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Abstract
Predictive coding is a prominent theory of cortical func-
tion that proposes that the brain continuously generates
predictions about sensory inputs through a hierarchical
network of top-down and bottom-up connections. Prior
studies demonstrate that PredNet, a deep neural net-
work built on predictive coding principles, indeed cap-
tures key characteristics of neural responses observed
in primate visual cortex. However, one widespread neu-
ral phenomenon that remains unexplored in this con-
text is short-term visual adaptation: the modulation of
neural activity over time in response to static visual in-
puts that are prolonged or repeated. Here, we investi-
gate whether PredNet exhibits two hallmark signatures
of temporal adaptation previously identified in human in-
tracranial recordings. We find that, similar to human vi-
sual cortex, activations of error units in the first layer
of PredNet exhibit subadditive temporal summation to
prolonged stimuli, reflecting nonlinear accumulation of
response magnitude with increased stimulus duration.
However, unlike the neural data, PredNet shows system-
atic responses to stimulus offsets. For repeated stim-
uli, PredNet exhibits slight response suppression for con-
secutively presented images, but no repetition suppres-
sion, a stronger response reduction to identical than non-
identical images that is robustly observed in visual cor-
tex. These discrepancies are consistent across differ-
ent training diets, optimization strategies and model unit
types. Overall, our results show that PredNet’s activation
dynamics only partly capture short-term temporal adap-
tation signatures in human visual cortex, suggesting that
this particular instantiation of predictive coding does not
fully account for neural adaptation phenomena.
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Introduction
Predictive coding is a prominent theory of brain function and
sensory information processing (Rao & Ballard, 1999; Friston,
2005), which posits that neural circuits learn and predict rep-

resentations that reflect the statistical regularities of the natu-
ral world, signaling deviations from such regularities to higher
processing centers. Rao & Ballard (1999) proposed and im-
plemented a hierarchical architecture for predictive coding, re-
ferred to as the predictive coding scheme, that explains cer-
tain important properties of the visual cortex; this in turn in-
spired several subsequent works explaining various percep-
tual and neurophysiological phenomena (Hohwy et al. 2008;
Spratling 2008; Summerfield & Egner 2009; Auksztulewicz &
Friston 2016), while also providing biologically plausible neural
dynamics and synaptic update rules (Friston, 2003; Lillicrap et
al., 2020; Millidge et al., 2020).

Previous studies have also casted the predictive coding
scheme by Rao & Ballard (1999) into a modern deep learn-
ing framework. An implementation that has been intrinsically
designed according to predictive coding theory is known as
PredNet (Lotter et al., 2016, 2020). This deep neural network
(DNN) predicts future visual inputs, whereby each layer in the
network makes local predictions in a top-down fashion and
computes prediction errors by comparing those predictions to
the input from the layer below. These prediction errors are
then in turn fed to subsequent upper network layers, whereby
the network learns in a recursive way to construct and update
an internal model of its environment. In addition to implement-
ing a predictive coding scheme, this deep learning architec-
ture learns representations from video, allowing exploitation
of the temporal structure in naturalistic visual environments of
biological organisms (including humans). Together, these fac-
tors have given rise to the hypothesis that response dynamics
in PredNet should align with those observed in visual cortex.

In support of this hypothesis, previous work has demon-
strated PredNet’s ability to capture several phenomena re-
lated to temporal dynamics observed in visual cortex, includ-
ing on/off responses, sequence learning effects and percep-
tual motion illusions (Watanabe et al., 2018; Fonseca, 2019;
Lotter et al., 2020; Kirubeswaran & Storrs, 2023). However,
one prominent and ubiquitous property of neural responses
that has not yet been studied in detail is short-term visual
adaptation, which exhibits interesting and complex temporal
dynamics, as reported in a series of recent studies on intracra-
nial EEG (iEEG) recordings in human visual cortex (Zhou et
al., 2019; Groen et al., 2022; Brands et al., 2024). First, neu-



Figure 1: Neural population responses show adaptation over time. A: Subadditive temporal summation for prolonged stimuli with
varying duration. B: Response suppression for repeated stimuli with a stronger reduction when the two images are identical,
compared to when they are different (repetition suppression).

ral responses show subadditive temporal summation, a non-
linear accumulation of response magnitudes when a static vi-
sual stimulus is prolonged in time (Fig. 1A). Second, neural
responses show a reduction in response magnitude when two
visual stimuli are shown in quick succession (response sup-
pression), with stronger reductions when the stimuli are iden-
tical than when they are different (repetition suppression, RS;
Fig. 1B). While Lotter et al. (2020) showed that PredNet ex-
hibits response suppression as a result of statistical learning,
mirroring monkey visual cortex (Meyer & Olson, 2011), it is not
clear whether it captures these two basic neural signatures of
short-term temporal adaptation observed in humans.

To test this, we ran an analogous experiment in PredNet
as in our recent human intracranial EEG study (Brands et
al., 2024), using similar temporal stimulus manipulations and
the same naturalistic scene images. To assess the degree
to which PredNet shows brain-like temporal dynamics, we ex-
tracted error unit activations across all network layers and time
steps for each stimulus condition and compared the activation
dynamics with human visual cortex responses. Overall, our
results show that while the PredNet captures several aspects
of the neural adaptation signatures, it also deviates from the
neural data and therefore not fully accounts for temporal adap-
tation phenomena in visual cortex.

Methods
Predictive coding networks
Architecture The original description of the PredNet can be
found in Lotter et al. (2016). Briefly, the PredNet consists of
a hierarchical stack of layers with each layer l containing four
different unit types, namely representational (Rl), target (Âl),
prediction (Al) and error (El) units (Fig. 2A). At each timestep
t updating of unit activations occurs through two passes. First,
the states of the representational units Rl are updated in a top-
down pass via a convolutional LSTM (Hochreiter & Schmid-
huber, 1997; Shi et al., 2015), which receives inputs from
the error Et−1

l and representational Rt−1
l units from the pre-

vious timestep and representational units Rt
l+1 from the layer

above. Following this top-down pass, a bottom-up pass is
made where the prediction for the next frame is generated
and the difference is computed between the actual At

0 and

predicted Ât
0 target. These errors Et

0 are then used as input to
the next layer from which a new prediction is generated (via a
convolution). Based on a previously performed hyperparame-
ter search (Lotter et al., 2016), a four-layer model with 3 × 3
filter sizes for all convolutions and stack sizes per layer of 3,
48, 96 and 192 for the E and R modules was adopted.

Pretrained PredNet We examined activations derived from
a pretrained PredNet1 which was optimized on 10-frame se-
quences of 128 × 160 pixel RGB videos from the KITTI
dataset (Geiger et al., 2013), which consists of a collection
of videos obtained from a car-mounted camera while driving
in Germany. Image sequences were sampled from the “City”,
“Residential” and “Road” categories. Note that the model is
trained in a self-supervised manner to perform next-frame pre-
diction, without external labels or other forms of supervision.

Datasets To test the robustness of the results of the pre-
trained network, we additionally trained a number of Pred-
Net instances from scratch2, on four different videos. First,
we retrained one PredNet on videos belonging to the KITTI
dataset mentioned above, to serve as a controlled compari-
son with the results obtained from the pretrained network. The
other three videos belonged to the “Walking Tours” dataset
(Venkataramanan et al., 2023). This dataset contains a set
of first-person hours-long videos, captured in a single unin-
terrupted take, depicting a large number of objects and ac-
tions with natural scene transitions. We selected two videos
recorded in urban areas, specifically Amsterdam and Venice,
and one video from a wildlife safari.

Training procedures All four videos were preprocessed,
which consisted of downsampling to 15 frames-per-second
and resizing to 128× 160 pixels. Each network was trained
for 150 epochs on one of the videos, with each epoch con-
sisting of 500 samples. Samples consisted of a series (batch
size of 4) of 10-frame sequences that were randomly selected.
Unless stated otherwise, mean squared error loss was com-

1Pretrained model can be found at https://github.com/
coxlab/prednet.git

2Code is available on https://github.com/ABra1993/
tAdaptation PredNet.git and neural data is available on
https://openneuro.org/datasets/ds004194.

https://github.com/coxlab/prednet.git
https://github.com/coxlab/prednet.git
https://github.com/ABra1993/tAdaptation_PredNet.git
https://github.com/ABra1993/tAdaptation_PredNet.git
https://openneuro.org/datasets/ds004194


Figure 2: Experimental design. A: Information flow within the deep predictive coding network PredNet. Figure is adapted from
Lotter et al. (2016). B: Location of the electrodes in the iEEG dataset (Brands et al., 2024). Electrodes were located in V1-V3
(n = 17), VOTC (n = 11) and LOTC (n = 13). Electrodes denoted in black were not assigned to any of the visual groups. C:
Temporal structure of the stimulus presentations in the human experiment consisting of two trial types. Left, Single stimuli with
varying duration. Right, Repeated stimuli with varying inter-stimulus interval. D-E: Analogous experimental settings to obtain
temporal adaptation dynamics in the PredNet, including single (D) and repeated (E) stimulus trials with varying duration or
inter-stimulus-interval, respectively.

puted for the first (pixel) layer aggregated over all time steps.
Additionally, we also trained a set of network instances that
used a layered predictive loss, where the error was computed
over all, instead of only the first layer. Model weights were up-
dated after each batch and an Adam optimizer was used with
a learning rate of 0.001, reduced by a factor of 0.9 each 100
batches. To assess reliability, multiple instances (n = 3) with
different random initial weights were trained for each video.

Human brain recordings

To determine to what degree emergent temporal dynamics in
the PredNet exhibit the same neural adaptation signatures
as human visual cortex responses, we reanalyzed an open
dataset from Brands et al. (2024). In this study, iEEG data
were collected from four participants implanted with subdu-
ral electrodes for clinical purposes, who were presented with
naturalistic visual images for various durations and repetition
intervals (see below). Raw voltage time courses from clinical
strip, grid and depth electrodes were referenced to the com-
mon average for each electrode strip, and then filtered into
separate 10 Hz wide frequency bands ranging between 50-
200 Hz. This was followed by calculating the power envelope
of each band-pass filtered time course, which were then av-
eraged across bands to yield a time-varying broadband time
course. By aggregating responses across patients, we ob-
tained 41 visually response electrodes which were separated
in one lower-level group (V1-V3, n = 17) and two higher-level

groups, covering ventral-occipital cortex (VOTC, n = 11) and
lateral-occipital cortex (LOTC, n = 13) (Fig. 2B).

Stimuli

For the experimental setup, PredNet instances were pre-
sented with the same stimuli that were used during collection
of the neural dataset described above (Brands et al., 2024).
This stimulus dataset consisted of 288 images (569 × 568
pixels) from six categories: buildings, bodies, faces, objects,
scenes and scrambled. All categories except scenes con-
sisted of the visual category depicted on a gray background,
while PredNets are optimized on image sequences of video
frames covering all pixels. To minimize potential effects of in-
put distribution shifts on PredNet performance and activations,
we used only the 48 images from the scene category, consist-
ing of indoor, outdoor man-made and outdoor natural scenes.

Experimental design

To compare the emergent temporal dynamics in the PredNet
with those in the iEEG dataset, we emulated the stimulus con-
ditions from the human experiment and presented the network
with two different trial types. In the human experiment, these
two trial types were referred to as duration and repetition trials
(Fig. 2C). Duration trials showed a single stimulus for one of
six durations (Fig. 2C, left), namely 17, 33, 67, 134, 267 and
533 ms. Repetition trials contained a repeated presentation
of either the same or two different images with fixed duration



(134 ms) but variable inter-stimulus interval (ISI) (Fig. 2C,
right), ranging between 17-533 ms with the same temporal
step sizes as the duration trials. The PredNets were also pre-
sented with duration (Fig. 2D) and repetition (Fig. 2E) trials,
whereby the stimulus duration and ISI were similarly varied
across six different temporal conditions defined in powers of
two, i.e. 1, 2, 4, 8, 16 and 32 model time steps. Each trial con-
sisted of 45 model timesteps; pixel values of inputs at model
timesteps with no image were set to 0.5 (mid-gray).

Summary metrics

To characterize the temporal dynamics of the PredNets’ error
unit activations and the iEEG broadband responses, we com-
puted several summary metrics. We here focus on the error
units because these were previously found to exhibit the high-
est similarity with neural data (Lotter et al., 2020). However,
results for the other three unit types (presentation, target and
prediction) are provided in the Supplementary Section (Fig.
S1-Fig. S2.)

Degree of subadditive temporal summation To determine
the degree of subadditive temporal summation of either the
neural or PredNet responses with increasing stimulus du-
ration, we fitted the response magnitude (computed as the
sum over the stimulus-on period, thereby excluding the offset)
across durations with a logarithmic, y = a + b · log(t), or linear,
y = c ·x + d function, where y is the response magnitude, x the
stimulus duration and [a, b] and [c, d] are free parameters for
the logarithmic and linear function, respectively. To then quan-
tify the degree of subadditivity, we computed the ratio between
the coefficient of determination (R2) for the logarithmic and lin-
ear fit, whereby R2 < 1 suggests that temporal summation is
linear, while R2 > 1 indicates that the summation of responses
is subadditive.

Recovery from adaptation for repeated stimuli To quan-
tify the degree of adaptation to repeated stimuli, we computed
a recovery value defined as the response magnitude of the
second stimulus as a proportion of the first. For the neural
data, we averaged the response time courses for the 134 ms
duration stimulus for single trials and all the repeated stimulus
trials up to the onset of the second stimulus, thereby obtaining
an average of the response to the first stimulus. This average
was then subtracted from the repeated stimulus trials to iso-
late the second response. Recovery from adaptation was then
defined as the Area Under the Curve (AUC) of the second re-
sponse relative to the AUC of the first. For the PredNet activa-
tions, we used a similar approach, whereby we subtracted the
first response, obtained from a duration trial with one model
timestep, from the repeated sequence trial, after which we
computed the ratio between the first and second response
(AUC of the second response/AUC of the first response). To
then describe the degree of recovery from response suppres-
sion both for the neural responses and PredNet responses,
we fitted the recovery values across temporal conditions with
the logarithmic function introduced above, y = a + b · log(t).

Results

Error units in the first layer of PredNet capture subaddi-
tive temporal summation We first describe temporal dy-
namics in responses to duration-varying stimuli in the iEEG
broadband data. Neural timecourses exhibit subadditive tem-
poral summation as illustrated in Fig. 1A, which refers to
the phenomenon that additional visual exposure resulting from
longer presentation durations does not accumulate into a lin-
early increasing neural response. This subadditivity results
from transient-sustained dynamics in the neural response time
course, which can be clearly seen in Fig. 3A (top): Re-
sponses to visual stimulus onsets show an initial transient,
which for short stimulus durations is the only part of the re-
sponse. As stimulus duration increases, this transient re-
sponse saturates, and a lower-amplitude sustained response
emerges. Because prolonging stimulus duration no longer in-
creases the peak transient, and only adds more of the rel-
atively lower-amplitude sustained component, the overall re-
sponse to the stimulus grows progressively less with longer
stimulus durations (Fig. 3B). This compressive effect is ev-
idenced by a qualitatively better fit for a logarithmic than a
linear function between stimulus duration and response mag-
nitude in V1-V3 (dependent-samples T-test computed over the
electrodes, t(16) = -5.41, p < 0.001) and LOTC (t(12) = -6.23 ,
p < 0.001), with a similar pattern in VOTC (Fig. 3C).

To determine whether PredNet also exhibits subadditive
temporal summation, we emulated the iEEG experiment by
presenting the network with the same duration-varying stim-
uli. Similar to the iEEG broadband responses, the PredNet
exhibits transient-sustained dynamics (Fig. 3A, bottom): error
units across all layers show a transient response at stimulus
onset, with a sustained response emerging as the stimulus
duration increases. The qualitative response shape of the er-
ror units differ somewhat from the neural data, evident by the
quicker decay after the transient and a lower sustained re-
sponse. Here, units in the first network layer (E1) exhibit sub-
additive temporal summation, evidenced by the best fit with
a logarithmic function (Fig. 3DE, dependent-samples T-test
computed over the images, t(47) = -21.92, p < 0.001). Higher-
level layers, including E2, E3 and E4, show comparatively less
subadditive summation, demonstrated by the best fit for a lin-
ear function (E2, t(47) = 56.45, p < 0.001; E3, t(47) = 3.51, p
< 0.001; E4, t(47) = 13.72, p < 0.001).

Notably, we also observe a strong discrepancy between
PredNet unit activation timecourses and broadband iEEG re-
sponses: PredNet shows a second activation peak to the off-
set of the stimulus which is absent in the average neural re-
sponse time courses. Moreover, we find that the other three
unit types similarly exhibit transient-sustained dynamics and
systematic offset responses, but deviate even more from the
neural data, evident by the fact that there is no consistent
subadditive temporal summation in any layer; only Â4 shows
a slightly higher fit with a logarithmic function (Fig. S1A-C).
Overall, these results show that error units in the first layer of
PredNet capture subadditive temporal summation in neural re-



Figure 3: Neural responses and PredNet both exhibit subadditive temporal summation for single image presentations. A: Top,
iEEG responses for electrodes assigned to V1-V3, VOTC or LOTC to single stimuli (gray) from short (left, 17 ms) to longest
(right, 533 ms) stimulus durations. Bottom, PredNet activations of the error units for similar temporal conditions as in the human
experiment across all model layers (from layer 1 to 4, E1, E2, E3 and E4). B: Sum of iEEG responses separately for each stimulus
duration. The lines are fitted using either a linear or logarithmic function. C: Explained variance (coefficient of determination) of
summed response magnitude per stimulus duration by a linear or logarithmic curve for each visual area. D-E: Same as B-C but
for the error units of the PredNet model, separately for each model layer. * p < 0.05, ** p < 0.01, *** p < 0.001.

sponses, but also show systematic offset responses through-
out the network, thereby deviating from neural data.

Unlike visual cortex, PredNet does not exhibit short-term
repetition suppression Another neural signature of tempo-
ral adaptation commonly observed in human visual cortex is
a response reduction when stimuli are repeated, as illustrated
in Fig. 1B. In our neural iEEG dataset, broadband responses
to a second stimulus shown shortly after a first are indeed re-
duced (Fig. 4A, top). This suppression is strongest for shorter
ISIs and gradually recovers as the gap between two stimuli in-
creases. Moreover, we also observe repetition suppression: a
stronger response reduction when the second stimulus is the
same as the first compared to when it is different. We confirm

these observations by quantifying the response magnitudes,
revealing response suppression across all ISIs (Fig. 4B) and
a substantially stronger reduction for same compared to differ-
ent stimuli in all visual areas (dependent-samples T-test over
electrodes, V1-V3, t(16) = -8.17, p < 0.001; VOTC, t(10) = -
5.09, p < 0.001; LOTC, t(12) = -3.21, p = 0.008; Fig. 4C).

For PredNet, error units show some response suppression
for short ISIs (one-sample t-test, degree of recovery averaged
across all layers for shortest ISI vs. 1, t(47) = -7.06, p < 0.001),
but unit activity quickly recovers as the number of model steps
between stimuli increases (Fig. 4A, bottom). This recovery
occurs comparatively much faster than for neural responses,
which still exhibit substantial suppression for the longest ISI;



Figure 4: PredNet does not exhibit stronger suppression for same compared to different inputs shown in sequence. A: Top, iEEG
responses for electrodes in V1-V3, VOTC or LOTC to repeated stimuli (gray) which are either the same or different, from short
(left, 17 ms) to longest (right, 533) ISI. Bottom, PredNet activations of the error units in the first network layer for similar temporal
conditions as in the human experiment. B: Recovery from adaptation computed as the ratio of the Area Under the Curve of the
response to the first and second stimulus. C: Average recovery from adaptation averaged over al ISIs. D-E: Same as B-C but for
the error units of PredNet, separately for each model layer (from layer 1 to 4, E1, E2, E3 and E4). * p < 0.05.

in contrast, we already observe near-full recovery across all
PredNet layers for the second-to-shortest ISI (Fig. 4D).

Moreover, PredNet does not exhibit the hallmark signature
of repetition suppression: For the shortest ISIs, the unit acti-
vations are slightly lower for same than different image pairs,
but the response reduction for longer ISIs is remarkably sim-
ilar, across all network layers (Fig. 4E). We observe similar
patterns for the other three unit types (Fig. S2A-C), including
the response reduction for short ISIs and the overall lack of
repetition suppression.

Interestingly, the absence of response suppression in Pred-
Net is very stable across same image pairs, while different im-
age pairs exhibit a large spread around zero, showing both
positive and negative recovery values which indicates both
suppression and enhancement of unit activations. This lack
of suppression is surprising given the a priori expectation that
same image pairs should be more predictable to PredNet (re-
sulting in lower error unit activations). Importantly, this pattern
is again different than was found in the neural data, where
responses showed similar variability in response suppression
for both same and different image pairs (Fig. 4C).

One potential explanation for the modest suppression and
the lack of RS in PredNet is that we presented stimuli for just
one model timestep, whereby units did not have the oppor-
tunity to update their predictions during a longer exposure to
the first image. To determine if PredNet exhibits stronger re-
sponse suppression and repetition suppression for more pro-
longed exposure conditions, we also ran the repetition exper-
iment using durations of 8 time steps per stimulus (Fig. S3).
However, this analysis yielded similar results: PredNet units
already exhibited near-full recovery from adaptation for rela-
tively short ISIs, although interestingly, layers E3-4 showed
slightly more suppression for longer ISIs. Notably, the overall
degree of recovery was again similar for same and different
image pairs, indicating a lack of RS.

All together, these findings demonstrate that PredNet
shows less temporal adaptation for repeating stimuli com-
pared to our neural recordings, and notably does not capture
the strong repetition suppression effects observed in human
visual cortex.



Figure 5: Temporal adaptation signatures in PredNet are robust across datasets. A: Subadditive temporal summation in PredNet
instances trained on the different videos, defined as the ratio between a log and linear fit of the summed responses of varying
stimulus durations for the error units in layer 1 to 4 (E1, E2, E3 and E4, resp.). B: Average degree of recovery by computing the
response suppression for repeated stimulus pairs which are either the same (blue) or different (yellow) for the error units in all
layers. Same network instances and stimuli as depicted in panel A. The dotted black line depicts no temporal adaptation (value
of 1). The horizontal solid lines in panel A (black) and B (blue and yellow) depict the values derived from the neural data across
all visual areas.

Consistent emergent temporal dynamics in PredNets
trained with various datasets and loss functions To as-
sess the robustness and generalizability of the temporal dy-
namics of the error units for prolonged and repeated stim-
uli observed in PredNet, we trained several new network in-
stances on four different videos (see Methods), including three
videos belonging to the “Walking Tours” dataset (Venkatara-
manan et al. 2023). We chose videos derived from walking
tour footage because they contain more diverse and also more
biologically plausible inputs than the KITTI dataset, since
videos were collected from the perspective of a walking hu-
man, as opposed to a car-mounted camera; possibly, PredNet
could show more human-like dynamics when trained on more-
human-like visual inputs. Training was successful for each
video and sample predictions demonstrate that our in-house
trained networks were able to make accurate predictions on
the visual content they were trained on, such as trajectory of
passing cars and shadows on the road (KITTI, Fig. S4A),
sliding motion of the camera (Venice, Fig. S4B), approaching
persons on a pedestrian road (Amsterdam, Fig. S4C) and an-
imal movements (wildlife, Fig. S4D).

In line with our findings in pretrained PredNets, unit re-
sponses of model instances trained on the different videos all
exhibit most pronounced subadditive temporal summation in
the first layer (Fig. 5A, Fig. S5A). All the network instances
also again show much faster recovery from response suppres-
sion compared to the neural data and no repetition suppres-
sion (Fig. 5B, Fig. S5B). Notably, while results are thus gen-
erally similar across videos, PredNets trained on the wildlife
footage seem to have somewhat distinct dynamics compared
to the other three videos, showing relatively stronger sub-
additive temporal summation in all layers. We hypothesize
that this stronger subadditivity results from the presence of a
higher degree of motion continuity in this video, referring to the
smooth and natural progression of movement between frames
without abrupt transitions, putatively resulting in more accu-

rate predictions (and lower errors) of future frames. Consis-
tent with this hypothesis, the wildlife footage contains the high-
est degree of temporal autocorrelation, and PredNets trained
on this video show relatively minimal performance degrada-
tion when trained on static images rather than video (see Fig.
S6ABC), suggesting the visual inputs are overall easier to pre-
dict, resulting in less sustained error activity.

In a separate set of analyses, we additionally investigated
the effect of the loss computation during training on the emer-
gent network dynamics. We find that networks that are opti-
mized using a layered predictive process by minimizing error
across all, instead of only the first layer, exhibit highly similar
dynamics for both prolonged (Fig. S7A) and repeated (Fig.
S7B) stimuli. Here, we do observe that minimizing the error
across all layers seems to strengthen the overall subadditive
temporal summation for duration-varying stimuli. Nonethe-
less, these results indicate that the observed temporal dynam-
ics in PredNet are robust across multiple training datasets and
optimization functions.

Discussion
Our aim was to evaluate whether PredNet, a deep predictive
coding network (Lotter et al., 2016), exhibits key signatures
of short-term neural adaptation as observed in human visual
cortex. To this end, we compared activation dynamics exhib-
ited by the network, with temporal dynamics observed in a
neural dataset of iEEG broadband responses of humans pre-
sented with single or repeated stimulus presentations. For
single stimulus presentations, we demonstrate that error unit
activations in the first layer of PredNet exhibit subadditive tem-
poral summation, but, as opposed to the neural data, also
show systematic offset responses. For repeated stimulus pre-
sentations, error unit responses show a slight reduction in re-
sponse magnitude when an image is preceded by another, but
fail to show repetition suppression as observed in the neural
responses, which is considered a robust and ubiquitous phe-



nomenon across the brain. These findings were consistent
across datasets, optimization functions, and model unit types.

In human visual cortex, neural responses show adaptation
over time, thereby exhibiting subadditive temporal summation
and repetition suppression to single and repeated stimuli, re-
spectively (Zhou et al., 2019; Groen et al., 2022). Here, we
confirm these two signatures of neural adaptation in a re-
cently collected iEEG dataset (Brands et al., 2024), evident
by the fact that neural responses in both early and late visual
areas exhibit subadditivity of the response magnitudes with
prolonged stimulus durations and stronger response suppres-
sion for same as opposed to different inputs when shown in
sequence. We show that PredNets capture some of the dy-
namics present in the neural data, namely subadditive tempo-
ral summation, but fails to reproduce others, namely repetition
suppression. To determine the fidelity of the PredNet to bio-
logical systems, it is helpful to ask which features and compo-
nents of the model are responsible or necessary to reproduce
these neural dynamics. For example, one key feature of the
PredNet is recurrent connectivity, which is required to observe
temporal dynamics. Another important PredNet feature, mo-
tivated by predictive coding principles (Rao & Ballard, 1999),
is that the network explicitly computes an error representation
in a population of neurons, which is propagated from layer to
layer in a feedforward manner and is used to update the net-
work representations and consequently, network predictions.
These two PredNet features - recurrence and explicit error
representation - presumably allow the network to exhibit sev-
eral of the response properties observed in the neural data.

For prolonged stimuli, transient-sustained dynamics arise
from an initial prediction error at stimulus onset, followed by
error decay as the model updates its predictions. However,
the appearance of the gray image at stimulus offset induces
a strong prediction error in PredNet, while it is absent in the
neural data. Previous studies show inconsistencies regarding
the presence of offsets in neural responses, with some iEEG
dataset showing a similar lack (Zhou et al., 2019; Groen et al.,
2022), while other human iEEG (Zhou et al., 2019) and animal
(Bair et al., 2002; Benucci et al., 2009) datasets did show an
offset response in at least a subset of neural responses.

From a methodological perspective, the presence of an off-
set response in the neural timecourses can depend on sev-
eral factors, such as the data type used for data collection
(e.g., fMRI vs. iEEG), brain areas sampled, or experimental
design. From an empirical perspective, it is still debated what
causes offset responses or the lack thereof. A previous study
noted that offset responses in an iEEG data were more pro-
nounced for electrodes with peripherally tuned spatial recep-
tive fields, suggesting a link between the offset response and
spatial coverage of the stimulus (Zhou et al., 2019). Other
work has hypothesized that offset dynamics are related to
neural representation which reflects differences in information
processing. More specifically, transient responses both on the
on- and offset of stimuli indicate involvement in detecting tem-
poral change, whereas the absence of an offset is related to

other types of information processing, including object recog-
nition and appearance (Zhou et al., 2018). Moreover, ear-
lier work has proposed segregated neural pathways for onset
and offset responses as a feature of many sensory compu-
tations, for example in motion detection (Westheimer, 2007),
perceptual grouping of auditory stimuli (Bregman, 1994) and
olfaction-related behavior (Chalasani et al., 2007). Thus, ac-
curately capturing the heterogeneous neural offset response
profiles for single, duration-varying stimuli may require imple-
menting additional features in PredNet, such as spatial topog-
raphy (e.g. Lu et al. 2023) or separate pathways for predicting
motion and object identity (e.g. Choi et al. 2023).

For repeated stimuli, recurrence and explicit error represen-
tations do result in a slightly lower error during the second
compared to first stimulus presentation, especially for when
two stimuli are in close temporal proximity of each other and
the two stimuli are the same, likely reflecting the lingering pre-
diction of the first stimulus presentation during the presenta-
tion of the second stimulus. However, due to the fast updating
of the network representations and possibly the intervening
gray image in the ISI, the network “forgets” previous inputs as
the time in between stimuli increases, resulting in a full recov-
ery of the response suppression for short ISIs and no differ-
ence between same and different stimuli, thereby significantly
deviating from the observations in the neural data. These re-
sults demonstrate that while features as recurrence and ex-
plicit error representation may effectively capture some of the
neural signatures of temporal adaptation, there is a misalign-
ment between “biological” time and the notion of “time” in the
PredNet. Additional features, either on the side of the inputs
(e.g. adjusting the sample rate of the frames, Butts et al. 2007)
or in PredNet itself (e.g. controlling the rate with which repre-
sentations are updated; Chien et al. 2021) might be necessary
to flexibility adjust the temporal resolution of the PredNet such
that it better matches that of the neural data.

Our findings are subject to several limitations. First, it is
important to note that our results do not refute the predic-
tive coding scheme at large, but its particular instantiation in
PredNet. This specific model has been successful at captur-
ing several neurophysiological phenomena observed in visual
cortex (Lotter et al., 2020). Our comparison with short-term
neural adaptation, specifically the failure of PredNet to repro-
duce repetition suppression effects, provides a notable excep-
tion to these earlier positive findings. To determine whether
alternative implementations of the predictive coding scheme
do account for short-term temporal adaptation in human vi-
sual cortex, future research could explore solutions provided
by other studies (e.g. Rane et al. 2020; Heilbron & de Lange
2023; Gutlin & Auksztulewicz 2025). Second, in the current
setup, the PredNet was tested on stimuli that differed from
the training data, which may have contributed to the mismatch
with the neural responses. A valuable future direction would
therefore be to train the model on stimuli that better match the
experimental paradigm, including abrupt onsets and offsets of
stimuli, so that the model is familiarized with conditions more



comparable to those in the experimental setup. An alternative
direction could be to include explicit temporal inductive biases
in the network, such as periodic-like movements (e.g. Perrinet
et al. 2014), which may improve biological plausibility.

Conclusion
In this study, we highlight the potential of PredNet in modeling
certain aspects of temporal adaptation, while also showing
misalignments with the neural data, suggesting that predic-
tive, top-down processes - as implemented in PredNet - are
not sufficient to fully capture signatures of short-term tempo-
ral adaptation in human visual cortex.
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Rane, R. P., Szügyi, E., Saxena, V., Ofner, A., & Stober, S.
(2020). Prednet and predictive coding: A critical review. In
Proceedings of the 2020 international conference on multi-
media retrieval (pp. 233–241).

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in
the visual cortex: a functional interpretation of some extra-
classical receptive-field effects. Nature neuroscience, 2(1),
79–87.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., &
Woo, W.-c. (2015). Convolutional lstm network: A machine
learning approach for precipitation nowcasting. Advances
in neural information processing systems, 28.

Spratling, M. W. (2008). Reconciling predictive coding and
biased competition models of cortical function. Frontiers in
computational neuroscience, 2, 300.

Summerfield, C., & Egner, T. (2009). Expectation (and atten-
tion) in visual cognition. Trends in cognitive sciences, 13(9),
403–409.

Venkataramanan, S., Rizve, M. N., Carreira, J., Asano, Y. M.,
& Avrithis, Y. (2023). Is imagenet worth 1 video? learning
strong image encoders from 1 long unlabelled video. arXiv
preprint arXiv:2310.08584.

Watanabe, E., Kitaoka, A., Sakamoto, K., Yasugi, M., &
Tanaka, K. (2018). Illusory motion reproduced by deep neu-
ral networks trained for prediction. Frontiers in psychology ,
9, 340023.

Westheimer, G. (2007). The on–off dichotomy in visual pro-
cessing: from receptors to perception. Progress in retinal
and eye research, 26(6), 636–648.

Zhou, J., Benson, N. C., Kay, K., & Winawer, J. (2019).
Predicting neuronal dynamics with a delayed gain control
model. PLoS computational biology , 15(11), e1007484.

Zhou, J., Benson, N. C., Kay, K. N., & Winawer, J. (2018).
Compressive temporal summation in human visual cortex.
Journal of Neuroscience, 38(3), 691–709.



Supplementary Section





Figure S1: (previous page) Representation, target and prediction units in the PredNet do not exhibit subadditive temporal sum-
mation for single image presentations. A: Top, PredNet activations of the representation units for similar temporal conditions
as in the human experiment across all model layers. Bottom left, Sum of unit activations separately for each stimulus duration.
The lines are fitted using either a linear or logarithmic function. Bottom right, Explained variance (coefficient of determination) of
summed response magnitude per stimulus duration by a linear or logarithmic curve for each visual area. B-C: Same as panel A
for target (B) and prediction (C) units. *** p < 0.001.





Figure S2: (previous page) Representation, target and prediction units in the PredNet do not exhibit stronger suppression for
same compared to different inputs shown in sequence. A: Top, PredNet activations of the representation units in the third network
layer for similar temporal conditions as in the human experiment. Bottom left, Recovery from adaptation computed as the ratio
of the Area Under the Curve of the response to the first and second stimulus. Bottom right, Average recovery from adaptation
averaged over al ISIs. B-C: Same as panel A for target (B) and prediction (C) units.



Figure S3: Recovery form repetition for trials with long stimulus durations. A: PredNet activations of the error units in the first
network layer for the six different interstimulus intervals (ISI) between two stimuli with a duration of 8 model timesteps. B:
Recovery from response suppression for same and different stimuli plotted separately per network layer (i.e. E1, E2, E3 and E4).
The fitted curves express recovery as a function of the ISI. The dotted grey line depicts a recovery of 1 (i.e. when the magnitude
of the first and second response is the same). C: Average degree of recovery computed over all ISIs plotted separately per
network layer.



Figure S4: In-house trained PredNets accurately predict future frames. A-D: Next frame predictions of PredNet instances trained
on four different videos: the KITTI dataset (A) and three videos from the “Walking Tours” dataset: Amsterdam (B), Venice (C)
and a wildlife safari (D). GT = presented image (ground-truth); P = PredNet prediction.





Figure S5: (previous page) Consistent dynamics of the error units across videos. A: PredNet activations of the error units for
duration trials across all model layers (from layer 1 to 4, E1, E2, E3 and E4, resp.). Each row depicts results from training on
one of four videos, namely a video belonging to the KITTI dataset, and three video’s belonging to the “Walking tours” dataset,
with footage recorded in Amsterdam, Venice or during a wildlife safari. B: PredNet activations of the error units averaged across
network layers for repetition trials, including pairs of two stimuli that are the same or different, for networks trained on the same
videos as shown in the rows of panel (A).



Figure S6: Training loss and image statistics for the different datasets. A: Average training loss across PredNet instances trained
on the KITTI video dataset or one of three videos from the “Walking Tours” dataset, including Amsterdam, Venice and from a
wildlife safari. Curves are smoothed with a Gaussian kernel with standard deviation of σ = 10. The shaded region depicts the
SEM across network initializations (n = 3). B: Temporal autocorrelation, described by the Pearson product-moment correlation
coefficients across video frames. Higher temporal autocorrelation occurs in videos with slow-moving objects or static scenes,
where consecutive frames are very similar. Low temporal autocorrelation occurs in videos with fast motion or abrupt changes,
where frames differ significantly over short intervals. C: Average loss across PredNet instances on the four videos introduced in
panel (A), with either static (light) or dynamic (dark) frame sequences.



Figure S7: Error-minimization over solely the first or all network layers yield similar temporal dynamics. A: The degree of
subadditive temporal summation for the error units in layer 1 to 4 (E1, E2, E3 and E4, respectively). PredNet instances were
trained on one of the four videos (rows) with an L0 (green) or Lall (blue) loss. Independent T-test, ∗∗∗ p < 0.001. B: Average
degree of recovery for same (blue) and different (yellow) repeated stimuli averaged over the inter-stimulus intervals, for the error
units in layer 1 to 4. The dotted black line depicts no temporal adaptation (value of 1). The horizontal solid lines in panel A (black)
and B (blue and yellow) depict the values derived from the neural data across all visual areas.
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