŜW2,L−10(µk0
0 , µk1

1 )|
K0K1

≤ 10−3 (13)

and
|D̂SMWL(µ0, µ1)− D̂SMWL−10(µ0, µ1)| ≤ 10−3; (14)

so we stop as soon as the estimate nearly stagnates over 10 iterations. The number of 10 iterations is here
chosen manually to reduce the stochastic impact of the random process on subsequent iterates. Table 1 shows
that MW, unlike MSW and DSMW, does not scale well beyond toy GMMs. To reduce the numerical burden of
the outer transport problem behind MW, we additionally solve this via efficient Sinkhorn iterations (Peyré
& Cuturi, 2019) that rely on an entropy regularization. This adaption only yields a minor acceleration
showing that the analytical solution of the inner transports are the major bottleneck. We observed an
analogous slight acceleration for a regularized version of MSW—not recorded in Table 1. The usage of the
original MW distance is thus limited in image reconstruction methods typically employing GMMs with 100–
300 components on dimension of size 50–100 (Zoran & Weiss, 2011). In such cases, MSW and DSMW are
computed in a second or less, whereas MW takes minutes. Interestingly, we consistently observed accelerated
convergence of DSMW for higher dimensions for K < 500.

To study the behavior of MSW and DSMW for GMMs with higher numbers of components, we perform
additional experiments in dimension d = 50, see Table 2. Moreover, we report the averaged number of
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components K

1000 2000 5000 10000

MSW time 8.9±1.03 47.13±2.81 >60 >60
proj. 8967 8816 — —

DSMW time 0.02±0.01 0.04±0.01 0.09±0.03 0.16±0.0
proj. 15 15 12 10

Table 2: Average CPU computa-
tion time in seconds (mean plus-
minus standard deviation) and av-
erage number of projections until
convergence for GMMs with varying
component numbers K in dimension
d = 50.

MSW DSMW
dim d time proj. time proj.
1000 15.40±2.20 6932 1.00±0.47 225
2000 53.09±7.82 6928 3.43±1.72 228
3000 >60 — 6.90±3.21 215

Table 3: Average CPU computation time in seconds
(mean plus-minus standard deviation) and average
number of projections until convergence for GMMs in
varying dimensions d and K = 10 components.

projections required to reach the convergence criteria (13) and (14). While the outer transport behind MSW
leads to exploding computation times, DSMW is still computed in under one second. The averaged number of
required projections slightly deceases for higher component numbers. The reason for this behaviour might be
that more and more components in the generated GMMs become alike. For very high component numbers,
the entire generated GMMs are closely related such that the variance in the upper bound from Theorem 4.2
becomes small; so the absolute error for DSMW decreases extremely rapid. This effect is much less distinct
for MSW since the majority of the single components still differ.

Finally, we repeat the experiment for GMMs in higher dimensions, where the number of components is
fixed by K = 10, see Table 3. As before, we observe a significant impact of the double slicing on the
computation time. While MSW and DSMW take longer for increasing dimensions, the average projection
number remains stable; so the increasing computation times mainly trace back to the increased numerical
effort for each projection. Again, we observe that DSMW requires much less directions than MSW for
convergence, which leads to an additional speed-up.

5 Experiments and Applications

5.1 Detection of Cluster Number

When clustering or classifying data, a common approach is to fit a likelihood-maximizing GMM using the
EM algorithm (Wan et al., 2019). For this, however, the number of Gaussian components has to be specified,
which requires additional data analysis. In practice, we may rely on a wide range of classification indices and
criteria to find a suitable number (Xu et al., 2016). As an alternative, we propose to use GMM-based metrics
by tracking the distance between the fitted GMMs µk ∈ GMMd(k) and µk+1 ∈ GMMd(k + 1). Figuratively,
we try to find the smallest k ∈ N such that adding more components does not change the fitted model. In
other words, we increase k until the distance between µk and µk+1 vanishes. To illustrate this approach, we
sample 1000 data points from four 2d distributions, each with four or six clearly separated modes. Then,
GMMs µk with k = 2, . . . , 9 Gaussian components are fitted using the EM algorithm, and the distances
MW(µk, µk+1), MSW(µk, µk+1) and DSMW(µk, µk+1) are computed. The evolutions of the fitted models
are presented in Figure 2. For each distribution, we observe convergence in all three metrics at k = 4 or
k = 6, which corresponds to the true number of components. The experiment suggests that the GMM-based
matrices can indeed be used to specify the number of clusters. A broader study and comparison with other
methods, especially when the classes are not well separated, is left for future research.

5.2 Perceptual Metric

The Fréchet Inception Distance (FID) (Heusel et al., 2017) is a widely used metric for evaluating generative
models in computer vision. It estimates the distance between real and generated image distributions by
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Figure 2: Detection of cluster numbers by tracking the distances between µk and µk+1, where µk is a
fitted GMM with k components. For the input data (top), the plots (bottom, y-axis from 0 to maximum)
show the distance between µk and µk+1 with respect to MW (blue), MSW (orange), and DSMW (green).
The distances become zero after k = 4 (left) and k = 6 (right) indicating that higher component numbers
only yield reparametrizations of the former models. The first zero hence corresponds to the correct cluster
number. Notice that MW seems to be slightly less stable than MSW and DSMW.

assuming that their deep feature representations follow multivariate Gaussian distributions. In more detail,
the features of the given empirical image distributions are extracted using a pre-trained neural network.
Both feature sets are then modeled as normal distributions, whose Wasserstein distance is estimated by
(4). Despite good performance, the Gaussian assumption does not align with empirical feature distributions
(Luzi et al., 2023). As an alternative, the Wasserstein on Mixtures (WaM) metric fits two GMMs to the
feature distribution using the EM algorithm and estimates the mixture Wasserstein distance (7) to capture
more visual information (Luzi et al., 2023). Both perceptual metrics—FID and WaM—have been shown to
align with human perception.

In this experiment, we adapt the WaM metric by replacing MW with MSW and DSMW. As feature extrac-
tor for FID and WaM, we employ a pre-trained Inception-v3 network (Szegedy et al., 2016) with a latent
representation of 2048 dimensions. The obtained feature set is then fitted by a multi-variate normal dis-
tribution or by a five-component GMM respectively. For the real image set, we employ a subset of 1000
CIFAR10 images (Krizhevsky, 2009). For the artificial set, we disturb these images with Gaussian noise
(standard deviation between 0.01 and 0.2), Salt&Pepper noise (corruption ratio between 5% and 30%), and
Gaussian blur (standard deviation between 0.1 and 1.5). The resulting FID and WaM between the real and
artificial image sets are visualized in Figure 3. All perceptual metrics react very similarly to the different
distortions. Stronger distortions lead to increased distances, and the FID and the (adapted) WaM curves
display comparable shapes for the same distortion types. Given the fitted GMMs, MW calculation took
around 11 minutes, MSW calculation took around 1 minute and DSMW calculation took around 20 seconds.

5.3 Quantization of Gaussian Mixtures

The focus of the next experiment is to demonstrate that our DSMW distance may be used in the context of
gradient-based optimization. Exemplarily, we aim to reduce the component number of a given GMM while
preserving key statistical properties, aiding in model compression. Earlier work on this topic has explored
optimal component selections and divergence-based approximations to minimize the information loss (Assa
& Plataniotis, 2018; Crouse et al., 2011; Runnalls, 2007). To quantize a given µ ∈ GMMd(K), we instead
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Figure 3: FID (left), WaM with MSW (center left), WaM with MW (center right), and WaM with DSMW
(right) between real and artificial CIFAR10 image sets based on different types and levels of image distortions
(standard deviation of Gaussian noise, corruption ratio of Salt&Pepper noise, standard deviation of Gaussian
blur). All resulting curves of the evaluated perceptual metrics show comparable behaviors.

propose to solve
min

µ∗∈GMMd(K∗)
DSMW2(µ∗, µ) with K∗ < K.

In favor of a gradient descent minimization, we parametrize µ∗ according to (Gepperth & Pfülb, 2021).
For this, we denote the set of lower triangular matrices with non-negative diagonal by Tri≥0(d). Given
a parameter vector ρ := (wk, mk, Qk)K∗

k=1 with wk ∈ R, mk ∈ Rd, and Qk ∈ Tri≥0(d), we consider the
parametrized GMM:

µρ :=
K∗∑
k=1

exp(wk)∑K∗

ℓ=1 exp(wℓ)
µk

ρ, µk
ρ ∼ N (mk, QkQk,⊤ + σ2Id), (15)

where we add the identity Id for numerical stability. Using a fixed number of random directions θℓ in (12), we
employ the Adam scheme (Kingma & Ba, 2014) in combination with automatic differentiation to minimize

min
ρ

D̂SMW2
L(µρ, µ).

The updated diagonal entries of Qk are here projected back to R≥0. As target GMM µ, we use two-
dimensional Gaussian mixtures with 100 components in the form of 28 × 28 MNIST digits (LeCun et al.,
1998), which are calculated by employing the EM algorithm (Dempster et al., 1977) to the pixel intensities,
see Figure 4. Applying Adam with step size 0.03 for 200 iterations and 20 random initializations, and
choosing L = 100 and σ = 1 (pixel), we quantize the inputs by 50-component GMMs. Each gradient descent
cycle requires less than a second GPU time. The resulting densities on [0, 28]2 are shown in Figure 4.
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Figure 4: Quantization of input GMMs with 100 components (top) to GMMs with 50 components (bottom).

5.4 Barycenter of Gaussian Mixtures

Barycenters are generalized Fréchet means, which in the context of optimal transport are defined as
measure-valued midpoints between multiple inputs. For general measures, Wasserstein barycenters (Agueh
& Carlier, 2011) and sliced Wasserstein barycenters (Bonneel et al., 2015) as well as, for GMMs, mixture
Wasserstein barycenters (Delon & Desolneux, 2020) are studied. The latter have applications in compu-
tational biology (Lin et al., 2023) and domain adaptation (Montesuma et al., 2024). In more detail, for
µ1, . . . , µI ∈ GMMd(K) and λ ∈ ∆I , a MW barycenter is the solution to

inf
µ∗∈GMMd(∞)

I∑
i=1

λi MW2(µ∗, µi). (16)

The infimum of (16) is always attained, where the components µ∗,k1,...,kI ∈ GMMd(1) of the minimizer µ∗

are themselves Wasserstein barycenters between µk1
1 , . . . , µkI

I , i.e.,

µ∗,k1,...,kI := arg min
µ†∈P2(Rd)

I∑
i=1

λiW2
2(µ†, µki

i ), (17)

which can be calculated analytically (Delon & Desolneux, 2020). The weights of these closed-form Wasser-
stein barycenters can be computed by solving a linear program, where at most (I − 1)K − 1 weights are
non-zero.

In the style of the MW barycenter problem (16), and as proof-of-concept, we initially consider (fixed-
component) DSMW barycenters µ∗ ∈ GMMd(KI) with components µ∗,k1,...,kI from (17) solving

inf
µ∗∈GMMd(KI )

I∑
i=1

λi DSMW2(µ∗, µi). (18)

Referring to Section 5.3, we solve (18) using stochastic gradient descent with automatic differentiation, where
we parametrize µ∗, whose components are fixed, by

µw :=
K∑

k1=1
· · ·

K∑
kI =1

exp(wk1,...,kI )∑K
ℓ1=1 · · ·

∑K
ℓI =1 exp(wℓ1,...,ℓI )

µ∗,k1,...,kI , w ∈ RK×I

.

For comparison, we adapt the MW interpolation task2 first presented in (Delon & Desolneux, 2020). Ap-
proximating (18) using D̂SMW2

L with 100 random directions, stochastic gradient descent finds the optimal
weights parametrized by w after 10 iterations with a step size of 0.03. The results presented in Figure 5
show that MW and DSMW both enable a meaningful smooth interpolations despite their distinct geometry.
A direct comparison convey the impression that the DSMW barycenter is less related to the prominent
features of the inputs. Especially, in the middle, we nearly obtain unimodal GMMs. Note that the aim of

2https://github.com/judelo/gmmot
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Figure 5: Bilinear interpolation between GMMs at the corners via MW barycenters and fixed-component
DSMW barycenters based on the example from (Delon & Desolneux, 2020). Both methods show reasonable,
smooth interpolations between the inputs.

this toy example is only to demonstrate that the DSMW distance allows efficient barycenter computations
using stochastic gradient descent. The exploration of the quality, especially compared to other optimal
transport-based barycenters, is left for future research.

Despite the underlying sparse structure of the MW barycenters, computation becomes increasingly costly
beyond toy examples due to the necessary minimization over the weights of KI Gaussian components (Lin
et al., 2023). Based on the parametrization µρ ∈ GMMd(K∗) in (15) with σ = 0.3 (pixel) and an arbitrary
component number K∗ ∈ N, we may alternatively use the Adam scheme with automatic differentiation to
approximate a (free-component) DSMW barycenter by minimizing

min
ρ

I∑
i=1

λi D̂SMW2
L(µρ, µi). (19)

In the second experiment, we aim to compute the barycenters (19) between five MNIST samples (LeCun
et al., 1998) per digit. The MNIST samples themselves are approximated by 10-component GMMs using the
EM method. We refer to Figure 6 for the density contour plots of the inputs. For the barycenter computation,
we choose K∗ = 100, L = 100, and λ = 1

5 15. Taking 200 Adam gradient descent steps with step size 0.03,
where the descent is started from 10 random initial GMMs, we obtain the free-component DSMW barycenters
in Figure 6. Along the results, we further display SW2 barycenters estimated by minimizing

min
xn∈R2

I∑
i=1

λi ŜW2
2,L

( 1
N

N∑
n=1

δxn , µ̃i

)
,

where µ̃n are empirical measures obtained from 10000 samples from µn. Similarly to the DSMW barycenter,
we choose N = 100, L = 100, λ = 1

5 15 and apply 200 Adam gradient descent steps with step size 0.03 and 9
restarts. The results are also visualized in Figure 6, where similar shapes emerge for both ansätze. The SW2
barycenters seem to be more noisy. For the described setting, 200 gradient descent steps require around 1s
GPU time for DSMW and around 5s for SW2. Besides the computational speed-up, the main benefit of
using our DSMW distance is that the DSMW barycenter is an actual undegenerated GMM, where the SW2
barycenter only yields a (degenerated) point cloud. Note that the shape of the DSMW and SW2 barycenter
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Inputs DSMW SW2 Inputs DSMW SW2

Figure 6: DSMW and SW2 barycenters. Given an input set of five two-dimensional Gaussian mixtures in
the form of MNIST digits (left: 0-4, right: 5-9), we display DSMW (in the form of a GMM density) and
SW2 barycenters (in the form of points). The DSMW barycenters are actual undegenerated GMMs, where
the SW2 barycenters are only (degenerated) point clouds.

are closely related, and that the DSMW barycenter can thus be interpreted as smoothed version of the SW2
barycenter.

6 Conclusion

In this work, we introduce two novel sliced versions of the MW distance for GMMs, namely, the MSW
and the DSMW distance. Both variants significantly reduce the computational burden while relying on
the Euclidean geometry of the underlying domains. Our theoretical results established connections between
MSW, DSMW, and MW as well as relations to SW2. The latter especially ensures meaningful convergence
and topological properties. Through extensive numerical experiments, we demonstrated the efficiency of
our approach in various applications, namely, perceptual data comparison, unsupervised clustering, GMM
quantization, and GMM barycenter computation.

Additionally, our framework can be readily adapted to so-called max-sliced distances, where the integral
over the sphere is replaced by taking the maximum over the sphere. The original max-sliced Wasserstein
distance has been shown to provide a meaningful alternative to the sliced Wasserstein distance by focusing
on the most discriminative direction (Deshpande et al., 2019). This might be beneficial for gradient-based
optimization. Moreover, the max-sliced distance is 1-strongly equivalent to the Wasserstein distance on
GMMd(1) (Bayraktar & Guo, 2021). Consequently, replacing the sliced distance in the MSW construction
with the max-sliced variant, we can strengthen the shown weak equivalence to an actual strong equivalence.
Furthermore, it might be interesting to investigate metric equivalences with respect to the slicing techniques
in (Nguyen & Mueller, 2025; Nguyen et al., 2025).

Beyond GMMs, the MW distance has been extended to mixtures of non-Gaussian probability measures
(Alvarez-Melis & Fusi, 2020; Bing et al., 2022; Dusson et al., 2023). While our focus has been on Gaussian
mixtures, an interesting direction for future research is the extension of our framework to other relevant
non-Gaussian mixture models, such as Dirichlet mixtures (Martin et al., 2024; Pal & Heumann, 2022). Since
many real-world datasets exhibit non-Gaussian characteristics (Luzi et al., 2023), developing Wasserstein-
type distances tailored to these distributions would further broaden the applicability of our approach. Beyond
the MW distance, a sliced extension to isometry-invariant optimal transport between Gaussian mixtures
(Beier et al., 2025; Salmona et al., 2024) might be of interest.
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