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Figure 1: While BIOCLIP 2 is trained to distinguish species, it demonstrates emergent properties beyond the
initial training objective. Left: At the inter-species level, the embedding distribution of different species aligns
with ecological relationships; the embeddings of Darwin’s finches arrange themselves by beak size from left to
right. Right: Instead of collapsing, the intra-species variations are preserved in subspaces orthogonal to the
inter-species variation (the black lines point from the mean embedding of one variant to that of the other variant).
Orthogonality increases with scale (see Figure 3c).

Abstract

Foundation models trained at scale exhibit remarkable emergent behaviors, learning
new capabilities beyond their initial training objectives. We find such emergent
behaviors in biological vision models via large-scale contrastive vision-language
training. To achieve this, we first curate TREEOFLIFE-200M, comprising 214
million images of living organisms, the largest and most diverse biological organ-
ism image dataset to date. We then train BIOCLIP 2 on TREEOFLIFE-200M
to distinguish different species. Despite the narrow training objective, BIOCLIP
2 yields extraordinary accuracy when applied to various biological visual tasks
such as habitat classification and trait prediction. We identify emergent properties
in the learned embedding space of BIOCLIP 2. At the inter-species level, the
embedding distribution of different species aligns closely with functional and eco-
logical meanings (e.g., beak sizes and habitats). At the intra-species level, instead
of being diminished, the intra-species variations (e.g., life stages and sexes) are
preserved and better separated in subspaces orthogonal to inter-species distinctions.
We provide formal proof and analyses to explain why hierarchical supervision
and contrastive objectives encourage these emergent properties. Crucially, our
results reveal that these properties become increasingly significant with larger-scale
training data, leading to a biologically meaningful embedding space.

Models, data, and code available at imageomics.github.io/bioclip-2. †{gu.1220, su.809}@osu.edu
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1 Introduction

Recent advances in artificial intelligence (AI) are transforming core scientific workflows to become
more efficient and automated [1, 2]. Tasks that once demanded overwhelming time and labor, like
inferring atomic protein folds, designing functional materials, or producing global weather forecasts,
can now be efficiently accomplished by large-scale predictive models [3, 4, 5, 6, 7, 8]. Particularly,
a growing class of domain-specific foundation models demonstrate capabilities that arise without
explicit definition during training [9, 10]. For example, language models trained purely on large-scale
amino-acid strings unexpectedly develop an understanding of 3D chemistry to predict atomic folds
with near-experimental accuracy [4, 11]. These scale-driven emergent abilities are reshaping scientific
inference and opening new avenues for data-centric discovery.

In ecology and evolutionary biology, previous efforts leveraged hierarchical taxonomic labels and
CLIP-style contrastive training [12] to achieve pronounced species classification accuracy across the
tree of life [13, 14, 15]. This work asks a simple but intriguing question: what properties emerge if we
scale up hierarchical contrastive training? To answer this question, we curate TREEOFLIFE-200M,
comprising 214M organism images spanning 952K taxonomic classes, making it the largest and most
diverse visual catalog of life to date. Through training at scale, our model BIOCLIP 2 improves
species classification accuracy by 18.0% over BIOCLIP [13]. More importantly, we explore whether
representations learned solely through species-level supervision can generalize to diverse biological
questions beyond species classification.

To probe these capabilities, we evaluate BIOCLIP 2 on a variety of existing biological visual tasks,
including habitat classification [16], trait prediction [17, 18], new-species identification [19], and
agricultural disease detection [20]. These applications push beyond simple species recognition and
apply directly to biodiversity conservation, trait organization, and agricultural health. Despite being
trained primarily with species-level supervision, BIOCLIP 2 outperforms both vision-language (e.g.,
SigLIP [21]) and vision-only baselines (e.g., DINOv3 [22]) by an average margin of 10.3% on these
tasks. We then look deeper into the embedding space of BIOCLIP 2 and identify two emergent
properties as the training scales up.

At the inter-species level, the embedding distribution of different species aligns with their ecological
relationships. As shown on the left side of Figure 1, BIOCLIP 2 embeddings of Darwin’s finches
demonstrate an increasing beak size from left to right, which is not observed in the original CLIP
embedding space. We attribute the property to the adopted hierarchical taxonomic labels, which
inherently encode functional and ecological information [23]. The hierarchical supervision at scale
pushes related species to co-locate in functionally coherent “macro-clusters.” In such a way, BIOCLIP
2 acquires functional trait knowledge without using explicitly labeled traits.

At the intra-species level, contrary to the intuition that fine-grained differences collapse after
extensive training [24, 25], BIOCLIP 2 keeps the intra-species variations (e.g., life stages and
sexes) distinct. On the right side of Figure 1, three species form tight clusters when projected onto
the “species plane,” while their intra-species variations fan out along axes orthogonal to the plane.
Such variation cues are not encoded in taxonomic labels. We theoretically prove that when species
prototypes are nearly orthogonal (i.e., species are well separated), the contrastive objective prioritizes
orthogonality between intra-species variations and inter-species differences over raw magnitude
(Theorem 5.1). Furthermore, these variations are observed to be increasingly separable as training
data scales up. This microstructure preserves the intra-species representational diversity without
interfering with inter-species distinctions, enabling various attribute recognition applications (§5.1).

We show in §5.2 through quantitative and qualitative analyses that larger-scale training improves both
inter-species ecological alignment and separation of intra-species variants. These scale-amplified
patterns make the embedding space more interpretable and biologically meaningful. BIOCLIP 2
evidences that combining domain-specific scaling with structured supervision can unlock qualitatively
new emergent behaviors in scientific vision models.

2 Related Work

Emergent properties in foundation models. Emergent properties refer to the capabilities implicitly
acquired from the training process and generalized beyond the initial training objective. Large
language models (LLMs) illustrate a variety of in-context learning skills after next-token-prediction
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Figure 2: (a) Number of images across organismal biology datasets. (b) Biodiversity comparison across datasets
(measured unique 7-tuples for TREEOFLIFE (TOL) datasets, species count provided by BioTrove). (c) The taxa
distributional difference in the Cephalopoda class (octopuses, squids, etc.) between TOL-200M and TOL-10M.

pre-training [9, 26]. Such emergence also arises in computer vision [27]. DINO learns semantic
segmentation through purely visual self-supervision [28], whereas GroupViT learns semantic segmen-
tation solely through text supervision [29]. The studies closest to this work are [30, 31]. Alper and
Averbuch-Elor explore the visual-semantic hierarchies in CLIP models [30]. Although hierarchical
semantic structures are never explicitly presented as the training supervision, CLIP models acquire
the capability of matching images with varying levels of descriptions. Abbasi et al. discover that
CLIP models possess disentangled representational sub-spaces for different factors of variations [31].
It allows CLIP models to generalize across compositional out-of-distribution concepts. This work
leverages CLIP to distinguish different species with hierarchical labels, which is a different scenario
from the above work. We investigate the emergent properties under this setting.

Computer vision for ecology & evolutionary biology. Ecology and evolutionary biology are
naturally challenging for computer vision systems due to long-tail distributions, extremely fine-
grained classifications, and a wide variety of image distributions. Existing work formalizes these
challenges into specific visual tasks such as attribute prediction [NeWT, 18], trait prediction [FishNet,
16], and plant disease detection [PlantDoc, 20].

Recent advancements in computer vision have led to the development of foundation models for
biological applications. BIOCLIP incorporates taxonomic labels in the vision-language contrastive
training, yielding promising species classification accuracy [13]. Follow-up work scaled data to 162M
images [BioTrove, 14], specialized the data to camera traps [CATALOG and WildCLIP, 32, 33], and
added additional model modalities [TaxaBind, 34]. We investigate both data and model scaling, with
a focus on both broad biological applications and any emergent properties after extensive training.

3 TREEOFLIFE-200M

Large-scale, clean, diverse data drives progress in machine learning. There have been efforts such as
TREEOFLIFE-10M [35] and BioTrove [14] to create large-scale biological organismal datasets for
machine learning (ML). As shown in Figure 2, TREEOFLIFE-10M [35] improves on prior work such
as iNat21 [36] and BIOSCAN-1M [37] by increasing taxa diversity by a factor of 45. BioTrove [14]
increases data scale to 162M but fails to match the biodiversity of TREEOFLIFE-10M. In this
work, we combine the vast breadth of Global Biodiversity Information Facility (GBIF) [38] images
with those of the Encyclopedia of Life project (EOL) [39], BIOSCAN-5M [40], and FathomNet
Database [41]. With nearly 214 million images representing 952,257 taxa, TREEOFLIFE-200M is
the largest and most diverse public ML-ready dataset for computer vision models in biology.

Unlike BioTrove [14], which relies solely on iNaturalist and contains 162M images but only 366K
unique species, our use of museum, camera-trap, and citizen-science contributions expands the
taxonomic coverage to 2.6× more taxa. Our curation efforts ensure this breadth does not come at the
cost of data quality. We quantify image type diversity from GBIF: 51.8M museum specimen, 617.8K
camera trap, and 151M citizen science images. Beyond the taxa-wise diversity, these images also
provide more observing perspectives for the focal species. In such a way, the robustness of models
trained on TREEOFLIFE-200M is significantly enhanced against a variety of use cases. Specifically,
we demonstrate that BIOCLIP 2 yields a 22.8% performance gap compared with BIOCLIP on
camera trap images (See Table 1). We provide detailed statistics of the image number and taxa
diversity from each data provider in Figure 11.
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3.1 Images

TREEOFLIFE-200M consists of images curated from four core data providers: GBIF, EOL,
BIOSCAN-5M, and FathomNet. GBIF and EOL aggregate biological data from various sources, such
as iNaturalist [42], the Smithsonian Institution [43], and Flickr [44]. BIOSCAN-5M and FathomNet
are curated collections of expert-annotated images designed to improve cataloging and identification
of species from highly diverse and under-represented branches of the tree of life. BIOSCAN-5M is
part of the ongoing DNA Barcoding project to improve insect identification (one of the most diverse
classes, Insecta). FathomNet focuses on a habitat rather than a clade: all animals that live in the
ocean. Together, these comprise TREEOFLIFE-200M.

3.2 Data Curation & Filtering

We retrieve data from data providers using distributed-downloader [45]. The initial retrieval
gives us 222,065,140 images and 1,359,405 unique taxonomic hierarchies. We then cleaned the data,
focusing on (1) aligning taxonomic labels, (2) image quality, and (3) eliminating duplication and data
leakage. We summarize these efforts here, with more details provided in §I.

Taxonomic alignment. Curating large biological image collections from distributed data providers
requires the alignment of noisy and inconsistent taxonomic labels both between and within providers.
We develop a taxonomic alignment package TaxonoPy in consultation with taxonomists that resolves
entries to both a seven-rank Linnaean hierarchy and a common name. TaxonoPy queries GNVeri-
fier [46] against the GBIF Backbone, Catalogue of Life, and OpenTree hierarchies (in that order).
From the original 1.36M taxa, TaxonoPy filters 407K taxonomic hierarchies (such as synonyms,
provisional names, etc.) and yields 952K unique taxa.

Image-quality screens. Digital archives contain herbarium labels, empty camera-trap frames, and
occasional people. None add biological signal, and faces raise privacy concerns, so we drop them
to keep learning focused on organisms via three neural-network-based filters: (i) Museum non-
organism removal. A pre-trained CLIP-L/14 [12] is used for a nearest-centroid classifier spanning
25 fine-grained subtypes (10 collection areas, each split into categories such as specimen, fossil,
drawer-label, etc.). The classifier is fit to 8.5K manually-curated examples and predicts a subtype for
all museum images; we drop all non-organismal images. (ii) Camera-trap trimming. We apply a pre-
trained camera-trap model MegaDetector [47, 48] to filter for frames with visible animals. (iii) Face
removal. We apply a pre-trained face-detection model MTCNN [49] to discard images containing
human faces. We release the code used in processing the images in TreeOfLife-toolbox.

Duplicate and leakage control. Exact duplicates in the training set are removed with MD5 hashes.
GBIF includes images from iNaturalist, a popular source for computer vision ecology benchmarks.
To prevent train-test leakage and inflated downstream scores, we compute both MD5 and perceptual
PDQ [50] hashes for every test image and purge any near or exact duplicates from training.

3.3 Taxa Coverage

The International Union for Conservation of Nature (IUCN) estimates 2.14M species have been
described [51]. Following curation, there are nearly 868K unique taxa labeled to the level of species
in TREEOFLIFE-200M.1 Based on the most recent IUCN Red List assessment [52], TREEOFLIFE-
200M demonstrates a particularly strong representation of threatened species, with 77.1% coverage
(36,370 species). This coverage establishes that the approach to integrating diverse data sources used
in TREEOFLIFE-200M is a valuable resource for conservation research, providing representation for
a substantial majority of species prioritized for global conservation action.

Notably, TREEOFLIFE-200M adds diverse clades that are extremely under-represented in prior work
like TREEOFLIFE-10M and BioTrove. Figure 2c compares the distribution of taxonomic names in
the class of Cephalopoda between TREEOFLIFE-10M and TREEOFLIFE-200M. While they share
overlaps, there are clades almost completely absent in TREEOFLIFE-10M. These under-represented
clades receive a substantial influx of samples in TREEOFLIFE-200M (1,102 new taxa). Another

1Not all images contain full 7-rank Linnaean taxa; for instance, 93% of BIOSCAN-5M images are not
labeled to the species level. Thus, the unique taxa with non-null species is a more appropriate comparison.
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Table 1: Zero-, one-, and five-shot species classification top-1 accuracy across 10 tasks for different models.
Bold and underlined entries indicate the best and second best accuracies, respectively. BIOCLIP 2 outperforms
both strong general- (CLIP, SigLIP, DINOv3) and domain-specific- (BIOCLIP, BioTrove-CLIP) baselines.
“Camera Trap” is mean performance across 5 camera-trap datasets; Appendix F.4 contains more details.
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Random Guessing 0.2 1.2 1.0 1.0 3.5 4.0 4.0 2.6 4.0 0.3 2.2

Zero-Shot Classification

CLIP (ViT-L/14) 66.5 1.3 9.0 11.7 29.5 61.7 7.6 6.5 25.6 35.2 25.5
SigLIP 61.7 2.4 27.3 20.7 34.1 81.8 36.9 28.5 54.5 47.6 39.6
BioTrove-CLIP 39.4 1.0 20.5 15.7 11.0 64.4 38.2 15.7 31.6 24.6 26.2
BIOCLIP 58.8 6.1 34.9 20.5 31.8 88.2 40.9 19.0 38.5 37.1 37.6
BIOCLIP 2 74.9 3.9 55.3 27.7 53.8 96.8 83.8 25.1 57.8 76.8 55.6

One-Shot Classification

CLIP (ViT-L/14) 42.7±0.8 28.9±0.6 29.0±0.4 17.0±0.8 36.0±2.8 58.7±2.8 20.7±2.2 56.7±2.1 74.4±1.9 34.3±0.8 39.8
SigLIP 39.9±0.9 28.4±0.5 32.3±0.6 20.6±1.3 37.8±2.6 66.3±5.3 28.7±0.9 64.1±3.0 81.7±2.3 38.8±0.7 43.9
Supervised-IN21K 43.8±0.8 23.5±1.2 15.2±1.1 18.2±1.5 30.6±2.7 63.8±4.4 26.4±1.4 52.8±3.5 75.2±4.4 31.6±0.7 38.1
DINOv3 48.3±1.1 36.5±0.8 8.8±0.7 18.8±1.6 43.0±2.7 66.8±4.7 27.5±1.8 64.8±1.2 92.1±2.2 41.5±0.2 44.8
BioTrove-CLIP 61.9±0.6 26.4±0.5 57.1±1.4 20.9±0.7 31.2±2.3 69.7±3.4 47.3±2.1 55.8±3.4 83.5±1.1 34.9±0.4 48.9
BIOCLIP 57.4±1.2 29.7±1.1 57.1±1.0 20.4±0.9 35.0±2.8 67.7±3.9 44.6±2.0 59.5±2.5 83.7±1.8 44.9±0.7 50.0
BIOCLIP 2 82.4±1.1 32.0±0.4 74.6±0.4 28.4±0.7 48.1±2.2 85.8±4.5 70.3±2.6 67.6±1.1 92.0±1.9 59.5±0.9 64.1

Five-Shot Classification

CLIP (ViT-L/14) 68.2±0.3 48.2±1.5 50.6±0.7 30.1±0.7 53.9±2.2 75.9±1.2 31.4±2.5 78.3±1.4 92.6±0.7 53.3±0.4 58.2
SigLIP 64.2±0.3 47.4±1.1 54.9±0.7 35.2±0.5 56.9±2.0 81.6±1.4 45.5±1.6 81.1±0.7 94.1±0.7 57.8±0.6 61.9
Supervised-IN21K 57.5±0.4 40.1±0.6 30.1±0.7 30.3±0.2 48.3±2.6 77.2±1.4 39.6±1.9 78.0±1.1 92.8±0.9 48.8±0.4 54.3
DINOv3 72.3±0.4 57.8±1.6 19.7±0.7 34.2±0.6 63.6±2.8 83.3±1.4 44.1±1.6 82.4±1.1 98.8±0.5 62.6±0.5 61.9
BioTrove-CLIP 78.5±0.2 44.6±0.6 77.0±0.8 34.2±0.6 47.9±2.0 86.0±1.0 65.2±0.8 75.1±0.8 96.2±0.7 51.3±0.2 65.6
BIOCLIP 78.2±0.3 49.2±1.1 78.0±0.6 33.9±0.6 54.3±2.2 85.7±1.7 61.6±1.9 81.7±1.1 96.7±0.6 65.7±0.4 68.5
BIOCLIP 2 92.4±0.2 50.5±1.1 89.3±0.4 44.3±1.1 67.7±1.9 94.4±0.8 85.0±1.1 83.9±0.9 98.4±0.4 77.2±0.4 78.3

example is 55,085 taxa of Fungi in TREEOFLIFE-200M, close to 4× of that in TREEOFLIFE-
10M (14,793). The improved diversity facilitates accurate species classification of these clades, as
evidenced in Table 1 (42.9% absolute improvement over BIOCLIP on zero-shot Fungi benchmark).

4 BIOCLIP 2 and Species Classification

BIOCLIP adopts a hierarchical multi-modal contrastive training framework, where images are asso-
ciated with their corresponding hierarchical labels including taxonomic labels, scientific names, and
common names [13]. Different from one-hot labels, taxonomic labels inherently encode hierarchical
biological information from different levels [15]. In combination with an auto-regressive text encoder,
BIOCLIP yielded superior species classification performance on both zero- and few-shot settings. In
this work, we stick with the hierarchical contrastive training recipe and focus on the impact of scale.

Modifications. In addition to the significantly larger and more diverse dataset, we also scale model
capacity by adopting a larger vision transformer (ViT-L/14 pre-trained on LAION-2B [12, 53, 54]).
An auxiliary replay mechanism is introduced [55, 56] to maintain general-domain understanding for
broader applications [33, 57]; a portion of CLIP training data (LAION-2B) is interleaved simultane-
ously with species contrastive learning. We ablate this decision and find that the experience replay
improves biological understanding and performance across diverse tasks in §6.

We train BIOCLIP 2 on 32 NVIDIA H100 GPUs for 10 days on 214M organismal biology images
with hierarchical labels and 26M randomly-sampled image-text pairs from LAION-2B for 30 epochs.
We provide the training details in §D.

4.1 Species Classification Performance

We evaluate BIOCLIP 2 on species classification tasks in Table 1. We use the same benchmarks as
BioCLIP [13], including seven tasks from Meta-Album [58] and Rare Species [59]. We substitute
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Table 2: Biological visual tasks beyond species classification. Bold and underlined entries indicate the best and
second best accuracies. See §H for task and evaluation methodology details.
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CLIP (ViT-L/14) 27.9±0.2 83.4±0.1 61.6±0.6 18.2±0.1 22.3±3.3 42.7
SigLIP 31.9±0.1 83.2±0.1 67.3±0.6 18.6±0.2 28.2±5.3 45.8
Supervised-IN21K 29.4±0.1 75.8±0.2 52.7±1.6 14.9±0.1 25.1±1.1 39.6
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BIOCLIP 2 39.8±0.4 89.1±0.1 69.5±1.1 48.6±0.6 40.4±3.7 57.5
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Figure 3: (a) The model performance on five downstream tasks under different scales of training data. (b)
The model performance on differentiating and aligning different life stages and sexes. (c) The separation and
orthogonality evaluation of models trained with different amounts of data.

Birds-525 [60] with NABirds [61] due to data inaccessibility. Additionally, we collect a test set
of IDLE-OO Camera Traps from the Labeled Information Library of Alexandria: Biology and
Conservation (LILA-BC) [62, 63, 64, 65, 66, 67] to illustrate more realistic species classification
applications in the wild. The results suggest substantial improvements of BIOCLIP 2 over BIOCLIP.
Particularly, attributed to more comprehensive species and image type coverage of TREEOFLIFE-
200M, we observe over 20% zero-shot improvement on Camera Trap, Fungi, and Rare Species. On
average, BIOCLIP 2 surpasses the second-best model by 16.1% and provides a 30.1% improvement
over the original CLIP model that serves as weight initialization. Information on baselines is in §E.

5 Emergent Properties from Scaling Hierarchical Contrastive Learning

5.1 Beyond Species Classification

Biology’s organization extends beyond species taxonomies; if scaling truly induces emergent behavior,
model representations learned through species-level supervision should transfer to problems far
removed from species classification. We collect and benchmark models on five visual benchmarks
that push past species ID: habitat classification (ecological context) [16], trait prediction (evolutionary
studies) [18, 17], new-species identification (biodiversity monitoring) [19], and agricultural disease
detection [20]. For each task, we keep the evaluated models frozen and extract the corresponding
sample embeddings. The embeddings are subsequently processed using machine-learning techniques
(e.g., support vector classifiers). Detailed evaluation procedures are listed in §H.

Table 2 presents the performance comparison among BIOCLIP 2, vision-language baselines, and
vision-only models. Although no information on these tasks is explicitly described during training,
BIOCLIP 2 yields an average performance improvement of 14.8% over the original CLIP baseline.
DINOv3 is commonly believed to capture fine-grained visual features and is adopted for diverse
visual tasks [22, 68, 69]. Nevertheless, BIOCLIP 2 yields an 8.9% performance gap over DINOv3.
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Figure 4: t-SNE embedding visualization of FishNet test set for models trained with different amounts of data.
The leftmost plot is the original LAION-2B CLIP ViT-L/14. As the training data scales, freshwater fish become
more distinct from saltwater fish and brackish fish, despite no explicit supervision, demonstrating that data scale
contributes to emergent properties in model representations.

5.2 Scaling Trends

Better species classification with more species-labeled data is expected, but its effect on other, non-
species classification tasks is unexpected. To better understand the relationship between training
data scale and non-species classification performance, we apply the same hierarchical training with
varying sizes of data: 1M, 10M, 50M, and 214M samples. The smaller datasets are randomly sampled
from the complete set without losing taxa representativeness. We compare the performance of the
baseline CLIP ViT-L/14 and the four obtained models on five non-species classification tasks in
Figure 3a. A consistent improvement is observed as the volume of training data increases from 1M
to 214M. In AwA2, for example, the 1M model is worse than the baseline. However, the model
gradually learns more generalized representations for different attributes across species and obtains
improved performance as data scales up.

Next, we investigate how scale affects representations within species. We collect two groups of
images with intra-species appearance variations: life stage variations from NeWT [18] and sex
variations from NABirds [61]. We ask whether scaling hierarchical contrastive training collapses
all images of one species onto a single prototype or still distinguishes juveniles from adults and
males from females. We accordingly design two complementary tasks for each type of variation:
(i) alignment, where a species classifier trained on one variant (e.g., juvenile images) is expected to
recognize the species on the other variant (e.g., adult images), and (ii) differentiation, where the task
is to tell the variants apart (e.g., juvenile vs. adult). As illustrated in Figure 3b, data scale steadily
improves cross-variant species recognition. But at the same time, the model also becomes better at
distinguishing the variants themselves.

5.3 Emergent Properties and Qualitative Analysis

Why does scaling data boost tasks that are never supervised during hierarchical contrastive training?
We look deeper into BIOCLIP 2’s embedding space and identify two emergent properties that
generalize beyond species classification.

First, the embedding distribution of different species aligns with their ecological and functional
relationships. Figure 4 shows t-SNE plots [70] of FishNet test set embeddings at four training scales,
colored by whether the fish can live in freshwater or not. In the baseline CLIP plot (left), freshwater
and non-freshwater fish have a large portion of overlap. Larger training sets progressively separate the
two groups in the embedding space. We note that there is no explicit constraint to arrange meaningful
distribution across species in contrastive loss, highlighting the emergence at scale.

Second, the intra-species variations are preserved and separated. Figure 5 shows t-SNE plots of
BIOCLIP 2 embeddings of three species from NeWT exhibiting life-stage variation. In the 2D plots
(top), different species (shown in different colors) tighten progressively from left to right, which is
a direct consequence of scaled contrastive training. At the same time, the intra-species variations
are preserved and better separated than the baseline CLIP model (leftmost sub-figure). We further
project the embeddings onto 3D spaces created by singular value decomposition (SVD, bottom),
which reveals that the intra-species variations lie in subspaces roughly orthogonal to the species span.
Therefore, the existence of intra-species variation does not interfere with inter-species distinctions.
§F contains more empirical observations.
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Figure 5: The embedding distribution of life stage variations under different scales of training data. The 2D
distributions are obtained using t-SNE. For the 3D distributions, we first run SVD with the mean embedding of
each species. The first two singular vectors are used to construct the gray plane that captures most inter-species
differences. The embeddings are then projected into the 3D space with an additional orthogonal dimension. The
straight lines point from the mean embedding of juvenile images to that of the adult images. As the training
scales up, the intra-species variations are preserved in the subspace orthogonal to the inter-species differences.
Orthogonality improves with data scale, as evidenced by the decreasing explained-variance ratio ρ.

5.4 Formal Analysis

We next ask why these two properties of inter-species ecological alignment and intra-species variation
separation emerge with scale.

Inter-species ecological alignment. As training data increases, species that share proximal taxonomic
labels are pulled toward common textual prototypes at multiple levels. As related taxa typically
share morphology, behavior, and ecological characteristics, this multi-level supervision aligns visual
similarity with functional similarity [15]. With more samples per species providing supervision at
scale, embeddings of species in the same family or genus form coherent macro-clusters. In effect, the
embeddings extracted by BIOCLIP 2 are more separable for different ecological groups.

Intra-species variation separation. While the inter-species ecological alignment can be explained
by hierarchical supervision, the intra-species variations are not encoded in taxonomic labels. The
preservation of intra-species variations also contradicts the common intuition of contrastive training
effects. Therefore, we investigate the optimization of contrastive loss. We propose the following
theorem to suggest that subspace orthogonal to inter-species differences is allowed after extensive
training to accommodate intra-species variations.
Theorem 5.1. Let µ be the prototypes of species, with µs as the prototype of species s. Let τ be
temperature. If different µk are nearly orthogonal (i.e., species are well separated), the intra-species
variation δ for species s is constrained by

δ⊤

[
1

2τ2

(∑
k

wkµkµ
⊤
k − µsµ

⊤
s

)]
δ, where wk =

exp(µ⊤
s µk)/τ∑

k (exp(µ
⊤
s µk)/τ)

.

Proof. See §C.

Thus, as long as the variation δ is distributed in a subspace orthogonal to the inter-species distinctions,
the scale of δ won’t interfere with the overall contrastive optimization. The orthogonality is qualita-
tively supported by Figure 5. To further quantify it, we calculate the explained-variance ratio, i.e., the
ratio in the intra-species variation that is captured by the species span [71]. We first obtain an orthonor-
mal basis for the species prototypes U using QR decomposition. Let D = [d1, . . . ,dn] ∈ Rd×n be
the matrix stacking n intra-species variation difference vectors with dimension d. The explained-
variance ratio calculates the energy fraction inside species span by ρ = ∥U⊤D∥2F /∥D∥2F , where
∥ · ∥F denotes the Frobenius norm [72]. We show the ratio change as the data scales up in Figure 3c.
The results suggest that the intra-species variations are increasingly orthogonal to the species differ-
ences. Due to the orthogonality, the existence of intra-species variations will not interfere with the
inter-species distinctions. The observation of smaller projection areas in Figure 5 at the species span
also indicates better species classification accuracy after extensive contrastive training.
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Table 3: Ablation study with different training settings. BIOCLIP 2
adopts hierarchical contrastive training with taxonomic labels. We ablate
using scientific names solely without taxonomic labels, and one-hot labels
with cross-entropy loss instead of the contrastive objective.

Dataset Hierarchical Contrastive w/ Cross-entropy
Contrastive Scientific Name Loss

FishNet 35.1±0.1 33.8±0.1 33.0±0.1

PlantDoc 38.7±3.7 37.3±3.3 30.9±1.9

Life stage-Diff 88.0±0.1 88.5±0.2 85.5±0.2

Life stage-Align 84.1±0.1 84.5±0.1 78.6±0.1

Sex-Diff 97.0±0.1 96.6±0.1 95.5±0.1

Sex-Align 84.1±0.2 82.7±0.3 74.9±0.2
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Figure 6: Ablation study on
model size and experience replay.

Furthermore, we look at the separation between these variations using the Fisher Discriminant Ratio
(FDR) metric [73]. Given two variant classes A and B, FDR is defined by their embedding mean
µ and standard deviation σ: FDR = ∥µA − µB∥2/(σ2

A + σ2
B). The increasing trends in Figure 3c

support that, in addition to orthogonality, the intra-species variations are more separable as the training
scales up. This trend is also qualitatively evidenced by the top row of Figure 5. These theoretical and
empirical insights validate that BIOCLIP 2 learns to preserve and separate intra-species variations
without explicit training constraints. We provide more qualitative analyses in §F.2.

6 Ablation Study and Analysis

The necessity of contrastive loss and taxonomic labels. The previous analyses highlight the
effectiveness of hierarchical contrastive training. Table 3 ablates two key modeling decisions
using TREEOFLIFE-10M as a feasible testbed: scientific names solely vs. hierarchical labels
and contrastive learning vs. cross-entropy loss on one-hot labels. The experiments are conducted on
TREEOFLIFE-10M data with ViT-L/14 as the visual encoder. When trained solely with scientific
names, the model loses some of the hierarchical supervision embedded in taxonomic labels. As
a result, the performance on FishNet drops by 1.3%. However, contrastive training still leads to
separation for both species and intra-species variations. Training a 952K-class softmax classifier with
cross-entropy loss is optimization-heavy and leads to inferior performance on all benchmarks. The
adopted hierarchical contrastive supervision leverages the advantages of both aspects and yields the
best overall performance across benchmarks.

Architecture and replay. BIOCLIP 2 scales up the visual encoder of BIOCLIP from a ViT-B/16 to
ViT-L/14 and introduces experience replay of CLIP training data (LAION-2B). We ablate the effects
of these two changes, again using TREEOFLIFE-10M as a testbed. Figure 6 shows that increasing
model capacity improves performance across all benchmarks. Comparatively, experience replay leads
to better species classification accuracy and improved performance on some of the other visual tasks.
We provide a more detailed empirical study of experience replay in §F.1.

7 Conclusion

In this work, we curate TREEOFLIFE-200M, the largest and most diverse biological organism
dataset to date, and train BIOCLIP 2 with hierarchical taxonomic labels. BIOCLIP 2 achieves
state-of-the-art accuracy on species classification. More importantly, large-scale training gives rise
to two emergent properties not described during training. At the inter-species level, the embedding
distribution of different species aligns with their ecological relationships. At the intra-species level,
the appearance variations within species are preserved and well separated in the embedding space.
We demonstrate that combining the effort of domain-specific scaling and structured supervision
leads to effective generalization beyond the initial training objectives. BIOCLIP 2 serves as a
strong foundation model for biological research and simultaneously evidences the effectiveness of
scale-driven scientific discovery.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: This paper focuses on emergent properties in large-scale hierarchical contrastive
learning for biological organismal data. We have theoretical and empirical results to support the
claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a limitation section in §A including the discussion of theoretical and data
limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: We propose a theorem to support the orthogonality between the intra-species
variations and inter-species differences. The proof is provided in §C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided detailed instructions on the model architecture and training
details. The results are fully reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: TREEOFLIFE-200M is published on Hugging Face under the least restrictive
licensing allowed by its constituent parts, accompanied by a well-documented dataset card, and
archived with a DOI. The IDLE-OO Camera Traps dataset is also published on Hugging Face,
under the Community Data License Agreement (permissive variant) used by LILA-BC datasets.
The reconstruction of TREEOFLIFE-200M requires downloading the images from their original
sources, instructions for which are included with the dataset and will be published alongside it.
Source code is available on GitHub.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: The training hyperparameter settings are listed in §D. A detailed instruction of
biological visual evaluation is presented in §H.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Among the experiments presented in the paper, zero-shot classification is determin-
istic, so we only report the accuracy for those experiments. Other than zero-shot classification,
we conduct the other experiments—few-shot classification and other biological visual tasks—for
5 runs and report the mean and standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We have reported the required compute resources for the BIOCLIP 2 model
training and the evaluation of other biological visual tasks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The submission conforms to the NeurIPS Code of Ethics, where individual relevant
adherence to components of the code are discussed in detail in other portions of the submission.
For example, human faces are removed from the dataset to preserve privacy and data licenses
and provenance are preserved.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We have included a Broader Impacts section in §B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA] .
Justification: Images were gathered from established, publicly accessible biodiversity repositories
and we used established procedures to ensure removal of images with human faces. Additionally,
there are no GPS locations associated with the threatened species whose images are included.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes] .
Justification: The core data providers through whom we accessed all images and their metadata
for TREEOFLIFE-200M are directly cited in the paper. We provide and document provenance
for all images through a dedicated Parquet file connecting each image to license, creator, etc.
and include an explanation in our dataset card. All remaining data, code, and models are cited
appropriately, as indicated by their creators.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: We have the detailed dataset cards on Hugging Face for TREEOFLIFE-200M and
IDLE-OO Camera Traps. Documentation for code is also provided in the published GitHub
repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not involved in developing the core method of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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Appendix

The Appendix is organized as follows:

• In §A we discuss limitations of our work.
• In §B we discuss the broader impacts of our work.
• In §C we present the proof of Theorem 5.1.
• In §D we describe the training implementation for BIOCLIP 2 in detail.
• In §E we introduce the baselines employed for the numerical experiments.
• In §F we demonstrate more empirical observations of BIOCLIP 2.
• In §G we discuss the relationship between the adopted training scheme and neural collapse.
• In §H we describe both the biological visual benchmarks and the implementation details.
• In §I we provide the details of data processing for TREEOFLIFE-200M.
• In §J we list the contribution of each author.

A Limitations

Theoretical limitation. In this work, we have proved that the intra-species variations are preserved
in subspaces orthogonal to the inter-species difference. We also have empirical observations that the
variations are more separable as the training data scales up (See Figure 3c). However, we haven’t
formally proved this. It will be our future work to have deeper theoretical analyses of the separation
of intra-species variations to better understand BIOCLIP 2’s emergent properties.

Data limitation. TREEOFLIFE-200M is an imbalanced dataset in both taxonomic coverage and
image type. Specifically, the dataset exhibits a long-tailed distribution across taxa. This is to be
expected when working with biological data—not all taxonomic ranks are represented evenly across
the tree of life. For instance, though TREEOFLIFE-200M has a balanced representation (at the
kingdom level) between plants and animals, animals represent a larger proportion of described
species [51].

Some of this is due to the nature of the image type distribution, which we provide for GBIF (Camera-
trap, Citizen Science, and eleven Museum Specimen types: Fungi, Insect, Invertebrate Zoology,
Microbiology, Plant, Vertebrate Zoology - [Amphibians, Birds, Fishes, Mammals, Others], as well as
Unidentified). EOL contains the same categories, but we do not have precise numbers; BIOSCAN-5M
are essentially all insect museum specimens, though the images are taken by researchers, so will
skew toward their area of study; FathomNet contains a mix. Citizen Science images are the vast
majority (151M from GBIF alone); these will skew toward more charismatic species and plants. Our
next largest category is museum specimen images (51.8M from GBIF), which are limited more to
representatives of the species, so may not contain as many images per taxa, though more taxa are
represented. Finally, camera trap images make up the smallest portion of the dataset (617.8K in
GBIF), and when filtered, these are only images of animals and generally those large enough to
trigger a motion sensor or be detected in the primary provider’s post-processing.

Further emphasis on the impact of citizen science images in amassing larger representations of
species: the most prevalent taxonomic classes, flowering plants, insects, birds, mushrooms, and
mammals, have millions of representative images, while the least-represented, microscopic organisms
(e.g., bacteria, viruses), have a dozen or fewer.

B Broader Impacts

BIOCLIP 2 and TREEOFLIFE-200M provide great potential to improve and enhance existing
conservation efforts, in particular by facilitating recognition of threatened species. As noted in
§3.3, TREEOFLIFE-200M has expansive coverage of threatened species, as classified by IUCN. It
additionally builds on the coverage of species considered to be Data Deficient. Based on the emergent
properties displayed by BIOCLIP 2, there is potential to add to the effort to understand the risks
facing these species that cannot currently be classified by IUCN due to lack of available information,
as suggested in [76]. These designations are crucial to the international effort to protect biodiversity
across the planet.
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Unfortunately, as with many open-source efforts to further conservation goals, there is potential
for bad actors to make use of these tools for malicious purposes. Though the improvement on
threatened species could make it easier for poachers to identify protected species, these types of
tools are a force-multiplier to monitor illicit trade and sales of these same species. The primary risk
to endangered species comes from disclosure of precise location information rather than improved
classification capability [77]. Our data does not provide geo-tagged information on the organisms
included, minimizing the vulnerabilities that could be used in poaching.

C Proof of Theorem 5.1

Proof. The contrastive loss for one visual embedding z belonging to the class s and the corresponding
text embedding cs is:

l(z, cs) = − log
exp(z⊤cs/τ)∑
k exp(z

⊤ck/τ)
. (1)

Let hϕ(L(·)) be the text encoder. Assume the representation is already close to the species prototype
µs = hϕ(L(s)) = cs, and there is a residual δ representing the intra-species variance:

δ := z − µs, ∥δ∥ ≪ ∥µs − µk ̸=s∥.

Define:

ak :=
µ⊤

s µk

τ
, Z =

∑
k

exp(ak), wk :=
exp(ak)

Z

Substituting z = µs + δ into Equation 1:

l(µs + δ, cs) = − (µs + δ)⊤µs

τ
+ log

[∑
k

exp

(
(µs + δ)⊤µk

τ

)]
(2)

= −µ⊤
s (µs + δ)

τ
+ log
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k
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(
µ⊤

s µk

τ

)
· exp

(
δ⊤µk

τ

)]
(3)

= −µ⊤
s µs

τ
− µ⊤

s δ

τ
+ log

[∑
k
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(
µ⊤

s µk

τ

)∑
k

exp(µ⊤
s µk/τ)∑

k exp(µ
⊤
s µk/τ)

· exp
(
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τ

)]
(4)

= −µ⊤
s µs

τ
− µ⊤

s δ

τ
+ logZ + log

[∑
k

wk exp

(
δ⊤µk

τ

)]
. (5)

Use the Taylor expansion to the second order for the argument of the logarithm of the last term
Ψ(δ) = log

[∑
k wk exp(δ

⊤µk/τ)
]
:∑

k

wk exp

(
δ⊤µk

τ

)
= 1 +

∑
k

wk
δ⊤µk

τ
+

1

2

∑
k

wk
(δ⊤µk)

2

τ2
+O(∥δ∥3), (6)

obtaining Ψ(δ) =
∑
k

wk
δ⊤µk

τ
+

1

2

∑
k

wk
(δ⊤µk)

2

τ2
−

(∑
k
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τ

)2
+O(∥δ∥3).

(7)

Insert Ψ(δ) back into Eq.2:

l = l(µs,µs)−
µ⊤

s δ

τ
+
∑
k

wk
δ⊤µk

τ

+
1

2

∑
k

wk
(δ⊤µk)

2

τ2
−

(∑
k
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δ⊤µk

τ

)2
+O(∥δ∥3).
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Define m :=
∑

k wkµk. Then collecting first-order terms around δ results in the following:

(
∑

k wkµk − µs)
⊤δ

τ
=

(m− µs)
⊤δ

τ
.

Suppose the training resulted in ws ≈ 1, leading to m ≈ µs. Then the first-order terms will vanish
as the embeddings of different species are better separated.

We further rewrite the second-order term of Eq.6 as:

1

2

∑
k

wk
(δ⊤µk)

2

τ2
−

(∑
k

wk
δ⊤µk

τ

)2
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1

2

[∑
k
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(δ⊤µk)

2

τ2
− (δ⊤m)2

τ2

]

= δ⊤

[
1

2τ2

(∑
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wkµkµ
⊤
k −mm⊤

)]
δ.

Substituting m ≈ µs, we have an approximation as

δ⊤

[
1

2τ2

(∑
k

wkµkµ
⊤
k − µsµ

⊤
s

)]
δ.

The Hessian matrix lies in the span of species, as each term is an outer product of a prototype.
Therefore, as long as the residual δ is distributed in a subspace orthogonal to the species differences,
the scale of δ will not interfere with the overall contrastive optimization.

D Training Implementation Details

Table 4: The adopted hyper-parameter setting in train-
ing BIOCLIP 2.

Hyper-parameter Value

Architecture ViT-L/14
Optimizer Adam
Batch size/GPU (organism) 2,816
Batch size/GPU (replay) 320
GPUs 32 H100s
Epochs 30
Max learning rate 1× 10−4

Warm-up steps 1,875
Weight decay 0.2
Input resolution 224

Table 5: The adopted hyper-parameter setting in the
ablation study.

Hyper-parameter Value

Architecture ViT-L/14
Optimizer Adam
Batch size/GPU (organism) 2,816
Batch size/GPU (replay) 320
GPUs 8 H100s
Epochs 100
Max learning rate 1× 10−4

Warm-up steps 1,500
Weight decay 0.2
Input resolution 224

We list the adopted hyperparameters in Table 4 and Table 5 for the BIOCLIP 2 training and ablation
study, respectively. TREEOFLIFE-10M is used for the ablation study. The batch size presented
in both tables is the size per GPU. In addition to the larger GPU number and smaller batch size
compared with the training in BIOCLIP due to the larger model size, another important modification
is the introduction of experience replay. An additional visual projector is introduced as described
in §F.1. Beyond the visual projector, the model architecture is kept the same as that of CLIP [12].
During the evaluation, all the embeddings are extracted with the visual projector for hierarchical label
matching to avoid extra influence.

E Baseline Details

In the quantitative experiments, we compare BIOCLIP 2 with the following baseline vision-language
models and vision-only models. Without specification, the input image size is 224.

• CLIP (ViT-L/14). We compare BIOCLIP 2 with the CLIP model pre-trained on LAION-2B [54],
which has the same architecture and patch size. The CLIP model is also used as the weight
initialization of the BIOCLIP 2 training. It uses a ViT-large visual encoder with a patch size of
14. We load the weight from the OpenCLIP repository.

23

https://huggingface.co/google/siglip-large-patch16-256
https://github.com/mlfoundations/open_clip


Table 6: Performance comparison between different replay designs of CLIP training data. All the models in the
bottom three rows are initialized with CLIP (the first row) and trained with TREEOFLIFE-10M data. The CLIP
model is pre-trained with LAION-2B data, from which we randomly select 2M samples for this experiment. ∆
represents the performance gap over the CLIP baseline. Bold entries indicate the best accuracy.
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CLIP (ViT-L/14) 66.5 35.2 27.9±0.2 83.4±0.1 61.6±0.6 18.2±0.1 22.3±3.3 35.0 43.8 –
No Replay 68.9 46.1 35.3±0.1 83.8±0.1 58.0±2.8 29.4±0.4 36.0±2.8 34.4 49.0 ↑ 5.2
Single-proj 68.8 44.8 34.4±0.2 84.5±0.2 58.1±1.4 31.0±0.2 38.1±2.4 34.7 49.3 ↑ 5.5
Separate-proj (Ours) 71.2 47.2 35.1±0.1 84.2±0.1 57.4±0.9 30.4±0.3 38.7±3.7 37.1 50.2 ↑ 6.4

• SigLIP. In addition to the standard CLIP model, we also evaluate the performance of SigLIP [21].
We adopt the SigLIP model pre-trained on WebLI data [78]. The adopted visual encoder is
ViT-large [53], the patch size is 16, and the input image resolution is 256. The model weight is
also loaded from the OpenCLIP repository.

• Supervised-IN21K. For vision-only models, we first select a ViT-large model [53] trained in
a supervised way on ImageNet-21K dataset [79]. As it is a vision-only model, we only run a
few-shot and non-species classification tasks with it. The patch size is 32. The model is publicly
downloadable in Hugging Face.

• DINOv3. Besides supervised pre-training, we also evaluate the performance of DINOv3, which
is pre-trained in an unsupervised way [22]. The backbone architecture is ViT-large, and the patch
size is 16. The model can be downloaded from Hugging Face. Similarly, we only run few-shot
and non-species classification evaluations with DINOv3.

• BioTrove-CLIP. The above four models are trained on general knowledge covering a variety of
topics. We also compare BIOCLIP 2 with domain-specific models. BioTrove-CLIP is trained
with BioTrove [14]. The model weights can be downloaded from Hugging Face. Among the
provided three models, we use the model initialized with OpenAI CLIP [12] that yields the best
average accuracy [14]. The visual backbone is ViT-base with a patch size of 16.

• BIOCLIP. BIOCLIP is trained on TREEOFLIFE-10M. It adopts ViT-base as the visual encoder,
with a patch size of 16. The model weight is publicly available in Hugging Face.

F More Empirical Observations

In this section, we present more empirical observations of the training design, detailed numerical
results, and qualitative analyses.

F.1 CLIP Training Data Replay

Together with the contrastive supervision of hierarchical labels, we also introduce the replay of CLIP
training data to retain the understanding of general knowledge. For each experiment of different
training scales, we randomly select a subset from LAION-2B with 10%-20% of the corresponding
biological image total. Specifically, for the largest run on 214M biological images, we select 26M
samples from LAION-2B. Each training batch consists of 69,312 biological images and 8,192 replay
samples. However, the text labels in TREEOFLIFE-200M are primarily different forms of taxonomic
names, which have a distributional gap from the CLIP training data. Therefore, we apply a separate
visual projector specifically for the replay data to avoid the optimization conflict. Other than this
difference, the biological data and replay data share the same visual backbone and text encoder.

We evaluate different replay settings quantitatively in Table 6. The “No Replay” row shows the
baseline performance applying biological contrastive training on top of the pre-trained CLIP model,
where a 5.2% performance improvement is achieved. When the replay data is added, which shares
the visual projector with biological images, we observe a conflicting performance change. On
Herb. 19 [19] and PlantDoc [20], more than 2% improvement is acquired. However, the species
classification accuracy on Rare Species drops by 1.3%. We attribute the inconsistent performance
change to the distribution gap between biological and replay text labels. After applying a separate
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Figure 7: The t-SNE distribution of Darwin’s finches under different scales of training data. Different colors
represent different groups of finch species. As the training data scales up, the embeddings form biologically
meaningful clusters that align with the phylogenetic tree and their functional traits.

visual projector for the replay data, we observe overall improved performance across multiple
benchmarks. At the same time, we also notice that replay has limited influence on benchmarks
like AwA2 [17]. Additionally, we evaluate the preservation of general knowledge understanding
on INQUIRE-Rerank [57]. Applying contrastive training with taxonomic labels slightly hurts the
performance, while the single-projector replay fails to retain the understanding. Comparatively, the
adopted separate-projector replay improves the performance by 2.1%. Given that there is still a
distribution gap between the taxonomic labels and natural language, we do not treat INQUIRE as one
of our main focuses in this work.

F.2 Qualitative Analyses

Embedding distribution of Darwin’s finches. In Figure 1, we show that the embedding distribution
of Darwin’s finches aligns with the beak size. Here we further visualize the distribution under different
training scales in Figure 7. Based on the genome-based phylogeny, warbler finches were the most
ancient branches, while tree finches and ground finches form the recent branches [23]. Among these
species, warbler finches have the smallest beak, convenient for extracting tiny arthropods from leaves.
Comparatively, ground finches have larger beaks, which are more suitable for cracking seeds and nuts.
In the original CLIP embedding space, the warbler finches and tree finches are mixed. As the training
data scales up, these two groups are separated, and the relative geometric relationship of all the finches
aligns with their phylogeny tree. While the species separation is induced by taxonomic supervision,
BIOCLIP 2’s embedding space again illustrates emergent higher-level biological meaningfulness
after extensive training.

Embedding distribution of Sex data. Similar to Figure 5, we visualize the 2D and 3D distributions
of embeddings from 3 species of the Sex data in Figure 8. We can draw conclusions similar to those
obtained from Figure 5. When no training data is incorporated, the embeddings extracted by the
original CLIP visual encoder (leftmost sub-figure) demonstrate large portions of overlap between
male and female images. After extensive vision-language contrastive training, the embeddings present
clear decision boundaries between the two variants. Furthermore, as evidenced in the 3D distribution,
the embeddings within each species form more compact clusters when projected onto the species
span (the gray plane). Comparatively, instead of being eliminated after contrastive training, the
intra-species variations are embedded in the subspace orthogonal to the inter-species differences.
The extensive training facilitates BIOCLIP 2 to acquire a biologically meaningful embedding space,
highlighting its value in serving as a biology foundation model.

Embedding distribution of PlantDoc data. We further visualize the distribution of 6 classes from
the PlantDoc dataset in Figure 9. When no training is processed (leftmost sub-figure), embeddings
of different species, as well as diseases, are mixed. As the training scale increases, we observe two
trends. First, the margin between different species is enlarged, and the embeddings belonging to the
same species are clustered together. Second, the diseased leaves are easier to separate within each
species, although not explicitly constrained during training. More interestingly, the embeddings of
healthy apple leaves are distributed close to the healthy blueberry leaves. These observations again
highlight the biologically meaningful embedding space of BIOCLIP 2 after extensive training.
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Figure 8: The embedding distribution of sex variations under different scales of training data. The 2D
distributions are obtained using t-SNE. For the 3D distributions, we first run SVD with the mean embedding of
each species. The first two singular vectors are used to construct the gray plane that captures most inter-species
differences. The embeddings are then projected into the 3D space with an additional orthogonal dimension. The
straight lines point from the mean embedding of male images to that of the female images. As the training data
scales up, the intra-species variations are preserved in the subspace orthogonal to the inter-species differences.
Orthogonality improves with data scale, as evidenced by the decreasing explained-variance ratio ρ.
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Figure 9: The t-SNE distribution of 6 classes from the PlantDoc dataset, including three species and three
different diseases. As the training data scales up, not only are the species better separated, but the intra-species
variations also form clusters, making them easier to separate.

F.3 The decay of FDR numerator/denominator along the data scale.

We observe that FDR between two intra-species variation classes is increasing as the training data
scales up. More specifically, we look into the numerator term (the difference between two class
centers) and the denominator term (the variation of features). We visualize the curve of the numerator
and denominator terms in Figure 10a and Figure 10b for life stage data and sex data, respectively.
The y-axes are scaled to the same maximum ratio to the minimum value. As the number of training
samples scales up from 1M to 214M, the denominator term goes through a larger decay than the
numerator term. The numerical results further support the increasing FDR trend.

F.4 Camera Trap Results

In addition to the species classification benchmarks adopted in [13], we further introduce a balanced
camera trap image benchmark for species classification, IDLE-OO Camera Traps, derived from
LILA-BC datasets [62], to construct a more realistic application scenario. Specifically, we select five
datasets from LILA-BC that are labeled to the image level to avoid testing on noisy images—those
labeled as containing an animal when it is simply the animal’s habitat. The Island Conservation
Camera Traps [63] were of particular interest for their stated purpose of assisting in the prevention
of endangered island species’ extinction and the varied ecosystems represented. This provides a
fine-grained complement to the Rare Species test set [13, 59]. The Desert Lion Conservation Camera
Traps dataset [64] is similarly intended to advance conservation efforts. With the Orinoquía Camera
Traps [65], Ohio Small Animals [66], and ENA24 [67] camera trap datasets, we can test on camera
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Figure 10: The decay curves for the numerator (difference between two class centers) and the denominator
(feature variation) terms of the FDR metric along the increasing data scale. (a) The curves of life stage data. (b)
The curves of sex data.

trap images across varied settings. The Island Conservation set uses common names, while the
remaining datasets are reduced to just those that are labeled to the species level, and then sampled
to create a balanced test set across the remaining classes (these are evaluated on scientific names).
The sampling and image manifests are provided in IDLE-OO Camera Traps. We report the detailed
accuracy on each camera trap dataset in Table 7.

G Discussion on the Relationship with Neural Collapse

Neural collapse is a status where the intra-class variations collapse to zero, and the embeddings col-
lapse to their corresponding class prototypes [80, 81]. The class prototypes collapse to the vertices of
a simplex Equiangular Tight Frame (ETF). It has been empirically observed and theoretically proved
that the commonly used loss functions—including cross-entropy loss and supervised contrastive
loss [82]—lead to neural collapse at the terminal phase of training [24, 25, 83, 84]. If neural collapse
happens, the intra-species appearance variations will be hardly separable. However, we reveal that
after extensive training of BIOCLIP 2, the intra-species variations are preserved in the subspace
orthogonal to inter-species differences, indicating that BIOCLIP 2 does not suffer neural collapse.

Why BIOCLIP 2 does not lead to Neural Collapse. We summarize two key reasons that allow the
existence of the intra-species variation subspace in BIOCLIP 2.

First, the class prototypes in standard classification tasks and supervised contrastive learning (SCL)
can both be treated as fully trainable parameters [82]. In standard classification, the prototypes are
the weights of the linear classifier. In SCL, they are simply the mean embedding of the corresponding
classes. The class prototypes will form a simplex ETF after extensive training. Comparatively,
the adopted contrastive training scheme in BIOCLIP 2 employs text embeddings of the taxonomic
labels as class prototypes. During the creation of taxonomic labels, hierarchical structures have been
naturally embedded into them based on ecological and functional evidence. Different species can
share higher taxonomic levels, which makes them hard negatives. Therefore, even if the text encoder
is also being trained, the generated prototypes will not become ETF.

Second, TREEOFLIFE-200M poses an enormous label space, where 952K classes are involved in
training. Typical SCL is performed upon CIFAR or ImageNet-level datasets, consisting of 100−1,000
classes. Previous works analyzing neural collapse usually assume the dimension of embeddings is
larger than the class number and the sample number is balanced across different classes [25, 81]. In
contrast, the class number involved in BIOCLIP 2 is much larger than the embedding dimension
(768 channels). These conditions restrict the possibility of prototypes forming ETF.
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Table 7: Zero-, one-, and five-shot species classification accuracy of IDLE-OO Camera Traps from the Labeled
Information Library of Alexandria: Biology and Conservation (LILA-BC) [62, 63, 64, 65, 66, 67] for different
models. Bold and underlined entries indicate the best and second best accuracies, respectively.
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Random Guessing 3.1 5.0 3.2 3.6 2.6 3.5

Zero-Shot Classification

CLIP (ViT-L/14) 35.2 38.2 27.1 25.6 21.6 29.5
SigLIP 46.9 41.0 30.0 31.9 20.5 34.1
BioTrove-CLIP 9.7 10.4 14.5 8.0 12.4 11.0
BIOCLIP 47.2 42.5 19.0 27.1 23.1 31.8
BIOCLIP 2 58.8 68.5 42.3 47.9 51.5 53.8

One-Shot Classification

CLIP (ViT-L/14) 37.6±2.5 35.9±3.8 44.7±3.1 31.3±2.7 30.7±2.0 36.0
SigLIP 41.1±1.8 39.1±4.0 48.5±2.9 32.7±1.6 27.6±2.5 37.8
Supervised-IN21K 32.4±2.0 28.4±3.2 40.1±3.5 26.3±2.4 26.0±2.4 30.6
DINOv3 48.1±1.3 38.5±3.2 52.3±4.0 40.0±2.6 36.1±2.3 43.0
BioTrove-CLIP 30.5±1.7 30.5±2.2 37.9±2.1 29.0±2.6 28.3±3.1 31.2
BIOCLIP 39.9±2.2 34.4±2.7 45.7±3.0 27.5±3.7 27.5±2.2 35.0
BIOCLIP 2 54.3±1.1 48.6±2.3 49.5±2.5 43.1±2.1 45.0±3.0 48.1

Five-Shot Classification

CLIP (ViT-L/14) 58.3±1.7 57.8±2.6 66.1±2.4 43.9±2.9 43.5±1.6 53.9
SigLIP 64.3±2.2 60.0±2.7 71.6±1.4 46.2±1.8 42.6±1.7 56.9
Supervised-IN21K 51.3±2.3 48.5±2.6 60.5±3.0 39.3±3.4 41.9±1.6 48.3
DINOv3 66.3±3.3 63.2±3.1 74.8±1.5 59.9±3.7 53.8±2.4 63.6
BioTrove-CLIP 47.6±3.0 46.7±2.1 62.2±1.1 41.1±1.6 41.8±2.4 47.9
BIOCLIP 62.5±1.7 57.0±3.2 63.2±3.8 44.6±1.7 44.0±0.5 54.3
BIOCLIP 2 73.4±2.9 73.4±0.9 70.7±1.6 59.4±2.8 61.8±1.3 67.7

H Biological Visual Evaluation Details

Instead of training specialist models, we treat the evaluated models as frozen visual embedding
extractors. Standard machine learning algorithms are applied on top of the acquired visual embeddings
to predict the corresponding labels. Such a design is adopted to evaluate the quality of the embeddings
while avoiding the influence of complicated optimization loops. In the following, we introduce the
details of the adopted benchmarks and the evaluation algorithms. All the experiments are conducted
with 1 NVIDIA A100 GPU, and the running time for each task is within 30 minutes.

FishNet. FishNet focuses on recognizing, locating, and predicting species and their functional
traits [16]. Specifically, 94,532 images are collected with annotations of habitat, ecological role, and
nutritional value. In this work, we mainly focus on the prediction of habitats and ecological roles,
involving 9 groups of binary labels (e.g., whether the fish can live in freshwater). Following the
practice in the original paper, we train a two-layer linear classifier with binary cross-entropy loss to
predict the 9 labels. We count a correct prediction only if all the 9 labels are predicted correctly for
the sample. The original train-test split is adopted, where 75,631 images are used in training, and the
remaining 18,901 images are used for testing. This task evaluates whether the embedding distribution
of different species is aligned with their ecological relationships.
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NeWT. NeWT comprises 164 binary classification tasks in the natural world [18]. The tasks include
appearance, gestalt, context, counting, and behavior concepts. In each task, 50-100 images are
assigned per class per train-test split. After extracting visual embeddings, we apply a support vector
classifier for each of the tasks. The average accuracy is reported across all the evaluated tasks.

AwA2. AwA2 consists of 37,322 images of 50 animal classes, with annotations of 85 numeric
attribute values for each class [17]. The dataset can be used for testing the capability of attribute-
based classification and zero-shot transfer learning of trait prediction. In this work, we mainly focus
on the transfer learning scheme. The training set of 45 classes is used to train an attribute classifier,
and the remaining 5 unseen classes are used for testing. Similar to FishNet, we incorporate a linear
classifier on top of the extracted features to predict the binary labels for the 85 attributes. The average
F1 score over all the attributes is reported for this benchmark.

Herb. 19. Herbarium 19 is a task for discovering new species [19]. Specifically, given the images of
known and unknown species, the model is required to predict the labels for both of them. As there
are no fixed labels for unknown species, the task is implemented with a form of semi-supervised
clustering [85]. Given the total number of species, a semi-supervised K-means algorithm is conducted
on top of the extracted embeddings to cluster images. Clustering accuracy is calculated for the
predictions following the original practice [85].

PlantDoc. PlantDoc is a dataset targeting the incorporation of computer vision for scalable and early
plant disease detection [20]. 2,598 images of 13 plant species and up to 17 classes of diseases are
collected in uncontrolled natural settings. We evaluate the model on PlantDoc in a few-shot learning
style. One image per class is randomly selected from the original training split as the support set, and
SimpleShot [86] is employed to predict the class labels for the test set. Accuracy over all the testing
samples is reported as the performance.

Life stage-Diff/Align. We use the data of Age tasks from NeWT [18] to construct the Life stage-
Diff/Align benchmark, where images are labeled with juvenile and adult classes. Specifically, the
differentiation tasks aim to separate the binary appearance variations within each species. Conversely,
in the alignment task, we train a species classifier with juvenile images while testing it using adult
images. It requires the embeddings of two variations within one species to be closer than the
embeddings of different species. For both of the tasks, we incorporate a support vector classifier
to predict the corresponding labels. Ideally, after extensive contrastive training, the embeddings of
different variation classes are expected to collapse to the species prototype. However, we demonstrate
that the intra-species variations are well preserved in the embedding space of BIOCLIP 2.

Sex-Diff/Align. NABirds consists of 48,000 images from 400 bird species [61]. Sex and life stage
labels are provided for those species with large appearance variations. We manually examine the
images and select 81 species with male-female differences to construct the Sex-Diff/Align benchmark,
where 13,624 images are used in total. For the differentiation task, we filter out 20 male images and
20 female images per species as the test set. Among the remaining 10,384 images, we filter out at
most 20 male and 20 female images for training. For the alignment setting, we use the images of
female birds to train a species classifier and use the male images for testing. Similar to the life stage
benchmark, we use a support vector classifier for both of the sub-tasks.

I Data Processing Details

In this section, we provide more details on the data curation process.

I.1 Taxonomic Standardization

When GNVerifier returns a result from a query, our taxonomic alignment package combines it with
the input taxonomic hierarchy, along with the query parameter, to form a resolution attempt. The
query response, based on the most specific taxonomic term available in the input data, along with the
remaining input hierarchy (entry’s resolution attempt), is then matched against pre-defined profiles.
The algorithm uses these three components to fit against the series of profiles to determine whether a
confident resolution is found or if an alternative query strategy is needed (such as using a different
query term or data source), iterating until a match is made or alternative approaches are exhausted.
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(a) (b)

Figure 11: The number of images (a) and unique 7-rank taxa (b) by core data provider in TREEOFLIFE-200M.
iNaturalist [42] is the largest GBIF data source (by image count) and the data provider used by BioTrove [14],
so it is included here for reference.

Table 8: Top taxa contributors in GBIF [38]. Here, “Distinct Taxa” is used to describe 7-rank taxonomic labels
only provided to GBIF by that publisher, while “Total Taxa” is the total number of unique taxa labels within that
publisher. Observe that, following iNaturalist [42], the next three most diverse sources are museums, which,
together, account for more distinct taxa than iNaturalist alone, despite having significantly fewer images overall.

Publisher (GBIF Data Source) Distinct Taxa Total Taxa Images % GBIF Taxa

iNaturalist.org 81, 671 350, 229 134, 877, 019 9.07%
Natural History Museum 38, 535 148, 637 3, 603, 256 4.28%
Museum national d’Histoire nat. 37, 201 258, 766 6, 185, 477 4.13%
Naturalis Biodiversity Center 25, 421 244, 697 5, 282, 428 2.82%

Table 9: The distribution of unique taxa and the covered images at different taxonomic ranks in TREEOFLIFE-
200M. 92.26% images in TREEOFLIFE-200M have taxonomic labels specific to the species level.

Rank Total Images Unique Taxa Percent of Dataset

Species 197,382,628 867,455 92.26%
Genus 206,160,396 135,380 96.36%
Family 207,489,189 13,790 96.99%
Order 210,063,485 1,683 98.19%
Class 211,236,966 382 98.74%
Phylum 212,416,362 127 99.29%
Kingdom 213,932,022 11 100.00%

If all attempts ultimately fail to match a profile, the original input data is used for the entry’s label
in the final output. After hierarchical resolution, common names are annotated. For each entry,
the common name corresponding to its most specific resolved taxonomic term is selected, when
available, using the preferred English vernacular names from the GBIF Backbone Taxonomy [87].
In the output, the proportion of records changed for each data source is EOL: 98.7%, FathomNet:
16.0%, BIOSCAN: 11.8%, and GBIF: 0.3%. The notably low modification rate for GBIF reflects
our taxonomic alignment package’s preference for the GBIF Backbone Taxonomy as its primary
reference. After standardization, we summarize the image number and taxa number from each source
in Figure 11. We also report the distinct taxa and image number provided by top publishers from
GBIF in Table 8. We provide the source code for this part in TaxonoPy.

As claimed in §3.3, not all taxa are specific to the species level. We summarize the detailed taxa
distribution in Table 9. Although some ambiguous labels were mapped up to higher taxonomic ranks,
our overall dataset still predominantly comprises images confidently labeled at the species level.
Specifically, out of the total 214M images, approximately 92.26% retain species-level labels.
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I.2 Image-quality Screens

At download, all images were checked to be sufficiently large (224 pixels or more on the shortest
side), and resized, where needed, so that the largest side does not exceed 720 pixels. The code,
support set class embeddings, and further details of the image-quality screens and the subsequent
duplicate control are provided in our dataset repository, TreeOfLife-toolbox.

I.2.1 Museum Specimen Processing

Museums often consider multiple specimens of the same species to be connected instead of differenti-
ating them (as they are often collected from the same or similar location). Thus, these occurrences
often include images of their metadata, duplicates of the same or different specimens under one
occurrence ID, or less informative images. Some common complications to consider when working
with museum specimen images that influenced our processing are that

1. Plant and fungi specimens may be stored in envelopes or folders. These are often photographed
and digitized under the same occurrence ID as the image of the specimen itself, thus creating
extraneous images we do not want to include in training. They also sometimes pair this with living
specimen images (which would be worth keeping as well). See Figure 12, which demonstrates
variety within a single occurrence for fungi specimens. Plant specimens have a secondary
confounding factor in that they are often pressed for preservation with their metadata on the page
(see Figure 13).

2. Fish, worms, and similar will be stored in jars. A single jar is considered an occurrence, so only
one specimen may be photographed—perhaps at multiple angles—the jar may be photographed,
multiple specimens photographed, etc. In any of these cases, the images will all be labeled with
the same metadata that does not include this context.

3. For animal specimens, both of the above cases may occur: there may be simply a close-up of the
tag (similar issue to envelopes with plants and fungi). There may also be multiple specimens
photographed within the same occurrence (as noted with 2 about fish and worms). Museums
often consider multiple specimens of the same species to be connected instead of differentiating
them. This is two-fold, in that they are generally, collected from the same or similar location at
or about the same time, and a specimen is kept as a representative of its species, so there is not a
clear need for distinguishing between them. We also see multiple views of the same specimen
within an occurrence. Examples in Figure 14.

In order to appropriately separate these images, we treated them as museums do, specifically by
first dividing them into 11 collection areas (Fungi, Insect, Invertebrate Zoology, Microbiology,
Plant, Uncategorized, and five classes of Vertebrate Zoology: Amphibians, Birds, Fishes, Mammals,
Others) inspired by the Smithsonian Institution’s categorical subdivisions for their biological museum
collections. From here, we further divided each category based on its image type (e.g., fossil or
preserved specimen, as specified in GBIF metadata).

For each museum specimen category, we manually curated a small “support set” of representative spec-
imen and non-specimen images. We embedded these examples using CLIP (ViT-L/14@336px) [7];
we chose not to use BIOCLIP since museum specimen labels were not filtered from its training
data (e.g., EOL contains many museum specimen images). To capture intra-class diversity, we ran
K-Means on each support set and retained the resulting cluster centers. During classification, we
L2-normalized both the input image’s embedding and each center, then assigned the image to the
nearest center in Euclidean space. This processing was applied to all museum specimen images
identified within GBIF. The support set embeddings are included in TreeOfLife-toolbox.

I.2.2 Camera Trap Images

Some occurrences include large-volume camera-trap sequences, with up to 10,000 images. These
occurrences have a single taxonomic label applied across all images, though there are different taxa
(e.g., the first few frames may have a duck, while later images have a swan, another a goose, but the
label for all is a duck). To reduce the risk of introducing such noise while still capturing relevant
biodiversity, we filter the dataset to include only occurrences with 15 images or fewer. We then use
MegaDetector [47, 48] to filter “empty” frames. In creating a dataset to train a foundation model on
the entire tree of life, it is prudent to avoid introducing too many plant images labeled as animals.
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(a) (b)

Figure 12: These images all belong to GBIF Occurrence 2301948912 [88], and thus share metadata. (a)
Contains the specimen (Caloplaca cerina), (b) contains the file metadata from the specimen folder; only (a)
should be retained. Collected in Canada by ©Canadian Museum of Nature (licensed under CC BY-NC 4.0).

I.2.3 Citizen Science Images

Similarly, citizen science occurrences may contain many images assigned a single label. For each
occurrence, we thus embedded the images using BIOCLIP [13], standardized them, calculated the
pair-wise cosine similarity, and used the mean to indicate the occurrence’s “distinctness”. In these
instances, we identified three broad categories into which to further subdivide them for reduction:

1. Mixed occurrences: multiple species all labeled as just one of them (low similarity). These were
treated as noise and discarded.

2. Multiple image occurrences of the same species: observations suggest these are creature close-
ups and environment images under a single occurrence. They may also be larger groups with
close-ups. For these, we randomly sample down to 5 images.

3. Camera trap images: likely images collected in backyards (high similarity). Occasionally,
people upload images from camera traps to citizen science platforms like iNaturualist (also ex:
MammalWeb, a citizen science platform for camera trap images). These are processed under
camera trap protocols described above.

The final step in our quality control processing pipeline was to filter out identifiable images of people
from the training data. This was done by running MTCNN [49] on all images downloaded from
GBIF and EOL.

I.3 Duplicate and Leakage Control

GBIF and EOL are large biodiversity data aggregators, sourcing images that are also used in biological
benchmarks such as iNat21 [36] and NeWT [18]. Due to metadata provenance complications, the
images in these test sets cannot easily be matched to their sources or copies downloaded from other
sources. To prevent the introduction of test data sourced from iNaturalist or “other sources online”,
we perform two content deduplication steps. The first is to run MD5 hashes on all downloaded
images. During our download, these hash sums are used to distinguish images that have already been
downloaded. We record the hash of both the original image and our resized image. These were used
to ensure that Rare Species [59] images (sourced from EOL) were not included in the training data.
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(a) (b)

Figure 13: Both images contain specimens included in the dataset, but their dominance in-frame is quite
different. The pressed flower sheets are the same size, but (a) Osmorhiza longistylis is dominant in the frame,
while (b) Chara globularis covers less pixel area than the text. These images belong to GBIF Occurrence
5132787320 and GBIF Occurrence 5135831095 [88], respectively, and were both collected in the United States
of America by The New York Botanical Garden (licensed under CC BY 4.0).

(a) (b) (c) (d)

Figure 14: These images all belong to GBIF Occurrence 1056329684 [89], and thus share metadata. (a)
through (c) all contain the specimen (Pristimantis zeuctotylus), though (c) is primarily focused on its label or
tag. Meanwhile, (d) is the label for another specimen of the same species from the collection; there are multiple
views of this specimen as well. (c) provides an alternate view and can be retained, while (d) should be removed.

Traditional hash sums are highly sensitive to small changes–a one-pixel difference between two
images will produce a different hash. Hence, we applied perceptual hashing [PDQ 50], with distance
less than 10, to identify training images that may be in our desired test sets that could not otherwise
be filtered out (i.e., by MD5 hash sum or through metadata). Note that PDQ hash evaluation was only
run on GBIF citizen science images and EOL images sourced from Flickr since they are not reliable
for museum specimens.

IUCN Red List coverage. According to the most recent IUCN Red List assessment[52],
TREEOFLIFE-200M contains images of 69.5% (55,512) of all IUCN-assessed species in cate-
gories characterized as rare species or data deficient. This coverage was determined by applying
our taxonomic alignment package to the IUCN taxonomic data to enable direct comparison with
our standardized dataset. TREEOFLIFE-200M demonstrates particularly strong representation of
threatened species, with 77.1% coverage across threatened categories (36,370 species), including
79.7% of Vulnerable species (14,038), 79.4% of Endangered species (15,190), and 68.4% of Criti-
cally Endangered species (7,142). Coverage extends to 81.7% of Near Threatened species (8,073)
and 82.7% of species classified as Extinct in the Wild (67). Data-deficient species have a lower
representation at 48.4% (11,002), likely reflecting the challenges in imaging and identifying the
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species in this group. Notably, these species are designated in this category because there is not
sufficient information about them for IUCN to evaluate their status; only 8% of the 2.14M described
species have been evaluated [51]. Thus, including 48% of these species in TREEOFLIFE-200M,
along with the threatened species coverage, establishes the approach to integrating diverse data
sources used in TREEOFLIFE-200M as a valuable resource for conservation research, providing
visual representation for a substantial majority of species prioritized for global conservation action.
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