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Abstract

We study how to train large language models (LLMs) as autonomous agents that
act over multiple turns in agentic environments. While reinforcement learning has
driven strong single-turn reasoning, extending to multi-turn environments introduce
new challenges yet to be addressed. We formulate multi-turn agentic RL with
dense per-turn rewards and token-level credit assignment, and provide a systematic
analysis of the impacts three RL pillars — environment, policy, and reward — on
multi-turn RL. Under interactive text environments (TextWorld, ALFWorld), we
examine scaling with environment complexity and generalization across tasks; we
analyze the role of model priors in subsequent multi-turn RL training; we compare
the impact of sparse and dense per-turn rewards on RL learning. We provide an
extensible code framework for multi-turn agentic RL. Together, our formulation,
analysis, and toolkit offer practical guidance for building LLM agents capable of
robust multi-turn decision making in agentic environments.

1 Introduction

Training LLMs as autonomous agents to navigate open-ended environments presents unique chal-
lenges: planning across extended horizons, making multi-turn sequential decisions, and optimizing
for multi-turn rewards. The transition from static single-turn problem-solving to dynamic multistep
reasoning is essential for agentic benchmarks such as interactive text and embodied simulations
(TextWorld [Coté et al.l 2018, ALFWorld [Shridhar et al., [2021]], etc.), real-world software program-
ming (OSWorld [Xie et al.,2024]], SWE-gym [Pan et al., 2025]], etc.), and abstract reasoning in novel
situations (ARC-AGI [[Chollet et al., |2025]]). However, existing multi-turn RL implementations vary
widely: some refer to tool-augmented single queries as multi-turn [Zeng et al.| 2025, while many rely
on model-based assumptions [Wang et al.,[2025]]. This fragmentation has led to incomparable results
across papers and confusion about what constitutes true multi-turn learning versus pseudo-multi-turn
adaptations of single-turn methods. Motivated by the lack of standardization of multi-turn RL ap-
proaches, our work focuses on providing a unified formulation of multi-turn RL and documenting the
critical design decisions that determine success or failure in interactive environments.

This paper aims to facilitate research efforts on the open research question: What factors are
practically important in making multi-turn RL for LLM agent learning work. First, we formulate
multi-turn agentic RL with dense reward structure and token-level credit assignment. Next, we
provide a systematic analysis revealing that success in multi-turn agentic RL requires careful co-
design across all three pillars illustrated in Figure[I] For the environment, we investigate scaling
with environment complexity and generalization across different environments. For the policy,
we investigate how model prior affects continual multi-turn RL training and analyze the interplay
between multi-turn imitation learning and multi-turn RL. We further compare both biased (PPO) and
unbiased (RLOO) policy gradient RL algorithms to isolate benefits from from algorithmic heuristics.
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For the reward, we experiment with varying densities of per-turn rewards to understand their impact
on learning dynamics.

« Task Example Reward Example
. . Reward “
Otask Your taskis to: put some vase insafe.

SIPETER e O¢  You enter room 7. You find the safe. ' T¢ =0.5
a1 >gotoshelf6 0 0 - 1 0 01 +++ 02 05 Partial reward for
0y Youarrive at loc 4. You see a vase 2. T T2 T T Ty rr1 T Gt  >putvase 2inside the safe a milestone

Congratulations! You won. -
n : 0, e Tt+1=0.5
as  >pickupvase2 (6) Impact of reward density Gl *
» Final reward for
built-in reward function q gamelcompletion
Trajectory
Environment - ALFWorld [k a1 [031... a; [0 -. Multi-turn Policy

action sequence SFT /.\. online RL /.\.
. @@ @ . 12 n oZe o—o}g
a;,a;,...,a,', <eos> Ne2® NeZ®
D D @ ° base policy SFT policy agent policy
base env  2x objects 2x locations  2x both Izl 0 nn Tt

q el - >
—e— (3) What prior policy is needed for multi-turn RL?

(1) Impact of environment complexity ) L
(spatial, object, quest dimensions) observation Of+1 (4) An optimal SFT:RL ratio with fixed budget

(2) Generalization from simple to complex env action Q¢ (5) Impact of different RL methods (PPO, RLOO)

Figure 1: Illustration of multi-turn agentic RL and the key research questions.

Our key findings demonstrate that: 1) Multi-turn RL performance scales with environment complexity
in terms of world size, interactable objects, and exploration steps; 2) Agents trained on simpler
environments showing promising generalization to complex ones; 3) Model priors from even minimal
demonstration data accelerate convergence, but multi-turn RL training is needed for generalization; 4)
With a fixed budget, there is an optimal SFT:RL ratio that balances task accuracy and generalization; 5)
Both PPO and RLOO achieve stable learning in multi-turn RL, validating that the performance gains
stem from our multi-turn formulation rather than the heuristics benefits; 6) Dense turn-level rewards
accelerate multi-turn RL training compared to sparse alternatives, but are sensitive to algorithm
choice.

We establish that multi-turn RL with LLMs is not merely an extension of single-turn optimization but
requires fundamental redesign of environment, policy, and reward. We will release the multi-turn
agentic RL framework built upon veRL [Sheng et al., 2025]] with all agentic environments included
in the paper: TextWorld [[Coté et al.||2018]], ALFWorld [Shridhar et al., [2021]], etc. The framework
provides a minimal interface that requires only a step function, allowing easy integration of new
environments and agents. This paper provides both empirical analysis and practical guidelines for
developing the next generation of agentic Al systems that can operate effectively in real-world
interactive environments.

2 Related Work

While single-turn RL methods for LLMs including PPO [Schulman et al.,[2017]], RLOO [[Ahmadian
et al.,[2024]], GRPO [Shao et al.,|2024]], and DAPO [Yu et al}2025] have been extensively optimized
for immediate response quality, adapting them to multi-turn agentic scenarios remains non-trivial.
These methods assume rewards directly follow individual actions, but multi-turn environments only
reveal outcomes after extended interaction sequences, breaking the action-reward coupling that
single-turn methods rely upon. Existing efforts on multi-turn RL have made limited progress on these
challenges. Some approaches construct multi-turn scenarios by interleaving tool-use or reasoning
steps for single-turn QA pairs [Zeng et al., 2025, Dong et al.,[2025]]. Others working on true interactive
environments either rely on sparse terminal rewards without turn-level learning signals [Wang et al.,
2023]], or assign turn-level advantages uniformly across sequence tokens without fine-grained credit
assignment [Zhou et al., [2025]]. More importantly, there lacks a comprehensive understanding of
how the three fundamental pillars of RL — environment, policy, and reward — jointly determine
performance in multi-turn interactive environments. This paper provides a systematic analysis on
how the fundamental pillars of RL impact multi-turn RL training respectively and concludes insights
on how to practically train multi-turn RL in different interactive agentic environments. Throughout
the paper, we dedicate essential related works in individual sections.



73

74
75
76
77
78
79
80
81

82
83
84
85
86
87

88

89

90

91
92
93
94
95
96
97
98

99
100
101
102

103

104
105
106
107
108
109
110
111
112
113
114

115
116
17
118
119
120
121
122
123

3 Multi-turn Agentic Reinforcement Learning

We formulate multi-turn agentic tasks as a Partially Observable Markov Decision Process (POMDP)
problem, defined as a tuple (S, A, T, R, Q, O, ). Taking the Textworld task [Coté et al.,2018]] as
an example, an agent takes the action a; (go south) sampled from the action space A and receives
a text observation o, (You are in front of a garden) from the observation space (2. o; is a
partial description of the true state s; in the hidden state space S which contains the complete state
world model. We assume that the state transition function 7 : § x A — § is deterministic. Upon
taking an action, the agent also receives a scalar reward r, = R(s¢, a;). The agent’s objective is to
learn a policy that maximizes the expected discounted sum of rewards E[>, 7" - r].

We denote the trajectory history consisting of a task prompt u, action and state sequences by h; =
(u, 80, ag, $1,a1, " , st)ﬂ An LLM agent with policy 7y samples an action sequence a; ~ g (+|hy)
based on the trajectory history. a; is a token sequence in natural language: (a},a?, ..., a;*, as®s),
with each token a! generated as 7y (-|hs, a;"). Agentic environments execute language commands
only upon completion, naturally defining the reward structure at the command boundaries, marked by
<eos> tokens. Therefore, we assign scalar reward r; at a;°®, and the reward for each action token is
ry if ai = <eos>
0 otherwise
masking out all state tokens.

formulated as: r! = { . We make sure only action tokens contribute to the loss by

Here is a concrete example: the input to the LLM during the rollout stage using a chat template is:

<|im_start|>user

Welcome! Your task is: {task prompt}. state: {state 0} your action:<|im_end|>
<|im_start|>assistant

{action 0}<|im_end|>

<|im_start|>user
state: {state t} your action:<|im_end|>
<|im_start|>assistant

The LLM of policy 7y generates the output {action t}<|im_end|>. The environment handles state
transition and reward computation: next_state, reward, done = env.step(state, action). The
reward for each turn is assigned to the <|im_end|> token. The action and next state are then
appended to the chat history under the template.

4 Background and Experimental Setup

Our experiments systematically investigate how the three fundamental pillars of RL impact in multi-
turn agentic RL. For Environment (Section 3], we examine how scaling environmental complexity
along spatial and object dimensions impacts learning (Section[5.I)), and test whether agents trained on
simple tasks can generalize to more complex environments (Section[5.2)). For Policy (Section [6)), we
analyze how model priors from demonstration data influence RL convergence and identify optimal
ratios of imitation learning to RL data under budget constraints (Section[6.1). We contrast biased
(PPO) with unbiased (RLOO) algorithms to isolate benefits from algorithmic design versus multi-
turn formulation (Section[6.2). For Reward (Section [7), we investigate how reward density — the
frequency of feedback signals during trajectories — affects learning dynamics and final performance
(Section[7.T)). These results establish that multi-turn RL requires careful co-design across all three
components rather than simple extensions of single-turn methods.

Tasks and Environments. We evaluate our multi-turn RL framework on two text-based interactive
benchmarks that require sequential decision-making over extended horizons: TextWorld [Coté et al.}
2018]] and ALFWorld [Shridhar et al |2021]]. For online RL training, we integrate the TextWorld
and ALFWorld backends directly into our codebase as environments that interact with LLM agents
during rollout via standard step and reset functions. Unlike traditional RL settings where agents
receive both observations and lists of admissible actions at each step, which effectively reduces the
task to action selection. Instead, we adopt a more challenging setup where our agents must generate
executable natural language commands based solely on environmental observations, without action
hints. Here, we specify the tasks we use from the two benchmarks:

'We substitute observation o for state s for simplicity. The agent has no access to the true state of the game.
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» TextWorld: A text-based game environment where agents navigate rooms, manipulate objects, and
solve quests through natural language commands. We procedurally generate tasks with controlled
complexity along three dimensions: world size (w), number of objects (0), and quest length (q).
For example, “w2-03-q4” denotes a task with 2 rooms, 3 objects, and a 4-step quest. Each task is
generated with a unique seed to ensure diversity.

* ALFWorld: embodied household environment built on the TextWorld engine, requiring agents
to complete multi-step tasks through text-based interaction. We use the text-only variant with
tasks spanning six categoriesﬂ We train on the “train” split and evaluate on both “valid_seen” and
“valid_unseen” splits to assess generalization.

Models and Training. We experiment with Qwen?2.5-1.5B-Instruct and Qwen2.5-7B—InstructE] as
base models (abbreviated as Qwen-1.5B and Qwen-7B), training with PPO [Schulman et al.| [2017]]
and RLOO [Ahmadian et al., 2024 algorithms implemented in the veRL framework. For PPO, by
default, we use an actor learning rate of Se-7, a critic learning rate of 5e-6, a clip ratio of 0.2, a
discount factor «y of 1.0, a KL penalty coefficient of 0.001, and a zero entropy regularization. We set
both rollout and PPO mini-batch sizes to 256. For RLOQO, by default, we use an actor learning rate of
le-6, a KL penalty coefficient of 0.001, and the same batch sizes. Maximum iteration steps and token
length limits are adjusted based on task complexity. During rollout generation, we use a temperature
of 0.7 to balance exploration and exploitation.

Evaluation. We evaluate agents on held-out test sets, reporting task success rate as the primary
metric — the percentage of episodes where agents complete objectives within the allocated exploration
budget. All experiments run for 150 epochs unless convergence criteria trigger early stopping or
otherwise specified.

5 Environment

The environment fundamentally determines the challenges that an agent must overcome. Unlike single-
turn tasks where complexity is primarily measured by reasoning difficulty, multi-turn environments
introduce dimensions such as spatial navigation, object manipulation, and extended planning horizons.
We focus on two core research questions that directly investigate practical multi-turn deployment.
First, we ask: how environment complexity affects the efficiency of multi-turn RL training, which
helps determine exploration budget and model size requirements for tasks with varied complexities.
Second, we want to understand: whether agents learn generalizable abilities or simply memorize
task-specific behaviors. This addresses whether expensive multi-turn training can transfer across
environments, a key consideration for scalable agentic systems.

Setup. We procedurally generate TextWorld environments with varied complexity. Starting from
our base configuration of task w2-03-g4 (2 rooms, 3 objects, 4-step quest), we create controlled
variations: w8-03-g4 isolates spatial complexity by increasing the world size, w2-012-g4 isolates
object complexity by increasing the number of interactable objects, and w8-012-q4 combines both.
Additionally, we create task w4-06-q8 which linearly scales all dimensions. We train both Qwen-
1.5B and Qwen-7B models from scratch using PPO with consistent hyperparameters across all
experiments. Training uses 5,000 episodes while evaluation is performed on 100 held-out test
episodes with different seeds.

Tasks w/ varying env complexity Qwen-1.5B Qwen-1.5B (PPO)

w2-03-q4 (base env) 0.17 0.88+0.71
w8-03-g4 (4x rooms) 0.07 0.6810.61
w2-012-g4 (4x objects) 0.08 0.5440.46
w8-012-g4 (4x objects & rooms) 0.03 0.5140.48

Table 1: Multi-turn PPO performance on TextWorld tasks with varying environment complexities.
The maximum steps per game is 16 for all tasks.

Pick & Place, Examine in Light, Clean & Place, Heat & Place, Cool & Place, and Pick Two & Place.
*https://huggingface.co/spaces/Qwen/Qwen2.5
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5.1 How does multi-turn RL performance scale with environment complexity?

To understand how individual environment factors impact multi-turn RL, we systematically vary
spatial and object complexity while holding other variables constant. As shown in Table |1} base
models struggle dramatically as environment complexity increases, with performance dropping from
17% to just 3% when both spatial and object dimensions are scaled. More importantly, multi-turn
RL gains less improvements as the environment complexity increases — while PPO achieves a
88% improvement on the base environment, this drops to only 51% on the most complex setting.
In particular, object complexity proves to be more challenging than spatial complexity. This
suggests that learning to manipulate and track multiple objects in turns presents fundamentally harder
challenges than spatial exploration.

Beyond varying individual complexity dimensions, we examine how proportionally scaling all
environment parameters affects multi-turn RL training. As shown in Table[2] doubling all dimensions
creates a dramatically harder problem that goes beyond linear scaling. The base Qwen-1.5B
model’s performance collapses from 15% to 1%, indicating that the search space expands significantly.
While multi-turn PPO on 1.5B model achieves substantial performance (58% gain), the final 59%
success falls well short of the 80% achieved on w2-03-g4. In addition, the performance also scales
with model size — the 7B model reaches 72% success on w4-06-q8, suggesting that larger models
better handle the increased state space of complex environments. We can also see the potential of
the 1.5B model in navigating difficult environments considering the huge performance gain (65% on
w2-03-g4 and 58% on w4-06-q8).

Tasks Qwen-1.5B  Qwen-1.5B (PPO) Qwen-7B  Qwen-7B (PPO)
W2-03-q4 0.15 0«81‘0_65 0.65 0.981{).33
w4-06-g8  0.01 0.5910.58 0.28 0.7210.44

Table 2: Multi-turn PPO performance on TextWorld tasks with linearly scaled difficulty. The
maximum steps per game is 12 for w2-03-g4 task and 24 for w4-06-q8 task.

#Exploration steps Qwen-1.5B  Qwen-1.5B (PPO)

6 (1.5x optimal) 0.05 0.5510.5
8 (2x optimal) 0.09 0-737*0.64
12 (3x optimal) 0.15 0.810.65
16 (4x optimal) 0.17 0.8810.71

Table 3: Multi-turn PPO performance on TextWorld w2-03-q4 task with different exploration sizes.

Tasks w2-012-g4 w8-03-g4 w8-012-g4 w4-06-q8
w2-03-q4 0.440.32 0.5140.44  0.271024  0.1240.11
W8-03-q4 0'5T0~42 0'51T0.48 0'21T0~2

W2—012—q4 0'27'1“0'2 0‘27T0~24 0‘13T0~12

W2-012-q4 + W8-03-q4 0'41T0-33 0'52T0-45 0.341{).31 0'17T0~16

Table 4: Multi-turn PPO performance on cross-environment generalization across TextWorld tasks.
All models are trained with 5000 episodes per epoch. For the mixed-task setting (w2-012-q4 +
w8-03-g4), the model uses a 50/50 mixture per epoch (2500 episodes from each). The total RL data
budget is held constant across all training conditions for a fair comparison.

Lastly, we investigate how the exploration size (the maximum number of steps agents can take during
rollout) affects learning and final performance. For the w2-03-q4 task with an optimal solution length
of 4 steps, we vary the exploration size from 6 to 16 steps. Table [3]shows that performance gains
saturate beyond 8 exploration steps. Constraining agents to 6 steps (1.5x optimal) limits PPO
performance to 55% success rate. Increasing to 8 steps (2x optimal) yields 73% success, while
further increasing to 12 and 16 steps produces only marginal gains. These results indicate that while
insufficient exploration steps severely limit learning, excessive steps beyond 2x optimal provide
negligible benefits for TextWorld tasks.
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5.2 How does multi-turn RL generalize to environments with different complexities?

To investigate whether multi-turn RL learns transferable skills, we evaluate cross-environment
generalization. In addition to single-task models trained on w2-03-q4, w8-03-g4, and w2-012-g4,
we train a mixed-task model on a 50/50 combination of w2-012-q4 and w8-03-g4 under the same
amount of RL data. Table[d]reveals that agents trained on simpler environments show substantial
generalization to more complex environments, evidenced by the model trained in w2-03-q4 that
improves performance in every higher complexity environment. The transfer of agent ability is
especially strong from w8-03-q4 (higher spatial complexity), which achieves the largest average
improvements across targets; notably, it improves w8-012-g4 by 48% — matching the 48% gain from
training directly on w8-012-g4. These results suggest that multi-turn RL acquires reusable skills,
such as spatial exploration and object manipulation, that transfer across environment complexity.

6 Policy

The choice of RL optimization algorithm and model initialization critically determines multi-turn
RL performance. First, for practical considerations of multi-turn RL which is understudied, we
may or may not have access to human demonstration data for supervised fine-tuning (SFT) under
the exact same task domain. A natural question to ask is: what prior model policy is needed in
order to gain sufficient performance from multi-turn RL? This addresses the practical question of
whether expensive human demonstrations are necessary or if agents can learn effectively from scratch.
Furthermore, suppose we have a fixed budget for data collection, we try to answer whether there is
an optimal SFT versus RL data training ratio that gives us the highest performance gain. Second,
we are interested in understanding whether RL optimization choices significantly impact multi-turn
RL training. We pick both a heuristic policy gradient method (PPO [Schulman et al.2017]) and an
unbiased method (RLOO [[Ahmadian et al., [2024]) as the algorithms. This isolates the contributions
of our multi-turn formulation from specific optimization heuristics, which, as evidenced in [Oertell
et al., [20235]], are essential when making claims about algorithmic improvements.

Setup. TextWorld provides a gold solution to each procedurally generated game. We use these
gold solutions as our human demonstration data for supervised fine-tuning, representing the optimal
multi-turn trajectories for each environment. The SFT data follows a turn-based chat format, the
default template used in most instruction-following scenarios. To reduce overfitting, we train for
exactly one epoch on all SFT data, ensuring each demonstration is seen only once during training. All
SFT data is generated with different random seeds than the RL training data to prevent data leakage.

We reuse the TextWorld tasks w2-03-q4 and w4-06-q8 from Section[5} and ALFWorld (text-based
version), where models are trained on 3553 training episodes and evaluated on 134 “valid_unseen”
episodes. We train both Qwen-1.5B and Qwen-7B models using PPO and RLOO respectively with
consistent hyperparameters across all experiments. We performed hyperparameter sweeping on both
algorithms and present results under optimal configurations which have been listed in Section {4

Multi-turn PPO Formulation. For optimization algorithms with advantage estimation, such as
Proximal Policy Optimization (PPO) [[Schulman et al.| 2017]], we adopt token-level credit assignment.
We compute token-level values and apply to TD error as 6! = 7 + ~V (hit') — V(hi) where A}
is the history up to and including token a¢. Then we estimate the advantage for each token using
GAE: /12 = ZL;J(W}\)Z(S;H, where L is the horizon (number of tokens until episode ends). Even
though only <eos> tokens receive rewards, all preceding tokens get non-zero advantages through
value bootstrapping. Therefore, the Clipped Surrogate Objective for all tokens in the trajectory can
be written as:

ny+1

T
LCHP(0) =R, o, [Z min ( 0) A% clip(ri(),1 —€,1 + e)/li)

t=0 i=1

mo(at|he, ai’)

where the probability ratio for each token is: r}(0) = ; =
T o1a (at |he, ay )
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6.1 How does prior model policy influence multi-turn RL training?

We distinguish between two training phases: model priors refer to the initial policy obtained through
SFT, while continual training refers to the subsequent multi-turn online PPO training. This two-stage
approach mirrors the real-world deployment, where agents first learn from human demonstrations
before being deployed for online learning. To investigate how imitation learning affect multi-turn RL
performance, we train SFT priors on gold solutions from the w2-03-q4 TextWorld task, then continue
training with multi-turn RL.

Multi-turn RL with good imitation learning priors achieves comparable performance with
dramatically fewer RL episodes. As shown in Table[5] an SFT prior trained on 60 demonstrations
followed by 400 RL episodes achieves 85% success on w2-03-q4, nearly matching the 88% perfor-
mance of pure RL training with 5000 episodes. This represents a significant reduction in RL training
data while maintaining competitive performance.

To address practical deployment scenarios, we further investigate the optimal allocation of data
resources between SFT and RL. Assuming that SFT data costs 10 times more than RL episodes
(reflecting the higher human effort required), we analyze performance under a fixed budget of 1000
cost units across different SFT/RL ratios. TableE]reveals that pure SFT (100 demonstrations, 0 RL
episodes) achieves excellent performance (95%) on the training domain w2-03-q4 but shows limited
generalization to the more complex w4-06-q8 environment (55%). The optimal configuration ratio
uses 60 demonstrations with 400 RL episodes, achieving 85% success on w2-03-q4 and 59%
on w4-06-q8, which balances task-specific performance with generalization robustness. The
key insight here is that SFT data provides crucial behavioral priors, but RL training is essential for
robustness. And in real-world scenarios, demonstration data are usually noisy, which would require
more RL data resources.

#SFT data #RL data SFT SFT (test on w4-06-g8)  SFT+PPO  SFT+PPO (test on w4-06-g8)
/ 5000 0.17 (base) 0.01 (base) 0.88* 0.12*

0 1000 / / 0.54 0.11

20 800 0.59 0.15 0.62 0.15

40 600 0.75 0.51 0.72 0.44

60 400 0.71 0.53 0.85 0.59

80 200 0.94 0.29 0.95 0.35

100 0 0.95 0.55 / /

Table 5: Multi-turn learning performance across different SFT/RL data allocations under a fixed
budget. Models are trained on w2-03-q4 and evaluated on both w2-03-q4 and w4-06-q8 for general-
ization purpose. We first train model priors through SFT, then continues training through multi-turn
PPO. Results marked with * are extracted from previous experiments for comparison.

Lastly, to investigate whether multi-turn RL can benefit from demonstration data collected in different
but related domains, we experiment with cross-domain model priors. We train SFT models on 3553
ALFWorld demonstrations and then apply multi-turn PPO on TextWorld w2-03-g4, and vice versa,
training on 3000 TextWorld demonstrations before applying PPO to ALFWorld tasks. We find that
cross-domain priors lead to rapid policy collapse during multi-turn RL training. A possible
reason is that demonstration data creates behavioral biases that conflict with the target environment’s
action-outcome relationships, making the policy unstable during multi-turn RL.

6.2 How do RL algorithms impact multi-turn RL training?

Understanding whether performance gains stem from our multi-turn formulation or specific algo-
rithmic choices is crucial for establishing the generalizability of our approach. We compare PPO
(a heuristic policy gradient method with value function bootstrapping) against RLOO (an unbiased
policy gradient estimator) to isolate the contributions of our token-level credit assignment from
algorithmic design decisions [[Oertell et al., [2025]].

Both PPO and RLOO achieve substantial improvements over base models, demonstrating that
performance gains stem from our multi-turn formulation rather than PPO-specific heuristics.
As shown in Table[6] PPO achieves 88% success on w2-03-q4 compared to RLOO’s 51% success.
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This gap becomes bigger on w4-06-q8, where PPO reaches 59% success while RLOO fails completely
with 0% success for the 1.5B model. We conclude that PPO outperforms RLOO in multi-turn
settings, with performance gaps increasing for complex environments. Model size also affects
the performance gap: with 7B parameters, both algorithms perform similarly on simple tasks (97%
vs 98%), but PPO maintains advantages on complex tasks (72% vs 47%). These results demonstrate
that the performance gains are not due to heuristics from PPO, evidenced by RLOO’s consistent
improvements across tasks.

Task / Model Base model RLOO PPO

W2-03-q4 / QWCH-I.SB 0.15 0'51T0-36 0.88T0_73
W4-06-q8 / QWGH-l.SB 0.01 0.0 0'59T0~58
W2-03-q4 / QWCH-7B 0.65 0.97¢0,32 0.9811]_33
W4-06-q8 / QWCH-7B 0.28 0'47T0-21 0.721\0_44

Table 6: Comparison of PPO and RLOO on multi-turn TextWorld tasks across model sizes.

7 Reward

Multi-turn environments typically provide sparse feedback upon task completion. This sparsity
creates challenges for credit assignment across extended sequences, potentially leading to slow
convergence or training instability. However, some environments provide built-in dense reward
signals where agents receive partial rewards at each milestone reached on the solution trajectory.
We investigate how reward density, the frequency of feedback signals during trajectories, affects
multi-turn RL performance and whether dense rewards can improve learning efficiency.

Setup. We experiment with different reward density schemes on TextWorld tasks using both PPO
and RLOO algorithms. Our reward density configurations leverage TextWorld’s built-in reward
functions with varying densities: (1) sparse rewards, provided only upon successful task completion,
and (2) dense rewards, provided at intermediate steps throughout the trajectory. We quantify reward
density as the average number of steps between reward signals and larger values indicate sparser
rewards. We denote the reward density as the average number of steps per given reward. The larger
the value, the sparse the reward. We evaluate the tw-simple tasksﬂ from TextWorld, training on 3,000
episodes generated with different random seeds to ensure diversity.

Reward density Qwen-7B (PPO) Qwen-7B (RLOO)

Sparse (1022) 0.411~0_12 035?0.06
Dense 1 (289) 0’29T0-0 0'55T0-26
Dense 2 (117) 0.5811)_29 0-55T0.26

Table 7: Performance comparison across reward density schemes on tw-simple task using Qwen-7B.
Numbers in parentheses are reward density defined as #steps per reward.

7.1 What reward signals are needed for multi-turn RL training?

Dense rewards significantly improve multi-turn RL performance, with optimal density varying
by algorithm. As shown in Table [/ reward density has different effects on PPO and RLOO. PPO
benefits most from the most dense rewards (Dense 2), achieving 58% success compared to 41%
with sparse rewards. RLOO shows robust performance across dense reward schemes, achieving
55% success with both Dense 1 and Dense 2 configurations. This consistency suggests that RLOO’s
unbiased gradient estimates are less sensitive to reward density.

The key takeaway here is that the choice of reward density should align with the selected optimization
algorithm. Dense rewards may enable faster convergence in multi-turn RL, evidenced by the
substantial performance gains observed across both algorithms. However, the effectiveness of
dense rewards depends not only on frequency but also on the quality and consistency of the reward
signal design, where poorly designed intermediate rewards may provide misleading guidance that
impairs rather than improves learning.

*https://textworld.readthedocs.io/en/stable/textworld.challenges.simple.html
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