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Abstract

We study how to train large language models (LLMs) as autonomous agents that1

act over multiple turns in agentic environments. While reinforcement learning has2

driven strong single-turn reasoning, extending to multi-turn environments introduce3

new challenges yet to be addressed. We formulate multi-turn agentic RL with4

dense per-turn rewards and token-level credit assignment, and provide a systematic5

analysis of the impacts three RL pillars – environment, policy, and reward – on6

multi-turn RL. Under interactive text environments (TextWorld, ALFWorld), we7

examine scaling with environment complexity and generalization across tasks; we8

analyze the role of model priors in subsequent multi-turn RL training; we compare9

the impact of sparse and dense per-turn rewards on RL learning. We provide an10

extensible code framework for multi-turn agentic RL. Together, our formulation,11

analysis, and toolkit offer practical guidance for building LLM agents capable of12

robust multi-turn decision making in agentic environments.13

1 Introduction14

Training LLMs as autonomous agents to navigate open-ended environments presents unique chal-15

lenges: planning across extended horizons, making multi-turn sequential decisions, and optimizing16

for multi-turn rewards. The transition from static single-turn problem-solving to dynamic multistep17

reasoning is essential for agentic benchmarks such as interactive text and embodied simulations18

(TextWorld [Côté et al., 2018], ALFWorld [Shridhar et al., 2021], etc.), real-world software program-19

ming (OSWorld [Xie et al., 2024], SWE-gym [Pan et al., 2025], etc.), and abstract reasoning in novel20

situations (ARC-AGI [Chollet et al., 2025]). However, existing multi-turn RL implementations vary21

widely: some refer to tool-augmented single queries as multi-turn [Zeng et al., 2025], while many rely22

on model-based assumptions [Wang et al., 2025]. This fragmentation has led to incomparable results23

across papers and confusion about what constitutes true multi-turn learning versus pseudo-multi-turn24

adaptations of single-turn methods. Motivated by the lack of standardization of multi-turn RL ap-25

proaches, our work focuses on providing a unified formulation of multi-turn RL and documenting the26

critical design decisions that determine success or failure in interactive environments.27

This paper aims to facilitate research efforts on the open research question: What factors are28

practically important in making multi-turn RL for LLM agent learning work. First, we formulate29

multi-turn agentic RL with dense reward structure and token-level credit assignment. Next, we30

provide a systematic analysis revealing that success in multi-turn agentic RL requires careful co-31

design across all three pillars illustrated in Figure 1. For the environment, we investigate scaling32

with environment complexity and generalization across different environments. For the policy,33

we investigate how model prior affects continual multi-turn RL training and analyze the interplay34

between multi-turn imitation learning and multi-turn RL. We further compare both biased (PPO) and35

unbiased (RLOO) policy gradient RL algorithms to isolate benefits from from algorithmic heuristics.36
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For the reward, we experiment with varying densities of per-turn rewards to understand their impact37

on learning dynamics.38
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Figure 1: Illustration of multi-turn agentic RL and the key research questions.

Our key findings demonstrate that: 1) Multi-turn RL performance scales with environment complexity39

in terms of world size, interactable objects, and exploration steps; 2) Agents trained on simpler40

environments showing promising generalization to complex ones; 3) Model priors from even minimal41

demonstration data accelerate convergence, but multi-turn RL training is needed for generalization; 4)42

With a fixed budget, there is an optimal SFT:RL ratio that balances task accuracy and generalization; 5)43

Both PPO and RLOO achieve stable learning in multi-turn RL, validating that the performance gains44

stem from our multi-turn formulation rather than the heuristics benefits; 6) Dense turn-level rewards45

accelerate multi-turn RL training compared to sparse alternatives, but are sensitive to algorithm46

choice.47

We establish that multi-turn RL with LLMs is not merely an extension of single-turn optimization but48

requires fundamental redesign of environment, policy, and reward. We will release the multi-turn49

agentic RL framework built upon veRL [Sheng et al., 2025] with all agentic environments included50

in the paper: TextWorld [Côté et al., 2018], ALFWorld [Shridhar et al., 2021], etc. The framework51

provides a minimal interface that requires only a step function, allowing easy integration of new52

environments and agents. This paper provides both empirical analysis and practical guidelines for53

developing the next generation of agentic AI systems that can operate effectively in real-world54

interactive environments.55

2 Related Work56

While single-turn RL methods for LLMs including PPO [Schulman et al., 2017], RLOO [Ahmadian57

et al., 2024], GRPO [Shao et al., 2024], and DAPO [Yu et al., 2025] have been extensively optimized58

for immediate response quality, adapting them to multi-turn agentic scenarios remains non-trivial.59

These methods assume rewards directly follow individual actions, but multi-turn environments only60

reveal outcomes after extended interaction sequences, breaking the action-reward coupling that61

single-turn methods rely upon. Existing efforts on multi-turn RL have made limited progress on these62

challenges. Some approaches construct multi-turn scenarios by interleaving tool-use or reasoning63

steps for single-turn QA pairs [Zeng et al., 2025, Dong et al., 2025]. Others working on true interactive64

environments either rely on sparse terminal rewards without turn-level learning signals [Wang et al.,65

2025], or assign turn-level advantages uniformly across sequence tokens without fine-grained credit66

assignment [Zhou et al., 2025]. More importantly, there lacks a comprehensive understanding of67

how the three fundamental pillars of RL – environment, policy, and reward – jointly determine68

performance in multi-turn interactive environments. This paper provides a systematic analysis on69

how the fundamental pillars of RL impact multi-turn RL training respectively and concludes insights70

on how to practically train multi-turn RL in different interactive agentic environments. Throughout71

the paper, we dedicate essential related works in individual sections.72
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3 Multi-turn Agentic Reinforcement Learning73

We formulate multi-turn agentic tasks as a Partially Observable Markov Decision Process (POMDP)74

problem, defined as a tuple (S,A, T ,R,Ω,O, γ). Taking the Textworld task [Côté et al., 2018] as75

an example, an agent takes the action at (go south) sampled from the action space A and receives76

a text observation ot (You are in front of a garden) from the observation space Ω. ot is a77

partial description of the true state st in the hidden state space S which contains the complete state78

world model. We assume that the state transition function T : S × A → S is deterministic. Upon79

taking an action, the agent also receives a scalar reward rt = R(st, at). The agent’s objective is to80

learn a policy that maximizes the expected discounted sum of rewards E[
∑

t γ
t · rt].81

We denote the trajectory history consisting of a task prompt u, action and state sequences by ht =82

(u, s0, a0, s1, a1, · · · , st)1. An LLM agent with policy πθ samples an action sequence at ∼ πθ(·|ht)83

based on the trajectory history. at is a token sequence in natural language: (a1t , a
2
t , ..., a

nt
t , aeost ),84

with each token ait generated as πθ(·|ht, a
<i
t ). Agentic environments execute language commands85

only upon completion, naturally defining the reward structure at the command boundaries, marked by86

<eos> tokens. Therefore, we assign scalar reward rt at aeost , and the reward for each action token is87

formulated as: rit =
{
rt if ait = <eos>
0 otherwise

. We make sure only action tokens contribute to the loss by88

masking out all state tokens.89

Here is a concrete example: the input to the LLM during the rollout stage using a chat template is:90

<|im_start|>user91

Welcome! Your task is: {task prompt}. state: {state 0} your action:<|im_end|>92

<|im_start|>assistant93

{action 0}<|im_end|>94

...95

<|im_start|>user96

state: {state t} your action:<|im_end|>97

<|im_start|>assistant98

The LLM of policy πθ generates the output {action t}<|im_end|>. The environment handles state99

transition and reward computation: next_state, reward, done = env.step(state, action). The100

reward for each turn is assigned to the <|im_end|> token. The action and next state are then101

appended to the chat history under the template.102

4 Background and Experimental Setup103

Our experiments systematically investigate how the three fundamental pillars of RL impact in multi-104

turn agentic RL. For Environment (Section 5), we examine how scaling environmental complexity105

along spatial and object dimensions impacts learning (Section 5.1), and test whether agents trained on106

simple tasks can generalize to more complex environments (Section 5.2). For Policy (Section 6), we107

analyze how model priors from demonstration data influence RL convergence and identify optimal108

ratios of imitation learning to RL data under budget constraints (Section 6.1). We contrast biased109

(PPO) with unbiased (RLOO) algorithms to isolate benefits from algorithmic design versus multi-110

turn formulation (Section 6.2). For Reward (Section 7), we investigate how reward density – the111

frequency of feedback signals during trajectories – affects learning dynamics and final performance112

(Section 7.1). These results establish that multi-turn RL requires careful co-design across all three113

components rather than simple extensions of single-turn methods.114

Tasks and Environments. We evaluate our multi-turn RL framework on two text-based interactive115

benchmarks that require sequential decision-making over extended horizons: TextWorld [Côté et al.,116

2018] and ALFWorld [Shridhar et al., 2021]. For online RL training, we integrate the TextWorld117

and ALFWorld backends directly into our codebase as environments that interact with LLM agents118

during rollout via standard step and reset functions. Unlike traditional RL settings where agents119

receive both observations and lists of admissible actions at each step, which effectively reduces the120

task to action selection. Instead, we adopt a more challenging setup where our agents must generate121

executable natural language commands based solely on environmental observations, without action122

hints. Here, we specify the tasks we use from the two benchmarks:123

1We substitute observation o for state s for simplicity. The agent has no access to the true state of the game.
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• TextWorld: A text-based game environment where agents navigate rooms, manipulate objects, and124

solve quests through natural language commands. We procedurally generate tasks with controlled125

complexity along three dimensions: world size (w), number of objects (o), and quest length (q).126

For example, “w2-o3-q4” denotes a task with 2 rooms, 3 objects, and a 4-step quest. Each task is127

generated with a unique seed to ensure diversity.128

• ALFWorld: embodied household environment built on the TextWorld engine, requiring agents129

to complete multi-step tasks through text-based interaction. We use the text-only variant with130

tasks spanning six categories2. We train on the “train” split and evaluate on both “valid_seen” and131

“valid_unseen” splits to assess generalization.132

Models and Training. We experiment with Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct3 as133

base models (abbreviated as Qwen-1.5B and Qwen-7B), training with PPO [Schulman et al., 2017]134

and RLOO [Ahmadian et al., 2024] algorithms implemented in the veRL framework. For PPO, by135

default, we use an actor learning rate of 5e-7, a critic learning rate of 5e-6, a clip ratio of 0.2, a136

discount factor γ of 1.0, a KL penalty coefficient of 0.001, and a zero entropy regularization. We set137

both rollout and PPO mini-batch sizes to 256. For RLOO, by default, we use an actor learning rate of138

1e-6, a KL penalty coefficient of 0.001, and the same batch sizes. Maximum iteration steps and token139

length limits are adjusted based on task complexity. During rollout generation, we use a temperature140

of 0.7 to balance exploration and exploitation.141

Evaluation. We evaluate agents on held-out test sets, reporting task success rate as the primary142

metric – the percentage of episodes where agents complete objectives within the allocated exploration143

budget. All experiments run for 150 epochs unless convergence criteria trigger early stopping or144

otherwise specified.145

5 Environment146

The environment fundamentally determines the challenges that an agent must overcome. Unlike single-147

turn tasks where complexity is primarily measured by reasoning difficulty, multi-turn environments148

introduce dimensions such as spatial navigation, object manipulation, and extended planning horizons.149

We focus on two core research questions that directly investigate practical multi-turn deployment.150

First, we ask: how environment complexity affects the efficiency of multi-turn RL training, which151

helps determine exploration budget and model size requirements for tasks with varied complexities.152

Second, we want to understand: whether agents learn generalizable abilities or simply memorize153

task-specific behaviors. This addresses whether expensive multi-turn training can transfer across154

environments, a key consideration for scalable agentic systems.155

Setup. We procedurally generate TextWorld environments with varied complexity. Starting from156

our base configuration of task w2-o3-q4 (2 rooms, 3 objects, 4-step quest), we create controlled157

variations: w8-o3-q4 isolates spatial complexity by increasing the world size, w2-o12-q4 isolates158

object complexity by increasing the number of interactable objects, and w8-o12-q4 combines both.159

Additionally, we create task w4-o6-q8 which linearly scales all dimensions. We train both Qwen-160

1.5B and Qwen-7B models from scratch using PPO with consistent hyperparameters across all161

experiments. Training uses 5,000 episodes while evaluation is performed on 100 held-out test162

episodes with different seeds.163

Tasks w/ varying env complexity Qwen-1.5B Qwen-1.5B (PPO)

w2-o3-q4 (base env) 0.17 0.88↑0.71
w8-o3-q4 (4x rooms) 0.07 0.68↑0.61
w2-o12-q4 (4x objects) 0.08 0.54↑0.46
w8-o12-q4 (4x objects & rooms) 0.03 0.51↑0.48

Table 1: Multi-turn PPO performance on TextWorld tasks with varying environment complexities.
The maximum steps per game is 16 for all tasks.

2Pick & Place, Examine in Light, Clean & Place, Heat & Place, Cool & Place, and Pick Two & Place.
3https://huggingface.co/spaces/Qwen/Qwen2.5
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5.1 How does multi-turn RL performance scale with environment complexity?164

To understand how individual environment factors impact multi-turn RL, we systematically vary165

spatial and object complexity while holding other variables constant. As shown in Table 1, base166

models struggle dramatically as environment complexity increases, with performance dropping from167

17% to just 3% when both spatial and object dimensions are scaled. More importantly, multi-turn168

RL gains less improvements as the environment complexity increases – while PPO achieves a169

88% improvement on the base environment, this drops to only 51% on the most complex setting.170

In particular, object complexity proves to be more challenging than spatial complexity. This171

suggests that learning to manipulate and track multiple objects in turns presents fundamentally harder172

challenges than spatial exploration.173

Beyond varying individual complexity dimensions, we examine how proportionally scaling all174

environment parameters affects multi-turn RL training. As shown in Table 2, doubling all dimensions175

creates a dramatically harder problem that goes beyond linear scaling. The base Qwen-1.5B176

model’s performance collapses from 15% to 1%, indicating that the search space expands significantly.177

While multi-turn PPO on 1.5B model achieves substantial performance (58% gain), the final 59%178

success falls well short of the 80% achieved on w2-o3-q4. In addition, the performance also scales179

with model size – the 7B model reaches 72% success on w4-o6-q8, suggesting that larger models180

better handle the increased state space of complex environments. We can also see the potential of181

the 1.5B model in navigating difficult environments considering the huge performance gain (65% on182

w2-o3-q4 and 58% on w4-o6-q8).183

Tasks Qwen-1.5B Qwen-1.5B (PPO) Qwen-7B Qwen-7B (PPO)

w2-o3-q4 0.15 0.8↑0.65 0.65 0.98↑0.33
w4-o6-q8 0.01 0.59↑0.58 0.28 0.72↑0.44

Table 2: Multi-turn PPO performance on TextWorld tasks with linearly scaled difficulty. The
maximum steps per game is 12 for w2-o3-q4 task and 24 for w4-o6-q8 task.

#Exploration steps Qwen-1.5B Qwen-1.5B (PPO)

6 (1.5× optimal) 0.05 0.55↑0.5
8 (2× optimal) 0.09 0.73↑0.64
12 (3× optimal) 0.15 0.8↑0.65
16 (4× optimal) 0.17 0.88↑0.71

Table 3: Multi-turn PPO performance on TextWorld w2-o3-q4 task with different exploration sizes.

Tasks w2-o12-q4 w8-o3-q4 w8-o12-q4 w4-o6-q8

w2-o3-q4 0.4↑0.32 0.51↑0.44 0.27↑0.24 0.12↑0.11
w8-o3-q4 0.5↑0.42 0.68↑0.61 0.51↑0.48 0.21↑0.2
w2-o12-q4 0.54↑0.46 0.27↑0.2 0.27↑0.24 0.13↑0.12
w2-o12-q4 + w8-o3-q4 0.41↑0.33 0.52↑0.45 0.34↑0.31 0.17↑0.16

Table 4: Multi-turn PPO performance on cross-environment generalization across TextWorld tasks.
All models are trained with 5000 episodes per epoch. For the mixed-task setting (w2-o12-q4 +
w8-o3-q4), the model uses a 50/50 mixture per epoch (2500 episodes from each). The total RL data
budget is held constant across all training conditions for a fair comparison.

Lastly, we investigate how the exploration size (the maximum number of steps agents can take during184

rollout) affects learning and final performance. For the w2-o3-q4 task with an optimal solution length185

of 4 steps, we vary the exploration size from 6 to 16 steps. Table 3 shows that performance gains186

saturate beyond 8 exploration steps. Constraining agents to 6 steps (1.5× optimal) limits PPO187

performance to 55% success rate. Increasing to 8 steps (2× optimal) yields 73% success, while188

further increasing to 12 and 16 steps produces only marginal gains. These results indicate that while189

insufficient exploration steps severely limit learning, excessive steps beyond 2× optimal provide190

negligible benefits for TextWorld tasks.191
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5.2 How does multi-turn RL generalize to environments with different complexities?192

To investigate whether multi-turn RL learns transferable skills, we evaluate cross-environment193

generalization. In addition to single-task models trained on w2-o3-q4, w8-o3-q4, and w2-o12-q4,194

we train a mixed-task model on a 50/50 combination of w2-o12-q4 and w8-o3-q4 under the same195

amount of RL data. Table 4 reveals that agents trained on simpler environments show substantial196

generalization to more complex environments, evidenced by the model trained in w2-o3-q4 that197

improves performance in every higher complexity environment. The transfer of agent ability is198

especially strong from w8-o3-q4 (higher spatial complexity), which achieves the largest average199

improvements across targets; notably, it improves w8-o12-q4 by 48% – matching the 48% gain from200

training directly on w8-o12-q4. These results suggest that multi-turn RL acquires reusable skills,201

such as spatial exploration and object manipulation, that transfer across environment complexity.202

6 Policy203

The choice of RL optimization algorithm and model initialization critically determines multi-turn204

RL performance. First, for practical considerations of multi-turn RL which is understudied, we205

may or may not have access to human demonstration data for supervised fine-tuning (SFT) under206

the exact same task domain. A natural question to ask is: what prior model policy is needed in207

order to gain sufficient performance from multi-turn RL? This addresses the practical question of208

whether expensive human demonstrations are necessary or if agents can learn effectively from scratch.209

Furthermore, suppose we have a fixed budget for data collection, we try to answer whether there is210

an optimal SFT versus RL data training ratio that gives us the highest performance gain. Second,211

we are interested in understanding whether RL optimization choices significantly impact multi-turn212

RL training. We pick both a heuristic policy gradient method (PPO [Schulman et al., 2017]) and an213

unbiased method (RLOO [Ahmadian et al., 2024]) as the algorithms. This isolates the contributions214

of our multi-turn formulation from specific optimization heuristics, which, as evidenced in [Oertell215

et al., 2025], are essential when making claims about algorithmic improvements.216

Setup. TextWorld provides a gold solution to each procedurally generated game. We use these217

gold solutions as our human demonstration data for supervised fine-tuning, representing the optimal218

multi-turn trajectories for each environment. The SFT data follows a turn-based chat format, the219

default template used in most instruction-following scenarios. To reduce overfitting, we train for220

exactly one epoch on all SFT data, ensuring each demonstration is seen only once during training. All221

SFT data is generated with different random seeds than the RL training data to prevent data leakage.222

We reuse the TextWorld tasks w2-o3-q4 and w4-o6-q8 from Section 5, and ALFWorld (text-based223

version), where models are trained on 3553 training episodes and evaluated on 134 “valid_unseen”224

episodes. We train both Qwen-1.5B and Qwen-7B models using PPO and RLOO respectively with225

consistent hyperparameters across all experiments. We performed hyperparameter sweeping on both226

algorithms and present results under optimal configurations which have been listed in Section 4.227

Multi-turn PPO Formulation. For optimization algorithms with advantage estimation, such as228

Proximal Policy Optimization (PPO) [Schulman et al., 2017], we adopt token-level credit assignment.229

We compute token-level values and apply to TD error as δit = rit + γV (hi+1
t ) − V (hi

t) where hi
t230

is the history up to and including token ait. Then we estimate the advantage for each token using231

GAE: Âi
t =

∑L−i
l=0 (γλ)

lδi+l
t , where L is the horizon (number of tokens until episode ends). Even232

though only <eos> tokens receive rewards, all preceding tokens get non-zero advantages through233

value bootstrapping. Therefore, the Clipped Surrogate Objective for all tokens in the trajectory can234

be written as:235

LCLIP (θ) = Eτ∼πθ

[
T∑

t=0

nt+1∑
i=1

min
(
rit(θ)Â

i
t, clip(rit(θ), 1− ϵ, 1 + ϵ)Âi

t

)]

where the probability ratio for each token is: rit(θ) =
πθ(a

i
t|ht, a

<i
t )

πθold(a
i
t|ht, a

<i
t )

.236
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6.1 How does prior model policy influence multi-turn RL training?237

We distinguish between two training phases: model priors refer to the initial policy obtained through238

SFT, while continual training refers to the subsequent multi-turn online PPO training. This two-stage239

approach mirrors the real-world deployment, where agents first learn from human demonstrations240

before being deployed for online learning. To investigate how imitation learning affect multi-turn RL241

performance, we train SFT priors on gold solutions from the w2-o3-q4 TextWorld task, then continue242

training with multi-turn RL.243

Multi-turn RL with good imitation learning priors achieves comparable performance with244

dramatically fewer RL episodes. As shown in Table 5, an SFT prior trained on 60 demonstrations245

followed by 400 RL episodes achieves 85% success on w2-o3-q4, nearly matching the 88% perfor-246

mance of pure RL training with 5000 episodes. This represents a significant reduction in RL training247

data while maintaining competitive performance.248

To address practical deployment scenarios, we further investigate the optimal allocation of data249

resources between SFT and RL. Assuming that SFT data costs 10 times more than RL episodes250

(reflecting the higher human effort required), we analyze performance under a fixed budget of 1000251

cost units across different SFT/RL ratios. Table 5 reveals that pure SFT (100 demonstrations, 0 RL252

episodes) achieves excellent performance (95%) on the training domain w2-o3-q4 but shows limited253

generalization to the more complex w4-o6-q8 environment (55%). The optimal configuration ratio254

uses 60 demonstrations with 400 RL episodes, achieving 85% success on w2-o3-q4 and 59%255

on w4-o6-q8, which balances task-specific performance with generalization robustness. The256

key insight here is that SFT data provides crucial behavioral priors, but RL training is essential for257

robustness. And in real-world scenarios, demonstration data are usually noisy, which would require258

more RL data resources.259

#SFT data #RL data SFT SFT (test on w4-o6-q8) SFT+PPO SFT+PPO (test on w4-o6-q8)

/ 5000 0.17 (base) 0.01 (base) 0.88∗ 0.12∗

0 1000 / / 0.54 0.11
20 800 0.59 0.15 0.62 0.15
40 600 0.75 0.51 0.72 0.44
60 400 0.71 0.53 0.85 0.59
80 200 0.94 0.29 0.95 0.35
100 0 0.95 0.55 / /

Table 5: Multi-turn learning performance across different SFT/RL data allocations under a fixed
budget. Models are trained on w2-o3-q4 and evaluated on both w2-o3-q4 and w4-o6-q8 for general-
ization purpose. We first train model priors through SFT, then continues training through multi-turn
PPO. Results marked with ∗ are extracted from previous experiments for comparison.

Lastly, to investigate whether multi-turn RL can benefit from demonstration data collected in different260

but related domains, we experiment with cross-domain model priors. We train SFT models on 3553261

ALFWorld demonstrations and then apply multi-turn PPO on TextWorld w2-o3-q4, and vice versa,262

training on 3000 TextWorld demonstrations before applying PPO to ALFWorld tasks. We find that263

cross-domain priors lead to rapid policy collapse during multi-turn RL training. A possible264

reason is that demonstration data creates behavioral biases that conflict with the target environment’s265

action-outcome relationships, making the policy unstable during multi-turn RL.266

6.2 How do RL algorithms impact multi-turn RL training?267

Understanding whether performance gains stem from our multi-turn formulation or specific algo-268

rithmic choices is crucial for establishing the generalizability of our approach. We compare PPO269

(a heuristic policy gradient method with value function bootstrapping) against RLOO (an unbiased270

policy gradient estimator) to isolate the contributions of our token-level credit assignment from271

algorithmic design decisions [Oertell et al., 2025].272

Both PPO and RLOO achieve substantial improvements over base models, demonstrating that273

performance gains stem from our multi-turn formulation rather than PPO-specific heuristics.274

As shown in Table 6, PPO achieves 88% success on w2-o3-q4 compared to RLOO’s 51% success.275
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This gap becomes bigger on w4-o6-q8, where PPO reaches 59% success while RLOO fails completely276

with 0% success for the 1.5B model. We conclude that PPO outperforms RLOO in multi-turn277

settings, with performance gaps increasing for complex environments. Model size also affects278

the performance gap: with 7B parameters, both algorithms perform similarly on simple tasks (97%279

vs 98%), but PPO maintains advantages on complex tasks (72% vs 47%). These results demonstrate280

that the performance gains are not due to heuristics from PPO, evidenced by RLOO’s consistent281

improvements across tasks.282

Task / Model Base model RLOO PPO

w2-o3-q4 / Qwen-1.5B 0.15 0.51↑0.36 0.88↑0.73
w4-o6-q8 / Qwen-1.5B 0.01 0.0 0.59↑0.58

w2-o3-q4 / Qwen-7B 0.65 0.97↑0.32 0.98↑0.33
w4-o6-q8 / Qwen-7B 0.28 0.47↑0.21 0.72↑0.44

Table 6: Comparison of PPO and RLOO on multi-turn TextWorld tasks across model sizes.

7 Reward283

Multi-turn environments typically provide sparse feedback upon task completion. This sparsity284

creates challenges for credit assignment across extended sequences, potentially leading to slow285

convergence or training instability. However, some environments provide built-in dense reward286

signals where agents receive partial rewards at each milestone reached on the solution trajectory.287

We investigate how reward density, the frequency of feedback signals during trajectories, affects288

multi-turn RL performance and whether dense rewards can improve learning efficiency.289

Setup. We experiment with different reward density schemes on TextWorld tasks using both PPO290

and RLOO algorithms. Our reward density configurations leverage TextWorld’s built-in reward291

functions with varying densities: (1) sparse rewards, provided only upon successful task completion,292

and (2) dense rewards, provided at intermediate steps throughout the trajectory. We quantify reward293

density as the average number of steps between reward signals and larger values indicate sparser294

rewards. We denote the reward density as the average number of steps per given reward. The larger295

the value, the sparse the reward. We evaluate the tw-simple tasks4 from TextWorld, training on 3,000296

episodes generated with different random seeds to ensure diversity.297

Reward density Qwen-7B (PPO) Qwen-7B (RLOO)

Sparse (10.22) 0.41↑0.12 0.35↑0.06
Dense 1 (2.89) 0.29↑0.0 0.55↑0.26
Dense 2 (1.17) 0.58↑0.29 0.55↑0.26

Table 7: Performance comparison across reward density schemes on tw-simple task using Qwen-7B.
Numbers in parentheses are reward density defined as #steps per reward.

7.1 What reward signals are needed for multi-turn RL training?298

Dense rewards significantly improve multi-turn RL performance, with optimal density varying299

by algorithm. As shown in Table 7, reward density has different effects on PPO and RLOO. PPO300

benefits most from the most dense rewards (Dense 2), achieving 58% success compared to 41%301

with sparse rewards. RLOO shows robust performance across dense reward schemes, achieving302

55% success with both Dense 1 and Dense 2 configurations. This consistency suggests that RLOO’s303

unbiased gradient estimates are less sensitive to reward density.304

The key takeaway here is that the choice of reward density should align with the selected optimization305

algorithm. Dense rewards may enable faster convergence in multi-turn RL, evidenced by the306

substantial performance gains observed across both algorithms. However, the effectiveness of307

dense rewards depends not only on frequency but also on the quality and consistency of the reward308

signal design, where poorly designed intermediate rewards may provide misleading guidance that309

impairs rather than improves learning.310

4https://textworld.readthedocs.io/en/stable/textworld.challenges.simple.html
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