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ABSTRACT

Contrastive Language-Image Pretraining (CLIP) has demonstrated great zero-shot
performance for image-text matching, because of its holistic use of natural lan-
guage supervision that covers large-scale, unconstrained real-world visual concepts.
However, it is still challenging to adapt CLIP to fined-grained image-text matching
between disentangled visual concepts and text semantics without training. To-
wards a more accurate zero-shot inference of CLIP-like models for fine-grained
concept matching, in this paper, we study the image-text matching problem from a
causal perspective: the erroneous semantics of individual entities are essentially
confounders that cause the matching failure. Therefore, we propose a novel training-
free framework, RelationCLIP, by disentangling input images into subjects, objects,
and action entities. By exploiting fine-grained matching between visual components
and word concepts from different entities, RelationCLIP can mitigate spurious
correlations introduced by the pretrained CLIP models and dynamically assess the
contribution of each entity when performing image and text matching. Experiments
on SVO-Probes and our newly-introduced Visual Genome Concept datasets demon-
strate the effectiveness of our plug-and-play method, which boosts the zero-shot
inference ability of CLIP even without pre-training or fine-tuning. Our code is avail-
able at https://anonymous.4open.science/r/Relation-CLIP.

1 INTRODUCTION

Image and text matching (Plummer et al., 2015; Lin et al., 2014) is a fundamental task for vision
and language research that involves multimodal reasoning and multi-level visual and text concept
alignment. Recently, a growing number of pretrained vision and language foundation models (Radford
et al., 2021; Jia et al., 2021; Li et al., 2022b) have shown encouraging results towards open-domain
visual and language concept matching. Among them, CLIP (Radford et al., 2021) can be easily
transferred to image and text matching under zero-shot and few-shot scenarios. However, CLIP treats
the image and the text as a whole for alignment and ignores the fine-grained matching of disentangled
concepts. For instance, Figure 1 shows some examples that CLIP fails at, which require accurate
subject, verb, or object concept matching.

In fact, it is widely observed that current pretrained vision and language models struggle in recognizing
actions from the input image, distinguishing objects from subjects (Hendricks & Nematzadeh, 2021),
or failing to identify objects in unseen surroundings (Rosenfeld et al., 2018). They may be ascribed to
shortcut learning (Geirhos et al., 2020) and dataset biases during pretraining, where the models learn
the correspondence between entities and images implicitly and are thus prone to spurious correlations,
incurring biases toward particular objects/subjects/predicates as well as their combinations.

Therefore, there are mainly two challenges to address when adopting CLIP for fine-grained visual
and language concept matching. Challenge 1: the pretrained language model in CLIP is biased and
tends to rely on spurious relationships learned during pretraining. For example, in Figure 1 (A),
CLIP connects “frisbee” with “dog” (as they often appear together) and makes the wrong prediction.
Meanwhile, the diversity of entity embeddings gives rise to Challenge 2: entity embeddings should
contribute dynamically to fine-grained concept matching. Still taking Figure 1 (A) as an example,
the object entity “woman” should be allocated with more attention from the model between those
two images. Yet existing approaches often calculate the similarities merely based on the global
embedding of images and texts and ignore fine-grained concept matching (Li et al., 2019).
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A: A woman is catching a frisbe C: A man is holding a sign.B: A man is hitting a baseball.

Figure 1: Three challenging examples of the fine-grained image-text matching problem. CLIP fails
to match the text prompts and the images correctly, while our RelationCLIP can deal with subject,
predicate/verb, and object matching more effectively.

To address the aforementioned limitations, we propose a new training-free framework based on CLIP-
like models, named RelationCLIP. We disentangle the visual scene into individual visual concepts
and construct counterfactual sub-images containing subject/object/predicate entities only. Then we
utilize backdoor adjustment (Pearl et al., 2000a) to implement interventions over the disentangled sub-
images to mitigate the effect of spurious correlations. With this design from the causal perspective,
RelationCLIP can bind the visual concepts with the correct text semantics and avoid matching solely
based on spurious correlations. To validate our approach, we focus on the fine-grained image and text
matching problem and evaluate it on two datasets: the SVO-Probes dataset (Hendricks & Nematzadeh,
2021), and the newly-introduced Visual Genome Concept dataset built upon Visual Genome Krishna
et al. (2017). RelationCLIP gains an absolute accuracy improvement of 3.28% and 1.24% over CLIP
using ViT-L-14 on Visual Genome Concept and SVO-Probes respectively.

Our primary contributions are summarized as follows:

• We propose a novel approach RelationCLIP to address the visual and language concept
matching problem from the causal view: it disentangles the input image into counterfactual
sub-images and leverages the idea of backdoor adjustment (Pearl et al., 2000a) to compose
entity features and perform fine-grained concept matching, in order to mitigate the spurious
correlations introduced during pretraining.

• The RelationCLIP framework is training-free and can be applied to CLIP-like models for
zero-shot inference without pretraining or fine-tuning.

• We introduce a new dataset — Visual Genome Concept1, containing 5400 image-text pairs
with (subject, verb, object) annotations, by generating image–sentence pairs from Visual
Genome (Krishna et al., 2017) in the form of SVO-Probes (Hendricks & Nematzadeh, 2021)
dataset, to benchmark fine-grained visual and language concept matching.

• We demonstrate the effectiveness of RelationCLIP on fine-grained concept matching and
outperform CLIP on the SVO-Probes and Visual Genome Concept datasets.

2 RELATED WORK

Image-Text Matching Most existing image-text matching datasets are evaluated in a classification
setting. For example, Chao et al. (2015); Lu et al. (2016) focus on relationship or interaction
detection. V-COCO (Gupta et al., 2020b) and ImSitu (Yatskar et al., 2016) include verbs in their data
for evaluating the model’s understanding ability. Gupta et al. (2020a); Faghri et al. (2017) explore
how creating hard negatives (, by substituting words in train examples) leads to better test performance.
FOIL benchmark (Shekhar et al., 2017) tests if vision-language models can differentiate between
sentences that vary with respect to only one noun. SVO-Probes adds hard evaluation examples to test
the model’s understanding of verbs as well as subjects and objects in a controlled way. To associate
local regions in an image with texts to do matching, Xu et al. (2015b) incorporates a soft form
of attention into their recurrent model. Karpathy & Fei-Fei (2015) proposes an image-sentence
ranking approach in which the score between an image and sentence is defined as the average over
correspondence scores between each sentence fragment and the best corresponding image region;
Ma et al. (2015) learns multiple networks that capture words, phrases, and sentence-level interactions

1The dataset is available at https://drive.google.com/file/d/1rWHuq48paToXZs7_
OT2Wko4l5YrAfFmR/view?usp=sharing. We will release it publicly to facilitate future research.
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with an image and combines the scores of these networks to obtain a whole image-sentence score.
Hu et al. (2016) leverages spatial information and global context to predict where objects are likely to
occur. Wang et al. (2016) formulates a linear program to localize all the phrases from a caption jointly,
taking their semantic relationships into account. In this paper, we focus on the task of matching text
prompts with images, which requires the model to distinguish error-prone words on a granular level
— visual and language concept matching.

Pre-trained Vision and Language Models Vision and Language models pretrained on large-scale
image-text pairs have demonstrated great potential in multimodal representation learning (Jia et al.,
2021; Yao et al., 2021; Yuan et al., 2021). Among them, the representative model — CLIP (Radford
et al., 2021) benefits from 400M curated data and defines various prompt templates to carry out
zero-shot image classification. Most recent works seek to improve the zero-shot inference ability of
CLIP via (Zhou et al., 2021; 2022; Ju et al., 2021; Song et al., 2022). However, these models can
suffer from connecting verbs/subjects/objects concepts with visual components correctly Hendricks
& Nematzadeh (2021) and bias towards spurious relations they have seen in the pretraining data,
referred to as ”confounders” (Zhang et al., 2020). By modeling using a structural causal model
(SCM) network (Pearl et al., 2000b), the authors in Zhang et al. (2020) execute a hard intervention to
eliminate dataset bias via a backdoor intervention during pretraining. Different from them, in this
work, we focus on mitigating the effect of spurious relations and improving the zero-shot inference
ability of off-the-shelf pretrained vision and language models, for visual and language concept
matching. We develop a new training-free paradigm that gains superior performance on visual and
language concept matching.

Disentangled Representation Learning It is often assumed that real-world observations like
images can be disentangled Bengio et al. (2013); Peters et al. (2017). Li et al. (2020) disentangles
background, texture, shape, etc, and uses object bounding boxes as supervision to synthesize images.
Recent research in image synthesis seeks to learn disentangled features for managing the image
generation process. Besserve et al. (2020) leverages the idea of independent mechanisms to identify
modularity in pretrained generative models. Sauer & Geiger (2021) utilizes independent mechanisms
to generate images to improve image classification. Ma et al. (2022) disentangles word entities from
the conventional meanings of special entities encoded in the pretrained language model. Different
from these works, we employ independent mechanisms to disentangle images and use generated
sub-images to improve fine-grained visual and language concept matching.

3 RELATIONCLIP

In this section, we propose a simple yet effective approach incorporating a causal view into the
CLIP-like models. We briefly introduce the background of RelationCLIP in view of structured causal
models in Sec. 3.1. Then, we present the overview of RelationCLIP pipeline in Sec. 3.2. We
introduce its critical components in detail in Sec. 3.3 and 3.4. Our dual objectives are: (i) We aim at
disentangling visual input into sub-images containing fine-grained concepts. (ii) We intend to utilize
those disentangled concepts to perform entity-level matching and mitigate the effect of spurious
relations in the pretrained vision and language models learned during pretraining.

3.1 BACKGROUND

Consider a dataset comprised of (high-dimensional) observations X (i.e. images), and corresponding
text prompts Y . Assume that each X can be described by lower-dimensional, semantically meaningful
factors of variation z (e.g., objects, subjects, or action relations between objects and subjects (i.e,
predicates in the image)). We consider the semantics of these special entities as confounders Z, which
may affect either X or Y . If we can disentangle these factors, we are able to perform fine-grained
concept matching. We argue that rather than directly computing the similarity only based on the
global embedding of X and Y , the mapping should be decomposed into several functions. Each
of these functions is autonomous, e.g., replacing the object in the images results in different object
encoding while all subject encoding remains unchanged. These criteria align with the principals of
structural causal models (SCMs) (Pearl et al., 2000b) and independent mechanisms (IMs), where
an SCM is defined as a collection of n independent mechanisms (IMs) fi, i = 1, . . . , n. Inspired by
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Figure 2: Overview of our RelationCLIP framework. We disentangle the input image using three
independent encoding mechanisms by obeying the rules of encoding object, subject, and predicate
respectively. The entity information is introduced to the global embedding of the whole image.

this, we can decompose the sub-image generation process into three independent mechanisms (IMs):
object mechanism fobject , subject mechanism fsubject, and predicate mechanism fpredicate.

3.2 METHOD OVERVIEW

We first introduce the overview of our method from a conceptual view. An overview of our pipeline
is shown in Figure 2. The goal is to steer the pretrained vision and language model to do fine-grained
concept matching. Given an input image-prompt pair, we first disentangle the input image and
generate sub-images only containing the given entity. Then we compute the pairwise similarity
between the embedding of the sub-image with the entity embedding and adopt the similarity score
to weight the sub-image embedding. The weighted embedding will be added to the global image
embedding for final image-text matching, allowing the model to capture non-spurious semantic entity
information and conduct concept matching at the granular level.

3.3 COUNTERFACTUAL SUB-IMAGE GENERATION

We assume the causal structure to be known and consider three learned IMs (independent mechanisms)
for generating object, subject, and predicate sub-images, respectively. An explicit formulation of the
structural causal model (SCM) is:

O := fobject (X,U1)

S := fsubject (X,U2)

P := fpredicate (X,U3)

(1)

where O is the object image, S is the subject image, P is the predicate image, [U1, U2, U3] are
exogenous noises, X is the input image, and fobject , fsubject, fpredicate are the independent mechanisms.

Specifically, given the input (subject, object, predicate) triplet, we model the object mechanism
fobject using a binary mask generated by Lang-Seg (Li et al., 2022a), a CLIP-based language-guided
segmentation model. The remainder of the image will be set to 0 while the object part is 1. In a
manner similar to the object mechanism, the subject mechanism fsubject is achieved by setting the
background to 0 while the subject region is set to 1. The predicate mechanism fpredicate is implemented
by combing the binary mask generated by fobject and fsubject together: the object and subject regions
will be 1 while the remaining regions will be 0. Examples can be found in Figure 4.
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Algorithm 1 Visual and Language Concept Matching with RelationCLIP.

Require:
Input: text prompt Y , image X , vision encoder F (·), text encoder G(·), independent mechanisms
fobject (·), fsubject(·), fpredicate(·).
Output: Matching score O.

1: O,S,P← fobject (X), fsubject(X), fpredicate(X); {Eq. 1}
2: Extract feature embeddings F (O), F (S), F (B)← O,S,P;
3: Extract (subject, object, predicate) words Ys, Yo, Yp ← Y ;
4: S1, S2, S3 ← G(Ys), G(Yo), G(Yp), F (O), F (S), F (P); {Eq. 5}
5: G(Y )← Y ;
6: V ← S1, S2, S3, fobject (·), fsubject(·), fpredicate(·), F (·), X; {Eq. 6}
7: O ← Y, V {Eq. 7}

With these IMs, giving the input image X , we can do counterfactual intervention by answering
counterfactual questions such as “what if we only keep the subject/object/predicate in the original
image?”, and thereby we can generate counterfactual images, i.e., images which only contain the
given entity (with examples shown in Figure 2). With the counterfactual sub-images generated, we
can seek a way beyond its original image input to connect each disentangled entity concept with
its corresponding text prompt. It is fair to anticipate appropriate matching results if each entity is
encoded independently and connects correctly. The problem now boils down to how to develop a
method to steer the composition process of different entity regions within an image.

3.4 ENTITY COMPOSITION

As mentioned earlier, the pretrained vision and language model is prone to be biased towards the
specific subject, object or predicate, or even relied solely on one of them in the given sentence (Hen-
dricks & Nematzadeh, 2021). From the causal perspective, given image X to match the correct Y ,
we want to infer P (Y |X) while at the same time mitigating the effect of detrimental confounders
z. The confounders may introduce spurious correlations in the model when directly inferring from
P (Y | X). Leveraging Bayes Rule,

P (Y | X) =
∑
z

P (Y, z | X) =
∑
z

P (Y | X, z)P (z | X), (2)

where the confounder z introduces the bias of word concept via P (z | X). To adjust the effect
of confounder z, we can intervene X by first disentangling it and then intervening with it using
do-operation 2:

P (Y | do(X)) =
∑

P (Y | X, z)P (z). (3)

We now seek an implicit way to compute P (Y | X, z) and P (z). Considering the SCMs mentioned
above, we interpret fobject (X), fsubject(X), fpredicate(X) as incorporating the entity semantics into
attended regions of the images.

To do concept matching over the prompt Y and the entity set TE =
{
ek
}K

k=1
, where K is the

total number of entities, and ek is the k-th entity. This interpretation motivates us to compute
similarity between fobject (X), fsubject(X), fpredicate(X) with different word entity embeddings to
achieve concept-wise semantic fusion and guidance. The prediction P (Y | X, z) can be regarded as a
classifier: P (Y | X, z) = Softmax fi(X, z). Similar to Wang et al. (2020), using the approximation
of NGSM (Normalized Weighted Geometric Mean) (Xu et al., 2015a), we have:

P (Y | do(X)) ≈ Softmax [Ez (fi(X, z))] . (4)

Specifically, to implement this on the SVO dataset, given a input image X and IMs
fobject (·), fsubject(·), fpredicate(·), we first extract a collection of visual concepts from input images as
fobject (X), fsubject(X), fpredicate(X). For the language side, given a prompt Y and its entity set TE ,

2P (Y | do(X) uses the do-operator Glymour et al. (2016). Given random variables X,Y , we write
P (Y = y | do(X = x)) to indicate the probability that Y = y when we intervene and set X to be x.
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we extract all (subject, object, predicate) words (Ys, Yo, Yp) from the input text prompts. Using cosine
similarity score S as an example, we compute the similarity separately:

S1 = S(F (fobject (X)), G(Ys)), S2 = S(F (fsubject (X)), G(Yo)),

S3 = S(F (fpredicate(X)), G(Yp)), where F (·) = CLIPvision(·), G(·) = CLIPtext(·)
(5)

The final visual feature is generated by:
V = F (X)+F (fobject (X))S1 + F (fsubject (X))S2 + F (fpredicate(X))S3. (6)

We can compute the image-text matching score by:
O = S(G(Y ), V ). (7)

With this design, the language part of CLIP is aware of connections between entities from both the
visual and language input when doing the concept matching.

Our algorithm can be summarized as 1, which requires no training or additional data. It is also
simple enough to be adapted to any other vision and language pretrained model that implements the
two-stream encoder structure.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

We evaluate RelationCLIP on SVO-Probes (Hendricks & Nematzadeh, 2021). We also collect a new
dataset named Visual Genome Concept as a complementary testbed to SVO-Probes.

Visual Genome Concept Visual Genome Krishna et al. (2017) has around 2.3 million relationships
annotated on its 108,007 images. These relationships contain both action relationships and spacial
relationships, and are stored in a subject, predicate, and object triplet. With these relation triplets, we
construct the Visual Genome Concept. We first create descriptions for all images by adding definite
or indefinite articles that connect the relation triplets together. Since Visual Genome provides a rich
number of images annotated with their relationships, we took this advantage and select a subset of it
to form a dataset that can test a model’s ability in differentiating detailed differences. We first pick out
542 images from Visual Genome that have clear relationships in them. Then inspired by SVO-Probes,
for each key image, we iterate over the rest of the images and pick out its mutated images that
only have one different value in either subject, object, or predicate. We can create multiple data
points by treating the key image as the positive image, and each mutated image as a negative image.
We manually created 5400 data samples like this for testing. The dataset is manually checked and
grammatical mistakes are fixed.

SVO-Probes was designed to evaluate language-image models’ capacity to distinguish fine-grained
variations of the subject, object, or the relationship between subjects and objects in images. Each
data sample contains a sentence, a positive image matching to the given sentence, and also a negative
image that is different from the positive image in only the area among subjects, object, or actions.
The model should match the sentence with the positive image. Originally, SVO-Probes has 30,000
data points. However, we can only evaluate our methods on 13,000 data points from it, because some
images are no longer accessible, and some are failed to have effective and clear segmetation extracted
from them.

Note that for both datasets, we used the same subject, object, and predicate from the only sentence
to extract subject, object, and predicate images from both positive and negative images. No ground
truth knowledge was used in the prediction. More examples from the two datasets can be found in
Appendix A.1 and A.3. The dataset statistics are shown in Table 1. We evaluate our methods on the
entire Visual Genome Concept. For SVO-Probes, we tested with 3 random splits and reported an
average accuracy.

4.1.2 IMPLEMENTATION DETAILS

Feature Fusion During inference, we pass the original image, subject image, object image, and
predicate image into CLIP’s visual encoder, and pass the original sentence, subject, object, and

6
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Subject-negative Predicate-negative Object-negative Subjects Predicates Objects

Visual Genome Concept 2,584 1,536 1,280 30 65 82
SVO-Probes 5,679 23,525 7,637 100 421 275

Table 1: The number of data samples in the dataset that have one of their subject, object, or predicate
changed between positive and negative images and the number of unique types of subjects, verbs,
and objects across Visual Genome Concept and SVO-Probes.

Pos Neg

A woman is catching a frisbee.

Pos Neg Pos Neg

A man is hitting a baseball. A man is holding a sign.

CLIP

RelationCLIP

23.90

25.38

24.32

23.99

22.70

24.92

23.33

24.87

16.55

19.29

16.92

17.29

Figure 3: Examples showing the matching score between CLIP and RelationCLIP using ResNet-50
as the vision encoder. With entity embedding involved, RelationCLIP could match the text prompts
with the correct image while CLIP makes the wrong prediction.

predicate entities into CLIP’s text encoder. For each sub-image’s embedding, we calculate a cosine
similarity score with its corresponding word embedding. Three cosine similarity scores were fed into
a softmax layer, yielding three positive weights. Finally, we would use the weights on the subject
image embedding, object image embedding, and predicate image embedding and get a weighted sum
of these three embeddings. We would add this embedding back to the original image’s embedding.
Then use it as a final embedding on the image side.

Evaluation Metrics We use accuracy as the evaluation metric, where we use the text input as the
query and measure the accuracy of matching the correct images. In our experiments, both datasets
follow the pattern of one text prompts — two images, and the model is actually selecting from the
two images.

4.2 MAIN RESULTS

In this subsection, we show the evaluation results on Visual Genome and SVO dataset in Table 2.
Our RelationCLIP can outperform zero-shot CLIP on both Visual Genome Concept and SVO-Probes
dataset. This indicates that incorporating the information of sub-images at inference time is helping
CLIP grow attention to the details in images. From Table 2, our methods also work on different
types of vision encoders. We noticed that with the relatively weak vision encoder ViT-L-14, our
methods have the highest improvement compared to other vision encoders. CLIP with ViT-L-14
has low accuracy 74.35% on Visual Genome Concept, which means its ability in distinguishing
fine-grained differences alone is limited. After employing our methods, its accuracy grows to 77.63%,
even though the sub-images we added are still encoded by the same ViT-L-14. This shows that our
methods are not simply stressing the major objects in the image by adding their representations to the
original image embedding one more time. We are also guiding the image embedding process with
the subject, object, and predicate words to make the image stand out from its negative counterpart.

In addition, we realize that our methods have lower performance improvement on SVO-Probes dataset
compared to Visual Genome Datasets. We hypothesize this is due to two reasons: 1. SVO-Probes has
a most portion of its data samples testing the fine-grained difference in predicates, while our methods
are relatively weak in predicate differentiation. 2. SVO-Probes has a number of sketchy data samples
that we can not remove completely. We present and analyze some bad examples from SVO-Probes in
Appendix A.4.
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Visual Genome Concept SVO-Probes

Vision Encoder CLIP RelationCLIP CLIP RelationCLIP

ResNet-50 82.20 83.91 81.06 82.05
ViT-B-32 82.41 84.33 82.13 83.00
ViT-L-14 74.35 77.63 71.98 73.22

Table 2: Comparison of accuracy (%) on Visual Genome Concept and average accuracy (%) across
the three splits on SVO-Probes using RelationCLIP and CLIP.

Visual Genome Concept SVO-Probes

Vision Encoder SLIP Ours SLIP Ours

SLIP (ViT-B-32) 78.89 79.56 79.27 79.27
SLIP (ViT-L-14) 79.91 80.85 79.57 80.42

Table 3: Comparison of accuracy (%) on Visual Genome Concept and average accuracy (%) across
the three splits on SVO-Probes using our method on SLIP (Mu et al., 2021) and original SLIP.

Subject Predicate Object

CLIP 86.85 65.23 87.85
RelationCLIP 88.34 67.27 89.51

Table 4: Visual Genome Concept accuracy (%)
on each negative type (ResNet50 as the vision en-
coder)

CLIP RelationCLIP

Provided SVO 81.07 82.05
Parsed SVO 81.07 82.03

Table 5: Comparison of accuracy (%) on Visual
Genome Concept and SVO-Probes using parsed
and ground-truth SVO triplets.

4.3 ABLATIONS AND ANALYSIS

Performance on Other Pretrained Vision and Language Models Apart from CLIP, we also validate
the effectiveness of our method on SLIP (Mu et al., 2021), with the results shown in Table 3. As can
be seen, ours can beat SLIP using both ViT-B-32 and ViT-L-14, validating the effectiveness of our
method on other CLIP-like models.

Visual Genome Concept Accuracy on Different Negative Types We categorize the results of the
Visual Genome Concept into specific problem types (negation in subjects, objects, and predicates).
Separately reviewing our results, we see an improvement in all negative types from Table 4. On nega-
tive predicate, RelationCLIP has the highest gain of 2.04% accuracy, suggesting our RelationCLIP
can help to improve the verb/predicate understanding capability.

Use Language Parser to Extract SVO The performance of RelationCLIP is also dependent on
the quality of the subject, object, and predicate entity provided. We analyze our methods on SVO-
Probes since it have more complex sentence structures. We remove stop words from the sentence
using NLTK (Bird & Loper, 2004) and then use a Subject Verb Object extractor developed based
on Honnibal & Montani (2017) to extract the subject, predicate, and object from the original sentence.
The results in Table 5 show that our parsed entities have almost the same performance as that using
the ground truth subjects, predicates, and objects.

Compared with Finetuned CLIP on Visual Genome To further evaluate the effectiveness of our
method, we utilize the abundant relations in the entire Visual Genome dataset. Excluding the images
that occurred in our Visual Genome Concept, there are 1,129,818 image-text pairs left, and we
randomly took 56,490 such pairs to finetune the CLIP. The detailed setting can be found in Table 9.
We then evaluate the result on Visual Genome Concept and compare it with RelationCLIP, with the
results shown in Table 6. Unexpectedly, finetuned CLIP performs worse than zero-shot CLIP by
a large margin, suggesting that CLIP may further learn spurious relations during finetuning on the
biased dataset. This further demonstrates the superiority of our method — training-free, effective,
and can mitigate the effect of spurious correlations.
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Vision Encoder CLIP Finetuned CLIP RelationCLIP

ResNet-50 86.85 76.43 87.85

Table 6: Comparison with finetuned CLIP on Visual Genome Concept.

Figure 4: Examples showing the generated subject, object, and predicate sub-images. The first column
and third column correspond to positive images and individual outputs of each IM for different entities.
The second column and fourth column correspond to negative images and individual outputs of
each IM for different entities. Left two columns: examples from the Visual Genome Concept
dataset. (Woman, swinging, racket) is used as input (subject, predicate, object) to each IM. Right
two columns: examples from the SVO-Probes dataset. (Man, sits, couch) is used as input to each
IM. Note that for negative images, when IM could not accept the given (subject, predicate, object)
and generate output sub-images, the sub-image will be replaced with the original image for entity
composition.

4.4 QUALITATIVE COMPARISON

Fine-grained Retrieved Samples To have a more intuitive comprehension of the proposed pipeline,
we compare fine-grained matched samples by RelationCLIP, and that identified by standard CLIP in
Figure 3. CLIP makes wrong prediction on all three examples, while RelationCLIP is able to discern
between the two confusing images.

Extracted Entities We illustrate the individual outputs of each IM for different entities in Figure 4.
In each column, we show from top to bottom: the original image X , subject image S, object image
O, and predicate image P.

5 CONCLUSION

In this work, we first make the observation that as a type of multimodal image–language transformer,
CLIP could struggle in situations that require object, subject, and verb/predicate understanding
when performing visual and language concept matching. Based on this observation, we propose a
fine-grained training-free method for visual and language concept matching from the causal view,
that could mitigate the effect of spurious relations. We also propose a new dataset to facilitate future
research in this direction. We hope that our simple yet effective training-free approach could boost
the development of more interpretable and principled methods for the visual and language concept
matching task.
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Figure 5: Examples from the SVO dataset. There are three negative types for a given triplet: a
subject-, verb-, or object-negative where respectively, the subject, verb, or object in the triplet are
replaced by a different word.

Seed 42 Seed 11 Seed 2

Vision Encoder CLIP RelationCLIP CLIP RelationCLIP CLIP RelationCLIP

ResNet-50 80.45 % 81.30% 82.15% 83.15% 80.60% 81.70%
ViT-B-32 81.65 % 82.15% 82.55% 84.00% 82.20% 82.85%
ViT-L-14 72.70 % 73.80% 72.20% 72.45% 71.05% 73.40%

Table 7: Comparison of RelationCLIP with CLIP under three different splits on the SVO-Probes
dataset.

A APPENDIX

A.1 EXAMPLES FROM SVO-PROBES

In this section, we show examples from the SVO in Figure 7.

A.2 EXAMPLES FROM VISUAL GENOME CONCEPT

In this section, we show examples from the Visual Genome Concept dataset constructed by us in
Figure 6.

A.3 EXPERIMENTAL RESULTS ON SVO-PROBES OVER DIFFERENT SPLITS

In this section, we show additional results using three different data splits. We use random seed
42, 11, 2 to re-split the dataset, with the results of CLIP vs. RelationCLIP shown in Table 7 and the
results of other CLIP-based model shown in Table 8.

A.4 A CASE STUDY OF BAD EXAMPLES FROM SVO-PROBES

The improvement of our methods is relatively smaller on SVO compared with on our collected Visual
Genome Concept mainly because the SVO-Probes tends to be noisy. Here, we present a case study to
cover bad examples from SVO-Probes. As shown in Figure 7.
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Figure 6: Examples from our constructed Visual Genome Concept dataset. There are three negative
types for a given triplet: a subject-, verb-, or object-negative where respectively, the subject, verb, or
object in the triplet are replaced by a different word.

Seed 42 Seed 11 Seed 2

Vision Encoder Origin Relation Orgin Relation Orgin Relation

SLIP (ViT-B-32) 77.70 77.90 79.10 79.75 81.00 80.15
SLIP (ViT-L-14) 78.90 79.70 79.70 80.15 80.10 81.30

Table 8: Effectiveness of our method using SLIP under three different splits on the SVO-Probes
dataset.

A.5 EXPERIMENTAL SETTINGS FOR FINETUNING CLIP

The experimental settings for finetuning CLIP is shown in Table 9.

A.6 ADDITIONAL ABLATIONS ON USING SINGLE ENTITY

To validate the effectiveness of each component, we also evaluate RelationCLIP using only one
entity. We sample 3000 SVO-Probes with 1000 each on subject, predicate, and object negation
pairs. For Visual Genome Concept, we were able to directly tested on the entire dataset with single
encoders. The results are shown in Table 10. We can see each specialized encoder has brought a
certain performance increase in their corresponding area of interests compared to zero-shot CLIP.
This indicates that each encoder contributes to the overall performance. However, we also noticed
that among the three added encoders, the predicate encoder has the worst accuracy score in all three
areas (subject, object, and predicate negated pairs) when applied alone. This may be because that
CLIP is stronger at matching between the predicate semantic concept and image entities compared
with matching physically visible image entities and object semantics (subjects and objects) to their
name. However, we are still convinced that the predicate encoder is useful because it captures the
information that connects subjects and objects, which will prevent models from making predictions
solely based on objects.
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Figure 7: Selected bad quality examples along with reasons from the SVO-Probes dataset.

Name Value

Optimizer AdamW
Learning rate 0.003
Weight decay 0.05
Max epoch 10
Batch size 10

Table 9: Hyperparameter settings for finetuning CLIP.

Visual Genome Concept SVO-Probes

Subject Predicate Object Subject Predicate Object

CLIP (ResNet-50) 86.85 65.23 87.85 82.50 76.60 88.80
RelationCLIP (Subject encoder) 89.26 66.72 87.23 83.70 77.70 88.50
RelationCLIP (Predicate encoder) 88.02 66.95 87.73 81.80 77.10 88.40
RelationCLIP (Object encoder) 86.39 66.64 91.06 83.00 78.40 91.20
RelationCLIP (All encoders) 88.34 67.26 89.51 83.02 78.10 89.80

Table 10: Ablations on using single entity.
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