
Three-Way Trade-Off in Multi-Objective Learning:
Optimization, Generalization and Conflict-Avoidance

Lisha Chen†

Rensselaer Polytechnic Institute
Troy, NY, United States
chenl21@rpi.edu

Heshan Fernando†
Rensselaer Polytechnic Institute

Troy, NY, United States
fernah@rpi.edu

Yiming Ying
University of Sydney

Camperdown, Australia
yiming.ying@sydney.edu.au

Tianyi Chen
Rensselaer Polytechnic Institute

Troy, NY, United States
chentianyi19@gmail.com

Abstract

Multi-objective learning (MOL) often arises in emerging machine learning prob-
lems when multiple learning criteria or tasks need to be addressed. Recent works
have developed various dynamic weighting algorithms for MOL, including MGDA
and its variants, whose central idea is to find an update direction that avoids con-
flicts among objectives. Albeit its appealing intuition, empirical studies show
that dynamic weighting methods may not always outperform static alternatives.
To bridge this gap between theory and practice, we focus on a new variant of
stochastic MGDA - the Multi-objective gradient with Double sampling (MoDo)
algorithm and study its generalization performance and the interplay with opti-
mization through the lens of algorithm stability. We find that the rationale behind
MGDA – updating along conflict-avoidant direction - may impede dynamic weight-
ing algorithms from achieving the optimal O(1/

√
n) population risk, where n

is the number of training samples. We further highlight the variability of dy-
namic weights and their impact on the three-way trade-off among optimization,
generalization, and conflict avoidance that is unique in MOL. Code is available
at https://github.com/heshandevaka/Trade-Off-MOL.

1 Introduction

Multi-objective learning (MOL) emerges frequently in recent machine learning problems such as
learning under fairness and safety constraints [49]; learning across multiple tasks, including multi-task
learning [39] and meta-learning [47]; and, learning across multiple agents that may not share a global
utility including federated learning [40] and multi-agent reinforcement learning [33].

This work considers solving the empirical version of MOL defined on the training dataset as S =
{z1, . . . , zn}. The performance of a model x ∈ Rd on a datum z for the m-th objective is denoted
as fz,m : Rd 7→ R, and its performance on the entire training dataset S is measured by the m-th
empirical objective fS,m(x) for m ∈ [M]. MOL optimizes the vector-valued objective, given by

min
x∈Rd

FS(x) := [fS,1(x), . . . , fS,M (x)]. (1.1)

†Equal contribution.
The work of L. Chen, H. Fernando, and T. Chen was supported by the National Science Foundation (NSF)

MoDL-SCALE project 2134168 and the RPI-IBM Artificial Intelligence Research Collaboration (AIRC). The
work of Y. Ying was partially supported by NSF (DMS-2110836, IIS-2103450, and IIS-2110546).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/heshandevaka/Trade-Off-MOL

(a) Objective 1 (b) Objective 2 (c) MGDA (d) Static (e) MoDo (dynamic)

Figure 1: An example from [29] with two objectives (1a and 1b) to show the three-way trade-off
in MOL. Figures 1c-1e show the optimization trajectories, where the black • marks initializations
of the trajectories, colored from red (start) to yellow (end). The background solid/dotted contours
display the landscape of the average empirical/population objectives. The gray/green bar marks
empirical/population Pareto front, and the black ⋆/green ⋆ marks solution to the average objectives.

One natural method for solving (1.1) is to optimize the (weighted) average of the multiple objectives,
also known as static or unitary weighting [18, 45]. However, this method may face challenges due
to potential conflicts among multiple objectives during the optimization process; e.g., conflicting
gradient directions ⟨∇fS,m(x),∇fS,m′(x)⟩ < 0. A popular alternative is thus to dynamically weight
gradients from different objectives to avoid conflicts and obtain a direction d(x) that optimizes all
objective functions jointly that we call a conflict-avoidant (CA) direction. Algorithms in this category
include the multi-gradient descent algorithm (MGDA) [9], its stochastic variants [30, 10, 52]. While
the idea of finding CA direction in dynamic weighting-based approaches is very appealing, recent
empirical studies reveal that dynamic weighting methods may not outperform static weighting in
some MOL benchmarks [18, 45], especially when it involves stochastic updates and deep models.
Specifically, observed by [18], the vanilla stochastic MGDA can be under-optimized, leading to larger
training errors than static weighting. The reason behind this training performance degradation has
been studied in [52, 10], which suggest the vanilla stochastic MGDA has biased updates, and propose
momentum-based methods to address this issue. Nevertheless, in [45], it is demonstrated that the
training errors of MGDA and static weighting are similar, while their main difference lies in the
generalization performance. Unfortunately, the reason behind this testing performance degradation is
not fully understood and remains an open question.

To gain a deeper understanding of the dynamic weighting-based algorithms, a natural question is

Q1: What are the major sources of errors in dynamic weighting-based MOL methods?

To answer this question theoretically, we first introduce a proper measure of testing performance in
MOL – the Pareto stationary measure in terms of the population objectives, which will immediately
imply stronger measures such as Pareto optimality under strongly convex objectives. We then
decompose this measure into generalization error and optimization error and further introduce a new
metric on the distance to CA directions that is unique to MOL; see Sections 2.1 and 2.2.

To characterize the performance of MOL methods in a unified manner, we introduce a generic
dynamic weighting-based MOL method that we term stochastic Multi-Objective gradient with
DOuble sampling algorithm (MoDo), which uses a step size γ to control the change of dynamic
weights. Roughly speaking, by controlling γ, MoDo approximates MGDA (large γ) and static
weighting algorithm (γ = 0) as two special cases; see Section 2.3. We first analyze the generalization
error of the model learned by MoDo through the lens of algorithmic stability [3, 14, 24] in the
framework of statistical learning theory. To our best knowledge, this is the first-ever-known stability
analysis for MOL algorithms. Here the key contributions lie in defining a new notion of stability -
MOL uniform stability and then establishing a tight upper bound (matching lower bound) on the MOL
uniform stability for MoDo algorithm that involves two coupled sequences; see Section 3.1. We then
analyze the optimization error of MoDo and its distance to CA directions, where the key contributions
lie in relaxing the bounded function value/gradient assumptions and significantly improving the
convergence rate of state-of-the-art dynamic weighting-based MOL methods [10]; see Section 3.2.

Different from the stability analysis for single-objective learning [14], the techniques used in our
generalization and optimization analysis allow to remove conflicting assumptions and use larger step
sizes to ensure both small generalization and optimization errors, which are of independent interest.

Given the holistic analysis of dynamic weighting methods provided in Q1, a follow-up question is

Q2: What may cause the empirical performance degradation of dynamic weighting methods?

2

Region Opt. Gen. Conflict
Step sizes
α & γ

Iterations T
& data size n

I γ = ω(α) T = o(n)

II γ = ω(α) T = ω(n)

III γ = o(T−1) T = ω(n)

IV γ = Θ(α
1
2) = Θ(T− 1

4) T = Θ(n
4
5)

Figure 2: An illustration of three-way trade-off among optimization, generalization, and conflict
avoidance in the strongly convex case; α is the step size for x, γ is the step size for weights λ, where
o(·) denotes a strictly slower growth rate, ω(·) denotes a strictly faster growth rate, and Θ(·) denotes
the same growth rate. Arrows ↓ and ↑ respectively represent diminishing in an optimal rate and
growing in a fast rate w.r.t. n, while ↘ represents diminishing w.r.t. n, but not in an optimal rate.
Visualizing MOL solution concepts. To reason the root cause for this, we first compare different MOL
algorithms in a toy example shown in Figure 1. We find MGDA can navigate along CA directions
and converge to the empirical Pareto front under all initializations, while static weighting gets stuck
in some initializations; at the same time, the empirical Pareto solution obtained by MGDA may
incur a larger population risk than the suboptimal empirical solution obtained by the static weighting
method; finally, if the step size γ of dynamic weights is carefully tuned, MoDo can converge along
CA directions to the empirical Pareto optimal solution that also generalizes well.

Aligned with this toy example, our theoretical results suggest a novel three-way trade-off in the
performance of dynamic weighting-based MOL algorithm; see Section 3.3. Specifically, it suggests
that the step size for dynamic weighting γ plays a central role in the trade-off among convergence to
CA direction, convergence to empirical Pareto stationarity, and generalization error; see Figure 2. In
this sense, MGDA has an edge in convergence to the CA direction but it could sacrifice generalization;
the static weighting method cannot converge to the CA direction but guarantees convergence to the
empirical Pareto solutions and their generalization. Our analysis also suggests that MoDo achieves a
small population risk under a proper combination of step sizes and the number of iterations.

2 Problem Formulation and Target of Analysis
In this section, we first introduce the problem formulation of MOL, the target of analysis, the metric
to measure its generalization, and then present the MGDA algorithm and its stochastic variant.

2.1 Preliminaries of MOL
Denote the vector-valued objective function on datum z as Fz(x) = [fz,1(x), . . . , fz,M (x)]. The
training and testing performance of x can then be measured by the empirical objective FS(x) and
the population objective F (x) which are, respectively, defined as FS(x) := 1

n

∑n
i=1 Fzi(x) and

F (x) := Ez∼D[Fz(x)]. Their corresponding gradients are denoted as ∇FS(x) and ∇F (x) ∈ Rd×M .

Analogous to the stationary solution and optimal solution in single-objective learning, we define the
Pareto stationary point and Pareto optimal solution for MOL problem min

x∈Rd
F (x) as follows.

Definition 1 (Pareto stationary and Pareto optimal). If there exists a convex combination of the
gradient vectors that equals to zero, i.e., there exists λ ∈ ∆M such that ∇F (x)λ = 0, then x ∈ Rd

is Pareto stationary. If there is no x ∈ Rd and x ̸= x∗ such that, for all m ∈ [M] fm(x) ≤ fm(x∗),
with fm′(x) < fm′(x∗) for at least one m′ ∈ [M], then x∗ is Pareto optimal. If there is no x ∈ Rd

such that for all m ∈ [M], fm(x) < fm(x∗), then x∗ is weakly Pareto optimal.

By definition, at a Pareto stationary solution, there is no common descent direction for all objectives.
A necessary and sufficient condition for x being Pareto stationary for smooth objectives is that
minλ∈∆M ∥∇F (x)λ∥ = 0. Therefore, minλ∈∆M ∥∇F (x)λ∥ can be used as a measure of Pareto
stationarity (PS) [9, 11, 42, 30, 10]. We will refer to the aforementioned quantity as the PS population
risk henceforth and its empirical version as PS empirical risk or PS optimization error. We next
introduce the target of our analysis based on the above definitions.

2.2 Target of analysis and error decomposition

In existing generalization analysis for MOL, measures based on function values have been used
to derive generalization guarantees in terms of Pareto optimality [7, 41]. However, for general

3

nonconvex smooth MOL problems, it can only be guaranteed for an algorithm to converge to Pareto
stationarity of the empirical objective, i.e., a small minλ∈∆M ∥∇FS(x)λ∥ [9, 11, 30, 10]. Thus, it is
not reasonable to measure population risk in terms of Pareto optimality in this case. Furthermore,
when all the objectives are convex or strongly convex, Pareto stationarity is a sufficient condition for
weak Pareto optimality or Pareto optimality, respectively, as stated in Proposition 1.
Proposition 1 ([42, Lemma 2.2]). If fm(x) are convex or strongly-convex for all m ∈ [M], and
x ∈ Rd is a Pareto stationary point of F (x), then x is weakly Pareto optimal or Pareto optimal.

Next, we proceed to decompose the PS population risk.

Error Decomposition. Given a model x, the PS population risk can be decomposed into

min
λ∈∆M

∥∇F (x)λ∥︸ ︷︷ ︸
PS population risk Rpop(x)

= min
λ∈∆M

∥∇F (x)λ∥ − min
λ∈∆M

∥∇FS(x)λ∥︸ ︷︷ ︸
PS generalization error Rgen(x)

+ min
λ∈∆M

∥∇FS(x)λ∥︸ ︷︷ ︸
PS optimization error Ropt(x)

(2.1)

where the optimization error quantifies the training performance, i.e., how well does model x perform
on the training data; and the generalization error (gap) quantifies the difference between the testing
performance on new data sampled from D and the training performance, i.e., how well the model x
performs on unseen testing data compared to the training data.

Let A : Zn 7→ Rd denote a randomized MOL algorithm. Given training data S, we are interested in
the expected performance of the output model x = A(S), which is measured by EA,S [Rpop(A(S))].
From (2.1) and linearity of expectation, it holds that

EA,S [Rpop(A(S))] = EA,S [Rgen(A(S))] + EA,S [Ropt(A(S))]. (2.2)

Distance to CA direction. As demonstrated in Figure 1, the key merit of dynamic weighting over
static weighting algorithms lies in its ability to navigate through conflicting gradients. Consider an
update direction d = −∇FS(x)λ, where λ is the dynamic weights from a simplex λ ∈ ∆M := {λ ∈
RM | 1⊤λ = 1, λ ≥ 0}. To obtain such a steepest CA direction in unconstrained learning that
maximizes the minimum descent of all objectives, we can solve the following problem [11]

CA direction d(x) = argmin
d∈Rd

max
m∈[M]

{
⟨∇fS,m(x), d⟩+ 1

2
∥d∥2

}
(2.3a)

equivalent to⇐⇒ d(x) = −∇FS(x)λ
∗(x) s.t. λ∗(x) ∈ argmin

λ∈∆M

∥∇FS(x)λ∥2. (2.3b)

Defining dλ(x) = −∇FS(x)λ given x ∈ Rd and λ ∈ ∆M , we measure the distance to d(x) via [10]

CA direction error Eca(x, λ) := ∥dλ(x)− d(x)∥2. (2.4)

With the above definitions of measures that quantify the performance of algorithms in different
aspects, we then introduce a stochastic gradient algorithm for MOL that is analyzed in this work.

2.3 A stochastic algorithm for MOL

Algorithm 1 Stochastic MGDA - MoDo algorithm

1: input Training data S, initial model x0, weighting co-
efficient λ0, and their learning rates {αt}Tt=0, {γt}Tt=0.

2: for t = 0, . . . , T − 1 do
3: for objective m = 1, . . . ,M do
4: Independent gradients ∇fm,zt,s(xt), s ∈ [3]
5: end for
6: Compute dynamic weight λt+1 following (2.5a)
7: Update model parameter xt+1 following (2.5b)
8: end for
9: output xT

MGDA finds λ∗(x) in (2.3b) using the
full-batch gradient ∇FS(x), and then
constructs d(x) = −∇FS(x)λ

∗(x), a
CA direction for all empirical objectives
fS,m(x). However, in practical statisti-
cal learning settings, the full-batch gra-
dient ∇FS(x) may be costly to obtain,
and thus one may resort to a stochas-
tic estimate of ∇FS(x) instead. The di-
rect stochastic counterpart of MGDA, re-
ferred to as the stochastic multi-gradient
algorithm in [30], replaces the full-batch
gradients ∇fS,m(x) in (2.3b) with their
stochastic approximations ∇fz,m(x) for z ∈ S, which, however, introduces a biased stochastic
estimate of λ∗

t+1, thus a biased CA direction; see [10, Section 2.3].

4

Table 1: Comparison of optimization error, generalization error, and population risk under different
assumptions for static and dynamic weighting. Use “NC”, “SC” to represent nonconvex and strongly
convex, and “Lip-C”, “S” to represent Lipschitz continuous and smooth, respectively.

Assumption Method Optimization Generalization Risk CA Distance

NC,
Lip-C, S

Static (αT)−
1
2 + α

1
2 T

1
2 n− 1

2 n− 1
6 ✗

Dynamic (αT)−
1
2 + α

1
2 + γ

1
2 T

1
2 n− 1

2 n− 1
6 (γT)−1 + α

1
2 γ− 1

2 + γ

SC, S
Static (αT)−

1
2 + α

1
2 n− 1

2 n− 1
2 ✗

Dynamic (αT)−
1
2 + α

1
2 + γ

1
2

{
n− 1

2 , γ = O(T−1)

T
1
2 n− 1

2 , o.w.

{
n− 1

2

n− 1
6
(γT)−1 + α

1
2 γ− 1

2 + γ

To provide a tight analysis, we introduce a simple yet theoretically grounded stochastic variant of
MGDA - stochastic Multi-Objective gradient with DOuble sampling algorithm (MoDo). MoDo
obtains an unbiased stochastic estimate of the gradient of problem (2.3b) through double (in-
dependent) sampling and iteratively updates λ, because Ezt,1,zt,2 [∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt] =

∇FS(xt)
⊤∇FS(xt)λt. At each iteration t, denote zt,s as an independent sample from S with s ∈ [3],

and ∇Fzt,s(xt) as a stochastic estimate of ∇FS(xt). MoDo updates xt and λt as

λt+1 = Π∆M

(
λt − γt∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt

)
(2.5a)

xt+1 = xt − αt∇Fzt,3(xt)λt+1 (2.5b)

where αt, γt are step sizes, and Π∆M (·) denotes Euclidean projection to the simplex ∆M . We have
summarized the MoDo algorithm in Algorithm 1 and will focus on MoDo in the subsequent analysis.

3 Optimization, Generalization and Three-Way Trade-Off

This section presents the theoretical analysis of the PS population risk associated with the MoDo
algorithm, where the analysis of generalization error is in Section 3.1 and that of optimization error is
in Section 3.2. A summary of our main results is given in Table 1.

3.1 Multi-objective generalization and uniform stability

We first bound the expected PS generalization error by the generalization in gradients in Proposition 2,
then introduce the MOL uniform stability and establish its connection to the generalization in
gradients. Finally, we bound the MOL uniform stability.

Proposition 2. With ∥ · ∥F denoting the Frobenious norm, Rgen(A(S)) in (2.2) can be bounded by

EA,S [Rgen(A(S))] ≤ EA,S [∥∇F (A(S))−∇FS(A(S))∥F]. (3.1)

With Proposition 2, next we introduce the concept of MOL uniform stability tailored for MOL
problems and show that PS generalization error in MOL can be bounded by the MOL uniform stability.
Then we analyze their bound in general nonconvex case and strongly convex case, respectively.

Definition 2 (MOL uniform stability). A randomized algorithm A : Zn 7→ Rd, is MOL-uniformly
stable with ϵF if for all neighboring datasets S, S′ that differ in at most one sample, we have

sup
z

EA

[
∥∇Fz(A(S))−∇Fz(A(S′))∥2F

]
≤ ϵ2F. (3.2)

Next we show the relation between the upper bound of PS generalization error in (3.1) and MOL
uniform stability in Proposition 3.

Proposition 3 (MOL uniform stability and generalization). Assume for any z, the function Fz(x) is
differentiable. If a randomized algorithm A : Zn 7→ Rd is MOL-uniformly stable with ϵF, then

EA,S [∥∇F (A(S))−∇FS(A(S))∥F] ≤ 4ϵF +
√
n−1ES [Vz∼D(∇Fz(A(S)))] (3.3)

where the variance is defined as Vz∼D(∇Fz(A(S))) = Ez∼D
[
∥∇Fz(A(S))− Ez∼D[∇Fz(A(S))]∥2F

]
.

5

Proposition 3 establishes a connection between the upper bound of the PS generalization error and
the MOL uniform stability, where the former can be bounded above by the latter plus the variance
of the stochastic gradient over the population data distribution. It is worth noting that the standard
arguments of bounding the generalization error measured in function values by the uniform stability
measured in function values [14, Theorem 2.2] is not applicable here as the summation and norm
operators are not exchangeable. More explanations are given in the proof in Appendix B.1.

Theorem 1 (PS generalization error of MoDo in nonconvex case). If supz EA

[
∥∇Fz(A(S))∥2F

]
≤

G2 for any S, then the MOL uniform stability, i.e., ϵ2F in Definition 2 is bounded by ϵ2F ≤ 4G2T
/
n.

And the PS generalization error EA,S [Rgen(A(S))] = O(T
1
2n− 1

2).

Compared to the function value uniform stability upper bound in [14, Theorem 3.12] for nonconvex
single-objective learning, Theorem 1 does not require a step size decay αt = O(1/t), thus can enjoy
at least a polynomial convergence rate of optimization errors w.r.t. T . Combining Theorem 1 with
Proposition 3, to ensure the generalization error is diminishing with n, one needs to choose T = o(n),
which lies in the “early stopping” regime and results in potentially large optimization error. We then
provide a tighter bound in the strongly convex case that allows a larger choice of T . Below we list
the standard assumptions used to derive the introduced MOL stability.

Assumption 1 (Lipschitz continuity of ∇Fz(x)). For all m ∈ [M], ∇fz,m(x) is ℓf,1-Lipschitz
continuous for all z. And ∇Fz(x) is ℓF,1-Lipschitz continuous in Frobenius norm for all z.

Assumption 2. For all m ∈ [M], z ∈ Z , fz,m(x) is µ-strongly convex w.r.t. x, with µ > 0.

Note that in the strongly convex case, the gradient norm ∥∇Fz(x)∥F can be unbounded in Rd.
Therefore, one cannot assume Lipschitz continuity of fz,m(x) w.r.t. x ∈ Rd. We address this
challenge by showing that {xt} generated by the MoDo algorithm is bounded as stated in Lemma 1.
Notably, combining with Assumption 1, we can derive that the gradient norm ∥∇Fz(xt)∥F is also
bounded, which serves as a stepping stone to derive the MOL stability bound.

Lemma 1 (Boundedness of xt for strongly convex and smooth objectives). Suppose Assumptions 1,
2 hold. For {xt}, t ∈ [T] generated by MoDo algorithm or other dynamic weighting algorithm with
weight λ ∈ ∆M , step size αt = α, and 0 ≤ α ≤ ℓ−1

f,1, there exists a finite positive constant cx such
that ∥xt∥ ≤ cx. And there exists finite positive constants ℓf , ℓF =

√
Mℓf , such that for all λ ∈ ∆M ,

we have ∥∇F (xt)λ∥ ≤ ℓf , and ∥∇F (xt)∥F ≤ ℓF .

With Lemma 1, the stability bound and PS generalization is provided below.

Theorem 2 (PS generalization error of MoDo in strongly convex case). Suppose Assumptions 1,
2 hold. Let A be the MoDo algorithm (Algorithm 1). For the MOL uniform stability ϵF of
algorithm A in Definition 2, if the step sizes satisfy 0 < αt ≤ α ≤ 1/(2ℓf,1), and 0 < γt ≤ γ ≤
min{ µ2

120ℓ2f ℓg,1
, 1
8(3ℓ2f+2ℓg,1)

}/T , then it holds that

ϵ2F ≤ 48

µn
ℓ2f ℓ

2
F,1

(
α+

12 + 4Mℓ2f
µn

+
10Mℓ4fγ

µ

)
and EA,S [Rgen(A(S))] = O(n− 1

2). (3.4)

And there exist functions Fz(x) that satisfy Assumptions 1, 2, neighboring datasets S, S′ that
differ in at most one sample, and MoDo algorithm with step sizes 0 < αt ≤ α ≤ 1/(2ℓf,1), and
0 < γt ≤ γ ≤ min{ µ2

120ℓ2f ℓg,1
, 1
8(3ℓ2f+2ℓg,1)

}/T such that

EA

[
∥∇Fz(A(S))−∇Fz(A(S′))∥2F

]
≥ Mµ2

256n2
. (3.5)

Theorem 2 provides both upper and lower bounds for the MOL uniform stability. In this case, we
choose α = Θ(T− 1

2), γ = o(T−1), and T = Θ(n2) to minimize the PS population risk upper bound,
as detailed in Section 3.3. With this choice, the MOL uniform stability upper bound matches the
lower bound in an order of n−2, suggesting that our bound is tight. The generalization error bound
in (3.4) is a direct implication from the MOL uniform stability bound in (3.4), Propositions 2, and 3.

6

It states that the PS generalization error of MoDo is O(n− 1
2), which matches the generalization

error of static weighting up to a constant coefficient [22]. Our result also indicates that when all the
objectives are strongly convex, choosing small step sizes α and γ can benefit the generalization error.

3.2 Multi-objective optimization error

In this section, we bound the multi-objective PS optimization error minλ∈∆M ∥∇FS(x)λ∥ [9, 30, 10].
As discussed in Section 2.2, this measure being zero implies the model x achieves a Pareto stationarity
for the empirical problem.

Below we list an additional standard assumption used to derive the optimization error.

Assumption 3 (Lipschitz continuity of Fz(x)). For all m ∈ [M], fz,m(x) are ℓf -Lipschitz continuous
for all z. Then Fz(x) are ℓF -Lipschitz continuous in Frobenius norm for all z with ℓF =

√
Mℓf .

Lemma 2 (Distance to CA direction). Suppose either: 1) Assumptions 1, 3 hold; or 2) Assumptions 1,
2 hold, with ℓf and ℓF defined in Lemma 1. For {xt}, {λt} generated by MoDo, it holds that

1

T

T−1∑
t=0

EA[∥dλt(xt)− d(xt)∥2] ≤
4

γT
+ 6

√
Mℓf,1ℓ2f

α

γ
+ γMℓ4f . (3.6)

Lemma 2 analyzes convergence to the CA direction using the measure introduced in Section 2.2. By,
e.g., choosing α = Θ(T− 3

4), and γ = Θ(T− 1
4), the RHS of (3.6) converges in a rate of O(T− 1

4).

Theorem 3 (PS optimization error of MoDo). Suppose either: 1) Assumptions 1, 3 hold; or,
2) Assumptions 1, 2 hold, with ℓf defined in Lemma 1. Define cF such that EA[FS(x0)λ0] −
minx∈Rd EA[FS(x)λ0] ≤ cF . Considering {xt} generated by MoDo (Algorithm 1), with αt =
α ≤ 1/(2ℓf,1), γt = γ, then under either condition 1) or 2), it holds that

1

T

T−1∑
t=0

EA

[
min

λ∈∆M
∥∇FS(xt)λ∥

]
≤
√

cF
αT

+

√
3

2
γMℓ4f +

√
1

2
αℓf,1ℓ2f . (3.7)

The choice of step sizes α = Θ(T− 3
4), and γ = Θ(T− 1

4) to ensure convergence to CA direction is
suboptimal for the convergence to Pareto stationarity (see Theorem 3), exhibiting a trade-off between
convergence to the CA direction and convergence to Pareto stationarity; see discussion in Section 3.3.

3.3 Optimization, generalization and conflict avoidance trade-off

Combining the results in Sections 3.1 and 3.2, we are ready to analyze and summarize the three-way
trade-off of MoDo in MOL. With At(S) = xt denoting the output of algorithm A at the t-th iteration,
we can decompose the PS population risk Rpop(At(S)) as (cf. (2.1) and (3.1))

EA,S

[
Rpop(At(S))

]
≤ EA,S

[
min

λ∈∆M
∥∇FS(At(S))λ∥

]
+ EA,S

[
∥∇F (At(S))−∇FS(At(S))∥F

]
.

The general nonconvex case. Suppose Assumptions 1, 3 hold. By the generalization error in
Theorem 1, and the optimization error bound in Theorem 3, the PS population risk of the output of
MoDo can be bounded by

1

T

T−1∑
t=0

EA,S

[
Rpop(At(S))

]
= O

(
α− 1

2T− 1
2 + α

1
2 + γ

1
2 + T

1
2n− 1

2

)
. (3.8)

Discussion of trade-off. Choosing step sizes α = Θ(T− 1
2), γ = Θ(T− 1

2), and number of steps
T = Θ(n

2
3), then the expected PS population risk is O(n− 1

6), which matches the PS population risk
upper bound of a general nonconvex single objective in [22]. A clear trade-off in this case is between
the optimization error and generalization error, controlled by T . Indeed, increasing T leads to smaller
optimization errors but larger generalization errors, and vice versa. To satisfy convergence to CA

7

direction, it requires γ = ω(α) based on Lemma 2, and the optimization error in turn becomes worse,
so does the PS population risk. Specifically, choosing α = Θ(T− 1

2), γ = Θ(T− 1
4), and T = Θ(n

4
5)

leads to the expected PS population risk in O(n− 1
10), and the distance to CA direction in O(n− 1

10).
This shows another trade-off between conflict avoidance and optimization error.

The strongly convex case. Suppose Assumptions 1, 2 hold. By the generalization error and the
optimization error given in Theorems 2 and 3, MoDo’s PS population risk can be bounded by

1

T

T−1∑
t=0

EA,S

[
Rpop(At(S))

]
= O

(
α− 1

2T− 1
2 + α

1
2 + γ

1
2 + n− 1

2

)
. (3.9)

Discussion of trade-off. Choosing step sizes α = Θ(T− 1
2), γ = o(T−1), and number of steps

T = Θ(n2), we have the expected PS population risk in gradients is O(n− 1
2). However, choosing

γ = o(T−1) leads to large distance to the CA direction according to Lemma 2 because the term 4
γT

in (3.6) increases with T . To ensure convergence to the CA direction, it requires γ = ω(T−1), under
which the tighter bound in Theorem 2 does not hold but the bound in Theorem 1 still holds. In this
case, the PS population risk under proper choices of α, γ, T is O(n− 1

6) as discussed in the previous
paragraph. Therefore, to avoid conflict of gradients, one needs to sacrifice the sample complexity of
PS population risk, demonstrating a trade-off between conflict avoidance and PS population risk.

4 Related Works and Our Technical Contributions

Multi-task learning (MTL). MTL, as one application of MOL, leverages shared information among
different tasks to train a model that can perform multiple tasks. MTL has been widely applied to
natural language processing, computer vision, and robotics [15, 38, 50, 43]. From the optimization
perspective, a simple method for MTL is to take the weighted average of the per-task losses as the
objective. However, as studied in [16], the static weighting method is not able to find all the Pareto
optimal models in general. Alternatively, the weights can be updated dynamically during optimization,
and the weights for different tasks can be chosen based on different criteria such as uncertainty [17],
gradient norms [6], or task difficulty [13]. These methods are often heuristic and designed for specific
applications. Another line of work tackles MTL through MOL [39, 48, 29, 12]. A foundational
algorithm in this regard is MGDA [9], which takes dynamic weighting of gradients to obtain a CA
direction for all objectives. Stochastic versions of MGDA have been proposed in [30, 52, 10]. Besides
finding one single model, algorithms for finding a set of Pareto optimal models rather than one have
been proposed in [28, 35, 31, 20, 46, 51, 32, 27, 34].

Theory of MOL. Optimization convergence analysis for the deterministic MGDA algorithm has been
provided in [11]. Later on, stochastic variants of MGDA were introduced [30, 52, 10]. However,
the vanilla stochastic MGDA introduces biased estimates of the dynamic weight, resulting in biased
estimates of the CA directions during optimization. To address this, Liu et al. [30] proposed to
increase the batch size during optimization, Zhou et al. [52] and Fernando et al. [10] proposed to
use momentum-based bias reduction techniques. Compared to these works on the optimization
analysis, we have improved the assumptions and/or the final convergence rate of the PS optimization
error. A detailed comparison is summarized in Table 2. While the community has a rich history of
investigating the optimization of MOL algorithms, their generalization guarantee remains unexplored
until recently. In [7], a min-max formulation to solve the MOL problem is analyzed, where the
weights are chosen based on the maximum function values, rather than the CA direction. More
recently, [41] provides generalization guarantees for MOL for a more general class of weighting.
These two works analyze generalization based on the Rademacher complexity of the hypothesis class,
with generalization bound independent of the training process. Different from these works, we use
algorithm stability to derive the first algorithm-dependent generalization error bounds, highlighting
the effect of the training dynamics. In contrast to previous MOL theoretical works that focus solely on
either optimization [10, 52] or generalization [7, 41], we propose a holistic framework to analyze three
types of errors, namely, optimization, generalization, and CA distance in MOL with an instantiation
of the MoDo algorithm. This allows us to study the impact of the hyperparameters on the theoretical
testing performance, and their optimal values to achieve the best trade-off among the errors. Our
theory and algorithm design can also be applied to algorithms such as PCGrad [48], CAGrad [29],
and GradNorm [6]. Specifically, for example, the implementation of CAGrad takes iterative updates
of the dynamic weight using a single stochastic estimate, resulting in a biased estimate of the update

8

Table 2: Comparison with prior stochastic MOL algorithms in terms of assumptions and the guarantees
of the three errors, where logarithmic dependence is omitted, and Opt., CA dist., and Gen. are short
for optimization error, CA distance, and generalization error, respectively.

Algorithm Batch
size NC Lipschitz

λ∗(x)
Bounded
function Opt. CA

dist. Gen.

SMG [30, Thm 5.3] O(t) ✗ ✓ ✗ T− 1
8 - -

CR-MOGM [52, Thm 3] O(1) ✓ ✗ ✓ T− 1
4 - -

MoCo [10, Thm 2] O(1) ✓ ✗ ✗ T− 1
20 T− 1

5 -
MoCo [10, Thm 4] O(1) ✓ ✗ ✓ T− 1

4 O(1) -
MoDo (Ours, Thms 1,2,3) O(1) ✓ ✗ ✗ T− 1

4 O(1) T
1
2 n− 1

2

MoDo (Ours, Thms 1,2,3) O(1) ✓ ✗ ✗ T− 1
8 T− 1

4 T
1
2 n− 1

2

direction, thus no guarantee of convergence for the stochastic algorithm. This issue can be addressed
by the double sampling technique introduced in this paper. In addition, our analysis techniques have
been applied to improve the analysis of convergence rates for other algorithms [44, 5].

Algorithm stability and generalization. Stability analysis dates back to the work [8] in 1970s.
Uniform stability and its relationship with generalization were studied in [3] for the exact minimizer
of the ERM problem with strongly convex objectives. The work [14] pioneered the stability analysis
for stochastic gradient descent (SGD) algorithms with convex and smooth objectives. The results were
extended and refined in [19] with data-dependent bounds, in [4, 37, 23] for non-convex objectives,
and in [1, 24] for SGD with non-smooth and convex losses. However, all these studies mainly focus
on single-objective learning problems. To our best knowledge, there is no existing work on the
stability and generalization analysis for multi-objective learning problems and our results on its
stability and generalization are the first-ever-known ones.

Challenges and contributions. Our contributions are highly non-trivial as summarized below.
• The definition of PS testing risk in gradient (2.1) is unique in MOL, and overcomes the unnecessarily
small step sizes usually brought by the classical function value-based risk analysis. Specifically, prior
stability analysis in function values for single objective learning [14] requires 1/t step size decay
in the nonconvex case, otherwise, the generalization error bound will depend exponentially on the
number of iterations. However such step sizes lead to very slow convergence of the optimization
error. This is addressed by the definitions of gradient-based measures and sampling-determined MOL
algorithms, which yield stability bounds in O(T/n) without any step size decay. See Theorem 1.
• The stability of the dynamic weighting algorithm in the strongly convex (SC) case is non-trivial
compared to single objective learning [14] because it involves two coupled sequences during the
update. As a result, the classical contraction property for the update function of the model parameters
that are often used to derive stability does not hold. This is addressed by controlling the change of λt

by the step size γ, and using mathematical induction to derive a tighter bound. See Appendix B.4.
• In the SC case with an unbounded domain, the function is not Lipschitz or the gradients are
unbounded, which violates the commonly used bounded gradient assumption for proving the stability
and optimization error. We relax this assumption by proving that the iterates generated by dynamic
weighting algorithms in the SC case are bounded on the optimization trajectory in Lemma 1.

5 Experiments
In this section, we conduct experiments to further demonstrate the three-way trade-off among the
optimization, generalization, and conflict avoidance of the MoDo algorithm. An average of 10
random seeds with 0.5 standard deviation is reported if not otherwise specified.

5.1 Synthetic experiments
Our theory in the SC case is first verified through a synthetic experiment; see the details in Ap-
pendix D.1. Figure 3a shows the PS optimization error and PS population risk, as well as the distance
to CA direction, decreases as T increases, which corroborates Lemma 2, and Theorem 3. In addition,
the generalization error, in this case, does not vary much with T , verifying Theorems 2. In Figure 3b,
the optimization error first decreases and then increases as α increases, which is consistent with
Theorem 3. Notably, we observe a threshold for α below which the distance to the CA direction
converges even when the optimization error does not converge, while beyond which the distance
to the CA direction becomes larger, verifying Lemma 2. Additionally, Figure 3c demonstrates that

9

101 102 103 104

T (log scale)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

o
rs

Ropt

Rgen

Rpop

Eca

(a) Number of iterations T .

10-3 10-2 10-1

, (log scale)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
s

(b) Different step size α.

10-3 10-2 10-1

. (log scale)

0

0.5

1

1.5

E
rr

o
rs

(c) Different step size γ.

Figure 3: Optimization, generalization, and CA direction errors of MoDo in the strongly convex case
under different T, α, γ. The default parameters are T = 100, α = 0.01, γ = 0.001.

102 103 104 105

T (log scale)

0

1

2

3

4

5

6

7

E
rr

or
s

#10-3

Ropt

Rgen

Rpop

Eca

(a) Number of iterations T

10-2 10-1 100

, (log scale)

0

1

2

3

4

5

E
rr

o
rs

#10-3

(b) Different step size α

10-2 10-1 100

. (log scale)

0

1

2

3

4

5

E
rr

o
rs

#10-3

(c) Different step size γ

Figure 4: Optimization, generalization, and CA direction errors of MoDo for MNIST image classifi-
cation under different T , α, and γ. The default parameters are T = 1000, α = 0.1, and γ = 0.01.

increasing γ enlarges the PS optimization error, PS generalization error, and thus the PS population
risk, but decreases the distance to CA direction, which supports Lemma 2.

5.2 Image classification experiments
We further verify our theory in the NC case on MNIST image classification [21] using a multi-layer
perceptron and three objectives: cross-entropy, mean squared error (MSE), and Huber loss. Following
Section 2.2, we evaluate the performance in terms of Rpop(x), Ropt(x), Rgen(x), and Eca(x, λ). The
exact PS population risk Rpop(x) is not accessible without the true data distribution. To estimate the
PS population risk, we evaluate minλ∈∆M ∥∇FSte(x)λ∥ on the testing data set Ste that is independent
of training data set S. The PS optimization error Ropt(x) is obtained by minλ∈∆M ∥∇FS(x)λ∥, and
the PS generalization error Rgen(x) is estimated by minλ∈∆M ∥∇FSte(x)λ∥ −Ropt(x).

Table 3: Classification results on Office-31 dataset.

Method
Amazon DSLR Webcam

∆A% ↓
Test Acc ↑ Test Acc ↑ Test Acc ↑

Static 84.62 ± 0.71 94.43 ± 0.96 97.44 ± 1.20 2.56 ± 0.37
MGDA 79.45 ± 0.11 96.56 ± 1.20 97.89 ± 0.74 3.65 ± 0.64
MoDo 85.13 ± 0.58 95.41 ± 0.98 96.78 ± 0.65 2.26 ± 0.31

We examine the impact of differ-
ent T , α, γ on the errors in Fig-
ure 4. Figure 4a shows that in-
creasing T reduces optimization
error and CA direction distance
but increases generalization er-
ror, aligning with Theorems 1, 2,
and 3. Figure 4b shows that in-
creasing α leads to an initial de-
crease and subsequent increase
in PS optimization error and population risk. which aligns with Theorem 3 and (3.8). On the other
hand, there is an overall increase in CA direction distance with α, which aligns with Theorem 2.
Figure 4c shows that increasing γ increases both the PS population and optimization errors but
decreases CA direction distance. This matches our bounds for PS optimization error in Theorem 3,
PS population risk in (3.8), and CA direction distance in Theorem 2.

6 Conclusions
This work studies the three-way trade-off in MOL – among optimization, generalization, and conflict
avoidance. Our results show that, in the general nonconvex setting, the traditional trade-off between
optimization and generalization depending on the number of iterations also exists in MOL. Moreover,
dynamic weighting algorithms like MoDo introduce a new dimension of trade-off in terms of
conflict avoidance compared to static weighting. We demonstrate that this three-way trade-off can be
controlled by the step size for updating the dynamic weighting parameter and the number of iterations.
Proper choice of these parameters can lead to decent performance on all three metrics.

10

Broader impacts and limitations

This work has a potential impact on designing dynamic weighting algorithms and choosing hyper-
parameters such as step sizes and number of iterations based on the trade-off for MTL applications
such as multi-language translation, and multi-agent reinforcement learning. No ethical concerns arise
from this work. A limitation of this study is that the theory focuses on a specific algorithm, MoDo,
for smooth objectives in unconstrained learning. Future research could explore the theory of other
algorithms for non-smooth objectives or constrained learning, which would be interesting directions
to pursue.

References
[1] Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic

gradient descent on nonsmooth convex losses. In Proc. Advances in Neural Information
Processing Systems, volume 33, virtual, 2020.

[2] Amir Beck and Marc Teboulle. Gradient-based algorithms with applications to signal-recovery
problems. In Convex Optimization in Signal Processing and Communications, 2010.

[3] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine Learning
Research, 2:499–526, March 2002.

[4] Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms
that converge to global optima. In Proc. International Conference on Machine Learning, pages
744–753, Stockholm, Sweden, 2018.

[5] Lisha Chen, Heshan Fernando, Yiming Ying, and Tianyi Chen. Three-way trade-off in
multi-objective learning: Optimization, generalization and conflict-avoidance. arXiv preprint
arXiv:2305.20057, 2023.

[6] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Proc. International
Conference on Machine Learning, virtual, July 2018.

[7] Corinna Cortes, Mehryar Mohri, Javier Gonzalvo, and Dmitry Storcheus. Agnostic learning with
multiple objectives. In Proc. Advances in Neural Information Processing Systems, volume 33,
pages 20485–20495, virtual, 2020.

[8] Luc Devroye and Terry Wagner. Distribution-free performance bounds for potential function
rules. IEEE Transactions on Information Theory, 25(5):601–604, 1979.

[9] Jean-Antoine Désidéri. Multiple-gradient Descent Algorithm (MGDA) for Multi-objective
Optimization. Comptes Rendus Mathematique, 350(5-6), 2012.

[10] Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi
Chen. Mitigating gradient bias in multi-objective learning: A provably convergent stochastic
approach. In Proc. International Conference on Learning Representations, Kigali, Rwanda,
2023.

[11] Jörg Fliege, A Ismael F Vaz, and Luís Nunes Vicente. Complexity of Gradient Descent for
Multi-objective Optimization. Optimization Methods and Software, 34(5):949–959, 2019.

[12] Xiang Gu, Xi Yu, Jian Sun, Zongben Xu, et al. Adversarial reweighting for partial domain
adaptation. In Proc. Advances in Neural Information Processing Systems, virtual, December
2021.

[13] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task
prioritization for multitask learning. In Proceedings of the European conference on computer
vision, Munich, Germany, July 2018.

[14] Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. In Proc. International Conference on Machine Learning, pages
1225–1234, New York City, NY, 2016.

11

[15] Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A Joint Many-
task Model: Growing a Neural Network for Multiple NLP Tasks. arXiv preprint:1611.01587,
2016.

[16] Yuzheng Hu, Ruicheng Xian, Qilong Wu, Qiuling Fan, Lang Yin, and Han Zhao. Revisiting
scalarization in multi-task learning: A theoretical perspective. In Proc. Advances in Neural
Information Processing Systems, New Orleans, LA, 2023.

[17] A Kendall, Y Gal, and R Cipolla. Multi-task learning using uncertainty to weigh losses for
scene geometry and semantics. arXiv preprint:1705.07115, 2017.

[18] Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda.
In defense of the unitary scalarization for deep multi-task learning. In Proc. Advances in Neural
Information Processing Systems, volume 35, pages 12169–12183, New Orleans, LA, 2022.

[19] Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent.
In Proc. International Conference on Machine Learning, pages 2815–2824, Stockholm, Sweden,
2018.

[20] Panagiotis Kyriakis, Jyotirmoy Deshmukh, and Paul Bogdan. Pareto policy adaptation. In Proc.
International Conference on Learning Representations, virtual, 2021.

[21] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,
1998.

[22] Yunwen Lei. Stability and generalization of stochastic optimization with nonconvex and
nonsmooth problems. In Proc. Annual Conference on Learning Theory, Bangalore, India, July
2023.

[23] Yunwen Lei, Rong Jin, and Yiming Ying. Stability and generalization analysis of gradient
methods for shallow neural networks. In Proc. Advances in Neural Information Processing
Systems, New Orleans, LA, 2022.

[24] Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic
gradient descent. In Proc. International Conference on Machine Learning, pages 5809–5819,
virtual, 2020.

[25] Baijiong Lin, Ye Feiyang, Yu Zhang, and Ivor Tsang. Reasonable effectiveness of random
weighting: A litmus test for multi-task learning. Transactions on Machine Learning Research,
2022.

[26] Baijiong Lin and Yu Zhang. LibMTL: A python library for multi-task learning. arXiv preprint
arXiv:2203.14338, 2022.

[27] Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective
combinatorial optimization. arXiv preprint arXiv:2203.15386, 2022.

[28] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task
learning. In Proc. Advances in Neural Information Processing Systems, Vancouver, Canada,
December 2019.

[29] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-Averse Gradient
Descent for Multi-task Learning. In Proc. Advances in Neural Information Processing Systems,
virtual, December 2021.

[30] Suyun Liu and Luis Nunes Vicente. The Stochastic Multi-gradient Algorithm for Multi-objective
Optimization and its Application to Supervised Machine Learning. Annals of Operations
Research, pages 1–30, 2021.

[31] Xingchao Liu, Xin Tong, and Qiang Liu. Profiling Pareto Front With Multi-Objective Stein
Variational Gradient Descent. In Proc. Advances in Neural Information Processing Systems,
virtual, December 2021.

[32] Debabrata Mahapatra and Vaibhav Rajan. Exact pareto optimal search for multi-task learning:
Touring the pareto front. arXiv preprint:2108.00597, 2021.

12

[33] Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of
pareto dominating policies. Journal of Machine Learning Research, 15(107):3663–3692, 2014.

[34] Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective/multi-task learning
framework induced by pareto stationarity. In Proc. International Conference on Machine
Learning, pages 15895–15907, Baltimore, MD, 2022.

[35] Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the pareto front with
hypernetworks. In Proc. International Conference on Learning Representations, virtual, April
2020.

[36] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer
Publishing Company, Incorporated, 1 edition, 2014.

[37] Dominic Richards and Ilja Kuzborskij. Stability & generalisation of gradient descent for shallow
neural networks without the neural tangent kernel. In Proc. Advances in Neural Information
Processing Systems, volume 34, virtual, 2021.

[38] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv
preprint:1706.05098, 2017.

[39] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Proc.
Advances in Neural Information Processing Systems, Montreal, Canada, December 2018.

[40] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Proc. Advances in Neural Information Processing Systems, volume 30,
Long Beach, CA, 2017.

[41] Peter Súkeník and Christoph H Lampert. Generalization in multi-objective machine learning.
arXiv preprint arXiv:2208.13499, 2022.

[42] Hiroki Tanabe, Ellen H. Fukuda, and Nobuo Yamashita. Proximal gradient methods for multi-
objective optimization and their applications. Computational Optimization and Applications,
72(2):339–361, 2019.

[43] Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin
Dai, and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Trans.
Pattern Anal. Machine Intell., 2021.

[44] Peiyao Xiao, Hao Ban, and Kaiyi Ji. Direction-oriented multi-objective learning: Simple and
provable stochastic algorithms. In Proc. Advances in Neural Information Processing Systems,
New Orleans, LA, 2023.

[45] Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current
multi-task optimization methods in deep learning even help? In Proc. Advances in Neural
Information Processing Systems, volume 35, pages 13597–13609, New Orleans, LA, 2022.

[46] Yijun Yang, Jing Jiang, Tianyi Zhou, Jie Ma, and Yuhui Shi. Pareto policy pool for model-based
offline reinforcement learning. In Proc. International Conference on Learning Representations,
virtual, 2021.

[47] Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, and Yu Zhang. Multi-
objective meta learning. In Proc. Advances in Neural Information Processing Systems, vol-
ume 34, pages 21338–21351, virtual, 2021.

[48] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Proc. Advances in Neural Information Processing
Systems, virtual, December 2020.

[49] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi.
Fairness constraints: Mechanisms for fair classification. In Proc. International Conference on
Artificial Intelligence and Statistics, pages 962–970, Fort Lauderdale, FL, 2017.

13

[50] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Trans. Knowledge Data
Eng., 2021.

[51] Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian.
Multi-objective optimization by learning space partitions. arXiv preprint arXiv:2110.03173,
2021.

[52] Shiji Zhou, Wenpeng Zhang, Jiyan Jiang, Wenliang Zhong, Jinjie Gu, and Wenwu Zhu. On the
convergence of stochastic multi-objective gradient manipulation and beyond. In Proc. Advances
in Neural Information Processing Systems, volume 35, pages 38103–38115, New Orleans, LA,
December 2022.

14

Appendix for “Three-Way Trade-Off in Multi-Objective
Learning: Optimization, Generalization and Conflict-Avoidance "

Table of Contents
A Notations 15

B Bounding the generalization error 16

B.1 Proof of Propositions 2-3 . 16

B.2 Proof of Theorem 1 – PS generalization error in nonconvex case 18

B.3 Proof of Lemma 1 – Boundedness of xt in strongly convex case 19

B.4 Proof of Theorem 2 – PS generalization error in strongly convex case 23

C Bounding the optimization error 36

C.1 Auxiliary lemmas . 36

C.2 Proof of Lemma 2 – Distance to CA direction 38

C.3 Proof of Theorem 3 – PS optimization error . 40

D Additional experiments and implementation details 43

D.1 Synthetic experiments . 43

D.2 Multi-task supervised learning experiments . 45

A Notations

A summary of notations used in this work is listed in Table 4 for ease of reference.

Table 4: Notations and their descriptions.
Notations Descriptions

x ∈ Rd Model parameter, or decision variable
z ∈ Z Data point for training or testing
S ∈ Zn Dataset such that S = {z1, . . . , zn}

fz,m(x), fS,m(x)
A scalar-valued objective function evaluated on data point z,
with fz,m : Rd 7→ R, or on dataset S, fS,m, with fS,m := 1

|S|
∑

z∈S fz,m(x)

fm(x) A scalar-valued population objective function, fm(x) := Ez[fz,m(x)]
∇fm(x) Gradient of fm(x), with ∇fm(x) : Rd 7→ Rd

Fz(x), FS(x)
A vector-valued objective function evaluated on data point z,
with Fz : Rd 7→ RM , or on dataset S, with FS := 1

|S|
∑

z∈S Fz(x)

F (x) A vector-valued population objective, F (x) := Ez[fz,m(x)]
∇F (x) Gradient of F (x), with ∇F (x) : Rd 7→ Rd×M

λ ∈ ∆M Weighting parameter in an (M − 1)-simplex
λ∗
ρ(x) ∈ ∆M CA weight, optimal solution to (2.3), when ρ = 0, it is simplified as λ∗(x)

1 ∈ RM All-one vector with dimension M
α Step size to update model parameter x
γ Step size to update weight λ

In the proof, we use ∥ · ∥ to denote the spectral norm, and ∥ · ∥F to denote the Frobenius norm.

15

B Bounding the generalization error

B.1 Proof of Propositions 2-3

In this subsection, we prove Propositions 2-3, which establishes the relation between PS generalization
error and MOL uniform stability.

Proof of Proposition 2. For a given model x, it holds that
Rgen(x) = min

λ∈∆M
∥∇F (x)λ∥ − min

λ∈∆M
∥∇FS(x)λ∥

=− max
λ∈∆M

−∥∇F (x)λ∥+ max
λ∈∆M

−∥∇FS(x)λ∥

(a)

≤ max
λ∈∆M

(∥∇F (x)λ∥ − ∥∇FS(x)λ∥)
(b)

≤ max
λ∈∆M

(∥(∇F (x)−∇FS(x))λ∥)

(c)

≤ max
λ∈∆M

(∥∇F (x)−∇FS(x)∥F∥λ∥F) ≤ ∥∇F (x)−∇FS(x)∥F (B.1)

where (a) follows from the subadditivity of max operator, (b) follows from triangle inequality, (c)
follows from Cauchy-Schwartz inequality.

Setting x = A(S), and taking expectation over A,S on both sides of the above inequality, we have
EA,S [Rgen(A(S))] ≤ EA,S [∥∇F (A(S))−∇FS(A(S))∥F]. (B.2)

Proof of Proposition 3. The proof extends that of [22] for single objective learning to our MOL
setting. Recall that S = {z1, . . . , zn}, which are drawn i.i.d. from the data distribution D. Define
the perturbed dataset S(i) = {z1, . . . , z′i, . . . , zn} sampled i.i.d. from D with z′i independent of zj ,
for all i, j ∈ [n]. Let z̃ be an independent sample of zj , z′j , for all j ∈ [n], and from the same
distribution D. We first decompose the difference of population gradient and empirical gradient on
the algorithm output n(∇F (A(S))−∇FS(A(S))) as follows using the gradient on A(S(i)). Since
Ez̃[∇Fz̃(A(S))] = ∇F (A(S)), it holds that

n
(
∇F (A(S))−∇FS(A(S))

)
= nEz̃[∇Fz̃(A(S))]− n∇FS(A(S))

=nEz̃[∇Fz̃(A(S))]−

(
n∑

i=1

∇Fzi(A(S))

)
+

n∑
i=1

(
Ez′

i
[∇F (A(S(i)))]− Ez′

i
[∇F (A(S(i)))]

)
+

n∑
i=1

(
Ez′

i
[∇Fzi(A(S(i)))]− Ez′

i
[∇Fzi(A(S(i)))]

)
=

n∑
i=1

Ez̃,z′
i
[∇Fz̃(A(S))−∇Fz̃(A(S(i)))] +

n∑
i=1

Ez′
i
[Ez̃[∇Fz̃(A(S(i)))]−∇Fzi(A(S(i)))]︸ ︷︷ ︸

ξi(S)

+

n∑
i=1

Ez′
i

[
∇Fzi(A(S(i)))−∇Fzi(A(S))

]
(B.3)

where the last equality follows from rearranging and that zi, z′i, z̃ are mutually independent. Applying
triangle inequality to (B.3), it then follows that

n∥∇F (A(S))−∇FS(A(S))∥F ≤
n∑

i=1

Ez̃,z′
i
[∥∇Fz̃(A(S))−∇Fz̃(A(S(i)))∥F] +

∥∥∥ n∑
i=1

ξi(S)
∥∥∥
F

+

n∑
i=1

Ez′
i
[∥∇Fzi(A(S(i)))−∇Fzi(A(S))∥F]. (B.4)

Note S and S(i) differ by a single sample. By Definition 2, the MOL uniform stability ϵF, and
Jensen’s inequality, we further get

nE [∥∇F (A(S))−∇FS(A(S))∥F] ≤ 2nϵF + E
[∥∥∥ n∑

i=1

ξi(S)
∥∥∥
F

]
. (B.5)

16

We then proceed to bound E
[∥∥∑n

i=1 ξi(S)
∥∥
F

]
, which satisfies(

E
[∥∥∥ n∑

i=1

ξi(S)
∥∥∥
F

])2

≤ E
[∥∥∥ n∑

i=1

ξi(S)
∥∥∥2
F

]
=

n∑
i=1

E
[
∥ξi(S)∥2F

]︸ ︷︷ ︸
J1,i

+
∑

i,j∈[n]:i ̸=j

E[⟨ξi(S), ξj(S)⟩]︸ ︷︷ ︸
J2,i,j

.

(B.6)

For J1,i, according to the definition of ξi(S) in (B.3) and Jensen inequality, it holds that

J1,i = E[∥ξi(S)∥2F] = E
[∥∥Ez′

i

[
Ez̃[∇Fz̃(A(S(i)))]−∇Fzi(A(S(i)))

]∥∥2
F

]
(a)

≤ E
[∥∥Ez̃[∇Fz̃(A(S(i)))]−∇Fzi(A(S(i)))

∥∥2
F

]
(b)
= E

[∥∥Ez̃[∇Fz̃(A(S))]−∇Fz′
i
(A(S))

∥∥2
F

]
= E [Vz̃(∇Fz̃(A(S)))] , (B.7)

where (a) follows from Jensen’s inequality, (b) follows from the symmetry between zi and z′i. To
bound J2,i,j with i ̸= j, further introduce S′′ = {z′′1 , . . . , z′′n} which are drawn i.i.d. from the data
distribution D. Then for each i, j ∈ [n] with i ̸= j, introduce Sj as a neighboring dataset of S by
replacing its zj with z′′j , and S

(i)
j as a neighboring dataset of S(i) by replacing its zj with z′′j , i.e.,

Sj = {z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn}, (B.8a)

S
(i)
j = {z1, . . . , zi−1, z

′
i, zi+1, . . . , zj−1, z

′′
j , zj+1, . . . , zn}. (B.8b)

Then the idea is to bound J2,i,j using the newly introduced neighboring datasets Sj and S
(i)
j ,

so as to connect to the definition of the stability ϵF. We first show that E [⟨ξi(S), ξj(S)⟩] =
E [⟨ξi(S)− ξi(Sj), ξj(S)− ξj(Si)⟩] because for i ̸= j,

E [⟨ξi(Sj), ξj(S)⟩]
(c)
= 0, E [⟨ξi(Sj), ξj(Si)⟩]

(d)
= 0, E [⟨ξi(Sj), ξj(Si)⟩]

(e)
= 0. (B.9)

For i ̸= j, (c) follows from

E [⟨ξi(Sj), ξj(S)⟩] = EEzj [⟨ξi(Sj), ξj(S)⟩] = E
[〈
ξi(Sj),Ezj [ξj(S)]

〉]
= 0, (B.10)

where the second identity holds since ξi(Sj) is independent of zj and the last identity follows from
Ezj [ξj(S)] = 0 due to the symmetry between z̃ and zi, and their independence with S(i), derived as

Ezi [ξi(S)] = Ezi

[
Ez′

i
[Ez̃[∇Fz̃(A(S(i)))]−∇Fzi(A(S(i)))]

]
= 0, ∀i ∈ [n]. (B.11)

In a similar way, for i ̸= j, (d) and (e) follow from

E [⟨ξi(S), ξj(Si)⟩] = EEzi [⟨ξi(S), ξj(Si)⟩] = E [⟨ξj(Si),Ezi [ξi(S)]⟩] = 0, (B.12)
E [⟨ξi(Sj), ξj(Si)⟩] = EEzi [⟨ξi(Sj), ξj(Si)⟩] = E [⟨ξj(Si),Ezi [ξi(Sj)]⟩] = 0. (B.13)

Based on (B.9), for i ̸= j we have

J2,i,j =E [⟨ξi(S), ξj(S)⟩] = E [⟨ξi(S)− ξi(Sj), ξj(S)− ξj(Si)⟩]
≤E

[
∥ξi(S)− ξi(Sj)∥F ∥ξj(S)− ξj(Si)∥F

]
≤1

2
E
[
∥ξi(S)− ξi(Sj)∥2F

]
+

1

2
E
[
∥ξj(S)− ξj(Si)∥2F

]
(B.14)

where we have used ab ≤ 1
2

(
a2 + b2

)
. According to the definition of ξi(S) and ξi(Sj) we know the

following identity for i ̸= j

E
[
∥ξi(S)− ξi(Sj)∥2F

]
=E
[∥∥∥Ez′

i
Ez̃

[
∇Fz̃(A(S(i)))−∇Fz̃(A(S

(i)
j))

]
+ Ez′

i

[
∇Fzi(A(S

(i)
j))−∇Fzi(A(S(i)))

]∥∥∥2
F

]
. (B.15)

17

It then follows from the inequality (a+ b)2 ≤ 2
(
a2 + b2

)
and the Jensen’s inequality that

E[∥ξi(S)− ξi(Sj)∥2F] ≤2E[∥∇Fz̃(A(S(i)))−∇Fz̃(A(S
(i)
j))∥2F]

+ 2E[∥∇Fzi(A(S
(i)
j))−∇Fzi(A(S(i)))∥2F]. (B.16)

Since S(i), S(i)
j and S(j), S(j)

i are two pairs of neighboring datasets, it follows from the definition of
stability that

E
[
∥ξi(S)− ξi(Sj)∥2F

]
≤ 4ϵ2F, and E

[
∥ξj(S)− ξj(Si)∥2F

]
≤ 4ϵ2F, ∀i ̸= j. (B.17)

We can plug the above inequalities back into (B.14) and bound J2,i,j by

J2,i,j = E [⟨ξi(S), ξj(S)⟩] ≤ 4ϵ2F, ∀i ̸= j. (B.18)

Combining the bound for J1,i in (B.7) and J2,i,j in (B.18) and substituting them back into (B.6), it
then follows that

E
[∥∥∥ n∑

i=1

ξi(S)
∥∥∥2
F

]
= E

[n∑
i=1

∥ξi(S)∥2F
]
+

∑
i,j∈[n]:i ̸=j

E[⟨ξi(S), ξj(S)⟩]

≤ nE [Vz̃(∇Fz̃(A(S)))] + 4n(n− 1)ϵ2F. (B.19)

Plugging the above inequality back into (B.5), using the subadditivity of the square root function, we
get

nE[∥∇F (A(S))−∇FS(A(S))∥F] ≤ 4nϵF +
√

nE [Vz̃(∇Fz̃(A(S)))]. (B.20)

The proof is complete.

B.2 Proof of Theorem 1 – PS generalization error in nonconvex case

In this subsection, we prove Theorem 1, which establishes the PS generalization error of MoDo in
the nonconvex case.

Organization of proof. To prove the PS generalization error of MoDo, we first define the concept
of Sampling-determined algorithms in Definition 3. This concept has been defined in [22] for
the analysis in single-objective learning. Then we show that MoDo is sampling-determined in
Proposition 4. Finally, combining Propositions 2-4, we can prove Theorem 1, the MOL uniform
stability and PS generalization error of MoDo.

Definition 3 (Sampling-determined algorithm [22]). Let A be a randomized algorithm that randomly
chooses an index sequence I(A) = {it,s} to compute stochastic gradients. We say a symmetric
algorithm A is sampling-determined if the output model is fully determined by {zi : i ∈ I(A)}.

Proposition 4 (MoDo is sampling determined). MoDo (Algorithm 1) is sampling determined. In
other words, Let I(A) = {it} be the sequence of index chosen by these algorithms from training

set S = {z1, . . . , zn}, and zi
i.i.d.∼ P for all i ∈ [n] to build stochastic gradients, the output A(S) is

determined by {zj : j ∈ I(A)}. To be precise, A(S) is independent of zj if j /∈ I(A).

Proof of Proposition 4. Let I(A) = {I1, . . . , IT }, It = {it,s}3s=1 and it,s ∈ [n] for all 1 ≤ t ≤ T .
And SI(A) = {zit,s}. By the description in Algorithm 1, A(S) = GzIT

◦ · · · ◦ GzI1
(x0), where

Gz(·) is the stochastic update function of the model parameter given random sample z. Therefore,
for all possible sample realization z, we have

P(A(S) = x | zj = z, j /∈ I(A)) =P(GzIT
◦ · · · ◦GzI1

(x0) = x | zj = z, j /∈ I(A))

=P(GzIT
◦ · · · ◦GzI1

(x0) = x | j /∈ I(A))

=P(A(S) = x | j /∈ I(A)) (B.21)

where the last equality holds because zj /∈ SI(A), and zj is independent of all elements in SI(A) by
i.i.d. sampling. Therefore, A(S) is independent of zj if j /∈ I(A). The proof is complete.

18

Note that, besides MoDo, other popular stochastic randomized MTL algorithms such as SMG [30]
and MoCo [10] are also sampling-determined. Therefore, the result is also applicable to these
algorithms.

Lemma 3 ([22, Theorem 5 (b)]). Let A be a sampling-determined random algorithm (Definition 3)
and S, S′ be neighboring datasets with n data points that differ only in the i-th data point. If
supz EA

[
∥∇Fz(A(S))∥2F | i ∈ I(A)

]
≤ G2 for any S, then

sup
z

EA[∥∇Fz(A(S))−∇Fz(A(S′))∥2F] ≤ 4G2 · P{i ∈ I(A)}. (B.22)

Proof of Theorem 1. From Proposition 4, algorithm A, MoDo is sampling-determined. Then based
on Lemma 3, its MOL uniform stability in Definition 2 can be bounded by

ϵ2F ≤ 4G2 · P{i ∈ I(A)}. (B.23)

Let it be the index of the sample selected by A at the t-th step, and i∗ be the index of the data point
that is different in S and S′. Then

P{i∗ ∈ I(A)} ≤
T−1∑
t=0

P {it = i∗} ≤ T

n
. (B.24)

Combining (B.23) and (B.24) gives

ϵ2F ≤ 4G2T

n
. (B.25)

Then based on Propositions 2-3, we have

EA,S [Rgen(A(S))]≤EA,S [∥∇F (A(S))−∇FS(A(S))∥F] by Proposition 2

≤4ϵF +
√

n−1ES [Vz∼D(∇Fz(A(S)))] by Proposition 3

=O(T
1
2n− 1

2) by (B.25)

The proof is complete.

B.3 Proof of Lemma 1 – Boundedness of xt in strongly convex case

Technical challenges. In this work, we focus on analyzing stochastic MGDA-based MOL algo-
rithms in the unconstrained setting. This is because in the constrained setting, MGDA with projected
gradient descent on x has no guarantee to find the CA direction, and a new algorithm needs to be
developed to achieve this [42]. However, a fundamental challenge in the unconstrained strongly
convex setting is that a strongly convex function is not Lipschitz continuous on Rd. We overcome this
challenge by showing that {xt}Tt=1 generated by the MoDo algorithm is bounded on the trajectory, so
is the gradient ∥∇fz,m(xt)∥ for all m ∈ [M], and z ∈ Z . Thereby, we can derive the upper bound
of PS optimization and generalization errors without the Lipschitz continuity assumption for strongly
convex objectives.

Organization of proof. Without loss of generality, we assume infx∈Rd fm,z(x) < ∞ for all
m ∈ [M] and z ∈ Z in the strongly convex case. In Lemma 4, we show that the optimal solution
of Fz(x)λ given any stochastic sample z ∈ Z , and weighting parameter λ ∈ ∆M , is bounded. In
Lemma 5, we show that if the argument parameter is bounded, then the updated parameter by MoDo
at each iteration is also bounded by exploiting the co-coerciveness of strongly convex and smooth
objectives. Finally, based on Lemma 4 and Lemma 5, we first prove in Corollary 4 that with a
bounded initialization x0, the model parameter {xt}Tt=1 generated by MoDo algorithm is bounded
on the trajectory. Then based on Lemma 6, by the Lipschitz smoothness assumption of fz,m(x),
we immediately have that ∥∇fz,m(x)∥ is bounded for x ∈ {xt}Tt=1 generated by MoDo algorithm,
which completes the proof of Lemma 1. Lemma 1 paves the way for deriving the MOL uniform
stability and PS generalization error of MoDo in the strongly convex and unconstrained setting.

19

Lemma 4. Suppose Assumptions 1, 2 hold. WLOG, assume infx∈Rd fm,z(x) < ∞ for all
m ∈ [M] and z ∈ Z . For any given λ ∈ ∆M , and stochastic sample z ∈ Z , define
x∗
λ,z = argminx∈Rd Fz(x)λ, then infx∈Rd Fz(x)λ < ∞ and ∥x∗

λ,z∥ < ∞, i.e., there exist finite
positive constants cF∗ and cx∗ such that

inf
x∈Rd

Fz(x)λ ≤ cF∗ and ∥x∗
λ,z∥ ≤ cx∗ . (B.26)

Proof. Under Assumption 2, for all m ∈ [M], fm,z(x) is strongly convex w.r.t. x, thus has a unique
minimizer. Define the minimizer x∗

m,z = argminx∈Rd fm,z(x). Since a strongly convex function is
coercive, infx∈Rd fm,z(x) < ∞, i.e., fm,z(x

∗
m,z) < ∞, implies that ∥x∗

m,z∥ < ∞.

By Assumption 1, the ℓf,1-Lipschitz smoothness of fm,z(x), for x such that ∥x∥ < ∞

fm,z(x) ≤fm,z(x
∗
m,z) + ⟨∇fm,z(x

∗
m,z), x− x∗

m,z⟩+
ℓf,1
2

∥x− x∗
m,z∥2

≤fm,z(x
∗
m,z) +

ℓf,1
2

∥x− x∗
m,z∥2 < ∞. (B.27)

Since Fz(x)λ is convex w.r.t. x, for all λ ∈ ∆M , with λ = [λ1, . . . , λM]⊤, we have

Fz

(1

M

M∑
m=1

x∗
m,z

)
λ ≤ 1

M

M∑
m=1

Fz(x
∗
m,z)λ =

1

M

M∑
m=1

M∑
m′=1

fm′,z(x
∗
m,z)λm′ < ∞. (B.28)

Therefore, for all λ ∈ ∆M , we have

inf
x∈Rd

Fz(x)λ ≤ Fz

(1

M

M∑
m=1

x∗
m,z

)
λ < ∞. (B.29)

Since Fz(x)λ is strongly convex, thus is coercive, we have ∥x∗
λ,z∥ < ∞, which proves the result.

Lemma 5. Suppose Assumptions 1, 2 hold, and define κ = 3ℓf,1/µ ≥ 3. For any given λ ∈ ∆M ,
and a stochastic sample z ∈ Z , define x∗

λ,z = argminx Fz(x)λ. Then by Lemma 4, there exists a
positive finite constant cx,1 ≥ cx∗ such that ∥x∗

λ,z∥ ≤ cx∗ ≤ cx,1. Recall the multi-objective gradient
update is

Gλ,z(x) = x− α∇Fz(x)λ (B.30)

with step size 0 ≤ α ≤ ℓ−1
f,1. Defining cx,2 = (1 +

√
2κ)cx,1, we have that

if ∥x∥ ≤ cx,2, then ∥Gλ,z(x)∥ ≤ cx,2. (B.31)

Proof. We divide the proof into two cases: 1) when ∥x∥ < cx,1; and, 2) when cx,1 ≤ ∥x∥ ≤ cx,2.

1) For the first case, ∥x∥ < cx,1 ≤ cx,2, then we have

∥Gλ,z(x)∥ ≤∥Gλ,z(x)− x∗∥+ ∥x∗∥
(a)
=∥Gλ,z(x)−Gλ,z(x

∗)∥+ ∥x∗∥
(b)

≤ ∥x− x∗∥+ ∥x∗∥
≤∥x∥+ 2∥x∗∥ ≤ 3cx,1 ≤ (1 +

√
6)cx,1 ≤ (1 +

√
2κ)cx,1 ≤ cx,2 (B.32)

where (a) follows from ∇Fz(x
∗)λ = 0, and (b) follows from the non-expansiveness of the gradient

update for strongly convex and smooth function.

2) For the second case, cx,1 ≤ ∥x∥ ≤ cx,2, we first consider α = ℓ−1
f,1. Let µ′ = µ/3. Note that since

Fz(x)λ is µ-strongly convex, it is also µ′-strongly convex. By strong convexity and smoothness of
Fz(x)λ, the gradients are co-coercive [36, Theorem 2.1.12], i.e., for any x we have

(∇Fz(x)λ)
⊤(x− x∗) ≥

ℓ−1
f,1∥∇Fz(x)λ∥2

1 + κ−1
+

µ′∥x− x∗∥2

1 + κ−1
. (B.33)

20

Rearranging and applying Cauchy-Schwartz inequality, we have

(∇Fz(x)λ)
⊤x ≥ (∇Fz(x)λ)

⊤x∗ +
ℓ−1
f,1∥∇Fz(x)λ∥2

1 + κ−1
+

µ′∥x− x∗∥2

1 + κ−1

≥ −cx,1∥∇Fz(x)λ∥+
ℓ−1
f,1∥∇Fz(x)λ∥2

1 + κ−1
+

µ′∥x− x∗∥2

1 + κ−1
. (B.34)

By the definition of Gλ,z(x),

∥Gλ,z(x)∥2 =

∥∥∥∥x− 1

ℓf,1
∇Fz(x)λ

∥∥∥∥2 = ∥x∥2 + 1

ℓ2f,1
∥∇Fz(x)λ∥2 −

2

ℓf,1
(∇Fz(x)λ)

⊤x. (B.35)

Substituting (B.34) into (B.35) yields

∥Gλ,z(x)∥2 ≤∥x∥2 + 1

ℓ2f,1
∥∇Fz(x)λ∥2 +

2

ℓf,1

(
cx,1∥∇Fz(x)λ∥ −

ℓ−1
f,1∥∇Fz(x)λ∥2

1 + κ−1
− µ′∥x− x∗∥2

1 + κ−1

)
=∥x∥2 + 2

ℓf,1

(
cx,1∥∇Fz(x)λ∥ −

1

2ℓf,1
(
1− κ−1

1 + κ−1
)∥∇Fz(x)λ∥2 −

µ′

1 + κ−1
∥x− x∗∥2

)
≤∥x∥2 + 2

ℓf,1
sup
τ∈R

(
cx,1 · τ − 1

2ℓf,1
(
1− κ−1

1 + κ−1
)τ2︸ ︷︷ ︸

I1

−µ′∥x− x∗∥2

1 + κ−1

)
. (B.36)

Since κ ≥ 3, thus 1−κ−1

1+κ−1 > 0, then I1 is a quadratic function w.r.t. τ , and is strictly concave, thus
can be bounded above by

sup
τ∈R

cx,1 · τ − 1

2ℓf,1
(
1− κ−1

1 + κ−1
)τ2 ≤

c2x,1ℓf,1

2

1 + κ−1

1− κ−1
. (B.37)

Substituting this back into (B.36) gives that

∥Gλ,z(x)∥2 ≤∥x∥2 + 2

ℓf,1

(c2x,1ℓf,1
2

1 + κ−1

1− κ−1
− µ′

1 + κ−1
∥x− x∗∥2

)
=∥x∥2 + c2x,1

1 + κ−1

1− κ−1
− 2

κ−1

1 + κ−1
∥x− x∗∥2

≤∥x∥2 + c2x,1
1 + κ−1

1− κ−1
− 2

κ−1

1 + κ−1
(∥x∥ − ∥x∗∥)2

≤∥x∥2 + 2c2x,1 − κ−1(∥x∥ − cx,1)
2︸ ︷︷ ︸

I2

(B.38)

where the last inequality follows from κ ≥ 3, thus 1+κ−1

1−κ−1 ≤ 2, −2 κ−1

1+κ−1 ≤ −κ−1, and ∥x∗∥ ≤
cx,1 ≤ ∥x∥ by assumption.

For cx,1 ≤ ∥x∥ ≤ cx,2, I2 is a strictly convex quadratic function of ∥x∥, which achieves its maximum
at ∥x∥ = cx,1 or ∥x∥ = cx,2. Therefore,

∥Gλ,z(x)∥2 ≤max{3c2x,1, c2x,2 + 2c2x,1 − κ−1(cx,2 − cx,1)
2}

(c)
= max{3c2x,1, c2x,2}

(d)
< c2x,2 (B.39)

where (c) follows from the definition that cx,2 = (1 +
√
2κ)cx,1; (d) follows from κ ≥ 3, and thus

3c2x,1 < (1 +
√
2κ)2c2x,1 = c2x,2.

We have proved the case for α = ℓ−1
f,1. The result for 0 ≤ α < ℓ−1

f,1 follows by observing that,

∥Gλ,z(x)∥ =∥x− α∇Fz(x)λ∥
=∥(1− αℓf,1)x+ αℓf,1(x− ℓ−1

f,1∇Fz(x)λ)∥

≤(1− αℓf,1)∥x∥+ αℓf,1∥x− ℓ−1
f,1∇Fz(x)λ∥ ≤ cx,2. (B.40)

The proof is complete.

21

Lemma 6. Suppose Assumptions 1, 2 hold. For all λ ∈ ∆M and z ∈ S, define x∗
λ,z =

argminx Fz(x)λ, then there exist finite positive constants cF∗ and cx∗ such that Fz(x
∗
λ,z)λ ≤ cF∗

and ∥x∗
λ,z∥ ≤ cx∗ . And for x ∈ Rd such that ∥x∥ is bounded, i.e., there exists a finite positive

constant cx such that ∥x∥ ≤ cx, then

∥∇Fz(x)λ∥ ≤ ℓf,1(cx + cx∗), and Fz(x)λ ≤ ℓf,1
2

(cx + cx∗)2 + cF∗ . (B.41)

Proof. Under Assumptions 1, 2, by Lemma 4, there exist finite positive constants cF∗ and cx∗ such
that Fz(x

∗
λ,z)λ ≤ cF∗ and ∥x∗

λ,z∥ ≤ cx∗ .

By Assumption 1, the ℓf,1-Lipschitz continuity of the gradient ∇Fz(x)λ, we have

∥∇Fz(x)λ∥ =∥∇Fz(x)λ−∇Fz(x
∗
λ,z)λ∥

≤ℓf,1∥x− x∗
λ,z∥ ≤ ℓf,1(∥x∥+ ∥x∗

λ,z∥) ≤ ℓf,1(cx + cx∗) (B.42)

where the first equality uses the fact that ∇Fz(x
∗
λ,z)λ = 0.

For the function value, by Assumption 1, the ℓf,1-Lipschitz smoothness of Fz(x)λ, we have

Fz(x)λ ≤Fz(x
∗
λ,z)λ+ ⟨∇Fz(x

∗
λ,z)λ, x− x∗

λ,z⟩+
ℓf,1
2

∥x− x∗
λ,z∥2

≤Fz(x
∗
λ,z)λ+

ℓf,1
2

∥x− x∗
λ,z∥2

≤cF∗ +
ℓf,1
2

(cx + cx∗)2 (B.43)

from which the proof is complete.

Corollary 4 (xt bounded on the MoDo trajectory). Suppose Assumptions 1, 2 hold. Define κ =
3ℓf,1/µ and x∗

λ,z = argminx Fz(x)λ with λ ∈ ∆M . Then there exists a finite positive constant cx∗

such that ∥x∗
λ,z∥ ≤ cx∗ . Choose the initial iterate to be bounded, i.e., there exists a finite positive

constant cx0 such that ∥x0∥ ≤ cx0 , then for {xt} generated by MoDo algorithm with αt = α and
0 ≤ α ≤ ℓ−1

f,1, we have

∥xt∥ ≤ cx, with cx = max{(1 +
√
2κ)cx∗ , cx0

}. (B.44)

Proof of Corollary 4. Under Assumptions 1, 2, by Lemma 4, ∥x∗
λ,z∥ < ∞, i.e., there exists a

finite positive constant cx∗ such that ∥x∗
λ,z∥ ≤ cx∗ . Let cx,1 = max{(1 +

√
2κ)−1cx0

, cx∗}, and
cx,2 = (1 +

√
2κ)cx,1 = max{cx0

, (1 +
√
2κ)cx∗} in Lemma 5. We then consider the following

two cases:

1) If (1 +
√
2κ)cx∗ ≤ cx0 , then ∥x∗

λ,z∥ ≤ cx∗ ≤ (1 +
√
2κ)−1cx0 . Then it satisfies the condition in

Lemma 5 that ∥x∗
λ,z∥ ≤ cx,1 and ∥x0∥ ≤ cx,2. Applying Lemma 5 yields ∥x1∥ ≤ cx,2.

2) If (1 +
√
2κ)cx∗ > cx0

, then ∥x0∥ ≤ cx0
< (1 +

√
2κ)cx∗ . Then it satisfies the condition in

Lemma 5 that ∥x∗
λ,z∥ ≤ cx,1 and ∥x0∥ ≤ cx,2. Applying Lemma 5 yields ∥x1∥ ≤ cx,2.

Therefore, (B.44) holds for t = 1. We then prove by induction that (B.44) also holds for t ∈ [T].
Assume (B.44) holds at 1 ≤ k ≤ T − 1, i.e.,

∥xk∥ ≤ cx = cx,2 (B.45)

Then by Lemma 5, at k + 1,

∥xk+1∥ = ∥Gλk+1,zk,3
(xk)∥ ≤ cx,2. (B.46)

Since ∥x1∥ ≤ cx,2, for t = 0, . . . , T − 1, we have

∥xt+1∥ = ∥Gλt+1,zt,3(xt)∥ ≤ cx,2. (B.47)

Therefore, by mathematical induction, ∥xt∥ ≤ cx,2 = cx, for all t ∈ [T]. The proof is complete.

22

Proof of Lemma 1. By Corollary 4, for {xt} generated by MoDo algorithm with αt = α and
0 ≤ α ≤ ℓ−1

f,1, we have

∥xt∥ ≤ cx, with cx = max{(1 +
√
2κ)cx∗ , cx0}. (B.48)

According to Lemma 6, define ℓf = ℓf,1(cx + cx∗), and ℓF =
√
Mℓf , then it holds for all λ ∈ ∆M

∥∇F (xt)λ∥ ≤ ℓf and ∥∇F (xt)∥ ≤ ∥∇F (xt)∥F ≤ ℓF . (B.49)

B.4 Proof of Theorem 2 – PS generalization error in strongly convex case

Technical challenges. One challenge that the strongly convex objectives are not Lipschitz con-
tinuous for x ∈ Rd is addressed by Lemma 1. Another challenge compared to static weighting or
single-objective learning is that the MoDo algorithm involves the update of two coupled sequences
{xt} and {λt}. Consequently, the traditional standard argument that the SGD update for strongly
convex objectives has the contraction property [14] does not necessarily hold in our case since the
weighting parameter λ is changing, as detailed in Section B.4.1. Nevertheless, we manage to derive a
tight stability bound when γ = O(T−1), as detailed in Section B.4.3.

Organization of proof. In Section B.4.1, we prove the properties of the MoDo update, including ex-
pansiveness or non-expansiveness and boundedness. Building upon these properties, in Section B.4.3,
we prove the upper bound of argument stability in Theorem 5, and the upper bound of MOL uniform
stability. To show the tightness of the upper bound, in Section B.4.4, Theorem 6, we derive a matching
lower bound of MOL uniform stability. Combining the upper bound in Section B.4.3 and the lower
bound in Section B.4.4 leads to the results in Theorem 2, whose proof is in Section B.4.5.

B.4.1 Expansiveness and boundedness of MoDo update

In this section, we prove the properties of the update function of MoDo at each iteration, including
boundedness and approximate expansiveness, which is then used to derive the algorithm stability. For
z, z1, z2 ∈ S, λ ∈ ∆M , recall that the update functions of MoDo is

Gx,z1,z2(λ) = Π∆M

(
λ− γ∇Fz1(x)

⊤∇Fz2(x)λ
)

Gλ,z(x) = x− α∇Fz(x)λ.

Lemma 7 (Boundedness of update function of MoDo). Let ℓf be a positive constant. If
∥∇Fz(x)λ∥ ≤ ℓf for all λ ∈ ∆M , z ∈ S and x ∈ {xt}Tt=1 generated by the MoDo algorithm with
step size αt ≤ α, then Gλ,z(x) is (αℓf)-bounded on the trajectory of MoDo, i.e.,

sup
x∈{xt}T

t=1

∥Gλ,z(x)− x∥ ≤ αℓf . (B.50)

Proof. For all x ∈ {xt}Tt=1, λ ∈ ∆M , and z ∈ S, since ∥∇Fz(x)λ∥ ≤ ℓf , we have

∥Gλ,z(x)− x∥ ≤∥α∇Fz(x)λ∥ ≤ αℓf (B.51)

which proves the boundedness.

Lemma 8 (Properties of update function of MoDo in convex case). Suppose Assumptions 1, 2
hold. Let ℓf be a positive constant. If for all λ, λ′ ∈ ∆M , z ∈ S, and x ∈ {xt}Tt=1, x′ ∈ {x′

t}Tt=1
generated by the MoDo algorithm on datasets S and S′, respectively, we have ∥∇Fz(x)λ∥ ≤ ℓf ,
∥∇Fz(x

′)λ′∥ ≤ ℓf , and ∥∇Fz(x)∥ ≤ ℓF , ∥∇Fz(x
′)∥ ≤ ℓF , and step sizes of MoDo satisfy αt ≤ α,

γt ≤ γ, it holds that

∥Gλ,z(x)−Gλ′,z(x
′)∥2 ≤(1− 2αµ+ 2α2ℓ2f,1)∥x− x′∥2

+ 2αℓF ∥x− x′∥∥λ− λ′∥+ 2α2ℓ2F ∥λ− λ′∥2 (B.52)

∥Gx,z1,z2(λ)−Gx′,z1,z2(λ
′)∥2 ≤

(
(1 + ℓ2F γ)

2 + (1 + ℓ2F γ)ℓg,1γ
)
∥λ− λ′∥2

+
(
(1 + ℓ2F γ)ℓg,1γ + ℓ2g,1γ

2
)
∥x− x′∥2. (B.53)

23

Proof. The squared norm of the difference of Gλ,z(x) and Gλ′,z(x
′) can be bounded by

∥Gλ,z(x)−Gλ′,z(x
′)∥2

=∥x− x′∥2 − 2α⟨x− x′,∇Fz(x)λ−∇Fz(x
′)λ′⟩+ α2∥∇Fz(x)λ−∇Fz(x

′)λ′∥2

(a)

≤∥x− x′∥2 − 2α⟨x− x′, (∇Fz(x)−∇Fz(x
′))λ⟩+ 2α2∥(∇Fz(x)−∇Fz(x

′))λ∥2

+ 2α⟨x− x′,∇Fz(x
′)(λ′ − λ)⟩+ 2α2∥∇Fz(x

′)(λ− λ′)∥2

(b)

≤(1− 2αµ+ 2α2ℓ2f,1)∥x− x′∥2 + 2α⟨x− x′,∇Fz(x
′)(λ′ − λ)⟩+ 2α2ℓ2F ∥λ′ − λ∥2

(c)

≤(1− 2αµ+ 2α2ℓ2f,1)∥x− x′∥2 + 2αℓF ∥x− x′∥∥λ′ − λ∥+ 2α2ℓ2F ∥λ′ − λ∥2 (B.54)

where (a) follows from rearranging and that ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2; (b) follows from the
µ-strong convexity of Fz(x)λ, ℓf,1-Lipschitz continuity of ∇Fz(x)λ, and that ∥∇Fz(x

′)∥ ≤ ℓF for
x′ ∈ {x′

t}Tt=1; and, (c) follows from Cauchy-Schwartz inequality.

And ∥Gx,z1,z2(λ)−Gx′,z1,z2(λ
′)∥ can be bounded by

∥Gx,z1,z2(λ)−Gx′,z1,z2(λ
′)∥

=∥Π∆M (λ− γ
(
∇Fz1(x)

⊤∇Fz2(x)
)
λ)−Π∆M (λ′ − γ

(
∇Fz1(x

′)⊤∇Fz2(x
′)
)
λ′)∥

(d)

≤∥λ− λ′ − γ(∇Fz1(x)
⊤∇Fz2(x)λ−∇Fz1(x

′)⊤∇Fz2(x
′)λ′)∥

(e)

≤∥λ− λ′∥+ γ∥∇Fz1(x)
⊤∇Fz2(x)(λ− λ′)∥+ γ∥(∇Fz1(x)

⊤∇Fz2(x)−∇Fz1(x
′)⊤∇Fz2(x

′))λ′∥
(f)

≤∥λ− λ′∥+ γℓ2F ∥λ− λ′∥+ γ∥(∇Fz1(x)
⊤∇Fz2(x)−∇Fz1(x

′)⊤∇Fz2(x
′))λ′∥

(g)

≤∥λ− λ′∥+ γℓ2F ∥λ− λ′∥+ γ
(
∥(∇Fz1(x)−∇Fz1(x

′))⊤∇Fz2(x)λ
′∥

+ ∥∇Fz1(x
′)⊤(∇Fz2(x)−∇Fz2(x

′))λ′∥
)

(h)

≤ (1 + ℓ2F γ)∥λ− λ′∥+ (ℓf ℓF,1 + ℓF ℓf,1)γ∥x− x′∥ (B.55)

where (d) follows from non-expansiveness of projection; (e) follows from triangle inequality, (f)
follows from ∥∇Fz(x)∥ ≤ ℓF for x ∈ {x′

t}Tt=1, (g) follows from triangle inequality; and (h) follows
from ℓf,1-Lipschitz continuity of ∇Fz(x)λ

′, ℓF,1-Lipschitz continuity of ∇Fz(x), ∥∇Fz(x)∥ ≤ ℓF
for x ∈ {x′

t}Tt=1, and ∥∇Fz(x)λ
′∥ ≤ ℓf for x ∈ {xt}Tt=1.

Let ℓg,1 = ℓf ℓF,1 + ℓF ℓf,1. Taking square on both sides of (B.55) yields

∥Gx,z1,z2(λ)−Gx′,z1,z2(λ
′)∥2

≤
(
(1 + ℓ2F γ)∥λ− λ′∥+ ℓg,1γ∥x− x′∥

)2
=(1 + ℓ2F γ)

2∥λ− λ′∥2 + 2(1 + ℓ2F γ)ℓg,1γ∥λ− λ′∥∥x− x′∥+ ℓ2g,1γ
2∥x− x′∥2

≤(1 + ℓ2F γ)
2∥λ− λ′∥2 + (1 + ℓ2F γ)ℓg,1γ(∥λ− λ′∥2 + ∥x− x′∥2) + ℓ2g,1γ

2∥x− x′∥2

=
(
(1 + ℓ2F γ)

2 + (1 + ℓ2F γ)ℓg,1γ
)
∥λ− λ′∥2 +

(
(1 + ℓ2F γ)ℓg,1γ + ℓ2g,1γ

2
)
∥x− x′∥2. (B.56)

The proof is complete.

B.4.2 Growth recursion

Lemma 9 (Growth recursion with approximate expansiveness). Fix an arbitrary sequence of updates
G1, . . . , GT and another sequence G′

1, . . . , G
′
T . Let x0 = x′

0 be a starting point in Ω and define
δt = ∥x′

t − xt∥ where xt, x
′
t are defined recursively through

xt+1 = Gt(xt), x′
t+1 = G′

t(x
′
t) (t > 0).

24

Let ηt > 0, νt ≥ 0, and ςt ≥ 0. Then, for any p > 0, and t ∈ [T], we have the recurrence relation
(with δ0 = 0)

δ2t+1 ≤


ηtδ

2
t + νt, Gt = G′

t is (ηt, νt)-approximately expansive in square;
(1 + p)min{ηtδ2t + νt, δ

2
t }+ (1 + 1

p)4ς
2
t Gt and G′

t are ςt-bounded,
Gt is (ηt, νt)-approximately expansive in square.

Proof. When Gt and G′
t are ςt-bounded, we can bound δt+1 by

δt+1 = ∥xt+1 − x′
t+1∥ =∥Gt(xt)−G′

t(x
′
t)∥

=∥Gt(xt)− xt −G′
t(x

′
t) + x′

t + xt − x′
t∥

≤∥Gt(xt)− xt∥+ ∥G′
t(x

′
t)− x′

t∥+ ∥xt − x′
t∥

≤2ςt + δt. (B.57)

Alternatively, when Gt and G′
t are ςt-bounded, Gt is (ηt, νt)-approximately expansive, we have

δt+1 = ∥xt+1 − x′
t+1∥ =∥Gt(xt)−G′

t(x
′
t)∥

=∥Gt(xt)−Gt(x
′
t) +Gt(x

′
t)−G′

t(x
′
t)∥

≤∥Gt(xt)−Gt(x
′
t)∥+ ∥Gt(x

′
t)−G′

t(x
′
t)∥

≤ηtδt + νt + ∥Gt(x
′
t)− x′

t −G′
t(x

′
t) + x′

t∥
≤ηtδt + νt + ∥Gt(x

′
t)− x′

t∥+ ∥G′
t(x

′
t)− x′

t∥
≤ηtδt + νt + 2ςt. (B.58)

When Gt = G′
t, is (ηt, νt)-approximately expansive in square, given δ2t , δ2t+1 can be bounded by

δ2t+1 = ∥xt+1 − x′
t+1∥2 = ∥Gt(xt)−Gt(x

′
t)∥2 ≤ ηt∥xt − x′

t∥2 + νt = ηtδ
2
t + νt. (B.59)

When Gt and G′
t are ςt-bounded, applying (B.57), we can bound δ2t+1 by

δ2t+1 ≤ (δt + 2ςt)
2 ≤ (1 + p)δ2t + (1 + 1/p)4ς2t (B.60)

where p > 0 and the last inequality follows from (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2.

Alternatively, when Gt and G′
t are ςt-bounded, Gt is (ηt, νt)-approximately expansive in square, the

following holds

δ2t+1 = ∥xt+1 − x′
t+1∥2 =∥Gt(xt)−G′

t(x
′
t)∥2

=∥Gt(xt)−Gt(x
′
t) +Gt(x

′
t)−G′

t(x
′
t)∥2

≤(1 + p)∥Gt(xt)−Gt(x
′
t)∥2 + (1 + 1/p)∥Gt(x

′
t)−G′

t(x
′
t)∥2

≤(1 + p)(ηtδ
2
t + νt) + (1 + 1/p)∥Gt(x

′
t)− x′

t −G′
t(x

′
t) + x′

t∥2

≤(1 + p)(ηtδ
2
t + νt) + 2(1 + 1/p)(∥Gt(x

′
t)− x′

t∥2 + ∥G′
t(x

′
t)− x′

t∥2)
≤(1 + p)(ηtδ

2
t + νt) + (1 + 1/p)4ς2t . (B.61)

The proof is complete.

B.4.3 Upper bound of MOL uniform stability

In Theorem 5 we bound the argument stability, which is then used to derive the MOL uniform stability
and PS generalization error in Theorem 2.

Theorem 5 (Argument stability bound in strongly convex case). Suppose Assumptions 1, 2,
hold. Let A be the MoDo algorithm in Algorithm 1. Choose the step sizes αt ≤ α ≤
min{1/(2ℓf,1), µ/(2ℓ2f,1)}, and γt ≤ γ ≤ min{ µ2

120ℓ2f ℓg,1
, 1
8(3ℓ2f+2ℓg,1)

}/T . Then it holds that

EA[∥A(S)−A(S′)∥2] ≤ 48

µn
ℓ2f

(
α+

12 + 4Mℓ2f
µn

+
10Mℓ4fγ

µ

)
. (B.62)

25

Proof of Theorem 5. Under Assumptions 1, 2, Lemma 1 implies that for {xt} generated by the
MoDo algorithm, and for all λ ∈ ∆M , and for all m ∈ [M],

∥∇Fz(xt)λ∥ ≤ ℓf,1(cx + cx∗) = ℓf . and ∥∇Fz(xt)∥ ≤ ∥∇Fz(xt)∥F ≤
√
Mℓf = ℓF . (B.63)

For notation simplicity, denote δt = ∥xt − x′
t∥, ζt = ∥λt − λ′

t∥, xT = AT (S) and x′
T = AT (S

′).
Denote the index of the different sample in S and S′ as i∗, and the set of indices selected at the t-th
iteration as It, i.e., It = {it,s}3s=1. When i∗ /∈ It, for any c1 > 0, based on Lemma 8, we have

δ2t+1 ≤(1− 2αtµ+ 2α2
t ℓ

2
f,1)δ

2
t + 2αtℓF δtζt+1 + 2α2

t ℓ
2
F ζ

2
t+1

≤(1− 2αtµ+ 2α2
t ℓ

2
f,1)δ

2
t + αtℓF (c1δ

2
t + c−1

1 ζ2t+1) + 2α2
t ℓ

2
F ζ

2
t+1

≤(1− αtµ)δ
2
t + αtℓF (c1δ

2
t + c−1

1 ζ2t+1) + 2α2
t ℓ

2
F ζ

2
t+1 (B.64)

where the second last inequality is due to Young’s inequality; the last inequality is due to choosing
αt ≤ µ/(2ℓ2f,1).

When i∗ ∈ It, from Lemma 7, the (αtℓf)-boundedness of the update at t-th iteration, and Lemma 9,
the growth recursion, for a given constant p > 0, we have

δ2t+1 ≤ (1 + p)δ2t + (1 + 1/p)4α2
t ℓ

2
f . (B.65)

Taking expectation of δ2t+1 over It, we have

EIt [δ
2
t+1] ≤P(i∗ /∈ It)

(
(1− αtµ)δ

2
t + αtℓF c1δ

2
t + (αtℓF c

−1
1 + 2α2

t ℓ
2
F)EIt [ζ

2
t+1 | i∗ /∈ It]

)
+ P(i∗ ∈ It)

(
(1 + p)δ2t + (1 + 1/p)4α2

t ℓ
2
f

)
≤
(
1− αt(µ− ℓF c1)P(i∗ /∈ It) + pP(i∗ ∈ It)

)
δ2t

+ αt (ℓF c
−1
1 + 2αℓ2F)︸ ︷︷ ︸

c2

EIt [ζ
2
t+1 | i∗ /∈ It]P(i∗ /∈ It) +

(
1 +

1

p

)
P(i∗ ∈ It)4α

2
t ℓ

2
f .

(B.66)

At each iteration of MoDo, we randomly select three independent samples (instead of one) from
the training set S. Then the probability of selecting the different sample from S and S′ at the t-th
iteration, P(i∗ ∈ It) in the above equation, can be computed as follows

P(i∗ ∈ It) = 1−
(n− 1

n

)3
≤ 3

n
. (B.67)

Consequently, the probability of selecting the same sample from S and S′ at the t-th iteration is
P(i∗ /∈ It) = 1− P(i∗ ∈ It).

Let ℓg,1 = ℓf ℓF,1+ℓF ℓf,1. Recalling when i∗ /∈ It, ζt+1 ≤ (1+ℓ2F γt)ζt+2γtℓg,1δt from Lemma 8,
it follows that

ζ2t+1 ≤
(
(1 + ℓ2F γt)

2 + (1 + ℓ2F γt)ℓg,1γt

)
ζ2t +

(
(1 + ℓ2F γt)ℓg,1γt + ℓ2g,1γ

2
t

)
δ2t

≤
(
1 + (3ℓ2F + 2ℓg,1)︸ ︷︷ ︸

c3

γt
)
ζ2t + 3ℓg,1γtδ

2
t (B.68)

where the last inequality follows from ℓg,1γt ≤ 1, and ℓ2F γt ≤ 1.

And since ζt and δt are independent of It, it follows that

EIt [ζ
2
t+1 | i∗ /∈ It] ≤

(
1 + c3γt

)
ζ2t + 3ℓg,1γtδ

2
t . (B.69)

Combining (B.66) and (B.69), we have

EIt [δ
2
t+1] ≤

(
1− αt(µ− ℓF c1)P(i∗ /∈ It) + pP(i∗ ∈ It)

)
δ2t +

(
1 +

1

p

)
P(i∗ ∈ It)4α

2
t ℓ

2
f

+ αtc2

((
1 + c3γt

)
ζ2t + 3ℓg,1γtδ

2
t

)
P(i∗ /∈ It) (B.70)

26

=
(
ηt + pP(i∗ ∈ It)

)
δ2t + αtc2

(
1 + c3γt

)
ζ2t P(i∗ /∈ It) +

(
1 +

1

p

)
P(i∗ ∈ It)4α

2
t ℓ

2
f

where we define ηt = 1− αt(µ− ℓF c1 − 3c2ℓg,1γt)P(i∗ /∈ It).

While when i∗ ∈ It, for a given constant p2 > 0, we have

ζt+1 =∥Π∆M (λt − γtht,1(xt)
⊤ht,2(xt)λt)−Π∆M (λ′

t − γth
′
t,1(x

′
t)

⊤h′
t,2(x

′
t)λ

′
t)∥

≤∥λt − λ′
t − γt(ht,1(xt)

⊤ht,2(xt)λt − h′
t,1(x

′
t)

⊤h′
t,2(x

′
t)λ

′
t)∥

≤∥λt − λ′
t∥+ 2γtℓF ℓf ≤ ζt + 2γt

√
Mℓ2f

ζ2t+1 ≤(1 + p2)ζ
2
t + (1 + 1/p2)4γ

2
tMℓ4f . (B.71)

Taking expectation of ζ2t+1 over It gives

EIt [ζ
2
t+1] =EIt [ζ

2
t+1 | i∗ ∈ It]P(i∗ ∈ It) + EIt [ζ

2
t+1 | i∗ /∈ It]P(i∗ /∈ It)

≤
(
(1 + p2)ζ

2
t + (1 + 1/p2)4γ

2
tMℓ4f

)
P(i∗ ∈ It) +

(
(1 + c3γt)ζ

2
t + 3ℓg,1γtδ

2
t

)
P(i∗ /∈ It)

≤
(
1 + c3γt +

3

n
p2

)
ζ2t + (1 +

1

p2
)4γ2

tMℓ4f
3

n
+ 3ℓg,1γtδ

2
t . (B.72)

Based on linearity of expectation and applying (B.72) recursively yields

E[ζ2t+1] ≤
t∑

t′=0

(
(1 +

1

p2
)4γ2Mℓ4f

3

n
+ 3ℓg,1γE[δ2t′]

)(t∏
k=t′+1

(
1 + c3γ +

3

n
p2

))

=

t∑
t′=0

(
(1 +

1

p2
)4γ2Mℓ4f

3

n
+ 3ℓg,1γE[δ2t′]

)(
1 + c3γ +

3

n
p2

)t−t′

(a)

≤
t∑

t′=0

(
(1 +

8T

n
)4γ2Mℓ4f

3

n
+ 3ℓg,1γE[δ2t′]

)(
1 +

1

2T

)t−t′

(b)

≤
t∑

t′=0

(
(1 +

8T

n
)4γ2Mℓ4f

3

n
+ 3ℓg,1γE[δ2t′]

)
e

1
2

(c)

≤2γ

t∑
t′=0

(
(1 +

8T

n
)4γMℓ4f

3

n
+ 3ℓg,1E[δ2t′]

)
(B.73)

where (a) follows from choosing γt ≤ γ ≤ 1/(8c3T), p2 = n/(8T), (b) follows from t− t′ ≤ T ,
and (1 + a

T)
T ≤ ea, and the inequality (c) follows from e

1
2 < 2.

Note that δ0 = 0, ζ1 = 0. Applying (B.66) at t = 0 gives

E[δ21] ≤
3

n
(1 +

1

p
)4α2ℓ2f

which together with (B.72) gives

E[ζ22] ≤ 3ℓg,1γ1δ
2
1 + (1 +

1

p2
)4γ2

1Mℓ4f
3

n
.

Therefore, for 0 ≤ t ≤ 1, it satisfies that

E[δ2t] ≤

(
3

n
(1 +

1

p
)4α2ℓ2f + 24Mℓ4fc2(

8γT

n
+ γ)

α

n

)(t−1∑
t′=0

(1− 1

2
αµ+

3p

n
)t−t′−1

)
︸ ︷︷ ︸

βt

=

(
3

n
(1 +

1

p
)4α2ℓ2f + 24Mℓ4fc2

(8γT
n

+ γ
)α
n

)
βt. (B.74)

27

Next, we will prove by induction that (B.74) also holds for t > 1.

Assuming that (B.74) holds for all 0 ≤ t ≤ k ≤ T − 1, we apply (B.70) to the case where t = k to
obtain

E[δ2k+1] ≤
(
ηk +

3p

n

)
E[δ2k] + αkc2

(
1 + c3γk

)
E[ζ2k]P(i∗ /∈ It) +

3

n

(
1 +

1

p

)
4α2

kℓ
2
f

(a)

≤
(
ηk +

3p

n

)
E[δ2k]

+ 2αkc2γ

(
k∑

t′=1

(
(1 +

8T

n
)
12γMℓ4f

n
+ 3ℓg,1E[δ2t′]

))
P(i∗ /∈ It) +

3

n

(
1 +

1

p

)
4α2

kℓ
2
f

(b)

≤

((
ηk +

3p

n

)
βk + 1 + 6αkc2ℓg,1γ

(k∑
t′=1

βt′

)
P(i∗ /∈ It)

)
︸ ︷︷ ︸

J1

×

(
3

n

(
1 +

1

p

)
4α2ℓ2f + 24Mℓ4fc2

(
8γT

n
+ γ

)
α

n

)
(B.75)

where (a) follows from (B.73), and (b) follows from (B.74) for 0 ≤ t ≤ k and that γk ≤ γT ≤ 1.
The coefficient J1 in (B.75) can be further bounded by

J1 =
(
ηk +

3p

n

)
βk + 1 + 6αkc2ℓg,1γ(

k∑
t′=1

ct′)P(i∗ /∈ It)

(c)

≤
(
ηk +

3p

n

)
βk + 1 + 6αkc2ℓg,1kγβkP(i∗ /∈ It)

(d)

≤
(
1− αk(µ− ℓF c1 − 3c2ℓg,1γ(1 + 2k))P(i∗ /∈ It) +

3p

n

)
βk + 1

(e)

≤
(
1− 1

2
αµ+

3p

n

)
βk + 1 (B.76)

where (c) follows from βt ≤ βt+1, γt ≤ γ for all t = 0, . . . , T ; (d) follows from the definition of ηk;
(e) is because γ ≤ µ2/(120ℓ2F ℓg,1T), α ≤ 1/(2ℓf,1) ≤ 1/(2µ) and choosing c1 = µ/(4ℓF) leads to

ℓF c1 + 3c2ℓg,1γ(1 + 2k)γ ≤ℓF c1 + 6(ℓF c
−1
1 + 2αℓ2F)ℓg,1(k + 1)γ

≤1

4
µ+ 6(4µ−1 + 2α)ℓ2F ℓg,1

k + 1

T

µ2

120ℓ2F ℓg,1
≤ 1

2
µ.

Combining (B.75) and (B.76) implies

E[δ2k+1] ≤

((
1− 1

2
αµ+

3p

n

)
βk + 1

)(
3

n
(1 +

1

p
)4α2ℓ2f + 24Mℓ4fc2

(8γT
n

+ γ
)α
n

)

=ck+1

(
3

n
(1 +

1

p
)4α2ℓ2f + 24Mℓ4fc2

(8γT
n

+ γ
)α
n

)
(B.77)

where the equality follows by the definition of βt given in (B.74). The above statements from
(B.75)-(B.77) show that if (B.74) holds for all t such that 0 ≤ t ≤ k ≤ T − 1, it also holds for
t = k + 1.

Therefore, we can conclude that for T ≥ 0, it follows

E[δ2T] ≤βT

(
3

n
(1 +

1

p
)4α2ℓ2f + 24Mℓ4fc2

(8γT
n

+ γ
)α
n

)

=

(
3

n
(1 +

1

p
)4α2ℓ2f + 24Mℓ4fc2

(8γT
n

+ γ
)α
n

)(
T−1∑
k=0

(
1− 1

2
αµ+

3p

n

)T−k−1
)

28

=

(
3

n
(1 +

12

αµn
)4α2ℓ2f + 24Mℓ4fc2

(8γT
n

+ γ
)α
n

)(1
4
αµ
)−1

(
1−

(
1− 1

4
αµ
)T)

(B.78)

where the last equality follows from taking p = αµn/12, and compute the sum of geometric series.
By plugging in c1 = µ/(4ℓF), c2 = ℓF c

−1
1 + 2αℓ2F , c3 = 3ℓ2F + 2ℓg,1, we have that

E[δ2T] ≤
(3
n
(1 +

12

αµn
)4α2ℓ2f + 24Mℓ4fc2c

−1
3

α

n2
+ 24Mℓ4fc2

αγ

n

)
(
1

4
αµ)−1

≤ 48

µn
ℓ2f

(
α+

12

µn
+

2Mℓ2fc2c
−1
3

n
+ 2Mℓ2fc2γ

)
≤ 48

µn
ℓ2f

(
α+

12 + 4Mℓ2f
µn

+
10Mℓ4fγ

µ

)
(B.79)

where the last inequality follows from c2 = ℓ2F (4µ
−1 + 2α) ≤ 5Mℓ2fµ

−1, and c2c
−1
3 ≤

5ℓ2Fµ
−1/(3ℓ2F) ≤ 2µ−1.

B.4.4 Lower bound of MOL uniform stability

In this section, we construct Example 1 with a lower bound of stability for the MoDo algorithm.
Before proceeding to the example, we first define 1 as the all-one vector in RM , ∆̃M := {λ ∈ RM |
1⊤λ = 1}, and P1 := I − 1

M 11⊤. Then given any vector u ∈ RM , Π∆̃M (u) = P1u+ 1
M 1.

Example 1. Recall that S = {z1, z2, . . . , zj , . . . zn}, S′ = {z1, z2, . . . , z′j , . . . , zn}, where S and
S′ differ only in the j-th data point. Define the m-th objective function as

fz,m(x) =
1

2
x⊤Ax− bmz⊤x (B.80)

where A is a symmetric positive definite matrix, µ = 16n− 1
3 > 0 is the smallest eigenvalue of A, and

v is the corresponding eigenvector of A. For the datasets S, and S′, let zi = civ, with Ez∈S [z] = µv,
Ez∈S′ [z] = µ′v, zj − z′j = v, i.e., µ − µ′ = 1

n . For simplicity, let M = 2, b = [1, 1 +
√
2]⊤ such

that P1b = bP = [− 1√
2
, 1√

2
]⊤, where bP is the eigenvector of P1 with eigenvalue 1.

Technical challenges. One challenge of deriving the lower bound lies in the projection operator
when updating λ. Unlike deriving the upper bound, where the projection operator can be handled by
its non-expansive property, due to the nature of inequality constrained quadratic programming, neither
a simple closed-form solution can be obtained, nor a non-trivial tight lower bound can be derived in
general. We overcome this challenge by showing that when γ = O(T−1), the Euclidean projection
onto the simplex is equivalent to a linear operator in Lemma 10. Another challenge compared to
deriving the lower bound for single-objective learning is that the update of MoDo involves two
coupled sequences, {xt} and {λt}. The update of xt and x′

t involves different weighting parameters
λt and λ′

t, where {xt}, {λt} and {x′
t}, {λ′

t} are generated by the MoDo algorithm on neighboring
training data S and S′, respectively. We overcome this challenge by deriving a recursive relation of
the vector [xt − x′

t;λt − λ′
t] in Lemma 11.

Organization of proof. Lemma 10 proves that under proper choice of initialization of λ and step
size γ, the projection of the updated λ onto simplex ∆M is equal to the projection of that onto the
set ∆̃M := {λ ∈ RM | 1⊤λ = 1}. And thus the projection is equivalent to a linear transformation.
Thanks to Lemma 10, we are able to derive a recursive relation the vector [xt − x′

t;λt − λ′
t] in

Lemma 11. Finally, relying on the recursive relation, we derive a lower bound for the recursion
of [EA∥xt − x′

t∥;EA∥λt − λ′
t∥], depending on a 2 × 2 transition matrix. And based on its eigen

decomposition, we could compute the T -th power of such a transition matrix, which is used to derive
the final lower bound of EA∥A(S)−A(S′)∥ in Theorem 6.
Lemma 10. Suppose Assumptions 1, 2 hold. For MoDo algorithm, choose λ0 = 1

M 1, γ ≤ 1
2MTℓF ℓf

,
and define

λ+
t := λt − γ∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt (B.81)

29

then the update of λt for MoDo algorithm is λt+1 = Π∆M (λ+
t).

Define the set ∆̃M := {λ ∈ RM | 1⊤λ = 1}, P1 := I− 1
M 11⊤, λP,t := Π∆̃M (λ+

t) = P1λ
+
t + 1

M 1.
Then for t = 0, . . . , T − 1, it holds that

λt+1 = P1

(
λt − γ∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt

)
+

1

M
1 = P1λ

+
t +

1

M
1. (B.82)

Proof. By the update of λt, we have

∥λt+1 − λt∥ =∥Π∆M

(
λt − γ∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt

)
− λt∥

≤∥λt − γ∇Fzt,1(xt)
⊤∇Fzt,2(xt)λt − λt∥

≤γ∥∇Fzt,1(xt)
⊤∇Fzt,2(xt)λt∥ ≤ γℓF ℓf (B.83)

where the last inequality follows from Lemma 6, with ℓf = ℓf,1(cx + cx∗).

Then for all t ∈ [T − 1], it holds that

∥λt − λ0∥ =

∥∥∥∥∥
t−1∑
k=0

λk+1 − λk

∥∥∥∥∥ ≤
t−1∑
k=0

∥λk+1 − λk∥ ≤ γtℓF ℓf ≤ t

2MT
(B.84)

where the last inequality follows from γ ≤ 1
2MTℓF ℓf

.

Then for t ∈ [T − 1], it holds that

∥λ+
t − λ0∥ ≤∥λ+

t − λt∥+ ∥λt − λ0∥

≤γ∥∇Fzt,1(xt)
⊤∇Fzt,2(xt)λt∥+ γtℓF ℓf ≤ γ(t+ 1)ℓF ℓf ≤ γTℓF ℓf ≤ 1

2M
.

(B.85)

By the update of λt, and the definition of projection,
λt+1 = Π∆M (λ+

t) = argmin
λ∈∆M

∥λ− λ+
t ∥2. (B.86)

Also we have
λP,t = Π∆̃M (λ+

t) = argmin
λ∈∆̃M

∥λ− λ+
t ∥2. (B.87)

Let λP,t = [λP,t,1, . . . , λP,t,M]⊤. Then it holds that

|λP,t,m − λ0,m| ≤ ∥λP,t − λ0∥ = ∥Π∆̃M (λ+
t)− λ0∥

(a)

≤ ∥λ+
t − λ0∥

(b)

≤ 1

2M

where (a) follows from non-expansiveness of projection and that λ0 ∈ ∆̃M ; (b) follows from (B.85).

Therefore, each element of λP,t satisfies

0 ≤ 1

M
− 1

2M
≤ λ0,m − |λP,t,m − λ0,m| ≤ λP,t,m ≤ λ0,m + |λP,t,m − λ0,m| ≤ 3

2M
≤ 1

(B.88)

which shows that λP,t = Π∆̃M (λ+
t) ∈ ∆M . Therefore it holds that,

∥λP,t − λ+
t ∥2

(c)

≥ min
λ∈∆M

∥λ− λ+
t ∥2

(d)

≥ min
λ∈∆̃M

∥λ− λ+
t ∥2

(e)
= ∥λP,t − λ+

t ∥2 (B.89)

where (c) is because λP,t ∈ ∆M ; (d) is because ∆M ⊂ ∆̃M by the definition of the simplex; (e) is
because λP,t = Π∆̃M (λ+

t). Then the equality holds that

∥λP,t − λ+
t ∥2 = min

λ∈∆M
∥λ− λ+

t ∥2 (B.90)

and

P1λ
+
t +

1

M
1 = λP,t = argminλ∈∆M ∥λ− λ+

t ∥2 = Πλ∈∆M (λ+
t) = λt+1. (B.91)

The proof is complete.

30

With the help of Lemma 10, which simplifies the Euclidean projection operator as a linear operator,
we then prove in Lemma 11, the recursive relation of xt − x′

t and λt − λ′
t.

Lemma 11. Suppose Assumptions 1, 2 hold. Under Example 1, choose λ0 = 1
M 1, γ ≤ 1

2MTℓF ℓf
for

the MoDo algorithm. Denote {xt}, {λt} and {x′
t}, {λ′

t} as the sequences generated by the MoDo
algorithm with dataset S and S′, respectively. Then it holds that

xt − x′
t = φx,tv, and λt − λ′

t = φλ,tbP (B.92)

and φx,t, φλ,t satisfy the following recursion

φx,t+1 = (1− αµ+ αγct,3ct,1µ)φx,t + αct,3(1− γct,1ct,2)φλ,t + 1(it,3 = j)α(b⊤λ′
t+1)

+ 1(it,1 = j)γαct,3(µv
⊤x′

t − ct,2b
⊤λ′

t)− 1(it,2 = j)γαct,3c
′
t,1b

⊤λ′
t (B.93)

φλ,t+1 = (1− γct,1ct,2)φλ,t + γct,1µφx,t

+ 1(it,1 = j)γ
(
µ(v⊤x′

t)− ct,2(b
⊤λ′

t)
)
− 1(it,2 = j)γc′t,1(b

⊤λ′
t) (B.94)

where 1(·) is the indicator function.

Proof. Denote zt,s, and z′t,s, s ∈ [3], as the samples selected in the t-th iteration from S and S′,
respectively. According to the MoDo algorithm update of xt, and the definition of the problem
in (B.80), we have

xt+1 =xt − α∇Fzt,3(xt)λt+1 = xt − α
[
Axt − b1zt,3, . . . , Axt − bMzt,3

]
λt+1

=xt − αAxt + αzt,3(b
⊤λt+1). (B.95)

The difference xt+1 − x′
t+1 can be computed by

xt+1 − x′
t+1 =

(
I − αA

)
(xt − x′

t) + α(zt,3b
⊤λt+1 − z′t,3b

⊤λ′
t+1)

=
(
I − αA

)
(xt − x′

t) + αzt,3b
⊤(λt+1 − λ′

t+1) + α(zt,3 − z′t,3)b
⊤λ′

t+1

=
(
I − αA

)
(xt − x′

t) + αzt,3b
⊤(λt+1 − λ′

t+1) + 1(it,3 = j)αvb⊤λ′
t+1 (B.96)

where 1(·) denotes the indicator function, and the last equation follows from that zt,3 − z′t,3 = 0 if
it,3 ̸= j, and zt,3 − z′t,3 = zj − z′j = v if it,3 = j.

By Lemma 10, in Example 1, λt+1 = P1

(
λt − γ∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt

)
+ 1

M 1, which can be
further derived as

λt+1 =P1

(
λt − γ∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt

)
+

1

M
1

=P1

(
λt − γ

(
1x⊤

t A− bz⊤t,1
)(
Axt − zt,2b

⊤λt

))
+

1

M
1

(a)
=λt − γ

(
P11x

⊤
t A− P1bz

⊤
t,1

)(
Axt − zt,2b

⊤λt

)
(b)
=λt + γbP z

⊤
t,1

(
Axt − zt,2b

⊤λt

)
(B.97)

where (a) follows from rearranging the equation and that P1λt+
1
M 1 = Π∆̃M (λt) = λt as λt ∈ ∆̃M ;

(b) follows from that P1b = bP and P11 = 0.

The difference λt+1 − λ′
t+1 can be derived as

λt+1 − λ′
t+1=(λt − λ′

t) + γbP
(
z⊤t,1Axt − z′⊤t,1Ax′

t

)
− γbP

(
z⊤t,1zt,2b

⊤λt − z′⊤t,1z
′
t,2b

⊤λ′
t

)
(c)
=(λt − λ′

t) + γbP z
⊤
t,1A(xt − x′

t) + γbP (zt,1 − z′t,1)
⊤Ax′

t − γbP z
⊤
t,1zt,2b

⊤(λt − λ′
t)

− γbP (zt,1 − z′t,1)
⊤zt,2b

⊤λ′
t − γbP z

′⊤
t,1(zt,2 − z′t,2)b

⊤λ′
t

(d)
=(λt − λ′

t) + γbP z
⊤
t,1A(xt − x′

t)− γbP z
⊤
t,1zt,2b

⊤(λt − λ′
t)

+ 1(it,1 = j)γbP (µv
⊤x′

t − v⊤zt,2b
⊤λ′

t)− 1(it,2 = j)γbP z
′⊤
t,1vb

⊤λ′
t (B.98)

where (c) follows from rearranging the equation; (d) follows from that zt,s − z′t,s = 0 if it,s ̸= j,
and zt,s − z′t,s = zj − z′j = v if it,s = j, and that Av = µv.

31

Combining (B.96) and (B.98) gives[
xt+1 − x′

t+1
λt+1 − λ′

t+1

]
=

[
Cx,x,t Cx,λ,t

Cλ,x,t Cλ,λ,t

] [
xt − x′

t
λt − λ′

t

]
+1(it,3 = j)α

[
vb⊤λ′

t+1
0

]
−1(it,2 = j)γ

[
αct,3c

′
t,1vb

⊤λ′
t

bP c
′
t,1b

⊤λ′
t

]
+ 1(it,1 = j)γ

[
αct,3v(µv

⊤x′
t − ct,2b

⊤λ′
t)

bP (µv
⊤x′

t − ct,2b
⊤λ′

t)

]
(B.99)

where the matrices are defined as

Cx,x,t =I − αA+ αγzt,3b
⊤bP z

⊤
t,1A = I − αA+ αγct,3ct,1µvv

⊤ (B.100a)

Cx,λ,t =αzt,3b
⊤(I − γbP z

⊤
t,1zt,2b

⊤) = αct,3vb
⊤(1− γct,1ct,2) (B.100b)

Cλ,x,t =γbP z
⊤
t,1A = γct,1µbP v

⊤ (B.100c)

Cλ,λ,t =(I − γbP z
⊤
t,1zt,2b

⊤) = (I − γct,1ct,2bP b
⊤). (B.100d)

Next we show by induction that

xt − x′
t = φx,tv, and λt − λ′

t = φλ,tbP . (B.101)

First, when t = 0, x0 − x′
0 = 0 = φx,0v and λ0 − λ′

0 = φλ,0bP with φx,0 = 0 and φλ,0 = 0.
Therefore (B.101) holds at t = 0. Supposing that (B.101) holds for t = k, next we show that it also
holds at t = k + 1.

At t = k + 1, applying (B.99) for xk+1 − x′
k+1, and substituting (B.100a), (B.100b) yields

xk+1 − x′
k+1 = [Cx,x,k Cx,λ,k]

[
xk − x′

k
λk − λ′

k

]
+ 1(ik,3 = j)αvb⊤λ′

k+1

+ 1(ik,1 = j)γαck,3v(µv
⊤x′

k − ck,2b
⊤λ′

k)− 1(ik,2 = j)γαck,3c
′
k,1vb

⊤λ′
k

=(I − αA+ αγck,3ck,1µvv
⊤)φx,kv + αck,3v(1− γck,1ck,2)φλ,k + 1(ik,3 = j)αvb⊤λ′

k+1

+ 1(ik,1 = j)γαck,3v(µv
⊤x′

k − ck,2b
⊤λ′

k)− 1(ik,2 = j)γαck,3c
′
k,1vb

⊤λ′
k

=(1− αµ+ αγck,3ck,1µ)φx,kv + αck,3(1− γck,1ck,2)φλ,kv + 1(ik,3 = j)α(b⊤λ′
k+1)v

+ 1(ik,1 = j)γαck,3v(µv
⊤x′

k − ck,2b
⊤λ′

k)− 1(ik,2 = j)γαck,3c
′
k,1vb

⊤λ′
k

=φx,k+1v (B.102)

where φx,k+1 is computed by

φx,k+1 =(1− αµ+ αγck,3ck,1µ)φx,k + αck,3(1− γck,1ck,2)φλ,k + 1(ik,3 = j)α(b⊤λ′
k+1)

+ 1(ik,1 = j)γαck,3(µv
⊤x′

k − ck,2b
⊤λ′

k)− 1(ik,2 = j)γαck,3c
′
k,1b

⊤λ′
k. (B.103)

Therefore, for all t ∈ [T], it holds that xt − x′
t = φx,tv.

At t = k + 1, apply (B.99) for λk+1 − λ′
k+1, and substitute (B.100c), (B.100d) yields

λk+1 − λ′
k+1 = [Cλ,x,k Cλ,λ,k]

[
xk − x′

k
λk − λ′

k

]
+ 1(ik,1 = j)γ

(
µbP v

⊤x′
k − ck,2bP b

⊤λ′
k

)
− 1(ik,2 = j)γc′k,1bP b

⊤λ′
k

=γck,1µbP v
⊤φx,kv + (I − γck,1ck,2bP b

⊤)bPφλ,k

+ 1(ik,1 = j)γ
(
µbP v

⊤x′
k − ck,2bP b

⊤λ′
k

)
− 1(ik,2 = j)γc′k,1bP b

⊤λ′
k

=γct,1µφx,kbP + (1− γck,1ck,2)φλ,kbP

+ 1(ik,1 = j)γ
(
µ(v⊤x′

k)− ck,2(b
⊤λ′

k)
)
bP − 1(ik,2 = j)γc′k,1(b

⊤λ′
k)bP

=φλ,k+1bP (B.104)

where φλ,k+1 is computed by

φλ,k+1 =γck,1µφx,k + (1− γck,1ck,2)φλ,k

+ 1(ik,1 = j)γ
(
µ(v⊤x′

k)− ck,2(b
⊤λ′

k)
)
− 1(ik,2 = j)γc′k,1(b

⊤λ′
k). (B.105)

Therefore, for all t ∈ [T], it holds that λt − λ′
t = φλ,tbP .

32

Lemma 11 provides the recursive relation of xt − x′
t and λt − λ′

t. And Lemma 12 below provides
another property used to derive the lower bound of E[∥xT − x′

T ∥] in Theorem 6.

Lemma 12. Suppose Assumptions 1, 2 hold. Under Example 1, choose x0 = x′
0 = 7v, α = 1

4µT for
the MoDo algorithm. Denote {xt}, {λt} and {x′

t}, {λ′
t} as the sequences generated by the MoDo

algorithm with dataset S and S′, respectively. Then it holds that

v⊤EA[Ax′
t − zt,2b

⊤λ′
t] ≥ 0 and b⊤EA[λ

′
t+1] ≥ b⊤EA[λ

′
t]. (B.106)

Proof. From the update of x′
t, we have

x′
t+1 =x′

t − αAx′
t + αz′t,3(b

⊤λ′
t+1)

=x′
t − αAx′

t + αc′t,3v(b
⊤λ′

t+1) (B.107)

Suppose x′
t = c′x,tv, then x′

t+1 = c′x,t+1v with

c′x,t+1 = (1− αµ)c′x,t + αc′t,3(b
⊤λ′

t+1)

and EA[x
′
t+1] = (1− αµ)EA[x

′
t] + αµ′vEA(b

⊤λ′
t+1)

Applying the above inequality recursively gives

v⊤EA[x
′
t] =v⊤(1− αµ)tx0 + αµ′

(t−1∑
t′=0

(1− αµ)t−1−t′EA(b
⊤λ′

t′+1)
)

≥v⊤(1− αµ)tx0 + αµ′ 1− (1− αµ)t

αµ
b⊤λ ≥ 1 for all λ ∈ ∆M

=(1− αµ)t
(
v⊤x0 − µ′µ−1

)
+ µ′µ−1.

Since x0 = 7v, µ′µ−1 ≤ 1, it holds that

v⊤EA[x
′
t] =(1− αµ)t

(
7− µ′µ−1

)
+ µ′µ−1 ≥ 6(1− αµ)t + µ′µ−1.

Then it follows that

v⊤EA[Ax′
t − zt,2b

⊤λ′
t] =µEA[v

⊤x′
t − b⊤λ′

t] ≥ µ
(
6(1− αµ)t + µ′µ−1 − (1 +

√
2)
)

≥µ
(
6(1− αµt)− (1 +

√
2)
)

µ′µ−1 ≥ 0

≥µ
(
6(1− 1

4
)− (1 +

√
2)
)
≥ 0 α = 1

4µT

By the update of λ′
t from (B.97),

b⊤EA[λ
′
t+1 − λ′

t]=b⊤γbPEA[z
′⊤
t,1

(
Ax′

t − z′t,2b
⊤λ′

t

)
]

=γEA[µ
′v⊤
(
Ax′

t − z′t,2b
⊤λ′

t

)
]
EA[z

′
t,1] = µ′v, z′t,1 independent of λ′

t and x′
t

=γµ′v⊤EA[Ax′
t − µ′vb⊤λ′

t] EA[z
′
t,2] = µ′v, z′t,2 independent of λ′

t

≥γµ′v⊤EA[Ax′
t − µvb⊤λ′

t] µ′ ≤ µ, b⊤λ ≥ 1 for all λ ∈ ∆M

=γµ′v⊤EA[Ax′
t − zt,2b

⊤λ′
t] ≥ 0. EA[zt,2] = µv, zt,2 independent of λ′

t

The proof is complete.

Theorem 6. Suppose Assumptions 1 and 2 hold. Under Example 1 with M = 2, choose λ0 = 1
M 1,

x0 = x′
0 = 7v, α = 1

4µT , 0 < γ ≤ 1
2MTℓF ℓf

, and T ≤ 4n
2
3 for the MoDo algorithm. Denote {xt},

{λt} and {x′
t}, {λ′

t} as the sequences generated by the MoDo algorithm with dataset S and S′,
respectively. Then it holds that

E[∥xT − x′
T ∥] ≥

γT

2n2
+

1

16n
. (B.108)

33

Proof. Denote δt = ∥xt − x′
t∥, ζt = ∥λt − λ′

t∥. From Lemma 11, it holds that

E[δt+1] = E[|φx,t+1|∥v∥] = E[|φx,t+1|] ≥ E[φx,t+1] (B.109)
E[ζt+1] = E[|φλ,t+1|∥v∥] = E[|φλ,t+1|] ≥ E[φλ,t+1] (B.110)

where φx,t, φλ,t satisfy

φx,t+1 = (1− αµ+ αγct,3ct,1µ)φx,t + αct,3(1− γct,1ct,2)φλ,t + 1(it,3 = j)α(b⊤λ′
t+1)

+ 1(it,1 = j)γαct,3(µv
⊤x′

t − ct,2b
⊤λ′

t)− 1(it,2 = j)γαct,3c
′
t,1b

⊤λ′
t (B.111)

φλ,t+1 = (1− γct,1ct,2)φλ,t + γct,1µφx,t

+ 1(it,1 = j)γ
(
µ(v⊤x′

t)− ct,2(b
⊤λ′

t)
)
− 1(it,2 = j)γc′t,1(b

⊤λ′
t). (B.112)

The expectation of φx,t+1 can be further bounded as

E[φx,t+1] =E[(1− αµ+ αγct,3ct,1µ)φx,t + αct,3(1− γct,1ct,2)φλ,t +
1

n
α(b⊤λ′

t+1)

+
1

n
γαct,3(µv

⊤x′
t − ct,2b

⊤λ′
t)−

1

n
γαct,3c

′
t,1b

⊤λ′
t]

(a)

≥ (1− αµ(1− γµ2))E[φx,t] + αµ(1− γµ2)E[φλ,t] +
1

n
αb⊤E[λ′

t+1]−
1

n
γαµµ′b⊤E[λ′

t]

≥(1− αµ(1− γµ2))E[φx,t] + αµ(1− γµ2)E[φλ,t] +
1

n
αb⊤E[λ′

t](1− γµ2) (B.113)

where (a) follows from EA[ct,s] = µ, EA[c
′
t,s] = µ′ ≤ µ, E[λ′

t+1] ≥ E[λ′
t] by Lemma 12, and the

fact that ct,s is independent of φx,t.

Similarly, the expectation of φλ,t+1 can be further bounded as

E[φλ,t+1] =E[(1− γct,1ct,2)φλ,t + γct,1µφx,t +
1

n
γ
(
µ(v⊤x′

t)− ct,2(b
⊤λ′

t)
)
− 1

n
γc′t,1(b

⊤λ′
t)]

(b)

≥(1− γµ2)E[φλ,t] + γµ2E[φx,t]−
1

n
γµ′b⊤E[λ′

t] (B.114)

where (b) follows from EA[ct,s] = µ, EA[c
′
t,s] = µ′ ≤ µ, and Lemma 12.

The above arguments prove that[
E[δt+1]
E[ζt+1]

]
≥
[
E[φx,t+1]
E[φλ,t+1]

]
≥
[
(1− αµ(1− γµ2)) αµ(1− γµ2)

γµ2 (1− γµ2)

]
︸ ︷︷ ︸

B

[
E[φx,t]
E[φλ,t]

]
+

1

n

[
α(1− γµ2)

−µ′γ

]
(B.115)

where the inequality for vectors denotes the inequality of each corresponding element in the vectors,
and matrix B has vB,1 = [1, 1]⊤ as an eigenvector associated with the eigenvalue 1 because

BvB,1 =

[
(1− αµ(1− γµ2)) αµ(1− γµ2)

γµ2 (1− γµ2)

] [
1
1

]
=

[
1
1

]
. (B.116)

Similarly, since

B

[
α(1− γµ2)

−γµ

]
=

[
(1− αµ(1− γµ2)) αµ(1− γµ2)

γµ2 (1− γµ2)

] [
α(1− γµ2)

−γµ

]
=

[
(1− αµ(1− γµ2))α(1− γµ2)− γµαµ(1− γµ2)

γµ2α(1− γµ2)− γµ(1− γµ2)

]
=

[
(1− αµ)(1− γµ2)α(1− γµ2)

−(1− αµ)(1− γµ2)γµ

]
= (1− αµ)(1− γµ2)

[
α(1− γµ2)

−γµ

]
,

(B.117)

then vB,2 = [α(1−γµ2),−γµ]⊤ is another eigenvector of B with a positive eigenvalue (1−αµ)(1−
γµ2) < 1. Let QB = [vB,1, vB,2], which can be expressed as

QB = [vB,1, vB,2] =

[
1 α(1− γµ2)
1 −γµ

]
. (B.118)

34

Then B has eigenvalue decomposition B = QBΛBQ
−1
B , where ΛB = diag([1, (1−αµ)(1− γµ2)]),

and thus Bt = QBΛ
t
BQ

−1
B for t ∈ [T].

Let [α(1− γµ2),−µ′γ]⊤ = QB [cB,1, cB,2]
⊤, where [cB,1, cB,2]

⊤ = Q−1
B [α(1− γµ2),−µ′γ]⊤ can

be computed by[
cB,1

cB,2

]
=Q−1

B

[
α(1− γµ2)

−µ′γ

]
= − 1

α(1− γµ2) + γµ

[
−γµ −α(1− γµ2)
−1 1

] [
α

−µ′γ

]
=

1

α(1− γµ2) + γµ

[
αγ(µ− µ′)(1− γµ2)

α+ µ′γ

]
≥
[

1
2nγ
1

]
(B.119)

where the last inequality follows from µ − µ′ = 1
n and α(1 − γµ2) ≥ 1

2α = 1/(8µT) ≥ γµ for
cB,1 ≥ 1

2nγ, and αµ2 = µ/(4T) = 4n− 1
3T−1 ≥ n−1 = µ− µ′, so that α+ µ′γ = α+ γ(µ′ − µ+

µ) ≥ α+ γ(µ− αµ2) = α(1− γµ2) + γµ for cB,2 ≥ 1.

Since all elements in B are positive, multiplying B on both sides preserves inequality. Applying
(B.115) recursively yields[
E[δT]
E[ζT]

]
≥

T−1∑
t=0

BT−1−t 1

n

[
α(1− γµ2)

−µ′γ

]
=

T−1∑
t=0

BT−1−t 1

n

[
α(1− γµ2)

−µ′γ

]
=

T−1∑
t=0

BT−1−t 1

n
QB

[
cB,1

cB,2

]

=
1

n

T−1∑
t=0

1T−1−tcB,1vB,1 +
1

n

T−1∑
t=0

(
(1− αµ)(1− γµ2)

)T−1−t
cB,2vB,2

≥T

n
cB,1vB,1 +

1

8nα
cB,2vB,2 ≥ γT

2n2
vB,1 +

1

8nα
vB,2 (B.120)

where the last inequality follows from cB,1 ≥ 1
2nγ, and cB,2 ≥ 1. Plugging in vB,1 = [1, 1]⊤ and

vB,2 = [α(1− γµ2),−γµ]⊤, and since (1− γµ2) ≥ 1
2 , it follows that E[δT] ≥ γT

2n2 + 1
16n .

B.4.5 Proof of Theorem 2

Proof of Theorem 2. Combining the argument stability in Theorem 5, and Assumption 1, the MOL
uniform stability can be bounded by

sup
z

EA[∥∇Fz(A(S))−∇Fz(A(S′))∥2F]

≤EA[ℓ
2
F,1∥A(S)−A(S′)∥2] by Assumption 1

≤ 48

µn
ℓ2f ℓ

2
F,1

(
α+

12 + 4Mℓ2f
µn

+
10Mℓ4fγ

µ

)
. (B.121)

Then based on Propositions 2-3, we have

EA,S [Rgen(A(S))]≤EA,S [∥∇F (A(S))−∇FS(A(S))∥F] by Proposition 2

≤4ϵF +
√

n−1ES [Vz∼D(∇Fz(A(S)))] by Proposition 3

=O(n− 1
2). by (B.121)

The proof of the upper bound is complete. We then prove the MOL uniform stability lower bound
based on the argument uniform stability lower bound in Theorem 6. By the strong convexity of the
function fm,z(x), for all m ∈ [M]

sup
z

EA[∥∇Fz(A(S))−∇Fz(A(S′))∥2F] ≥EA[Mµ2∥A(S)−A(S′)∥2] by Assumption 2

≥ Mµ2

256n2
. by Theorem 6 and Jensen’s inequality

The proof of the lower bound is complete.

35

C Bounding the optimization error

C.1 Auxiliary lemmas

Lemma 13 (Uniqueness of CA direction). Given Q ∈ Rd×M , then dQ := Qλ∗ with λ∗ ∈
argminλ∈∆M ∥Qλ∥2 exists, and dQ is unique.

Proof. This is a standard result due to convexity of the subproblem. Proof is given in [9, Section 2].

Lemma 14. For any x ∈ Rd, define λ∗(x) such that

λ∗(x) ∈ arg min
λ∈∆M

∥∇F (x)λ∥2. (C.1)

Then, for any x ∈ Rd and λ ∈ ∆M , it holds that

⟨∇F (x)λ∗(x),∇F (x)λ⟩ ≥ ∥∇F (x)λ∗(x)∥2, (C.2)

and ∥∇F (x)λ−∇F (x)λ∗(x)∥2 ≤ ∥∇F (x)λ∥2 − ∥∇F (x)λ∗(x)∥2. (C.3)

Proof. By the first order optimality condition for (C.1) , for any x ∈ Rd and λ ∈ ∆M , we have

⟨∇F (x)⊤∇F (x)λ∗(x), λ− λ∗(x)⟩ ≥ 0. (C.4)

By rearranging the above inequality, we obtain

⟨∇F (x)λ∗(x),∇F (x)λ⟩ ≥ ∥∇F (x)λ∗(x)∥2, (C.5)

which is precisely the first inequality in the claim. Furthermore, we can also have

∥∇F (x)λ−∇F (x)λ∗(x)∥2 = ∥∇F (x)λ∥2 + ∥∇F (x)λ∗(x)∥2 − 2⟨∇F (x)λ∗(x),∇F (x)λ⟩
≤ ∥∇F (x)λ∥2 + ∥∇F (x)λ∗(x)∥2 − 2∥∇F (x)λ∗(x)∥2

= ∥∇F (x)λ∥2 − ∥∇F (x)λ∗(x)∥2, (C.6)

which is the desired second inequality in the claim. Hence, the proof is complete.

Lemma 15 (Continuity of λ∗
ρ(x)). Given any ρ > 0 and x ∈ Rd, define λ∗

ρ(x) =

argminλ∈∆M
1
2∥∇FS(x)λ∥2 + 1

2ρ∥λ∥
2, then the following inequality holds

∥λ∗
ρ(x)− λ∗

ρ(x
′)∥ ≤ ρ−1∥∇F (x)⊤∇F (x)−∇F (x′)⊤∇F (x′)∥. (C.7)

Suppose either 1) Assumptions 1, 3 hold, or 2) Assumptions 1, 2 hold, with ℓF defined in Lemma 1.
Then for x ∈ {xt}Tt=1, x′ ∈ {x′

t}Tt=1 generated by MoDo algorithm on training dataset S and S′,
respectively, it implies that

∥λ∗
ρ(x)− λ∗

ρ(x
′)∥ ≤ 2ρ−1ℓF,1ℓF ∥x− x′∥. (C.8)

Proof. We provide proof leveraging the convergence properties of the projected gradient descent
algorithm on strongly convex objectives below. Consider the problem minλ∈∆M g(λ;x, ρ) =
1
2∥∇FS(x)λ∥2 + 1

2ρ∥λ∥
2, which is ρ-strongly convex. Let {λρ,k(x)} for k = 0, 1, . . . ,K de-

note the sequence obtained from applying projected gradient descent (PGD) on the objective
g(λ;x, ρ) = 1

2∥∇FS(x)λ∥2 + 1
2ρ∥λ∥

2, i.e.,

λρ,k+1(x) =Π∆M

(
λρ,k(x)− η∇FS(x)

⊤∇FS(x)λρ,k(x)− ηρλρ,k(x)
)

=Π∆M

((
(1− ηρ)I − η∇FS(x)

⊤∇FS(x)
)
λρ,k(x)

)
(C.9)

where η is the step size that η < 1/(∥∇FS(x)
⊤∇FS(x)∥+ ρ). Note that both ρ, η are independent

of K. By the convergence result of PGD on strongly convex objective, we know that λ∗
ρ(x) is the

limit point of {λρ,k(x)}∞k=0. By the non-expansiveness of projection, we have

∥λρ,k+1(x)− λρ,k+1(x
′)∥

36

≤∥
(
(1− ηρ)I − η∇FS(x)

⊤∇FS(x)
)
λρ,k(x)−

(
(1− ηρ)I − η∇FS(x

′)⊤∇FS(x
′)
)
λρ,k(x

′)∥
≤∥(1− ηρ)I − η∇FS(x)

⊤∇FS(x)∥∥λρ,k(x)− λρ,k(x
′)∥

+ η∥(∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′))λρ,k(x

′)∥
≤(1− ηρ)∥λρ,k(x)− λρ,k(x

′)∥+ η∥(∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′))λρ,k(x

′)∥.
(C.10)

Since λρ,0(x) = λρ,0(x
′) = λρ,0, apply the above inequality recursively from k = 0, 1, . . . ,K − 1,

we have

∥λρ,K(x)− λρ,K(x′)∥ ≤η∥(∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′))λρ,k(x

′)∥
(K−1∑

k=0

(1− ηρ)k
)

=η∥(∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′))λρ,k(x

′)∥1− (ηρ)K

ηρ

≤ρ−1(1− (ηρ)K)∥∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′)∥. (C.11)

Then it follows that

∥λ∗
ρ(x)− λ∗

ρ(x
′)∥ ≤ lim

K→∞

(
∥λ∗

ρ(x)− λρ,K(x)∥+ ∥λ∗
ρ(x

′)− λρ,K(x′)∥+ ∥λρ,K(x)− λρ,K(x′)∥
)

≤ lim
K→∞

(
∥λ∗

ρ(x)− λρ,K(x)∥+ ∥λ∗
ρ(x

′)− λρ,K(x′)∥
)

+ lim
K→∞

ρ−1(1− (ηρ)K)∥∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′)∥

(a)

≤ρ−1∥∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′)∥+ lim

K→∞
2

√
4

ρηK

≤ρ−1∥∇FS(x)
⊤∇FS(x)−∇FS(x

′)⊤∇FS(x
′)∥ (C.12)

where (a) follows from limK→∞ 1−(ηρ)K = 1, and from the convergence of PGD [2, Theorem 1.1]
on ρ-strongly convex objectives that

∥λ∗
ρ(x)− λρ,K(x)∥2 ≤ 2

ρ

(
g(λρ,K(x);x, ρ)− g(λ∗

ρ(x);x, ρ)
)
≤ 2

ρ

∥λρ,0(x)− λ∗
ρ(x)∥2

2ηK
≤ 4

ρηK
.

This proves (C.7).

In addition, under Assumptions 1, 3, the above result directly implies that

∥λ∗
ρ(x)− λ∗

ρ(x
′)∥ ≤ρ−1∥∇FS(x)

⊤∇FS(x)−∇FS(x
′)⊤∇FS(x

′)∥
≤ρ−1∥∇FS(x) +∇FS(x

′)∥∥∇FS(x)−∇FS(x
′)∥

≤2ρ−1ℓF,1ℓF ∥x− x′∥. (C.13)

While under Assumptions 1 and 2, and for ℓF defined in Lemma 1, and for x ∈ {xt}Tt=1, x′ ∈
{x′

t}Tt=1 generated by MoDo algorithm on training dataset S and S′, respectively, ∥∇FS(x)∥ ≤ ℓF ,
∥∇FS(x

′)∥ ≤ ℓF , which along with (C.12) implies that

∥λ∗
ρ(x)− λ∗

ρ(x
′)∥ ≤ρ−1∥∇FS(x) +∇FS(x

′)∥∥∇FS(x)−∇FS(x
′)∥ ≤ 2ρ−1ℓF,1ℓF ∥x− x′∥.

The proof is complete.

Lemma 16. For any ρ > 0 and x ∈ Rd, define λ∗(x) = argminλ∈∆M ∥∇FS(x)λ∥2, and λ∗
ρ(x) =

argminλ∈∆M ∥∇FS(x)λ∥2 + ρ∥λ∥2, then we have

0 ≤ ∥∇FS(x)λ
∗
ρ(x)∥2 − ∥∇FS(x)λ

∗(x)∥2 ≤ ρ

(
1− 1

M

)
. (C.14)

Proof. Since λ∗(x) = argminλ∈∆M ∥∇FS(x)λ∥2, therefore

∥∇FS(x)λ
∗
ρ(x)∥2 − ∥∇FS(x)λ

∗(x)∥2 = ∥∇FS(x)λ
∗
ρ(x)∥2 − min

λ∈∆M
∥∇FS(x)λ∥2 ≥ 0. (C.15)

37

Since λ∗
ρ(x) = argminλ∈∆M ∥∇FS(x)λ∥2 + ρ∥λ∥2, therefore

∥∇FS(x)λ
∗(x)∥2 + ρ∥λ∗(x)∥2 − ∥∇FS(x)λ

∗
ρ(x)∥2 − ρ∥λ∗

ρ(x)∥2 ≥ 0. (C.16)

Rearranging the above inequality gives

∥∇FS(x)λ
∗
ρ(x)∥2 − ∥∇FS(x)λ

∗(x)∥2 ≤ρ∥λ∗(x)∥2 − ρ∥λ∗
ρ(x)∥2 ≤ ρ

(
1− 1

M

)
. (C.17)

Lemma 17. Consider {xt}, {λt} generated by the MoDo algorithm. For all λ ∈ ∆M , it holds that

2γtEA⟨λt − λ, (∇FS(xt)
⊤∇FS(xt))λt⟩

≤EA∥λt − λ∥2 − EA∥λt+1 − λ∥2 + γ2
t EA∥(∇Fzt,1(xt)

⊤∇Fzt,2(xt))λt∥2, (C.18)

and γtEA(∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ∥2)
≤EA∥λt − λ∥2 − EA∥λt+1 − λ∥2 + γ2

t EA∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2. (C.19)

Proof. By the update of λ, for all λ ∈ ∆M , we have

∥λt+1 − λ∥2

=∥Π∆M (λt − γt(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt)− λ∥2

≤∥λt − γt(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt − λ∥2

=∥λt − λ∥2 − 2γt⟨λt − λ, (∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt⟩+ γ2

t ∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2.

Taking expectation over zt,1, zt,2 on both sides and rearranging proves (C.18).

By the convexity of the problem, minλ∈∆M
1
2∥∇FS(xt)λ∥2, we have

γtEA(∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ∥2)
≤2γtEA⟨λt − λ, (∇FS(xt)

⊤∇FS(xt))λt⟩
(C.18)
≤ EA∥λt − λ∥2 − EA∥λt+1 − λ∥2 + γ2

t EA∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2. (C.20)

Rearranging the above inequality proves (C.19).

C.2 Proof of Lemma 2 – Distance to CA direction

Organization of proof. In Lemma 18, we prove the upper bound of the distance to CA direction,
1
T

∑T−1
t=0 EA[∥∇FS(xt)λt −∇FS(xt)λ

∗(xt)∥2], in terms of two average of sequences, S1,T , and
S2,T . Then under either Assumptions 1, 3, or Assumptions 1, 2, we prove the upper bound of S1,T ,
and S2,T , and thus the average-iterate distance to CA direction in Lemma 2.

Lemma 18. Suppose Assumption 1 holds. Let {xt}, {λt} be the sequences produced by the MoDo
algorithm. With a positive constant ρ̄ > 0, define

S1,T =
1

T

T−1∑
t=0

EA∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2 (C.21a)

S2,T =
1

T

T−1∑
t=0

EA∥∇FS(xt+1) +∇FS(xt)∥∥∇Fzt,3λt+1∥. (C.21b)

Then it holds that

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ
∗(xt)∥2] ≤ρ̄+

4

γT
(1 + ρ̄−1αℓF,1TS2,T) + γS1,T .

(C.22)

38

Proof. Define λ∗
ρ̄(xt) = argminλ∈∆M

1
2∥∇FS(xt)λ∥2 + ρ̄

2∥λ∥
2 with ρ̄ > 0. Note that ρ̄ is strictly

positive and is used only for analysis but not for algorithm update.

Substituting λ = λ∗
ρ̄(xt) in Lemma 17, (C.19), we have

γtEA(∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ
∗
ρ̄(xt)∥2)

≤EA∥λt − λ∗
ρ̄(xt)∥2 − EA∥λt+1 − λ∗

ρ̄(xt)∥2 + γ2
t EA∥(∇Fzt,1(xt)

⊤∇Fzt,2(xt))λt∥2. (C.23)

Setting γt = γ > 0, taking expectation and telescoping the above inequality gives

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ
∗
ρ̄(xt)∥2]

≤ 1

T

T−1∑
t=0

1

γ
EA[∥λt − λ∗

ρ̄(xt)∥2 − ∥λt+1 − λ∗
ρ̄(xt)∥2] +

1

T

T−1∑
t=0

γEA∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2

=
1

γT

(T−1∑
t=0

EA[∥λt − λ∗
ρ̄(xt)∥2 − ∥λt+1 − λ∗

ρ̄(xt)∥2]
)

︸ ︷︷ ︸
I1

+
1

T

T−1∑
t=0

γEA∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2

(C.24)

where I1 can be further derived as

I1 =

T−1∑
t=0

EA∥λt − λ∗
ρ̄(xt)∥2 − EA∥λt+1 − λ∗

ρ̄(xt)∥2

=EA∥λ0 − λ∗
ρ̄(x0)∥2 − EA∥λT − λ∗

ρ̄(xT)∥2 +
T−2∑
t=0

EA[∥λt+1 − λ∗
ρ̄(xt+1)∥2 − ∥λt+1 − λ∗

ρ̄(xt)∥2]

≤EA∥λ0 − λ∗
ρ̄(x0)∥2 − EA∥λT − λ∗

ρ̄(xT)∥2

+

T−2∑
t=0

EA[∥2λt+1 − λ∗
ρ̄(xt+1)− λ∗

ρ̄(xt)∥∥λ∗
ρ̄(xt+1)− λ∗

ρ̄(xt)∥]

≤4 + 4

T−2∑
t=0

EA∥λ∗
ρ̄(xt+1)− λ∗

ρ̄(xt)∥ (C.25)

where ∥λ∗
ρ̄(xt+1)− λ∗

ρ̄(xt)∥, by Lemma 15, can be bounded by

∥λ∗
ρ̄(xt+1)− λ∗

ρ̄(xt)∥ ≤ρ̄−1∥∇FS(xt+1) +∇FS(xt)∥∥∇FS(xt+1)−∇FS(xt)∥
≤ρ̄−1ℓF,1∥∇FS(xt+1) +∇FS(xt)∥∥xt+1 − xt∥
≤ρ̄−1αℓF,1∥∇FS(xt+1) +∇FS(xt)∥∥∇Fzt,3λt+1∥. (C.26)

Hence, it follows that

I1 ≤4 + 4ρ̄−1αℓF,1

T−1∑
t=0

EA∥∇FS(xt+1) +∇FS(xt)∥∥∇Fzt,3λt+1∥

=4 + 4ρ̄−1αℓF,1TS2,T (C.27)

plugging which into (C.24) gives

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ
∗
ρ̄(xt)∥2] ≤

4

γT
(1 + ρ̄−1αℓF,1TS2,T) + γS1,T . (C.28)

Define λ∗(xt) ∈ argminλ∈∆M ∥∇FS(xt)λ∥2. Then

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ
∗(xt)∥2]

39

=
1

T

T−1∑
t=0

EA[∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ
∗
ρ̄(xt)∥2 + ∥∇FS(xt)λ

∗
ρ̄(xt)∥2 − ∥∇FS(xt)λ

∗(xt)∥2]

(C.28)
≤ 4

γT
(1 + ρ̄−1αℓF,1TS2,T) + γS1,T +

1

T

T−1∑
t=0

EA[∥∇FS(xt)λ
∗
ρ̄(xt)∥2 − ∥∇FS(xt)λ

∗(xt)∥2]

≤ 4

γT
(1 + ρ̄−1αℓF,1TS2,T) + γS1,T + ρ̄ (C.29)

where the last inequality follows from Lemma 16. The proof is complete.

Proof of Lemma 2. Building on the result in Lemma 18, and by the convexity of the subproblem,
minλ∈∆M

1
2∥∇FS(xt)λ∥2, and Lemma 14, we have

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt −∇FS(xt)λ
∗(xt)∥2] ≤

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt∥2 − ∥∇FS(xt)λ
∗(xt)∥2]

≤ρ̄+
4

γT
(1 + ρ̄−1αℓF,1TS2,T) + γS1,T . (C.30)

By Assumptions 1, 3 or Assumptions 1, 2 and Lemma 1, we have

S1,T =
1

T

T−1∑
t=0

EA∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2 ≤ (ℓf ℓF)

2 ≤ Mℓ4f (C.31)

S2,T =
1

T

T−1∑
t=0

EA∥∇FS(xt+1) +∇FS(xt)∥∥∇Fzt,3λt+1∥ ≤ 2ℓf ℓF . (C.32)

Substituting S1,T , S2,T in (C.30) with the above bound yields

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt −∇FS(xt)λ
∗(xt)∥2] ≤ρ̄+

4

γT
(1 + 2ρ̄−1αTℓF,1ℓf ℓF) + γMℓ4f .

(C.33)

Because ℓF,1ℓF ≤ Mℓf,1ℓf , choosing ρ̄ = 2(αMℓf,1ℓ
2
f/γ)

1
2 yields

1

T

T−1∑
t=0

EA[∥∇FS(xt)λt −∇FS(xt)λ
∗(xt)∥2]

(a)

≤ ρ̄+
4

γT
(1 + 2ρ̄−1αTMℓf,1ℓ

2
f) + γMℓ4f

=
4

γT
+ 6

√
Mℓf,1ℓ2f

α

γ
+ γMℓ4f (C.34)

where (a) follows from Lemma 14. This proves the result.

C.3 Proof of Theorem 3 – PS optimization error

Technical contributions. The optimization error bound in Theorem 3 is improved with either
relaxed assumption or improved convergence rate compared to prior stochastic MOL algorithms [52,
10, 30] (see Table 2). This is achieved by 1) instead of bounding the approximation error to λ∗(xt),
we bound that to the CA direction d(xt) = −∇FS(xt)λ

∗(xt) as a whole, and 2) instead of using the
descent lemma of FS(xt)λ

∗(xt) with a dynamic weight, we use that of FS(xt)λ with a fixed weight
(see Lemma 19, (C.36)), thereby improving the tightness of the bound.

Organization of proof. In Lemma 19, we prove the upper bound of the PS optimization error,
1
T

∑T−1
t=0 EA∥∇FS(xt)λ

∗
t (xt)∥2, in terms of three average of sequences, S1,T , S3,T , and S4,T . Then

we prove the upper bound of S1,T , S3,T , and S4,T , and thus the PS optimization error either in the
nonconvex case under Assumptions 1, 3 or in the strongly convex case under Assumptions 1, 2.
Combining the results leads to Theorem 3.

40

Lemma 19. Suppose Assumption 1 holds. Consider the sequence {xt}, {λt} generated by MoDo in
unbounded domain for x. Define

S1,T =
1

T

T−1∑
t=0

EA∥∇Fzt,1(xt)
⊤∇Fzt,2(xt)λt∥2 (C.35a)

S3,T =
1

T

T−1∑
t=0

EA∥∇Fzt,1(xt)
⊤∇Fzt,2(xt)λt∥∥∇FS(xt)

⊤∇FS(xt)λ1∥ (C.35b)

S4,T =
1

T

T−1∑
t=0

EA∥∇Fzt,3(xt)λt+1∥2. (C.35c)

Then it holds that

1

T

T−1∑
t=0

EA∥∇FS(xt)λ
∗
t (xt)∥2 ≤ 1

2αT
EA[FS(x1)− FS(xT+1)]λ1 +

1

2
γS1,T + γS3,T +

1

2
αℓf,1S4,T .

Proof. By the ℓf,1-Lipschitz smoothness of FS(x)λ for all λ ∈ ∆M , we have

FS(xt+1)λ− FS(xt)λ ≤⟨∇FS(xt)λ, xt+1 − xt⟩+
ℓf,1
2

∥xt+1 − xt∥2

=− αt⟨∇FS(xt)λ,∇Fzt,3(xt)λt+1⟩+
ℓf,1
2

α2
t ∥∇Fzt,3(xt)λt+1∥2.

(C.36)

Taking expectation over zt,3 on both sides of the above inequality gives

Ezt,3 [FS(xt+1)]λ− FS(xt)λ ≤ −αt⟨∇FS(xt)λ,∇FS(xt)λt+1⟩+
ℓf,1
2

α2
tEzt,3∥∇Fzt,3(xt)λt+1∥2.

(C.37)

By Lemma 17, (C.18), we have

2γtEA⟨λt − λ, (∇FS(xt)
⊤∇FS(xt))λt⟩

≤EA∥λt − λ∥2 − EA∥λt+1 − λ∥2 + γ2
t EA∥(∇Fzt,1(xt)

⊤∇Fzt,2(xt))λt∥2. (C.38)

Rearranging the above inequality and letting γt = γ > 0 gives

−EA⟨λ,∇FS(xt)
⊤∇FS(xt)λt⟩ ≤ − EA⟨λt, (∇FS(xt)

⊤∇FS(xt))λt⟩+
1

2γ
EA(∥λt − λ∥2 − ∥λt+1 − λ∥2)

+
1

2
γEA∥(∇Fzt,1(xt)

⊤∇Fzt,2(xt))λt∥2

≤− EA∥∇FS(xt)λt∥2 +
1

2γ
EA(∥λt − λ∥2 − ∥λt+1 − λ∥2)

+
1

2
γEA∥(∇Fzt,1(xt)

⊤∇Fzt,2(xt))λt∥2. (C.39)

Plugging the above inequality into (C.37), and setting αt = α > 0, we have

EA[FS(xt+1)λ− FS(xt)λ] ≤− αEA⟨∇FS(xt)λ,∇FS(xt)λt+1⟩+
ℓf,1
2

α2EA∥∇Fzt,3(xt)λt+1∥2

≤− αEA∥∇FS(xt)λt∥2 +
α

2γ
EA[∥λt − λ∥2 − ∥λt+1 − λ∥2]

+ αEA⟨∇FS(xt)λ,∇FS(xt)(λt − λt+1)⟩+
1

2
α2ℓf,1EA∥∇Fzt,3(xt)λt+1∥2

+
1

2
αγEA∥(∇Fzt,1(xt)

⊤∇Fzt,2(xt))λt∥2. (C.40)

41

Taking telescope sum and rearranging yields, for all λ ∈ ∆M ,

1

T

T−1∑
t=0

EA∥∇FS(xt)λt∥2

≤ 1

2γT

T−1∑
t=0

EA[∥λt − λ∥2 − ∥λt+1 − λ∥2] + 1

αT

T−1∑
t=0

EA[FS(xt)− FS(xt+1)]λ

+
1

2T

T−1∑
t=0

(
γEA∥∇Fzt,1(xt)

⊤∇Fzt,2(xt)λt∥2 + αℓf,1EA∥∇Fzt,3(xt)λt+1∥2

+ 2EA⟨∇FS(xt)λ,∇FS(xt)(λt − λt+1)⟩
)

≤ 1

2γT
EA[∥λ1 − λ∥2 − ∥λT+1 − λ∥2] + 1

αT
EA[FS(x1)− FS(xT+1)]λ+

1

2
γS1,T + γS3,T +

1

2
αℓf,1S4,T .

(C.41)

Setting λ = λ1 in the above inequality yields

1

T

T−1∑
t=0

EA∥∇FS(xt)λt∥2 ≤ 1

αT
EA[FS(x1)− FS(xT+1)]λ1 +

1

2
γS1,T + γS3,T +

1

2
αℓf,1S4,T

Finally, the results follow from the definition of λ∗
t (xt) such that 1

T

∑T−1
t=0 EA∥∇FS(xt)λ

∗
t (xt)∥2 ≤

1
T

∑T−1
t=0 EA∥∇FS(xt)λt∥2.

Proof of Theorem 3. Lemma 19 states that, under Assumption 1, we have

1

T

T−1∑
t=0

EA∥∇FS(xt)λ
∗
t (xt)∥2 ≤ 1

αT
EA[FS(x1)− FS(xT+1)]λ1 +

1

2
γS1,T + γS3,T +

1

2
αℓf,1S4,T .

Then we proceed to bound S1,T , S3,T , S4,T . Under either Assumptions 1, 3, or Assumptions 1, 2
with ℓf , ℓF defined in Lemma 1, we have that for all z ∈ S and λ ∈ ∆M , ∥∇Fz(xt)λ∥ ≤ ℓf , and
∥∇Fz(xt)∥ ≤ ℓF . Then S1,T , S3,T , S4,T can be bounded below

S1,T =
1

T

T−1∑
t=0

EA∥(∇Fzt,1(xt)
⊤∇Fzt,2(xt))λt∥2 ≤ Mℓ4f (C.42a)

S3,T =
1

T

T−1∑
t=0

EA∥∇Fzt,1(xt)
⊤∇Fzt,2(xt)λt∥∥∇FS(xt)

⊤∇FS(xt)λ1∥ ≤ ℓ2F ℓ
2
f = Mℓ4f (C.42b)

S4,T =
1

T

T−1∑
t=0

EA∥∇Fzt,3(xt)λt+1∥2 ≤ ℓ2f (C.42c)

which proves that

1

T

T−1∑
t=0

EA∥∇FS(xt)λ
∗
t (xt)∥2 ≤ 1

αT
cF +

3

2
γMℓ4f +

1

2
αℓf,1ℓ

2
f . (C.43)

We arrive at the results by 1
T

∑T−1
t=0 EA∥∇FS(xt)λ

∗
t (xt)∥ ≤

(
1
T

∑T−1
t=0 EA∥∇FS(xt)λ

∗
t (xt)∥2

) 1
2

from the Jensen’s inequality and the convexity of the square function, as well as the subadditivity of
square root function.

42

(a) MGDA (b) Static (c) MoDo

Figure 5: Convergence of MGDA, static weighting and MoDo to the empirical (gray, upper)
and population (green, lower) Pareto fronts. Horizontal and vertical axes in figures in the first /
second row are the values of the two empirical / population objectives. Three colormaps are used
for the trajectories from three initializations, respectively, where the same colormaps represent the
trajectories of the same initializations, and darker colors in one colormap indicate earlier iterations
and lighter colors indicate later iterations.

D Additional experiments and implementation details

Compute. Experiments are done on a machine with GPU NVIDIA RTX A5000. We use MATLAB
R2021a for the synthetic experiments in strongly convex case, and Python 3.8, CUDA 11.7, Pytorch
1.8.0 for other experiments. Unless otherwise stated, all experiments are repeated with 5 random
seeds. And their average performance and standard deviations are reported.

D.1 Synthetic experiments

D.1.1 Experiments on strongly convex objectives

Implementation details. Below we provide the details of experiments that generate Figure 3. We
use the following synthetic example for the experiments in the strongly convex case. The m-th
objective function with stochastic data sample z is specified as

fz,m(x) =
1

2
b1,mx⊤Ax− b2,mz⊤x (D.1)

where b1,m > 0 for all m ∈ [M], and b2,m is another scalar. We set M = 3, b1 = [b1,1; b1,2; b1,3] =
[1; 2; 1], and b2 = [b2,1; b2,2; b2,3] = [1; 3; 2]. The default parameters are T = 100, α = 0.01,
γ = 0.001. In other words, in Figure 3a, we fix α = 0.01, γ = 0.001, and vary T ; in Figure 3b, we
fix T = 100, γ = 0.001, and vary α; and in Figure 3c, we fix T = 100, α = 0.01, and vary γ.

D.1.2 Experiments on nonconvex objectives

Implementation details. The toy example is modified from [29] to consider stochastic data. Denote
the model parameter as x = [x1, x2]

⊤ ∈ R2, stochastic data as z = [z1, z2]
⊤ ∈ R2 sampled from the

standard multi-variate Gaussian distribution. And the individual empirical objectives are defined as:

fz,1(x) = c1(x)h1(x) + c2(x)gz,1(x) and fz,2(x) = c1(x)h2(x) + c2(x)gz,2(x), where
h1(x) = log(max(|0.5(−x1 − 7)− tanh(−x2)|, 0.000005)) + 6,

h2(x) = log(max(|0.5(−x1 + 3)− tanh(−x2) + 2|, 0.000005)) + 6,

43

(a) γ = 0 (b) γ = 10−12 (c) γ = 10−4 (d) γ = 10−2

Figure 6: Trajectories of MoDo under different γ on the contour of the average of objectives.
The black • marks initializations of the trajectories, colored from red (start) to yellow (end). The
background solid/dotted contours display the landscape of the average empirical/population objectives.
The gray/green bar marks empirical/population Pareto front, and the black ⋆/green ⋆ marks solution
to the average objectives.

gz,1(x) = ((−x1 + 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20− 2 ∗ z1x1 − 5.5 ∗ z2x2,

gz,2(x) = ((−x1 − 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20 + 2 ∗ z1x1 − 5.5 ∗ z2x2,

c1(x) = max(tanh(0.5 ∗ x2), 0) and c2(x) = max(tanh(−0.5 ∗ x2), 0). (D.2)

Since z is zero-mean, the individual population objectives are correspondingly:

f1(x) = c1(x)h1(x) + c2(x)g1(x) and f2(x) = c1(x)h2(x) + c2(x)g2(x), where

g1(x) = ((−x1 + 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20,

g2(x) = ((−x1 − 3.5)2 + 0.1 ∗ (−x2 − 1)2)/10− 20. (D.3)

The training dataset size is n = |S| = 20. For all methods, i.e., MGDA, static weighting, and
MoDo, the number of iterations is T = 50000. The initialization of λ is λ0 = [0.5, 0.5]⊤. The
hyperparameters for this experiment are summarized in Table 5.

Figure 5, in addition to Figure 1, shows the trajectories of different methods from different initializa-
tions to the empirical and population Pareto fronts (PF). With the visualized empirical and population
PFs, it is clear in Figure 5a, the first row, that the three trajectories of MGDA all converge to the
empirical PF, but, it stops updating the model parameter as soon as it reaches the empirical PF.
However, due to the difference between the empirical and population PFs caused by finite stochastic
training data, as shown in Figure 5a, the second row, not all three solutions from MGDA has small
population risk, implied from the distance of the solution (yellow point) to the population PF colored
in green. For static weighting method with uniform weights in Figure 5b, one trajectory is able to
converge to the center of the empirical PF, which is the optimal solution of the uniform average of
the two objectives. However, the other two get stuck and oscillate around suboptimal parameters
for a long time, corresponding to the clusters of scattered points in the figure. Nevertheless, in the
second row of Figure 5b, one empirically suboptimal solution (on the trajectory with red to yellow
colormap) is able to achieve small population risk. This example demonstrates that even though
static weighting method does not have small distance to CA direction, it might still be able to achieve
small testing error. Finally, for MoDo in Figure 5c, the first row shows that MoDo is slower than
MGDA in convergence to the empirical PF, since it only approximately solves the CA direction using

Table 5: Summary of hyper-parameter choices for nonconvex synthetic data.

Static MGDA MoDo
optimizer of xt Adam Adam Adam
xt step size (αt) 5× 10−3 5× 10−3 5× 10−3

λt step size (γt) - - 10−4

batch size 16 full 16

44

(a) γ = 0

ou
(b) γ = 10−12 (c) γ = 10−4 (d) γ = 10−2

Figure 7: Convergence of MoDo to the empirical (gray, upper) and population (green, lower)
Pareto fronts under different γ. Horizontal and vertical axes in figures in the first / second row are
the values of the two empirical / population objectives. Three colormaps are used for the trajectories
from three initializations, respectively, where the same colormaps represent the trajectories of the
same initializations, and darker colors in one colormap indicate earlier iterations and lighter colors
indicate later iterations.

stochastic gradient. The second row shows that all three solutions of MoDo can achieve relatively
small population risk, demonstrating a good generalization ability.

To demonstrate how the choice of γ has an impact on the performance of MoDo, we further conduct
experiments with different γ, and show that MoDo can recover static weighting (γ = 0) and
approximate MGDA (γ = 10−2). Results are visualized in Figure 6, which plots the trajectories over
the contours of the average objectives, and Figure 7, which plots the empirical and population PFs.
Figure 6a and Figure 7a together verify that MoDo with γ = 0 behaves the same as static weighting,
cf. Figure 1d and Figure 5b. Like static weighting, for two of the initializations, they either cannot
go through the valley or stuck in the valley for a long time. And if the trajectory converges, it will
converge to the optimal solution of the average empirical objectives. In addition, Figure 6d and
Figure 7d together indicate that MoDo with γ = 10−2 behaves similarly as MGDA, cf. Figure 1c
and Figure 5a. Like MGDA, it can go through the valley without getting stuck in it for a long time,
and then converge to the empirical PF for all three initializations. But also like MGDA, it will stop
updating or oscillating around the parameters as soon as it reaches the empirical PF, resulting in a
worse population risk for one of the solutions with a trajectory colored from purple to pink to yellow.
We also conduct experiments on 0 < γ < 10−2. With γ = 10−12, as shown in Figures 6b, and 7b,
MoDo is able to go through the valley and converge to the empirical PF for all initializations, but
very slowly. And all initializations converge to the optimal solution of the average objectives. While
with γ = 10−4, as shown in Figures 6c, and 7c, MoDo is able to go through the valley and converge
to the empirical PF for all initializations quickly. And it stops updating the parameters as soon as
it reaches the empirical PF. The solutions of the three initializations are different from the optimal
solution of the average objectives. But compared to the case when γ = 10−2, the three solutions are
closer to the optimal solution of the average objectives. This is because the weighting parameter λ
does not change too much during the optimization procedure with a small γ.

D.2 Multi-task supervised learning experiments

In this section we present experiment details and additional results for comparison of static weight-
ing, MGDA, and MoDo algorithms, under synthetic and real world multi-task supervised learning
problems. We use MNIST, Office-31, Office-home, and NYU-v2 datasets.

D.2.1 MNIST dataset experiments

Implementation details. Below we provide the details and additional experimental results on
MNIST image classification. We simulate a synthetic multi-objective optimization problem using

45

different loss functions applied for training an image classifier for MNIST handwritten digit dataset.
We consider three loss functions: cross entropy, mean squared error (MSE), and Huber loss. The
model architecture is a two-layer multi-layer perceptron (MLP). Each hidden layer has 512 neurons,
and no hidden layer activation. The input size is 784, and the output size is 10, the number of digit
classes. The training, validation, and testing data sizes are 50k, 10k, and 10k, respectively. Hyper-
parameters such as step sizes are chosen based on each algorithm’s validation accuracy performance,
as given in Table 6.

We then discuss the results of the experiments in Table 7, which shows the performance of the last
iterate for each method. Experiments are repeated 10 times with average performance and standard
deviations reported. Observed from Table 7, for cross-entropy loss, MGDA performs the worst
while static weighting performs the best. On the other hand, for Huber loss, MGDA performs the
best while static weighting performs the worst. This is not surprising as cross-entropy loss has the
largest scale and Huber loss has the smallest scale among the three losses. Since equal weights are
assigned for all three objectives in the static weighting method, it tends to focus more on optimizing
the loss with the largest scale. While for MGDA, it is the other way around. Compared to MGDA,
MoDo performs much better on cross-entropy loss, and in the meantime, it achieves comparable
performance on Huber loss. Comparing their PS population risks Rpop and the decomposed PS
optimization errors Ropt and PS generalization errors Rgen, MGDA has the smallest PS population
risk and PS optimization error. One potential reason is that MGDA performs best on Huber loss, with
smaller gradients. Another reason is that the generalization errors for all the algorithms are similar
and not dominating compared to optimization errors in this setting, making the PS population risk
close to the PS optimization error. Overall, MoDo demonstrates a balance among objectives with
different scales and performs reasonably well on all three objectives since it combines the properties
of static weighting and MGDA.

Table 6: Summary of hyper-parameter choices for MNIST image classification

Static MGDA MoDo
optimizer of xt SGD SGD SGD
xt step size (αt) 0.1 5.0 1.0
λt step size (γt) - - 1.0

batch size 64 64 64

Table 7: MNIST classification with cross-entropy, MSE, and Huber loss as objectives.

Method
Cross-entropy MSE loss Huber loss

Rpop (10−3) ↓ Ropt (10−3) ↓ |Rgen| (10−3) ↓
Loss (10−3) ↓ Loss (10−3) ↓ Loss (10−3) ↓

Static 306.9±3.9 13.2±0.14 2.2±0.03 2.1±0.56 1.9±0.5 0.2±0.19

MGDA 363.6±4.1 13.5±0.13 1.9±0.01 1.3±0.24 1.1±0.2 0.2±0.13

MoDo 317.9±3.4 13.1±0.13 2.1±0.05 2.1±0.38 1.9±0.4 0.1±0.09

D.2.2 Office-31 and Office-home dataset experiments

Implementation details. We give the details for the experiments conducted using Office-31 and
Office-home datasets, which consist of multi-domain image classification tasks. Both of these are
multi-input single-task learning problems. Office-31 and Office-home consist of 31 and 65 image
classes, respectively. The image domains for Office-31 are; “Amazon”, which includes object images
from Amazon, “DSLR”, which includes high-resolution images of objects, and “Webcam”, which
includes low-resolution images from objects. The image domains for Office-31 are “Art”, “Clipart”,
“Product”, and “Real-world” which include images of objects taken from the respective image
domains. We use the MTL benchmark framework LibMTL [26] to run experiments on both of the
aforementioned datasets. For both datasets, we tune the step size of x and weight decay parameters
for Static and MGDA algorithms and tune the step sizes of x and λ for the MoDo algorithm. We use
batch size 64 to update static weighting and MGDA, and use 2 independent samples of batch size
32 to update MoDo, for both Office-31 and Office-home. A summary of hyper-parameters used for

46

Table 8: Summary of hyper-parameter choices for Office-31 task

Static MGDA MoDo
optimizer of xt Adam Adam Adam
xt step size (αt) 10−4 10−4 10−4

λt step size (γt) - - 10−3

weight decay 10−3 10−7 10−5

batch size 64 64 64

Office-31 and Office-home for each algorithm are given in Table 8 and Table 9, respectively. All
other experiment setup is shared for all algorithms, and the default LibMTL configuration is used.

The results of Office-31 and Office-home experiments are given in Tables 3 and 10, respectively
(average over 5 seeds, the error indicates standard deviation). Here, we use the average per-task
performance drop of metrics SA,m for method A with respect to corresponding baseline measures
SB,m as a measure of the overall performance of a given method. Specifically, this measure is

∆A%=
1

M

M∑
m=1

(−1)ℓm (SA,m − SB,m)/SB,m × 100, (D.4)

where M is the number of tasks. Here, ℓm=1 if higher values for SA,m are better and 0 otherwise.
We use the best results for each task obtained by dedicated independent task learners of each task as
SB,m. The independent task learners are tuned for the learning rate and weight decay parameter. For
Office-31, SB,m values are 87.50% for “Amazon”, 98.88% for “DSLR”, and 97.32% for “Webcam”.
For Office-home, SB,m values are 66.98% for “Art”, 82.02% for “Clipart”, 91.53% for “Product”,
and 80.97% for “Real-world”. It can be seen from Tables 3 and 10 that static weighting outperforms
MGDA method in some tasks and also in terms of ∆A%. However, by proper choices of hyper-
parameters, MoDo performs on par or better compared to both static weighting and MGDA, and
hence achieves the best overall performance in terms of ∆A%.

Table 9: Summary of hyper-parameter choices for Office-home task

Static MGDA MoDo
optimizer of xt Adam Adam Adam
xt step size (αt) 10−4 10−4 10−4

λt step size (γt) - - 10−3

weight decay 10−3 10−6 10−5

batch size 64 64 64

Table 10: Classification results on Office-home dataset.

Method
Art Clipart Product Real-world

∆A% ↓
Test Acc ↑ Test Acc ↑ Test Acc ↑ Test Acc ↑

Static 64.14 ± 1.40 79.57 ± 1.09 90.00 ± 0.50 78.94 ± 0.87 2.85 ± 1.08
MGDA 61.71 ± 1.33 73.95 ± 0.43 90.17 ± 0.27 79.35 ± 1.15 5.29 ± 0.47
MoDo 65.50 ± 0.55 79.44 ± 0.29 89.72 ± 0.94 79.65 ± 0.67 2.24 ± 0.48

D.2.3 NYU-v2 dataset experiments

Implementation details. We give the details for the experiments conducted using NYU-v2 dataset,
which consists of image segmentation, depth estimation, and surface normal estimation tasks. Un-
like Office-31 and Office-home datasets, this is a single-input multi-task learning problem. The

47

dataset consists of images from indoor video sequences. We use the MTL benchmark framework
LibMTL [26] to run experiments with this dataset. We tune step size of x and weight decay parame-
ters for static weighting and MGDA algorithms, and tune step sizes of x and λ for MoDo algorithm.
We use batch size 4 to update static weighting and MGDA, and use 2 independent batches of size 2 to
update MoDo. Experiments were run for 50 epochs for all methods. Since there was no validation set
for NYU-v2, we averaged and reported the test performance of the last 10 epochs. A summary of
hyper-parameters used for each algorithm is given in Table 11. All other experiment setup is shared
for all algorithms, and the default LibMTL configuration is used.

Table 11: Summary of hyper-parameter choices for NYU-v2 task

Static MGDA MoDo
optimizer of xt Adam Adam Adam
xt step size (αt) 10−4 10−4 10−4

λt step size (γt) - - 10−3

weight decay 10−4 10−6 10−5

batch size 4 4 4

Table 12: Segmentation, depth, and surface normal estimation results on NYU-v2 dataset.

Method

Segmetation Depth Surface Normal

∆A% ↓(Higher Better) (Lower Better) Angle Distance
(Lower Better)

Within t◦

(Higher better)
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Static 52.02 ± 0.69 74.21 ± 0.57 0.3984 ± 0.0032 0.1645 ± 0.0010 23.79 ± 0.10 17.44 ± 0.15 34.07 ± 0.17 60.17 ± 0.31 71.48 ± 0.29 3.98 ± 0.70

MGDA 46.39 ± 0.17 70.27 ± 0.24 0.4269 ± 0.0024 0.1737 ± 0.0009 22.34 ± 0.03 15.70 ± 0.08 37.71 ± 0.21 63.96 ± 0.11 74.50 ± 0.06 6.25 ± 0.38

MoDo 52.64 ± 0.19 74.67 ± 0.08 0.3984 ± 0.0020 0.1649 ± 0.0018 23.45 ± 0.06 17.09 ± 0.05 34.79 ± 0.11 60.90 ± 0.13 72.12 ± 0.11 3.21 ± 0.34

The results of NYU-v2 experiments are given in Tables 12 (average over 3 seeds, the error indicates
standard deviation). Again, we use the average per-task performance drop of metrics SA,m for method
A with respect to corresponding baseline measures SB,m as a measure of the overall performance
of a given method. We use the best results for each task obtained by dedicated independent task
learners of each task as SB,m. The independent task learners are tuned for the learning rate and
weight decay parameter. For segmentation task, SB,m values are 53.94% for “mIoU”, and 75.67%
for “Pix Acc”. For depth estimation task, SB,m values are 0.3949 for “Abs Err”, and 0.1634 for
“Rel Err”. For surface normal estimation task, SB,m values are 22.12 for “Angle Distance - Mean”,
15.49 for “Angle Distance - Median”, 38.35% for “Within 11.25◦”, 64.30% for “Within 22.5◦”, and
74.70% for “Within 30◦”. It can be seen from Table 12 that MoDo outperforms both MGDA and
static weighting in some tasks and also in terms of ∆A%. The worse performance of MGDA in terms
of ∆A% can be due to the large bias towards the Surface normal estimation task, which seems to
affect other tasks adversely.

D.2.4 Additional experiments for comparison with other MOL baselines

In this section, we provide a comparison between MoDo and other popular MOL baselines. For
this purpose, we use the same benchmark datasets as the previous section and use the experiment
setup provided in [25] to run experiments with MoDo. Hence, we use experiment results provided
by [25] for other baselines for comparison. Additionally, we implement MoCo [10], which is not
included in [25]. For results in this section we report two holistic measures: ∆Ast, which measures
performance degradation w.r.t. static scalarization (similar to [25], but lower the better), and ∆Aid,
which measures performance degradation w.r.t. independent task learners (as defined in our paper)

The results on Office-31, Office-home, and NYU-v2 are given in Tables 13, 14, and 15, respectively,
where MoDo outperforms all the baselines for most tasks, and has a better overall performance in
∆Ast% and ∆Aid%. The hyper-parameters of MoDo for the above experiments are in Table 16.

48

Table 13: Comparison with other methods on Office-31 dataset.

Method Amazon DSLR Webcam ∆Ast% ↓ ∆Aid% ↓

Static (EW) 81.02 96.72 96.11 0.00 2.96
MGDA-UB [39] 81.02 95.90 97.77 0.40 3.32
GradNorm [6] 83.93 97.54 94.44 -0.19 2.80
PCGrad [48] 82.22 96.72 95.55 0.40 3.35
CAGrad [29] 82.22 96.72 96.67 0.01 2.96

RGW [25] 84.27 96.72 96.67 -0.81 2.18
MoCo [10] 85.30 97.54 97.22 -1.70 1.32

MoDo (ours) 85.47 98.36 96.67 -1.86 1.17

Table 14: Comparison with other methods on Office-home dataset.

Method Art Clipart Product Real-world ∆Ast% ↓ ∆Aid% ↓

Static (EW) 62.99 76.48 88.45 77.72 0.00 5.02
MGDA-UB [25] 64.32 75.29 89.72 79.35 -1.02 4.04
GradNorm [6] 65.46 75.29 88.66 78.91 -1.03 4.04
PCGrad [48] 63.94 76.05 88.87 78.27 -0.53 4.51
CAGrad [29] 63.75 75.94 89.08 78.27 -0.48 4.56

RGW [25] 65.08 78.65 88.66 79.89 -2.30 2.85
MoCo [10] 64.14 79.85 89.62 79.57 -2.48 2.68

MoDo (ours) 66.22 78.22 89.83 80.32 -3.08 2.11

Table 15: Comparison with other methods on NYU-v2 dataset.

Method
Segmentation Depth Surface Normal

∆Ast%
↓

∆Aid%
↓(Higher Better) (Lower Better) Angle Distance

(Lower Better)
Within t◦

(Higher better)
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Static (EW) 53.77 75.45 0.3845 0.1605 23.57 17.04 35.04 60.93 72.07 0.00 1.63
MGDA-UB 50.42 73.46 0.3834 0.1555 22.78 16.14 36.90 62.88 73.61 -0.38 1.26
GradNorm 53.58 75.06 0.3931 0.1663 23.44 16.98 35.11 61.11 72.24 0.99 2.62

PCGrad 53.70 75.41 0.3903 0.1607 23.43 16.97 35.16 61.19 72.28 0.16 1.79
CAGrad 53.12 75.19 0.3871 0.1599 22.53 15.88 37.42 63.50 74.17 -1.36 0.26

RGW 53.85 75.87 0.3772 0.1562 23.67 17.24 34.62 60.49 71.75 -0.62 1.03
MoCo 54.05 75.58 0.3812 0.1530 23.39 16.69 35.65 61.68 72.60 -1.47 0.18

MoDo (ours) 53.37 75.25 0.3739 0.1531 23.22 16.65 35.62 61.84 72.76 -1.59 0.07

Table 16: Summary of hyper-parameter choices for MoDo
Office-31 Office-home NYU-v2

optimizer of xt Adam Adam Adam
xt step size (αt) 1× 10−4 5× 10−4 2.5× 10−4

λt step size (γt) 10−6 10−3 10−3

weight decay 10−5 10−5 10−5

batch size 128 128 8

49

	Introduction
	Problem Formulation and Target of Analysis
	Preliminaries of MOL
	Target of analysis and error decomposition
	A stochastic algorithm for MOL

	Optimization, Generalization and Three-Way Trade-Off
	Multi-objective generalization and uniform stability
	Multi-objective optimization error
	Optimization, generalization and conflict avoidance trade-off

	Related Works and Our Technical Contributions
	Experiments
	Synthetic experiments
	Image classification experiments

	Conclusions
	
	
	Notations
	Bounding the generalization error
	Proof of Propositions 2-3
	Proof of Theorem 1 – PS generalization error in nonconvex case
	Proof of Lemma 1 – Boundedness of xt in strongly convex case
	Proof of Theorem 2 – PS generalization error in strongly convex case
	Expansiveness and boundedness of MoDo update
	Growth recursion
	Upper bound of MOL uniform stability
	Lower bound of MOL uniform stability
	Proof of Theorem 2

	Bounding the optimization error
	Auxiliary lemmas
	Proof of Lemma 2 – Distance to CA direction
	Proof of Theorem 3 – PS optimization error

	Additional experiments and implementation details
	Synthetic experiments
	Experiments on strongly convex objectives
	Experiments on nonconvex objectives

	Multi-task supervised learning experiments
	MNIST dataset experiments
	Office-31 and Office-home dataset experiments
	NYU-v2 dataset experiments
	Additional experiments for comparison with other MOL baselines

