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Abstract

Kolmogorov-Arnold Networks (KANs) have recently emerged as a potential al-
ternative to multi-layer perceptrons (MLPs), leveraging the Kolmogorov Repre-
sentation Theorem to introduce learnable activation functions on each edge rather
than fixed activations at the nodes. While KANs have demonstrated promise in
small-scale problems by achieving similar or better performance with fewer pa-
rameters, our empirical investigations reveal significant limitations when scaling
to real-world tasks. Specifically, KANs suffer from increased computational costs
and reduced performance, rendering them unsuitable for deep learning applications.
Our study explores these limitations through extensive testing across diverse tasks,
including computer vision and scientific machine learning, and provides a detailed
comparison with MLPs.

1 Introduction

Kolmogorov-Arnold Networks (KANs) have recently gained attention as a novel architecture that
leverages the Kolmogorov Representation Theorem [1], offering a shift from traditional multi-layer
perceptrons (MLPs). By enabling learnable activation functions on edges rather than fixed node
activations, KANs introduce the potential for improved parameter efficiency, as shown in small-scale
studies [2, 3, 4]. However, whether KANs can scale effectively to complex, real-world tasks remains
uncertain. Our comprehensive empirical analysis across computer vision and scientific machine
learning tasks reveals significant limitations in computational costs and convergence dynamics, and
overall practicality. We demonstrate that KANs consistently under-perform compared to MLPs in
larger-scale applications, particularly through eigenvalue spectrum analysis and parameter efficiency
measurements.

Although previous studies have raised concerns about KANs as a potential replacement for MLPs, the
circumstances for successful deployment remain unclear. For example, [5] found KANs sub-optimal
for computer vision, while [6] noted prohibitive computational costs. When FLOPs were controlled,
MLPs generally outperformed KANs across tasks, excluding symbolic formula representation [7].
Additionally, [8] reported performance degradation in B-Spline KANs for differential equations and
operator learning, and even in high-energy physics, KANs offered limited advantages [9]. Our work
systematically evaluates KANs across multiple performance metrics, including parameter efficiency,
memory consumption, and convergence behavior.

Our contributions are as follows:

1. Parameter Efficiency: We demonstrate that the parameter efficiency of KANs is limited
to toy problems, with MLPs outperforming KANs on more complex tasks like computer
vision [Section 4.2] and more structured problems like Neural ODEs [Section 4.1]. Unlike
previous work, we use state-of-the-art models as our baseline.
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2. Scientific Machine Learning (SciML) Tasks: We show that KANs are inadequate for
common scientific machine learning tasks, such as learning dynamical systems with Neural
ODEs, due to their explosive parameter growth [Section 3.1]. MLPs offer a more practical
solution, fitting the data more accurately [Section 4.1].

3. Convergence Analysis: Our Hessian eigenvalue spectrum analysis reveals that KANs are
prone to converge to sharper minima more frequently than MLPs, particularly in vision tasks
[Section 4.2], potentially compromising their generalization performance.

2 Background

2.1 Kolmogorov Arnold Networks

Kolmogorov-Arnold Networks (KANs) [10] represent a specialized neural network architecture that
utilizes B-splines to create adaptive activation functions. Based on the Kolmogorov Representation
Theorem [1], which posits that any continuous multivariate function can be represented as a super-
position of univariate functions, KANs are structured to exploit this theorem by placing activation
functions on the edges instead of at the nodes, as seen in traditional MLPs. This approach, as proposed
in [10], allows KANs to model complex functions with greater parameter efficiency, making them
especially attractive in scenarios where memory and computational efficiency are critical.

2.2 Hessian Eigenvalue Spectral Distribution

Large-batch training methods in deep learning tend to exhibit poorer generalization compared to
their small-batch counterparts [11]. This phenomenon is primarily linked to the Hessian matrix H
characteristics. Specifically, large-batch methods are prone to converging to sharp minimizers, which
are identified by a significant number of large positive eigenvalues of H. Conversely, small-batch
methods typically converge to flat minimizers, marked by a preponderance of small eigenvalues of H.
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Figure 1: Heatmap representation of the additional
memory requirement of KANs [Equation (1)] on varying
the input/output dimensions and the batch size.

Our analysis reveals that KANs exacerbate the
issue of sharp minima, as indicated by a sub-
stantial increase in positive eigenvalues of the
Hessian matrix, even when trained with small
batch sizes. This sharpness strongly correlates
with poor generalization performance in our ex-
periments. Through detailed experimental eval-
uation, we demonstrate that KANs consistently
under-perform in test-time accuracy across all
computer vision tasks. This suggests that their
tendency to converge to sharp minima negatively
impacts their ability to generalize, especially in
more complex and high-dimensional tasks.

3 Analysing the Computational
Requirements for KANs

KANs exhibit significantly higher computa-
tional demands compared to MLPs when learn-
ing a mapping from RI to RO with comparable network width. In this section, we conduct a thorough
analysis of the computational requirements for KANs across two dimensions: parameter count, and
memory usage2. In our analysis, we denote σ as an arbitrary activation function applied subsequent
to the fully-connected (FC) layer. For the KAN layer, we employ the SiLU as the base activation
function, with the grid size and spline order represented by G and S, respectively.

2Our analysis is based on the efficient-KAN implementaion [12].
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3.1 Parameter Count

The number of parameters for a fully connected layer is O × (I + 1). For a KAN layer the total
number of learnable parameters, which includes the control points, shortcut weights, and B-spline
weights, is I ×O × (2 +G+ S). Hence, a standard KAN formulation with G = 5 and S = 3 has
approximately 10 times more trainable parameters than an equivalent FC layer.

3.2 Memory Usage

Forward Pass: An FC layer requires the allocation of a single O ×B matrix to store the output. In
contrast, evaluating a KAN layer necessitates the allocation of I ×B +O ×B + I × (G+ S)×B
in total. Consequently, KANs demand I × (1 +G+ S)×B additional elements compared to an FC
layer.

Reverse Pass: During training, additional memory must be allocated to store intermediates for
gradient computation. An FC layer requires at most an additional O ×B matrix for caching these
intermediates. Utilizing De Boor’s Algorithm [13] for computing B-splines, we can recursively
calculate the gradients for splines of order S using the spline evaluations for order S − 1. This
necessitates an extra tensor of size I×(G+S−1)×B for gradient computation in KANs. Therefore,
the total extra memory allocation required by a single KAN layer, in comparison to an FC layer, is as
follows:

I × (1 +G+ S)×B︸ ︷︷ ︸
Forward Pass

+ I × (G+ S − 1)×B −O ×B︸ ︷︷ ︸
Reverse Pass

+ I ×O × (2 +G+ S)− I × (O + 1)︸ ︷︷ ︸
Parameter Count

(1)

= I [2(G+ S)B + (G+ S + 1)O − 1]−OB (2)

4 Experiments

We evaluate the performance of KANs versus MLPs across three key domains, selecting problem
setups aligned with the original KAN paper’s claims on parameter efficiency [10]:

• Learning dynamical systems with neural ODEs [14, 15]: SciML problems are characterized
by low-parameter configurations with strong inductive biases, making this an ideal test case
for KANs, which are designed to perform well in low-parameter regimes.

• Computer vision with mixer models and transformers: MLPs are heavily used in these
models and often present a performance bottleneck, replacing them with KANs could
provide parameter efficiency gains with potential direct performance improvements.

• Operator Learning with Fourier Neural Operators[16].

Our computer vision and operator learning task experiments are conducted using PyTorch [17], while
we use Lux.jl [18, 19] for learning dynamical systems.

4.1 Neural Ordinary Differential Equations
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Figure 2: Comparison of Learning Dynamical Sys-
tems using Neural ODEs with MLPs and KANs:
MLPs converge to a lower final loss compared to KANs
in all problems (except Fitzhugh Nagumo where the dif-
ference in final loss is in the order of 10−10).

Neural ODEs [15] utilize neural networks to
model the rate of change in a dynamical system,
which is then numerically solved using ODE
solvers. The model parameters are optimized
through adjoint methods or discrete sensitivi-
ties [20, 21].

du

dt
= f(u, θ, t)︸ ︷︷ ︸

neural network

(3)

This approach excels at learning from tempo-
ral or sequential data by embedding structural
information inherent in the dynamics of the sys-
tem [14]. In our experiments, we evaluate the ef-
fectiveness of KAN-based and MLP-based neu-
ral ODEs across various tasks, including the
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(a) MLP-Mixer with KAN and MLP Base
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(b) Conv-Mixer with KAN and Conv Base

Figure 3: KAN variants converge to sharp minima (large number of positive eigenvalues) which MLP variants
converge to smooth minima. Additionally KANs use significantly large number of parameters compared to MLP
while attaining a lower final accuracy.
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Figure 4: KAN-based models have significantly higher memory usage with poor scaling: While both
KAN-based and MLP-based models demonstrate a linear growth in memory usage, the memory usage for the
former grows at a much faster rate. Missing points in the plot demonstrate that the models ran out of memory on
a 16GB V100 GPU.

Lotka-Volterra [22], Pleiades Problem [23], FitzHugh-Nagumo [24], Rigid Body Problem, and Spiral
ODE. Our results [Figure 2] demonstrate that, while MLP-based models consistently converge to
lower final losses, KANs struggle to fit dynamical systems like the Pleiades and Spiral ODE problems.

4.2 Computer Vision
Base Variant Number

of Params
Top 1

Acc (%)
Top 5

Acc (%)

MLP Tiny 5.5M 83.93 96.85
KANSpline Tiny 14.3M 73.03 93.23
KANRSWAF Tiny 12.6M 72.92 93.13
MLP Small 21.7M 86.49 96.16
KANSpline Small 39.4M 73.88 93.49
KANRSWAF Small 35.8M 78.69 94.75
MLP Base 85.8M 86.89 96.08

Table 1: CIFAR-100 classification using DeiT models:
MLPs outperform KANs by a margin of 8− 12% while
requiring significantly less parameters.

We evaluate the effect of introducing KANs
in MLP-Mixer [25], Conv-Mixer [26], and
DeiT [27] for CIFAR-10 and CIFAR-1003. In
MLP-Mixer, we replace the MLPs with Spline
KANs, similarly for Conv-Mixer we augment
the convolution layers with a KAN layer4. For
DeiT, we use the formulation in [29] of re-
placing the MLPs with B-Spline and RSWAF
KANs [30]. Figure 3 shows that KAN variants
converge to sharp minima (as evidenced by a
large number of positive eigenvalues). Addition-
ally, the original claim of KANs requiring lower
parameters [10], doesn’t hold up in our experiments, and KANs require significantly larger number
of parameters compared to an equivalent MLP, and even then fail to match the accuracy of MLPs.
While this issue of sharper minima doesn’t seem to occur for larger models like DeiT, comparing the
accuracies of KANs and MLPs we observe that MLPs outperform B-Spline KANs by 10− 12% and
RSWAF KANs by 8− 10% while using fewer parameters.

3For the sake of brevity, we don’t report the MNIST results in this manuscript, however, we have similar
observations to CIFAR-10 when using MLP-Mixer.

4We don’t use the formulation in [28] to avoid an explosive parameter growth due to grouped convolutions.
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4.3 Fourier Neural Operators
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Figure 5: MLPs outperform KANs in learning solutions
of darcy flow using weight-tied fourier neural operators
without residual connections. The presence of residual
connections provides a minor improvement to KAN per-
formance.

Fourier Neural Operators (FNOs) leverage the
Fourier transform to learn mappings between
infinite-dimensional function spaces to solve
partial differential equations by efficiently en-
coding spatial-temporal correlations in the fre-
quency domain [16]. We use the FNO++ formu-
lation proposed in [31].

We evaluate KANs as an alternative to the lift
and projection MLP networks in FNOs. Fig-
ure 5 show KANs performing slightly worse
compared to MLPs without residual connections.
However, in the presence of residual connec-
tions, KANs do outperform MLPs. However,
this comes at the cost of extremely high memory
requirements [Figure 4b] making training these
models infeasible.

5 Conclusion

Our comprehensive analysis highlights significant performance limitations of KANs when scaling to
complex, real-world tasks. Despite their theoretical appeal and parameter efficiency in toy problems,
KANs fail to outperform MLPs in practical applications, including computer vision and SciML tasks.
Our eigenvalue spectral analysis shows that KANs are more likely to converge to sharp minima,
negatively impacting their generalization performance. Moreover, their higher computational cost
and parameter inefficiency render them impractical for large-scale deep learning applications Thus,
at least for the time being, MLPs remain a more effective and efficient choice for a broader range of
applications.

5.1 Shortcomings

We note that our studies have the following limitations. We additionally highlight the reason why we
don’t cover them in our experiments:

1. Progressive Refinement of the Grid: [10] progressively refine the grid to improve the
fitting of the model. However, as noted previously the parameter growth w.r.t. a finer grid
prohibitively increases the parameter count and memory usage making the comparison to a
smaller MLP unfair.

2. Higher Order Optimization: We don’t consider optimizers like L-BFGS in our experiments
(except for Neural ODEs), since these tend to not scale for larger problems that were the
primary focus of our study.
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