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ABSTRACT

Machine learning based classifiers have achieved incredible success in a variety
of sectors such as college admissions, hiring and banking. However their ability
to make classifications has not been fully exploited to understand how to improve
undesirable classifications. We propose a new framework for finding the most
efficient changes that could be made in the real world to achieve a more favor-
able classification, and term these changes amicable perturbations. We present a
principled methodology for creating amicable perturbations and demonstrate their
effectiveness on data sets from a variety of fields. Amicable perturbations dif-
fer from counterfactuals in that they are better suited to balance the effort-reward
trade-off and lead to the most efficient plan of action. Unlike adversarial exam-
ples, which fool a classifier into making false prediction, amicable perturbations
are intended to affect the true class of the data point. To this end, we develop a
novel method for verifying that amicable perturbations change the true class prob-
abilities. We also compare our results to those achieved by previous methods such
as counterfactuals and adversarial attacks.

1 INTRODUCTION

The astounding accuracy of modern machine learning (ML) has lead to its widespread adoption in
an increasing number of fields such as credit lending (Leo et al., 2019), college admissions (Mar-
tinez Neda et al., 2021), and healthcare (Sauer et al., 2022). When one of these classifiers returns
an undesirable classification, however, it can leave users feeling unsatisfied and powerless. We pro-
pose a new framework to exploit the insight gained from these classifiers to efficiently change an
undesirable classification. Consider a classifier that determines the credit risk associated with a loan
application that a bank could use to determine to whom they should offer a loan. These classifiers’
understanding of what makes an individual a good or bad credit risk could also be used to find the
changes an individual should make to improve their credit worthiness, after their application is re-
jected. The useful actions may be obvious: pay down existing debts, increasing income and money
in saving, etc., but an amicable perturbation could suggest the precise combination of these changes
that would reach a specific goal (such as less than 10% chance of default) most efficiently, for exam-
ple changes that can be made in the least amount of time. We call these classifier informed changes
amicable perturbations. We present a few more illustrative applications of amicable perturbations:
(a) If a classifier gives low odds of survival to a patient in an understaffed hospital, then an amicable
perturbation could suggest the course of treatment that would double the patients odds of survival
while requiring the least staff hours. (b) When an ML classifier decides not to pass a job applicant’s
resume on to an employer, an amicable perturbation could suggest the skills the applicant could
acquire in the least amount of time that would lead to a high likelihood of receiving an interview
request. (c) If an ML classifier has been trained to predict at which price range a product will sell,
an amicable perturbation could suggest the cheapest modifications to a product that would bring it
into a more premium price range and enhance marketability.

Overview of Amicable Perturbations and Contributions. Our framework consist of a) a concept
of real world feasibility of a change through the notion of an actionable set (i.e., x̃AP ∈ A(x)); b)
a measure of the effort/cost required to make a change (denoted by dX (x, x̃AP )); c) the goal of the
change, denoted by a target set of probability distributions T ; and d) a measure of how close the true
class probabilities ỹ of x̃AP comes to achieving the desired goal through the notion of statistical
distance to the target set, dY(ỹ, T ). Generating amicable perturbations can then be formulated as
minimizing a weighted sum of the statistical distance to the target set and the effort/cost measure,
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Figure 1: a) Illustration of the framework for creating amicable perturbations. b) Example of the
original input and corresponding Amicable Perturbation on German Credit data set.

Amicable Counterfactuals Adversarial
Perturbations (AP) (CF) Attacks (AA)

Intended to give advice ! ! ×
Verifies real world efficacy ! × ×

Flexible definition of final goal ! × ×
Designed for optimal efficiency ! × !

Table 1: Comparison of amicable perturbations to counterfactuals and adversarial attacks.
subject to the constraint that the change x̃AP is actionable. To ensure that an amicable perturbation
does not behave like an adversarial attack (affecting the classifier’s decision but not the true class
probabilities) we propose a novel verification procedure. We take advantage of the fact that we have
access to the original data point and the modified point (never the case in adversarial settings). This
allows us to use a verifier function V that takes in two data points simultaneously. We use the value
of V (x, x̃AP ) to determine whether the changes are likely to produce a truly different outcome. We
demonstrate the effectiveness of this procedure on data sets from a variety of fields.

Distinction from Adversarial Examples & Counterfactuals Previous work on modifying an in-
put x to change its classification can be grouped into two main categories. 1) Adversarial attacks
x̃AA are small perturbations which also seek to change the classification of an input, but they are
intended to “fool” the classifier without changing the true class of the data point (Szegedy et al.,
2013; Goodfellow et al., 2015; Madry et al., 2019; Carlini & Wagner, 2017b). 2) A Counterfactual
for an input x is a similar input x̃CF which leads to a different classification. Counterfactuals were
originally proposed as a way to explain the decisions of a black-box classifier (Wachter et al., 2017;
Dhurandhar et al., 2018; Guidotti et al., 2018; Van Looveren & Klaise, 2021). Many works have
repurposed counterfactuals to also give advice on changing an unfavorable outcome (Mothilal et al.,
2020; Ustun et al., 2019; Poyiadzi et al., 2020; Karimi et al., 2021) sometimes using different (but
highly related) terms such as recourse or inverse classification. In contrast to adversarial attacks and
counterfactuals, amicable perturbations x̃AP have the express purpose of changing real world out-
comes (true class probabilities). Consider an individual turned down for a loan: a counterfactual’s
purpose is to get the individual approved by the classifier, but an amicable perturbation’s purpose is
to help the individual improve their actual odds of paying off the loan. This is significant because
counterfactuals are created with similar methods as adversarial attacks (Pawelczyk et al., 2022),
which are known to “fool” classifiers. Our objective is shared by König et al. (2023), but we also in-
troduce flexible goals and a cost reward-framework more conducive to this task. While König et al.
(2023) ensure trustworthiness against non-causal correlations through the use of Structural Causal
Models (SCMs), we provide trustworthiness against classifier weakness through the introduction of
a verification procedure. For more information on adversarial attacks and counterfactuals we direct
the reader to surveys Akhtar & Mian (2018) and Guidotti (2022). Table 1 highlights key distinctions
and similarities between amicable perturbations, counterfactuals and adversarial attacks.
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2 AMICABLE PERTURBATIONS

Problem Setting and Goals: Suppose there is an unknown distribution (x, C) ∼ D. Here x
is a member of the input space X ⊂ Rm and C ∈ {1, ..., k} is the class of x. We define the
class probabilities y := (P(C = 1|x), ...,P(C = k|x)). We let Y denote the k-simplex and use a
classifier M : X → Y to estimate the y corresponding to an input x. Let C̃ and ỹ be the class and
class probabilities of x̃. Our goal in designing an amicable perturbation is: Given an input x with an
undesirable classification M(x), find the most efficient real world actions to create a modified input
x̃ such that the corresponding true probabilities ỹ (and not just M(x̃)) are more desirable.

Real World Actionability: Amicable perturbations should only suggest modifications that are fea-
sible in the real world (e.g., not decreasing an individual’s age). To this end, we introduce: the
Actionable Set A(x) of a data point x is the set of all perturbations of x that are feasible in the
real world. For example, if X represents loan applications with x1 the age of the applicant, x2 the
applicant’s credit score, x3 the amount of credit and x4 the loan duration, and the applicant must
obtain a loan quickly we would use A(x) = {x̃ ∈ X |x̃1 = x1, x̃2 = x2}, i.e. the applicant can
change the size and duration of the loan they request, but not their age or credit score. Alternatively,
if the applicant can wait for a longer time to get the loan, we could define the actionable set as
A(x) = {x̃ ∈ X |x̃1 ≥ x1}, i.e. allowing flexibility to change the credit score over time. We note
that the actionable set is dependent on both the specific data point, as well as the underlying context.

Efficiency: The definition of the most efficient change depends on the context of the problem and
could involve a well defined value such as “cost in dollars” or more nebulous value such as “amount
of effort required.” We characterize this value with a function dX : X × X → R, where dX (x, x̃)
is the cost of changing x to x̃. For example, if x represents a resume and x̃ is a modified resume,
then dX (x, x̃) could represent the time it would take to acquire the attributes listed on resume x̃, but
not on x. We note this function may not be a true distance measure. For example, if dX represents
the difference in financial cost between two courses of medical treatment, then dX (x, x̃) should be
negative when x̃ is more affordable than x. This function (and the actionable set) may need to be
designed with the help of a subject matter expert.

Desirability: We now define what we mean by a desirable outcome—the goal of an amicable per-
turbation. The Target Set T is the set of all elements of Y that would be an acceptable result of an
amicable perturbation. If we wish to belong to a desirable class w with probability no less than
p, the target set would have the form T = {z ∈ Y|zw ≥ p}. If our goal is rather to avoid some
undesirable class u, T could be of the form T = {z ∈ Y|zu ≤ q} for a fixed q. More generally,
suppose we wish to belong to a set of desirable classesW with probability at least p and we wish to
belong to a set of undesirable classes U with probability no greater than q. Then T may be written

T =

{
z ∈ Y

∣∣∣∣
∑

i∈W
zi ≥ p,

∑

i∈U
zi ≤ q

}
. (1)

We next quantify how close an amicable perturbation x̃ comes to its goal in a principled manner.
To do this, we first choose a measure of statistical distance D(ỹ||z) (such as Kullback-Leibler (KL)
Divergence). We then denote dY(ỹ, T ) as the distance of ỹ to the target set T , defined as follows:

dY(ỹ, T ) = min
z∈T

D(ỹ||z). (2)

We next formally define amicable perturbations. Let ϵ represent budget —the amount of work we
are willing to perform, and δ represent tolerance —how close the final result is to our target set T .

Definition 1 ((ϵ, δ)-Amicable Perturbation) x̃ is an (ϵ, δ)-amicable perturbation for x and T if

1. dX (x, x̃) ≤ ϵ

2. dY(ỹ, T ) ≤ δ

3. x̃ ∈ A(x).

Real-world Verifiability of Amicable Perturbations: Note that amicable perturbations are defined
with respect to the true class probabilities ỹ because amicable perturbations should have an effect
in the real world. Notwithstanding, ỹ is unknown and we must use M(x̃) to create our amicable
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perturbations (more details in Section 3), which introduces the risk that we might produce an x̃ that
has the desired effect on M(x̃) but not ỹ (like an adversarial example). Ilyas et al. (2019) suggest
that this occurs because M learns correlations that are found in the training data, {x(j), C(j)}nj=1, but
do not generalize outside the training data. Verifying x̃ is similar to detecting adversarial examples
which has been the object of significant research (Yang et al., 2020; Roth et al., 2019; Fidel et al.,
2020; Carlini & Wagner, 2017a) with no satisfactory solution. Fortunately, we have an important
advantage over detecting adversarial examples: we know the original data point x and exactly how
it was modified, i.e., x̃. To capitalize on this knowledge, we propose a novel verification procedure
using a classifier V : X × X → [0, 1] which compares two inputs simultaneously and predicts the
probability of the inputs belonging to the same class: the value of V (x, x̃) estimates P(C = C̃|x, x̃).
We create V using the same structure as M (only changing the dimension of the input and output)
and training on the new set of difference training data {(x(i),x(j)), z(i,j)}1≤i,j≤n, where z(i,j) =

1[C(i) = C(j)]. Because V is trained on a fundamentally different classification problem than M
it will learn different features and will not be affected by the same non-generalizable correlations
as M . We can also estimate P(C = C̃|x, x̃) using M by calculating

∑k
i=1 Mi(x)Mi(x̃). If x̃

acts adversarially we would expect
∑k

i=1 Mi(x)Mi(x̃) to be very small while V (x, x̃) is large. If
x̃ is not adversarial we would expect similar values from both

∑k
i=1 Mi(x)Mi(x̃) and V (x, x̃).

Accordingly we use the discrepancy between these two estimates:

∆(x, x̃) =

∣∣∣∣∣V (x, x̃)−
k∑

i=1

Mi(x)Mi(x̃)

∣∣∣∣∣ (3)

to verify that an amicable perturbation x̃ can be trusted to have the anticipated result in the real world.
Specifically, if ∆(x, x̃) < γ, then we accept x̃ as a verified amicable perturbation; otherwise, we
reject. In Section 3, we describe how to select the threshold γ.

Relation to Previous Work: Previous work on modifying an input to change its classification has
focused on counterfactuals and adversarial attacks. A counterfactual x̃CF to an input x is a similar
input that results in a different classification. Wachter et al. (2017) suggested using counterfactuals
to explain the logic an ML classifier, and subsequent works (Mothilal et al., 2020; Ustun et al.,
2019; Poyiadzi et al., 2020; Karimi et al., 2021) suggested making counterfactuals actionable by
only allowing changes that could be made in the real world, that is x̃CF ∈ A(x). Counterfactuals
are well suited to explaining a classifiers decisions, but amicable perturbations have several key
advantages for providing advice to change the real world. First, amicable perturbations are more
precise and flexible in how their goals are defined. In contrast, counterfactuals focus only on the
final classification, and a change that leads to only a 51% chance of the desired result is a valid
counterfactual. Secondly, counterfactuals typically minimize ||x − x̃CF || for an ℓp norm which
fails represent the real world costs of a change. Alternatively, amicable perturbations minimize
real world cost which (in conjunction with the principled measure of distance to a target) leads to
optimal advice (see examples in Section 4). Finally, amicable perturbation’s verification procedure
helps ensure that changes will have the intended effect on the real world.

Verification is essential because of the existence of adversarial attacks (Akhtar & Mian, 2018): algo-
rithms which create inputs x̃AA (called adversarial examples) that lead to misclassifications. Coun-
terfactuals and adversarial examples are both created by solving the some version of the problem

x̃CF , x̃AA = argmin
x̃

loss(x̃, w) + λ||x̃,x|| (4)

where w is the desired class, λ is a tuning parameter, || · || is a norm and a variety of loss functions
could be used. It is concerning that counterfactuals (which are often assumed to change the actual
class of and input), and adversarial examples (which fool a classifier) are created using such similar
methods. In fact, Pawelczyk et al. (2022) showed that many of the most common adversarial attacks
and counterfactual generation algorithms solve nearly identical versions of equation 4 and produce
very similar results. Wachter et al. (2017) noted this concern when introducing counterfactuals, but
they dismissed it because the adversarial attacks of the time 1) modified many more features than
counterfactuals and 2) were targeted almost exclusively at image data whereas counterfactuals were
proposed for use on tabular data. Since that time, Su et al. (2019) demonstrated that adversarial
attacks can be effective when changing a very small number of features (just one pixel), and several
works (Ballet et al., 2019; Mathov et al., 2020; Cartella et al., 2021; Kumar et al., 2021) have shown
that adversarial examples exist even on tabular data sets. This implies verification is necessary to
achieve a result that can be trusted to change the true class probabilities.
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Figure 2: Illustration of the statistical distance based cost dY(ỹ, T ) derived in Theorem 1 as a
function of the total probability in desired vs. undesired classes. Although the cost function takes
different functional form(s) in the four regions, it is continuously differentiable in the entire space.

3 GENERATING AMICABLE PERTURBATIONS

Two Step Creation Method: We now present and discuss the general optimization framework for
creating amicable perturbations. Ideally, we would like to solve the following optimization problem:
arg minx̃2A(x) dY(ỹ, T )+�dX (x̃,x), where the scalar parameter � balances the effort(✏)-reward(�)
trade-off. Although solving this optimization would lead to a guaranteed and effective amicable
perturbation, the problem is that ỹ is unknown. To deal with this challenge, we instead propose the
following two-step procedure where: in Step 1, we treat M(x̃) as a surrogate for ỹ, and in Step 2,
we use a verification algorithm to ensure that x̃ is not just fooling the classifier.

arg min
x̃2A(x)

dY(M(x̃), T ) + �dX (x̃,x)

| {z }
Step 1

! Verification| {z }
Step 2

! Amicable Perturbation (7)

Properties of Statistical Distance dY to the Target: Understanding dY will be key to com-
pleting Step 1. In Section 2 we defined: dY(ỹ, T ) = minz2T D(ỹ||z); Here we will analyze
this function and show that it has properties conducive to solving the optimization in Step 1. For
our analysis, we set D(ỹ||z) to be an f -divergence: a broad class of measures including KL-
divergence, total-variation (TV) and other commonly used statistical distances. An f -divergence
is defined as D(ỹ||z) =

Pk
i=1 zif

⇣
ỹi

zi

⌘
, where f is a convex function satisfying f(1) = 0 and

f(0) = limx!0+ f(x). In Theorem 1 we find that dY has an easy to use differentiable closed form
as long as f is twice differentiable (for instance, KL Divergence) and the target set T has the very
general form (1).

Theorem 1 If D(ỹ||z) is an f -Divergence with twice differentiable f and T is of form (1), then

dY(ỹ, T ) =

8
>>>>>>>><
>>>>>>>>:

0 if SW � p and SU  q

pf
⇣

SW
p

⌘
+ (1� p)f

⇣
1�SW
1�p

⌘
if SW < p and SU  (1� SW)

⇣
q

1�p

⌘

qf
⇣

SU
q

⌘
+ (1� q)f

⇣
1�SU
1�q

⌘
if SU > q and SW � (1� SU )

⇣
p

1�q

⌘

pf
⇣

SW
p

⌘
+ qf

⇣
SU
q

⌘
if SU > (1� SW)

⇣
q

1�p

⌘

+(1� p� q)f
⇣

1�SW�SU
1�p�q

⌘
and SW < (1� SU )

⇣
p

1�q

⌘

, (8)

where SW =
P

i2W ỹi and SU =
P

i2U ỹi. Furthermore, dY(ỹ, T ) is continuously differentiable.

Theorem 1 shows that dY(ỹ, T ) takes on a piece-wise form, and Figure 3 illustrates how the pieces
of (8) divide the probability space. Despite its piece-wise form, this function is continuously differ-
entiable over its entire domain, which will be significant when solving the optimization problem in
Step 1. The proof of Theorem 1 and additional results about dY may be found in the Appendix.

5

pf ( !"
p ) + (1 − p)f ( 1 − !"

1 − p )
qf ( !$

q ) + (1 − q)f ( 1 − !$
1 − q )

pf ( !"
p ) + qf ( !$

q ) + (1 − p − q)f ( 1 − !" − !$
1 − p − q )

Distance to the Target Set T

Figure 2: Illustration of the statistical distance based cost dY(ỹ, T ) derived in Theorem 1 as a
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3 GENERATING AMICABLE PERTURBATIONS

Two Step Creation Method: We now present and discuss the general optimization framework for
creating amicable perturbations. Ideally, we would like to solve the following optimization problem:
argminx̃∈A(x) dY(ỹ, T )+λdX (x̃,x), where the scalar parameter λ balances the effort(ϵ)-reward(δ)
trade-off. Although solving this optimization would lead to a guaranteed and effective amicable
perturbation, the problem is that ỹ is unknown. To deal with this challenge, we instead propose the
following two-step procedure where: in Step 1, we treat M(x̃) as a surrogate for ỹ, and in Step 2,
we use a verification algorithm to ensure that x̃ is not just fooling the classifier.

arg min
x̃∈A(x)

dY(M(x̃), T ) + λdX (x̃,x)

︸ ︷︷ ︸
Step 1

→ Verify M(x̃) ≈ ỹ︸ ︷︷ ︸
Step 2

→ Amicable Perturbation (5)

Properties of Statistical Distance dY to the Target: Understanding dY will be key to com-
pleting Step 1. In Section 2 we defined: dY(ỹ, T ) = minz∈T D(ỹ||z); Here we will analyze
this function and show that it has properties conducive to solving the optimization in Step 1. For
our analysis, we set D(ỹ||z) to be an f -divergence: a broad class of measures including KL-
divergence, total-variation (TV) and other commonly used statistical distances. An f -divergence
is defined as D(ỹ||z) =

∑k
i=1 zif

(
ỹi

zi

)
, where f is a convex function satisfying f(1) = 0 and

f(0) = limx→0+ f(x) (Polyanskiy & Wu, 2022). In Theorem 1 we find that dY has an easy to use
differentiable closed form as long as f is twice differentiable (for instance, KL Divergence) and the
target set T has the very general form (1).

Theorem 1 If D(ỹ||z) is an f -Divergence with twice differentiable f and T is of form (1), then

dY(ỹ, T ) =





0 if SW ≥ p and SU ≤ q

pf
(

SW
p

)
+ (1− p)f

(
1−SW
1−p

)
if SW < p and SU ≤ (1− SW)

(
q

1−p

)

qf
(

SU
q

)
+ (1− q)f

(
1−SU
1−q

)
if SU > q and SW ≥ (1− SU )

(
p

1−q

)

pf
(

SW
p

)
+ qf

(
SU
q

)
if SU > (1− SW)

(
q

1−p

)

+(1− p− q)f
(

1−SW−SU
1−p−q

)
and SW < (1− SU )

(
p

1−q

)

, (6)

where SW =
∑

i∈W ỹi and SU =
∑

i∈U ỹi. Furthermore, dY(ỹ, T ) is continuously differentiable.

Theorem 1 shows that dY(ỹ, T ) takes on a piece-wise form, and Figure 3 illustrates how the pieces
of (6) divide the probability space. Despite its piece-wise form, this function is continuously differ-
entiable over its entire domain, which will be significant when solving the optimization problem in
Step 1. The proof of Theorem 1 and additional results about dY may be found in the Appendix.
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Algorithm 1 Generating Amicable Perturbations
Require: Classifiers M & V , point x, target family T , learning rate α, verification-cut off γ

x̃← x
while x̃ not converged do

g← ∇x̃ (dY(M(x̃), T ) + λdX (x̃,x) + b(x̃) + p(x̃))
gj ← 0 for all immutable features j.
x̃← x̃− αg

end while
x̃ = cond(x̃) (project onto the coherent space)
ϵ, δ = dX (x̃,x), dY(M(x̃), T )
if ϵ and δ requirements NOT met then

Adjust λ (see text for explanation)
Return to while loop

end if
if
∣∣∣V (x, x̃)−∑k

i=1 Mi(x)Mi(x̃)
∣∣∣ ≥ γ then

Adjust problem parameters (see text for explanation)
Restart algorithm

end if
return x̃

Solving Step 1: We solve our optimization problem using gradient descent which requires us to use
differentiable models M and formulate dX in a differentiable manner (dY is differentiable according
to Theorem 1). We modify our gradient descent to address two challenges. (1) We must insure that
our solution is actionable: x̃ ∈ A(x). (2) Our solution x̃ must follow any formatting rules associated
with the data set (Boolean variables must be either 0 or 1, categorical features must respect one-hot
encoding, etc.). A perturbation that follows these formatting rules is called coherent. To solve these
two difficulties, we first assumeA(x) = {x̃|li ≤ x̃i ≤ ui, 1 ≤ i ≤ m} for some set of lower bounds
{li}mi=1 and upper bounds {ui}mi=1. An attribute is immutable if li = ui. We ensure actionability by
setting all elements of the gradient corresponding to immutable features to zero and adding a large
penalty b(x̃) term to the objective function which punishes points for leaving the actionable set. To
ensure coherence, we project the result of our gradient descent onto the coherent space by using a
function cond : Rm → X which performs the appropriate value rounding to make an input coherent.
We found it useful to introduce a second penalty term p(x̃) which requires that any one-hot encoded
features sum to 1. This ensures our answers never stray too far from a coherent point and improves
robustness. Details on b, p and cond may be found in the Appendix. In practice we also found it
useful to replace regular gradient descent with the ADAM algorithm (Kingma & Ba, 2014).

Solving Step 2: In Section 2, we discussed the necessity of verifying amicable per-
turbations and suggested that an amicable perturbation can be trusted if ∆(x, x̃) =∣∣∣V (x, x̃)−∑k

i=1 Mi(x)Mi(x̃)
∣∣∣ is smaller than a threshold γ. To find the proper cut-off γ, we first

decide on an acceptable risk of eliminating a truly effective amicable perturbation (we use 10%). To
find the γ, corresponding to this risk, we calculate ∆(x(i),x(j)) for a sufficiently large number of
pairs (x(i),x(j)) from the testing data such that C(i) ̸= C(j). We can now pick γ such that only
the desired percentage of ∆(x(i),x(j)) values (e.g. 10%) are above γ. The verification procedure is
now reduced to eliminating any amicable perturbation that results in ∆(x, x̃) > γ.

Adjusting for Suitability and Verifiability: When creating amicable perturbations we will often
have a particular budget (ϵ) or tolerance (δ) bound we need to satisfy. To find a suitable amicable
perturbation we repeat Step 1 of our process adjusting λ until the desired budget or tolerance is met:
increasing λ to decrease ϵ and decreasing λ to decrease δ. It may also be appropriate to use a variety
of λ values and plot the ϵ and δ values of each resulting amicable perturbation (see Section 4). The
user may then select a perturbation they see as offering particularly good value. When an amicable
perturbation fails the verification step, there are a few recourses. (1) Sometimes it is sufficient to
decrease λ, putting greater emphasis on reaching the target set. (2) “Shrink” the target set (increase
the value of p and decrease the value of q) in order to force the algorithm to find more effective
changes. (3) Add a random perturbation to x in order to move the starting point away from the
adversarial example. We show the entire procedure in Algorithm 1.
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Figure 3: Table containing details on data sets used for testing.

4 EXPERIMENTAL RESULTS

Experimental Set Up: We compare amicable perturbations, counterfactuals and adversarial attacks
on four data sets from different fields; additional data set details in Figure 3 and Section 5.3.1.

Adult Income (Becker & Kohavi, 1996): This data set contains demographic information on Amer-
icans labelled by whether they had a high income. The actionable set A(x) allows individuals to
increase their education, change jobs and adjust their weekly work hours. The cost function dX
sums the expected number of years to improve education, a one-year cost to change jobs and the
square of the change in hours worked (weighted so 3 hours is equal to a year spent on education).
Law School Success (Wightman, 1998): This data set contains information on law school students
labelled by whether they passed the BAR exam. In A(x) we allow changes to law school grades
(through more studying) and the region where the exam is taken. The cost function dX sums the
increase in grades and the physical distance travelled to take the BAR. Moving to an adjacent region
(e.g. Far West to North West) is weighted the same as increasing grades by one standard deviation.
Diabetes Prediction (for Disease Control & , CDC): The individuals in this data set are labelled by
whether they have diabetes. We define A(x) to allow changes in health habits, BMI, education and
income. We use a weighted 2-norm for dX to represent the relative difficulty of making changes.
For example, starting to get regular physical activity is weighted the same as dropping one BMI.
German Credit (Hofmann, 1994): This data set contains loan applications. In A(x), we allow for
changes to the loan duration and size and funds in the checking and savings accounts. We use dX to
measure the total difference in Deutsche Marks (DM) over all elements of the application.

Other Methods: We compare our results against counterfactuals created using the original method
proposed to create counterfactuals (Wachter et al., 2017) and the diverse counterfactuals (DICE)
method in (Mothilal et al., 2020), the most cited methods in the literature. We also compare amicable
perturbations against the Carlini & Wagner (2017b) ℓ2 adversarial attack, one of the most well
known and effective adversarial attacks. The counterfactuals belong to the same actionable set as
the amicable perturbations, but the adversarial examples need not be actionable or even coherent.

Models: Gradient boosted tree algorithms Friedman (2001) are considered state of the art architec-
tures for tabular data classification Shwartz-Ziv & Armon (2021). Unfortunately, these models are
not differentiable and cannot be used with our framework. Instead we use neural networks which
we tuned until they provide accuracy on par with gradient boosted tree models on the same data set.
Details on our models’ structure and training may be found in the appendix.

Representative Amicable Perturbations and Trade-off between cost/desirability: We first ex-
amine two representative examples of how amicable perturbations behave differently than counter-
factuals for specific individuals. Figure 4 shows a plot of the ϵ/δ values of amicable perturbations
and counterfactuals for one individual in the Law School data set and one individual in the Adult
Income data set. We examine the results from the Law School data set: The amicable perturbation
labelled AP1 suggests only a mild (0.2 standard deviation) increase in grades and the relatively short
move from the Far West to the Great Lakes region resulting in a small 11% increase in the chance
of passing the BAR. On the other hand, AP2 suggest a larger increase in grades and a longer move
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Figure 4: Cost-Benefit plots of amicable perturbations and counterfactuals for an individually from
the Law School data set (a) and an individual in the Adult Income data set (b).
which results in a much larger 34% increase to the odds of success. Finally the counterfactual CF1

suggest an enormous increase in grades and massive cross country move to achieve 51% increase in
the odds of success. Turning our attention to the Adult Income example: AP3 suggests a relatively
simple increase in education to the masters level resulting in a 20% increase to the odds of a high
income. Alternatively, AP4 achieves an 71% increase by suggesting far more changes including
a professional degree and becoming self-employed. The counterfactual CF2 does not suggest be-
coming self-employed and produces a smaller 67% increase in the odds of high income despite also
suggesting a professional degree and a drastic 16 hour increase in the hours worked per week.

These examples illustrates two trends: 1) Amicable perturbations offer both low-cost/low-reward
(large-δ/small-ϵ) and high-cost/high-reward options, whereas counterfactual methods Wachter et al.
(2017); Mothilal et al. (2020) only offer high-cost options. This is because amicable perturbations
are defined by distance to the target set, but counterfactuals are defined as belonging to the desirable
class. That rules out any advice that doesn’t result in the desirable class being the most likely class.
2) Counterfactuals are prone to suggesting very high-cost outliers. This has two main causes: (a)
The ℓ1 norm used to create the counterfactuals does not accurately represent real world effort. For
example this norm considers any move in region to cost the same regardless of actual distance. (b)
Because counterfactuals do not use a target set, they are prone to “overshooting” the desired goal.
For example CF1 resulted in a 95% chance of passing the BAR when our goal was only 85%.

Comparison of Amicable Perturbations vs. Other Approaches We now compare amicable per-
turbations, counterfactuals Wachter et al. (2017); Mothilal et al. (2020) and CW attacks Carlini &
Wagner (2017b) over the entire data sets. In Figure 5: Each bar chart refers to a particular data set
and desired distance δ to the target set T . Each bar shows the percentage of individuals that a method
was able to move inside the goal δ at a variety of costs ϵ. (Bar charts for all data sets may be found
in the Appendix.) The table summarizes this information for all data sets with the upper (red) value
in each cell representing the data before the verification procedure and the lower (green) value the
success rate after the verification procedure. Consider the bar chart on the top middle which refers
to the German Credit data and a goal of δ = 0.5 from the target (the same information as the last
three columns of the table). At a ϵ = 0 Deutsche Marks (DM) cost, amicable perturbations are able
to move 73% of individuals within the goal range by closing empty accounts. Counterfactuals do
not match this success until the cost ϵ = 7, 000DM, and CW attacks never achieve more than a 31%
success rate. Amicable perturbations outperform counterfactuals in all of the test scenarios.

8
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Percentage of Individuals Moved Within δ=0.5 of Target (top (red) cells unverified, bottom (green) cells verified) 

Performance Comparison Over Entire Data Sets 

c) 

 Adult Income 
(Cost in years of education) 

Law School Success 
(Cost in σ grade increase) 

Diabetes Prediction 
(Cost in BMI point change) 

German Credit 
(Cost in Deutsche Marks DM) 

Cost/ε 6 12 18 2 4 6 4 8 12 0 3,500 7,000 
Amicable 

Perturbations 
34% 76% 81% 78% 99% 100% 93% 95% 98% 73% 100% 100% 
31% 62% 67% 75% 99% 100% 56% 59% 62% 58% 81% 85% 

Counterfactual 
Wachter et al. (2017) 

7.8% 71% 78% 51% 95% 99% 14% 47% 64% 0% 62% 81% 
6% 44% 45% 48% 91% 95% 8.1% 29% 35% 0% 42% 58% 

DICE 
Mothilal et al (2020) 

17% 69% 78% 39% 93% 100% 21% 55% 71% 0% 46% 77% 
12% 49% 59% 38% 92% 98% 14% 37% 47% 0% 35% 58% 
7.5% 7.5% 7.5% 90% 98% 99% 0% 0% 0% 3.8% 31% 31% 
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Carlini Wagner 
Carlini & Wagner (2017b) 

a) 

b) 

Figure 5: a) & b) show average success rate for moving individuals within a variety of distances
(δ) to the target set. The y-axis shows the percentage of individuals within the goal distance, and
the x-axis, represents different costs (ϵ values). c) Summarizes success values for all data sets. The
upper (red) value for each row is the success rate before the verification procedure and the lower
(green) value is the success rate after verification with a 10% chance of rejecting valid examples.

Impact and Effectiveness of Verifier: The first important take away from the success rates after
verification is that the verifier was 100% effective at eliminating Carlini Wagner adversarial exam-
ples (visible in the bottom row of the table in Figure 5 c), implying that the verification method does
indeed eliminate inputs that fool the classifier. Importantly, the verification procedure also removes
a significant number of amicable perturbations and counterfactuals. Consider the second column of
Figure 5 c: Out of all amicable perturbations generated 14% appeared effective but where elimi-
nated by the verification procedure. Counterfactual methods fared even worse with 20% to 27% of
counterfactuals eliminated. This reinforces the necessity of a verification procedure.

Concluding Remarks & Future Work In this work, we proposed amicable perturbations which
find efficient actions to an input in order to change an undesirable classification. We discussed the
key distinctions from adversarial attacks and counterfactuals. Our proposed framework measures
the cost of actions, their real world feasibility, and how close the actions come to achieving a goal
in principled manner, allowing for truly optimal advice. We also developed a novel method for
verifying that amicable perturbations affect the true class probabilities and don’t just fool the classi-
fier. Finally, we showed a comprehensive evaluation on data sets from multiple fields demonstrating
their effectiveness. We finally note the universal applicability of amicable perturbations in generat-
ing “feasible advice” whenever the decision of an ML classifier is undesirable. Our framework is
general enough for future work to incorporate additional desiderata. Of particular note is the concept
of causality. A(x) could be modified to include casual relationships in inputs (e.g. education cannot
be increased without increasing age) as suggested by Karimi et al. (2020). König et al. (2023) noted
that a classifier could pick up on correlations that have no causal relationship with the label which
could result in changes not having the anticipated effect. They suggested using Structural Causal
Models (SCMs) to ensure causal relationships which could also be incorporated into our verification
procedure. Ensuring causality through the use of longitudinal data on the actual effects of amicable
perturbations could also be incorporated into our framework and verification procedure.
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5 APPENDIX

5.1 ANALYSIS OF dY

5.1.1 PROOF OF THEOREM 1

Recall that our target sets have the form

T =

{
z ∈ Y

∣∣∣∣∣
∑

i∈W
zi ≥ p ,

∑

i∈U
zi ≤ q

}
,

where eitherW or U could be empty. Also recall

dY(ỹ, T ) = min
z∈T

Df (ỹ||z)

= min
z∈T

k∑

i=1

zif

(
ỹi
zi

)
. (7)

Closed Form:

Our proof will be made easier by introducing notationN = (W∪U)C as the neutral classes that are
neither desirable nor undesirable. We will use the fact that 1 = SW +SU +SN to rewrite equation 6
as

dY(ỹ, T ) =





0 if SW ≥ p and SU ≤ q

pf
(

SW
p

)
+ (1− p)f

(
SU+SN
1−p

)
if SW < p and SU ≤ (1− SW)

(
q

1−p

)

qf
(

SU
q

)
+ (1− q)f

(
SW+SN

1−q

)
if SU > q and SW ≥ (1− SU )

(
p

1−q

)

pf
(

SW
p

)
+ qf

(
SU
q

)
+ (1− p− q)f

(
SN

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

,

where SW =
∑

i∈W ỹi, SU =
∑

i∈U ỹi and SN =
∑

i∈N ỹi.

The case where ỹ ∈ T is obvious so we consider only the case where ỹ /∈ T , First note that f -
divergence Df (ỹ||z) is convex in z. Furthermore T is a convex set. Therefore any z satisfying the

12

https://ojs.aaai.org/index.php/AAAI/article/view/6140
https://ojs.aaai.org/index.php/AAAI/article/view/6140


Under review as a conference paper at ICLR 2024

KKT conditions is a minimizer. The KKT conditions for this problem can be written as

∇L(z) = 0⃗ (8)
k∑

i=1

zi = 1 (9)

p−
∑

i∈W
zi ≤ 0 (10)

∑

i∈U
zi − q ≤ 0 (11)

µ1, µ2 ≥ 0 (12)

µ1

(
p−

∑

i∈W
zi

)
= 0 (13)

µ2

(
q −

∑

i∈U
zi

)
= 0, (14)

where Lagrangian is defined by

L(z) =
k∑

i=1

zif

(
ỹi
zi

)
+ λ

k∑

i=1

zi + µ1

(
p−

∑

i∈W
zi

)
+ µ2

(∑

i∈U
zi − q

)
.

Note that we have neglected to explicitly state the requirement that 0 ≤ zi ≤ 1 for all i. This is
because our eventual solution will satisfy these bounds anyways, and omitting these bounds will
drastically simplify our calculations. We now rewrite equation 8 as

f

(
ỹi
zi

)
− ỹi

zi
f ′
(
ỹi
zi

)
+ λ− µ1 = 0 i ∈ W (15)

f

(
ỹi
zi

)
− ỹi

zi
f ′
(
ỹi
zi

)
+ λ+ µ2 = 0 i ∈ U (16)

f

(
ỹi
zi

)
− ỹi

zi
f ′
(
ỹi
zi

)
+ λ = 0 i ∈ N (17)

We now propose a solution can be found where that the ratios ỹi

zi
are constant in each of the setsW ,

U , N . That is

zi = CW ỹi i ∈ W
zi = CU ỹi i ∈ U
zi = CN ỹi i ∈ N .

In that case we can satisfy conditions equation 15, equation 16 and equation 17 (originally equa-
tion 8) by setting

λ = C−1
N f ′(C−1

N )− f(C−1
N )

µ1 = λ+ f(C−1
W )− C−1

W f ′(C−1
W )

µ2 = −λ− f(C−1
U ) + C−1

U f ′(C−1
U ).

We can now reformulate equation 12 so that it is easier to analyze. We will first define h(x) =
xf ′(x) − f(x). Note that because f(x) is convex h′(x) = xf ′′(x) ≥ 0 for all x ≥ 0 and h(x) is
increasing. We can then rewrite our formulas for λ, µ1 and µ2.

λ = h(C−1
N )

µ1 = h(C−1
N )− h(C−1

W )

µ2 = h(C−1
U )− h(C−1

N )
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Then µ1 ≥ 0 becomes

h(C−1
N ) ≥ h(C−1

W )

C−1
N ≥ C−1

W
CN ≤ CW ,

and µ2 ≥ 0 similarly becomes CN ≥ CU . This means equation 12 is equivalent to

CU ≤ CN ≤ CW (18)

We must now find values of CW , CU and CN that satisfy equation 9 through equation 14. We will
consider 3 cases illustrated in figure 5.1.1.

Figure 6: The three cases visualized in probability space.

Case: 1 Suppose SW < p and SU ≤ (1− SW)
(

q
1−p

)
.

Let CW = p
SW

and CU = CN = 1−p
SU+SN

. This implies µ2 = 0 which satisfies equation 14 and half
of equation 12. This also implies

∑
i=∈W zi = p satisfying equation 10 and equation 13. We will

use the fact SU + SN = 1− SW in our proof of condition equation 11.
∑

i∈SU

zi =
∑

i∈SU

CU ỹi

=
1− p

SU + SN
SU

≤ 1− p

SU + SN
(1− SW)

(
q

1− p

)

= q

This proves equation 11 is satisfied.

Because SW < p we have

CW =
p

SW
> 1 >

1− p

1− SW
=

1− p

SU + SN
= CN

14
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This implies µ1 > 0 and satisfies the other half of equation 12.

We have now shown all the KKT conditions are satisfied and we have found a minimizer. We now
plug these values into equation 7 to find a closed form for the distance.

dY(ỹ, T ) = min
z∈T

k∑

i=1

zif

(
ỹi
zi

)

=
∑

i∈W

pỹi
SW

f

(SW
p

)
+
∑

i/∈W

(1− p)ỹi
SU + SN

f

(SU + SN
1− p

)

= pf

(SW
p

)
+ (1− p)f

(SU + SN
1− p

)
.

Case: 2 Suppose SU > q and SW ≥ (1− SU )
(

p
1−q

)
.

Let CU = q
SU

and CW = CN = 1−q
SW+SN

. This implies µ1 = 0 which satisfies equation 13 and half
of equation 12. We also have

∑
i=∈U zi = q satisfying equation 11 and equation 14. We now prove

condition equation 10 is satisfied.

∑

i∈SW

zi =
∑

i∈SW

CW ỹi

=
1− q

SW + SN
SW

≥ 1− q

SW + SN
(1− SU )

(
p

1− q

)

= p

Finally we prove CN ≥ CU implying µ2 ≥ 0 which satisfies the other half of equation 12

CU =
q

SU
< 1 <

1− q

1− SU
=

1− q

SW + SN
= CN

Now that we have proven that this is a minimizer we will again plug solution into equation 7 to find
the distance value.

dY(ỹ, T ) = min
z∈T

k∑

i=1

zif

(
ỹi
zi

)

=
∑

i∈U

qỹi
SU

f

(SU
q

)
+
∑

i/∈U

(1− q)ỹi
SW + SN

f

(SW + SN
1− p

)

= qf

(SU
q

)
+ (1− q)f

(SW + SN
1− q

)
.

Case: 3 Suppose SU > (1− SW)
(

q
1−p

)
and SW < (1− SU )

(
p

1−q

)
.

Let CW = p
SW

, CU = q
SU

and CN = 1−p−q
SN

in which case
∑

i=∈W zi = p (satisfying equation 10
and equation 13),

∑
i=∈U zi = q (satisfying equation 11 and equation 14). The choice of CN

15
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ensures that equation 9 is satisfied:
M∑

i=1

zi =
∑

i∈CW

zi +
∑

i∈CU

zi +
∑

i∈CN

zi

=
∑

i∈CW

CW ỹi +
∑

i∈CU

CU ỹi +
∑

i∈CN

CN ỹi

= CWSW + CUSU + CNSN
= 1

Finally we show that equation 12 is satisfied. Consider

SU > (1− SW)

(
q

1− p

)

SU (1− p) > (1− SW)q

SU − pSU − qSU > q − qSW − qSU
SU (1− p− q) > qSN

1− p− q

SN
>

q

SU
CN > CU

and

SW < (1− SU )
(

p

1− q

)

SW(1− q) < (1− SU )p
SW − qSW − pSU < p− pSW − pSU
SW(1− p− q) < pSN

1− p− q

SN
<

p

SW
CN < CW .

This proves equation 18 which is equivalent to equation 12 Plugging these minimizing values of z
into equation 7 yields

dY(ỹ, T ) = min
z∈T

k∑

i=1

zif

(
ỹi
zi

)

=
∑

i∈W

pỹi
SW

f

(SW
p

)
+
∑

i∈U

qỹi
SU

f

(SU
q

)
+
∑

i∈W

(1− p− q)ỹi
SN

f

( SN
1− p− q

)

= pf

(SW
p

)
+ qf

(SU
q

)
+ (1− p− q)f

( SN
1− p− q

)
.

This proves our closed form solution.

We now show that this function is both continuous and continuously differentiable.

Continuity:

To prove continuity we need only show continuity the piece-wise boundaries which we will evaluate
one at a time.

Boundary 1: SW = p. The two functions that share this boundary are 0 and pf
(

SW
p

)
+ (1 −

p)f
(

1−SW
1−p

)
. Plugging the boundary into the latter function yields

pf

(SW
p

)
+ (1− p)f

(
1− SW
1− p

)
= pf

(
p

p

)
+ (1− p)f

(
1− p

1− p

)

= 0.

16
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The two functions are equal on the boundary and the boundary is continuous.

Boundary 2: SU = q. The two functions that share this boundary are 0 and qf
(

SU
q

)
+ (1 −

q)f
(

1−SU
1−q

)
. Plugging the boundary into the latter function yields

qf

(SU
q

)
+ (1− q)f

(
1− SU
1− q

)
= qf

(
q

q

)
+ (1− q)f

(
1− q

1− q

)

= 0.

The two functions are equal on the boundary and the boundary is continuous.

Boundary 3: SU = (1− SW)
(

q
1−p

)
. The two functions that share this boundary are pf

(
SW
p

)
+

(1− p)f
(

1−SW
1−p

)
and pf

(
SW
p

)
+ qf

(
SU
q

)
+(1− p− q)f

(
SN

1−p−q

)
. Plugging the boundary into

the latter function yields

pf

(SW
p

)
+ qf

(SU
q

)
+ (1− p− q)f

(
1− SW − SU
1− p− q

)
=pf

(SW
p

)
+ (1− p)f

(
1− SW
1− p

)
.

The two functions are equal on the boundary and the boundary is continuous.

Boundary 4: SW = (1 − SU )
(

p
1−q

)
. The two functions that share this boundary are qf

(
SU
q

)
+

(1− q)f
(

1−SU
1−q

)
and pf

(
SW
p

)
+ qf

(
SU
q

)
+ (1− p− q)f

(
SN

1−p−q

)
. Plugging the boundary into

the latter function yields

qf

(SU
q

)
+ pf

(SW
p

)
+ (1− p− q)f

(
1− SU − SW
1− p− q

)
=qf

(SU
q

)
+ (1− q)f

(
1− SU
1− q

)
.

The two functions are equal on the boundary and the boundary is continuous.

We have now shown continuity on all boundaries and the function is continuous.

Differentiability:

Finally we show are function is continuously differentiable by showing all partial derivatives exist
and are continuous. We use the closed form equation equation 6 found in the body of the paper
(which is equivalent to the one found in the beginning of the proof) that suppresses SN . This makes
it easier to differentiate with respect to ỹi, i ∈ W ∪ U .

dY(ỹ, T ) =





0 if SW ≥ p and SU ≤ q

pf
(

SW
p

)
+ (1− p)f

(
1−SW
1−p

)
if SW < p and SU ≤ (1− SW)

(
q

1−p

)

qf
(

SU
q

)
+ (1− q)f

(
1−SU
1−q

)
if SU > q and SW ≥ (1− SU )

(
p

1−q

)

pf
(

SW
p

)
+ qf

(
SU
q

)
+ (1− p− q)f

(
1−SW−SU

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

We now take the derivative with respect to a desirable class (i ∈ W).

∂

∂ỹi∈W
dY(ỹ, T ) =





0 if SW > p and SU < q

f ′
(

SW
p

)
− f ′

(
1−SW
1−p

)
if SW < p and SU < (1− SW)

(
q

1−p

)

0 if SU > q and SW > (1− SU )
(

p
1−q

)

f ′
(

SW
p

)
− f ′

(
1−SW−SU

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

17
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Now we need only ensure all pieces agree on the boundaries to shoe that the derivative exists and is
continuous.

Boundary 1: SW = p. The two functions that share this boundary are 0 and f ′
(

SW
p

)
−f ′

(
1−SW
1−p

)
.

Plugging the boundary into the latter function yields

f ′
(SW

p

)
− f ′

(
1− SW
1− p

)
= f ′

(
p

p

)
− f ′

(
1− p

1− p

)

= f ′(1) + f(1′)

= 0.

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 2: SU = q. The two functions that share this boundary are both 0, and setting the
derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 3: SU = (1 − SW)
(

q
1−p

)
. The two functions that share this boundary are f ′

(
SW
p

)
−

f ′
(

1−SW
1−p

)
and f ′

(
SW
p

)
− f ′

(
1−SW−SU

1−p−q

)
. Plugging the boundary into the latter function yields

f ′
(SW

p

)
− f ′

(
1− SW − SU
1− p− q

)
=f ′

(SW
p

)
− f ′

(
1− SW
1− p

)

Then setting the derivative at the boundary to f ′
(

SW
p

)
− f ′

(
1−SW
1−p

)
makes the derivative on this

boundary continuous.

Boundary 4: SW = (1 − SU )
(

p
1−q

)
. The two functions that share this boundary are 0 and

f ′
(

SW
p

)
− f ′

(
1−SW−SU

1−p−q

)
. We rewrite the boundary as SU = 1−q

p SW + 1 and plug it into the
latter function.

f ′
(SW

p

)
− f ′

(
1− SW − SU
1− p− q

)
=f ′

(SW
p

)
− f ′



1− SW −

(
1−q
p SW + 1

)

1− p− q




=0

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

This yields the continuous partial derivative

∂

∂ỹi∈W
dY(ỹ, T ) =





0 if SW ≥ p and SU ≤ q

f ′
(

SW
p

)
− f ′

(
1−SW
1−p

)
if SW < p and SU ≤ (1− SW)

(
q

1−p

)

0 if SU > q and SW ≥ (1− SU )
(

p
1−q

)

f ′
(

SW
p

)
− f ′

(
1−SW−SU

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

.

(19)

We now take the derivative with respect to a undesirable class (i ∈ U).

∂

∂ỹi∈U
dY(ỹ, T ) =





0 if SW > p and SU < q

0 if SW < p and SU < (1− SW)
(

q
1−p

)

f ′
(

SU
q

)
− f ′

(
1−SU
1−q

)
if SU > q and SW > (1− SU )

(
p

1−q

)

f ′
(

SU
q

)
− f ′

(
1−SW−SU

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

18
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Now we need only ensure that there is agreement on the boundaries.

Boundary 1: SW = p. The two functions that share this boundary are both 0, and setting the
derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 2: SU = q. The two functions that share this boundary are both 0 and f ′
(

SU
q

)
−

f ′
(

1−SU
1−q

)
. Plugging the boundary into the latter function yields

f ′
(SU

q

)
− f ′

(
1− SU
1− q

)
= f ′

(
q

q

)
− f ′

(
1− q

1− q

)

= 0.

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 3: SU = (1 − SW)
(

q
1−p

)
. The two functions that share this boundary are 0 and

f ′
(

SU
q

)
−f ′

(
1−SW−SU

1−p−q

)
. We rewrite the boundary as SW = 1− 1−p

q SU and plug it into the latter
function.

f ′
(SU

q

)
− f ′

(
1− SW − SU
1− p− q

)
=f ′

(SU
q

)
− f ′



1− SU −

(
1− 1−p

q SU
)

1− p− q




=0

Then setting the derivative at the boundary to 0 makes the derivative on this boundary continuous.

Boundary 4: SW = (1 − SU )
(

p
1−q

)
. The two functions that share this boundary are f ′

(
SU
q

)
−

f ′
(

1−SU
1−q

)
and f ′

(
SU
q

)
− f ′

(
1−SW−SU

1−p−q

)
. Plugging the boundary into the latter function yields

f ′
(SU

q

)
− f ′

(
1− SW − SU
1− p− q

)
=f ′

(SU
q

)
− f ′



1− SU − (1− SU )

(
p

1−q

)

1− p− q




=f ′
(SU

q

)
− f ′

(
1− SU
1− q

)

Then setting the derivative at the boundary to f ′
(

SU
q

)
− f ′

(
1−SU
1−q

)
makes the derivative on this

boundary continuous.

This yields the continuous partial derivative

∂

∂ỹi∈U
dY(ỹ, T ) =





0 if SW ≥ p and SU ≤ q

0 if SW < p and SU ≤ (1− SW)
(

q
1−p

)

f ′
(

SU
q

)
− f ′

(
1−SU
1−q

)
if SU > q and SW ≥ (1− SU )

(
p

1−q

)

f ′
(

SU
q

)
− f ′

(
1−SW−SU

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

.

(20)

5.1.2 ADDITIONAL RESULTS

The following lemma shows that dY exhibits desirable behavior for any f -divergence if we restrict
ourselves to the binary classification setting.

Lemma 1 In the binary classification environment, if T = {z ∈ Y|z1 ≥ p}, then dY(ỹ, T ) is
decreasing (not necessarily strictly) in ỹ1 for D(ỹ||z) any f -divergence.

19
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We prove Lemma 1.

Recall dY(ỹ, T ) = minz∈T Df (ỹ||z). For binary probability distributions a and b, the f -
divergence has the simple form

Df (b||a) = a1f

(
b1

a1

)
+ (1− a1)f

(
1− b1

1− a1

)
(21)

for a convex function f with f(1) = 0. We show a relationship between this formula and a secant
line. To refer to the secant line of a function g(x) from point x = α to x = β evaluated at γ, we will
use the notation Sg(α, β; γ). When using this notation we will assume that α ≤ β.

We assume a1 > b1 and show that Df (b||a) is equivalent to the secant line of f(x) from x = b1

a1

to 1−b1

1−a1
evaluated at 1. (Note b1

a1
< 1 < 1−b1

1−a1
.) We show this simply using the point slope form.

Sf

(
b1

a1
,
1− b1

1− a1
;x

)
=

(
x− 1− b1

1− a1

) f
(

1−b1

1−a1

)
− f

(
b1

a1

)

1−b1

1−a1
− b1

a1

+ f

(
1− b1

1− a1

)

Sf

(
b1

a1
,
1− b1

1− a1
; 1

)
=

(
1− 1− b1

1− a1

) f
(

1−b1

1−a1

)
− f

(
b1

a1

)

1−b1

1−a1
− b1

a1

+ f

(
1− b1

1− a1

)

= a1f

(
b1

a1

)
+ (1− a1)f

(
1− b1

1− a1

)

= Df (b||a)

Now that Df (b||a) is related to a secant line we prove a few facts about secant lines of convex
functions. If g is convex, then Sg(α, β; γ) is decreasing in α and increasing in β whenever α < γ <
β. Recall that if g is convex, then by definition for any v1 < v2 < v3, we have

g(v2)− g(v1)

v2 − v1
≤ g(v3)− g(v1)

v3 − v1
≤ g(v3)− g(v2)

v3 − v2
. (22)

Then for any β < β̃ we have

Sg(α, β; γ) = (γ − α)m+ g(α) (23)

Sg(α, β̃; γ) = (γ − α)m̃+ g(α) (24)

for m̃ ≥ m. It follows that for any γ ≥ α

Sg(α, β;x) ≤ Sg(α, β̃;x), (25)

and Sg(α, β;x) is increasing in β.

A similar argument shows that Sg(α, β;x) is decreasing in α when γ ≤ β.

We will use these facts to analyze dY(ỹ, T ) = minz∈T Df (ỹ||z). The f -divergence between iden-
tical distributions is zero, so we have dY(ỹ, T ) = 0 whenever ỹ1 ≥ p. When ỹ1 < p we have
ỹ1

z1
< 1 < 1−ỹ1

1−z1
and

dY(ỹ, T ) = min
z∈T

Df (ỹ||z)

= min
z∈T

Sf

(
ỹ1

z1
,
1− ỹ1

1− z1
; 1

)
,

which is decreasing in ỹ1

z1
and increasing in 1−ỹ1

1−z1
, so to achieve the minimum we use the smallest

possible z1, i.e. z1 = p. We may now simplify

dY(ỹ, T ) =

{
Sf

(
ỹ1

p , 1−ỹ1

1−p ; 1
)

if ỹ < p

0 if ỹ ≥ p
.

Note that this is continuous at ỹ = p because Sf (1, 1; 1) = f(1) = 0. With this closed form solution
for dY(ỹ, T ) we may finish the proof.
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We have already shown that Sf

(
ỹ1

p , 1−ỹ1

1−p ; 1
)

is decreasing in ỹ1

p and increasing in 1−ỹ1

1−p , so in-

creasing ỹ1 will decrease Sf

(
ỹ1

p , 1−ỹ1

1−p ; 1
)

and dY(ỹ, T ) is decreasing in ỹ1.

We now present a corollary to Theorem 1 that shows explicitly that dY decreases with added proba-
bility to the desirable classes and increases with added probability to the undesirable classes.

Corollary 1 If T is of form 1 and f is twice differentiable, then dY(ỹ, T ) is decreasing in ỹi if
i ∈ W and is increasing if i ∈ U .

To prove Corollary 1, we need only show equation equation 6 is decreasing in ỹi for i ∈ W and
increasing in ỹi for i ∈ U , we need only prove that the partial derivative equation 19 is non-positive
and the partial derivative equation 20 is non-negative. We will rely heavily on the fact thatf ′ is
increasing because f is convex.

We start with equation 19:

∂

∂ỹi∈W
dY(ỹ, T ) =





0 if SW ≥ p and SU ≤ q

f ′
(

SW
p

)
− f ′

(
1−SW
1−p

)
if SW < p and SU ≤ (1− SW)

(
q

1−p

)

0 if SU > q and SW ≥ (1− SU )
(

p
1−q

)

f ′
(

SW
p

)
− f ′

(
1−SW−SU

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

.

Clearly the first and third cases are non-positive, so we proceed to the second case.

Because SW < p, we have SW
p < 1 < 1−SW

1−p and

f ′
(SW

p

)
< f ′

(
1− SW
1− p

)

f ′
(SW

p

)
− f ′

(
1− SW
1− p

)
< 0.

Next we prove the partial derivative is negative in the fourth case.

SW < (1− SU )
(

p

1− q

)

SW − qSW < p− pSU
SW − qSW − pSW < p− pSU − pSW

SW
p

<
1− SU − SW
1− p− q

f ′
(SW

p

)
< f ′

(
1− SU − SW
1− p− q

)

f ′
(SW

p

)
− f ′

(
1− SU − SW
1− p− q

)
< 0

This shows that equation 19 is non-positive and equation 6 is decreasing in ỹi for i ∈ W .

We now consider equation 20:

∂

∂ỹi∈U
dY(ỹ, T ) =





0 if SW ≥ p and SU ≤ q

0 if SW < p and SU ≤ (1− SW)
(

q
1−p

)

f ′
(

SU
q

)
− f ′

(
1−SU
1−q

)
if SU > q and SW ≥ (1− SU )

(
p

1−q

)

f ′
(

SU
q

)
− f ′

(
1−SW−SU

1−p−q

)
if SU > (1− SW)

(
q

1−p

)

and SW < (1− SU )
(

p
1−q

)

.
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Clearly the first two cases are non-negative, so we consider the third case.

Because SU > q, we have SU
q > 1 > 1−SU

1−q and

f ′
(SU

q

)
> f ′

(
1− SU
1− q

)

f ′
(SU

q

)
− f ′

(
1− SU
1− q

)
> 0.

We can no prove the fourth case is positive.

SU > (1− SW)

(
q

1− p

)

SU − pSW > q − qSW
SU − pSW − qSU > q − pSW − qSU

SU
q

>
1− SW − SU
1− p− q

f ′
(SU

q

)
> f ′

(
1− SW − SU
1− p− q

)

f ′
(SU

q

)
− f ′

(
1− SW − SU
1− p− q

)
> 0

This shows that equation 20 is non-negative and equation 6 is increasing in ỹi for i ∈ U .

5.2 ALTERNATIVE VERIFICATION PROCEDURE

We developed a second method for using V to verify an amicable perturbation, however we found
it more difficult to work with and somewhat less effective and identifying adversarial examples so it
was removed from the main paper. Nonetheless, we present it here as an alternative method.

In this method we determine an expected value for V (x, x̃) if M has classified x̃ correctly. We call
this expectation γadapt and reject x̃ when V (x, x̃) < γadapt (V indicates that x̃ is less effective than
M ).

To find γadapt, we interpolate between two points where the expected value of V is known. First,
if dY(M(x̃), T ) = dY(M(x), T ) (such as when x = x̃) we expect no change in the distance to
the target set and γadapt = 0. Second, if dY(M(x̃), T ) = 0 (implying M(x̃)) ∈ T ) we expect
V (x, x̃) > 0.5 because we assume x /∈ T . We then set γadapt = 0.5 + c for some confidence
parameter 0 < c < 0.5. (Higher values of c lead to more rejections and more confidence in the x̃
which pass verification.) Interpolating between the two points yields the formula

γadapt = (0.5 + c) ∗
(
1− δY(M(x̃), T )

δY(M(x), T )

)
. (26)

We found that one disadvantage of this technique is you must keep track of the T used to create x̃.
The verification technique used in the paper does not require us to remember this information past
creating x̃.

5.3 ADDITIONAL IMPLEMENTATION DETAILS

In this section we give additional details on how we implemented our methods to create the experi-
mental results found in this paper.

5.3.1 DATA SET AND COST FUNCTION DETAILS

Here we give additional description of each data set and the corresponding the cost functions dX
used in our experimetns. As noted in Section 3 we must ensure dX is differentiable. When dealing
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with categorical features costs are by nature discrete (and not differentiable). We show how we
were able to write these costs in a differentiable form. Suppose v ∈ Rℓ is a one-hot encoding of
a categorical feature and define the transition cost matrix A such that Ai,j as the cost of changing
from category i to category j. Then zTAz̃ represents the costs of changing this categorical feature
and is differentiable in z.

Adult Income: (Becker & Kohavi, 1996) This widely used data set contains information from
the 1994 U.S. census, with individuals labelled by whether their annual income was over $50,000
(∼$100,000 in 2023 adjusted for inflation). We define our target set T as over 80% probability
high income. Our actionable set allows changes in job type, education and number of hours worked
with all other attributes immutable. The cost function dY includes the expected number of years to
improve education (e.g. two years to go from associate’s degree to bachelors degree), a one-year
cost to change employer type and the 2-norm of the change in hours worked per week (weighted so
3 hours per week is equivalent to a year spent on education). Here amicable perturbations suggest
the best way to improve an individuals odds of making a large income with the least time and effort.

Specifically dX is the sum cost from changes (1) hours worked per week (2) change in employment
type (3) change in education and (4) change in field of work.

The cost from a change in hours is given by ∆h2

10 where ∆h is the change in weekly hours worked.
This will mean 3 extra hours of work are approximately equivalent to one year of schooling.

The cost from a change in employer (the options are government, private, self-employed and other)
is always 1 (equivalent to a year spent on education).

The possible levels of education are (1) any schooling, (2) High School Degree, (3) Professional
Degree, (4) some college, (5) Associate’s Degree, (6) Bachelors Degree, (7) Master’s Degree, (8)
Doctorate Degree. The cost transition matrix associated with the level of education (as ordered
above) is

AEducation =




0 2 10 3 4 6 8 11
L 0 8 1 2 4 6 9
L L 0 L L L 2 5
L L 7 0 1 3 5 8
L L 6 L 0 2 4 7
L L 4 L L 0 2 5
L L 4 L L L 0 3
L L 4 L L L L 0




, (27)

where L is a large number meant to prevent suggestions that lead to a decrease in education, which
is impossible (we use L = 1, 000). These numbers represent the expected number of years required
to gain the specified degree (i.e. the cost of going from a high school degree to a bachelors degree
is A2,6 = 4).

Finally the options for fields of work are (1) Service, (2) Sales, (3) Blue-Collar (4) White Collar, (5)
Professional, (6) Other. The cost transition matrix associated with the level of education (as ordered
above) is

AProfession =




0 1 2 3 4 1
1 0 1 2 3 1
1 1 0 1 2 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0



. (28)

This represents a cost of 1 for any change

Law School Success: (Wightman, 1998) This data set contains demographic information and aca-
demic records for over 20,000 law school students labelled by whether or not a student passed the
BAR exam. Our target set is an 85% chance of passing the BAR. To createA(x), we suppose the law
school performance is merely a projection that can be changed through more studying, allowing us
to change the law school grades and the location where the students take the BAR. The cost function
dX sums the increase in grades and the physical distance travelled to take the BAR where moving to
an adjacent region (e.g. Far West to North West) is weighted the same as increasing grades by one
standard deviation.
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Specifically dY sums the increase in grades and the physical distance travelled to take the BAR where
moving to an adjacent region (e.g. Far West to North West) is weighted the same as increasing grades
one standard deviation. This set up returns the optimal combination of studying harder and moving
location to take the BAR.In this data set dX is sum of the change in grades (in standard deviations
from the mean) and distance traveled. The country was divided into eight regions: (1) Far West, (2)
Great Lakes, (3) Mid-South, (4) Mountain West, (5) Mid-West, (6) North East, (7) New England,
(8) North West. We use the transition cost matrix

ARegion =




0 3 4 1 2 6 5 1
3 0 1 2 1 2 1 3
4 1 0 2 1 2 1 5
1 2 2 0 1 4 3 2
2 1 1 1 0 3 2 3
6 2 2 4 3 0 1 5
5 1 1 3 2 1 0 5
1 3 5 2 3 5 5 0




(29)

Moves to adjacent regions result in a cost of 1, while the highest cost of 6 is incurred by moving
from Far West to New England or back.

Diabetes Prediction: (for Disease Control & , CDC) This data set contains information on the
demographics, health conditions and health habits of 250,000 individuals labelled by whether an
individual is diabetic extracted from the Behavioral Risk Factor Surveillance System (BRFSS), a
health-related telephone survey that is collected annually by the CDC.. We define A(x) to allow
changes in health habits, BMI, education and income. We use a weighted 2-norm for dX to represent
the relative difficulty of making changes. For example, starting to get regular physical activity is
weighted the same as dropping one BMI point. Increasing education, income and health insurance
were weighted as more difficult that simply adjusting health habits.

German Credit: (Hofmann, 1994) This commonly used data set contains information on 1,000
loan applications in Germany labelled by their credit risk. The actionable set allows for changes in
the loan request (time and size) as well as the funds in the applicants checking and savings account
and whither the applicant has a telephone. The target set T is a greater than 80% of being a good
credit risk. The cost function dY is the direct measuring the total difference in Deutsche Marks
(DM) between all elements of the application. No cost was assigned to closing empty accounts. The
change in length of loan is converted to DM through the individual’s monthly disposable income.
Finally we set a flat cost of 50DM to acquire a telephone

5.3.2 MODEL DETAILS

We used fully connected feed forward neural networks. Each network used 3 hidden layers with
ReLu activation functions between each layer. For all data sets except the German Credit data
set each hidden layer had 60 nodes. The German Credit data set required 120 nodes per layer.
Additionally, for the German Credit data set only, we used dropout regularization of 20% on each
hidden layer. We trained these models using the ADAM optimizer to minimize cross entropy loss.
We used an 80 − 10 − 10 train-validate-test data split and implemented early stopping with the
validation data. All amicable perturbations, counterfactuals and adversarial examples were created
for the testing data. We used identical architecture for V as M , except for doubling the input size.
Accuracy data may be found in table 3.

5.3.3 OBJECTIVE FUNCTION DETAILS

In our implementation we formulated the actionablility penalty term b as

b(x̃) = G

(
m∑

i=1

max{0, x̃i − ui}+max{0, li − x̃i}
)

(30)

with G a sufficiently large constant.

We formulated our coherence penalty term p as

p(x̃) = P

C∑

i=1


1−

∑

j∈Ci

x̃j




2

, (31)
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with P another appropriately large constant.

The conditioner function cond simply rounded integer and Boolean values to the nearest integer
value. For one-hot encoded features categorical features, the category with the largest value set to
one and all other categories set to zero.

5.3.4 ADDITIONAL RESULTS

Here we show success bar charts similar to those found in figure 7 compare the efficacy of amicable
perturbations, counterfactuals Wachter et al. (2017); Mothilal et al. (2020) and adversarial examples
from the Carlini Wagner ℓ2 attack Carlini & Wagner (2017b) for all data sets. These are similar to
Figure 5, but include all data sets and an increased number of cost (ϵ) values.

Each bar chart refers to a particular data set and desired distance δ to the target set T . Inside of
each chart, the bars show the percentage of individuals that a method was able to successfully move
inside the goal δ at a variety of costs ϵ. Figure 7 shows data before the verification procedure
has been performed and 7 shows the data after all . In these tests, the amicable perturbations (in
blue) outperform the counterfactuals (in green and orange) in nearly all cases except for when both
methods achieved 100% success or the very high-cost (large ϵ) high reward (δ = 0) scenarios.
Carlini Wagner attacks (red) are only effective at larger δ values because they are designed to move
a data point just barely inside the target class. The Carlini Wagner attacks are not required to be
actionable (or even feasible), so they do not constitute useful advise. The verifier is able to recognize
that these adversarial examples are untrustworthy in all cases.
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Figure 7: The graphs show average success rate for moving individuals within a variety of distances
(δ) to the target set. The y-axis shows the percentage of individuals within the goal distance, and the
x-axis, represents different costs (ϵ values) to achieve the goal. These values were obtained before
applying the verification procedure.
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Figure 8: The graphs show average success rate for moving individuals within a variety of distances
(δ) to the target set. The y-axis shows the percentage of individuals within the goal distance, and
the x-axis, represents different costs (ϵ values) to achieve the goal. These values were obtained after
applying the verification procedure with a 10% chance of eliminating valid inputs.
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