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Abstract

We introduce a novel framework for decomposing interventional causal effects into
synergistic, redundant, and unique components, building on the intuition of Partial
Information Decomposition (PID) and the principle of M&bius inversion. While
recent work has explored a similar decomposition of an observational measure,
we argue that a proper causal decomposition must be interventional in nature. We
develop a mathematical approach that systematically quantifies how causal power
is distributed among variables in a system, using a recently derived closed-form
expression for the Mdbius function of the redundancy lattice. The formalism is
then illustrated by decomposing the causal power in logic gates, cellular automata,
chemical reaction networks, and a transformer language model. Our results reveal
how the distribution of causal power can be context- and parameter-dependent.
The decomposition provides new insights into complex systems by revealing how
causal influences are shared and combined among multiple variables, with potential
applications ranging from attribution of responsibility in legal or Al systems, to the
analysis of biological networks or climate models.

1 Introduction

Causal language is ubiquitous throughout the natural and social sciences. A ball falls towards the earth
because of a gravitational force, inflation rises because of excessive money supply, climate changes
because of greenhouse gas emissions. In each case, we seek not just to describe what happens, but to
understand why it happens—to identify the causal mechanisms underlying the observed phenomenon.
Implicit in causal language are claims about the effect of interventions or counterfactual scenarios
(we can mitigate climate change by reducing greenhouse gas emissions, and inflation would not be as
high if there had been no excessive money supply). When we study something that is embedded in a
web of complex causal interactions, attributing causality can become more difficult, so sophisticated
mathematical and computational techniques have been developed that all rely on one of two things:
either one is able to directly intervene in the system and study its response, or one requires a priori
knowledge of the causal dependencies in the system. In this study, we focus on situations in which
causal effects are identifiable, and address the question of causal attribution [20}[7]. Given that we
know the effect of interventions on various variables, how do we attribute the causal power to the
different variables? In particular, we are interested in distinguishing between three types of attribution:
unique, redundant, or synergistic causal power. Decomposition into these three classes is commonly
done in information theory, where it is known as the Partial Information Decomposition (PID, [23]).
Given two coin flips, for example, the answer to the question ‘was there an even number of heads’ is
carried purely synergistically by the pair of coins, since each coin individually carries no information
whatsoever about the answer.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Here we extend this approach to causal quantities and define a ‘partial causality decomposition’.
Disentangling these three different components of causality is crucial to a good understanding and
control of complex systems. DiFrisco and Jaeger [4], for example, already emphasised the importance
of identifying and distinguishing redundant and synergistic causality in gene regulatory systems. In
machine learning it is common to obtain predictions from opaque models whose internal reasoning
is not clear. Understanding and attributing causal power, blame, or responsibility to input features
is crucial to a safe and reliable deployment of such models. In machine learning, this is commonly
done using Shapley values [24, [22]], which are closely related to the decomposition presented here
[13], but fail to disentangle unique, redundant, and synergistic contributions.

Redundant and synergistic causality are related to the established notions of causal sufficiency and
necessity [20} 9, [7]]. If a set of variables carries redundant causal power, then any of the variables
suffice to affect the outcome, whereas exerting the synergistic causal power of a set of variables
necessitates a joint intervention. However, sufficiency and necessity are usually defined with respect
to individual outcomes (rung 3 of Pearl’s ladder of causation), whereas in this study we decompose
an average causal effect (namely, the maximum average causal effect in Equation (8)), which inhabits
rung 2). A brief example of how one could apply the framework to study sufficient and necessary
causes is included in Appendix[C]

Recently, Martinez-Sanchez et al. [19] demonstrated a technique to decompose an observational
measure (based on mutual information) that they refer to as causal. We, however, are of the opinion
that a measure of causality should necessarily be interventional, and not accessible from the joint
distribution alone [20]. Still, Martinez-Sanchez et al. [19] raise an interesting question, namely, is it
possible to disentangle the unique, redundant, and synergistic causal power of a set of variables? We
will show that this is indeed possible, drawing inspiration from the Partial Information Decomposition
[25]] and the use of Mobius inversions in complex systems [13].

2 Background

2.1 Partial orders and Mobius inversion

To show the algebraic structure of the decomposition, we first need to introduce a number of concepts.
First are partially ordered sets, or posets:

Definition 1 (Partially Ordered Set). A partially ordered set is a tuple (S, <), where S is a set and <
is a binary relation on S that is reflexive, antisymmetric, and transitive.

When the ordering is clear from context, we sometimes use the shorthand S to denote the poset. An
example of a partial order is (P(T"), C), the power set of T" ordered by inclusion. Given a poset S
and a,b € S, the interval [a, b] is the set {z : @ < x < b}. If all intervals on S are finite sets, then S
is called locally finite. We also define the following:

Definition 2 ((Anti)chains). Let (S, <) be a poset. A subset T C S is a chain if for all a,b € T,
a<borb<a. lfforalla,b €T, a <bimplies a = b, then T is an antichain.

Note that in particular any single element subset of a poset is both a chain and an antichain.

Functions on S can interact with the partial order in various ways. One such function is the Mobius
function:

Definition 3 (Mobius function). Let (S, <) be a locally finite poset. Then the Mobius function
s 2 S xS — Zis defined as

ps(2,y) = —Z:E@%(W fe<y ey
0 otherwise

This allows us to state the Mobius inversion theorem (MIT):

Theorem 1 (Mobius inversion theorem, Rota [211]). Let (S, <) be a locally finite poset. Let f, g :
S — R be functions on S, and let is be the Mobius function on S. Then

FO)=> gla) <= g(b)=> ps(a,b)f(a) 2)

a<b a<b



The Mobius inversion theorem states that sums of a function over a partial order can be inverted using
the Mobius function. Because the Lh.s. of (2)) can be interpreted as a discrete integral over the poset,
the convolution with the Mobius function on the r.h.s. is often considered as a generalised discrete
derivative. Indeed, applying the MIT to the natural numbers with their usual ordering recovers a
discrete version of the fundamental theorem of calculus. As many quantities in complex systems
correspond to integrals or derivatives over partial orders, the Mobius inversion theorem is a powerful
tool in the analysis of such systems [13]].

2.2 Decompositions into antichains

Principled decomposition into synergistic, redundant, and unique components was first explored by
Williams and Beer [25] in the context of information theory under the name Partial Information
Decomposition (PID). Their approach forms our main inspiration, so we briefly describe it here.
Consider the mutual information (X7, X2;Y) that two variables (X7, X2) carry about a variable
Y. If I(X1,X5;Y) = v, then one might ask: How are the v bits about Y carried by the pair
(X1, X2)? One could imagine that both variables carry the same v bits, so that the information is
carried redundantly, or that both variables uniquely carry 7. Another option is that neither variable
has information by itself, but it is the joint state of the pair that carries the v bits synergistically. For
two variables, one therefore writes

I(X1, X2;Y) = L({ X1 1Y) + Ibo({ X2 };Y)
Flo({X1, Xo 13 Y) + Io({{ X1}, { X2} 1Y) 3)

where the ‘partial’ information I5({X;};Y) is the information that variable X; uniquely carries
about Y, Io({{X1}, {X2}};Y) is the information that is carried redundantly by the two variables,
and T5({ X1, X2};Y) is the information that is carried synergistically by the joint state of the pair.
Note, however, that the situation becomes more complex if more variables are added. Three variables
{X1, X5, X3}, for example, can carry information redundantly between the joint state of { X7, X5}
and the state of { X3}, or synergistically between all three variables, etc. The central insight of the
PID is that information can be carried redundantly among all incomparable subsets of variables.
Given a set of variables S, the incomparable subsets of S are the antichains of (P(S), C), denoted
A(S). Some elements of A({ X1, X2, X3}) and their interpretation are:

o {{X1, X2, X3}} — synergy among X1, X2, X3
o {{X1,X2},{X2,X3}} — redundancy between { X1, X2} and { X2, X3}
o {{X1},{X2},{X3}} — redundancy between X1, X2, X3

We sometimes use simplified notation of the type {{X1, X2}, { X2, X5}} = X1 X32|X2X3. The set
{{X1, X2}, {X1, X2, X3}} is not an antichain, because { X1, Xo} C {X3, X5, X3}. Terms like
this should be excluded because the redundancy between { X1, X2} and { X7, X5, X3} is simply the
contribution of {{ X1, X2}}. We will usually denote sets with uppercase Latin letters, and antichains
with lowercase Greek letters.

A nice property of antichains is that they can be ordered with respect to redundancy by setting
a < B when it is at least as ‘easy’ to access the information in « as that in 5. For example,
we set {{X1, X2}, {X3}} < {{X1, X2}, {X35, X4}}, because you can access the information in
{{X1, X5}, {X3}} by observing the pair (X1, X2) or the single variable X3, whereas accessing the
information in {{X;, X2}, { X3, X4} } necessarily requires observing a pair. This ordering can be
formally defined as follows:

a<fB <+ VBepB,JAca:ACB )

The redundancy ordering is shown for n = 2, 3, 4 in Figure[T] and allows us to write the decomposition
into antichains as

I(X;Y)= Y oY) )

a€A(X):a<X

which can then be inverted using the MIT to find the contribution of each of the types of information:

Io(B;Y) = pacx) (e B)In(e:Y) 6)

asf
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Figure 1: The transitive reduction (Hasse diagram) of the redundancy ordering from Equation (@) for
the n = 2, 3, 4 variables. The posets contain respectively 4, 18, and 166 elements.

On the r.h.s. of Equation (6), we added a subscript to the mutual information I (c;Y'), since it
is now evaluated both on sets of variables, but also on other antichains. On a set S of variables,
I~(S;Y) = I(S,Y), but on a general antichain o, In(c; Y") is the information that the variables in
« share about Y (N referring to ‘sharedness’). There are many ways to define this, and a significant
portion of the PID literature has focused on exploring different approaches to fix the definition of
In (see e.g. [2L 16,13, 10} (11} 15]). For example, Williams and Beer [25] introduced the PID with
the measure Ipin (0;Y) = >°, p(y) minaen I(Y = y; A), that quantifies the expected “specific”
information that any source A € « provides about outcomes of Y. Since this measure was found to
behave unintuitively on some distributions, a common alternative is the minimum mutual information
(MMD) Ipmi(e;Y) = mingeo I(Y, A) [

A second complication in performing an antichain decomposition is that the number of ways informa-
tion can be carried among n variables grows superexponentially with n (namely, as the nth Dedekind
number). This makes recursively solving the system of equations in (3], or recursively calculating the
Mébius function in (6), computationally very expensive. This has limited the PID approach mostly to
systems with n < 3. Recently, however, a closed-form expression for the Mgbius function on A(SS)
for any S was derived, which can offer a double-exponential speedup and opens up the possibility
to study larger systems [14]. However, to avoid the complexity of the computation obscuring the
simplicity of the method, we chose here to focus on decomposing quantities of up to three variables,
for which such speedups are not necessary.

3 Interventional causality

3.1 Average causal effects

A central object of study in causality is the average treatment effect [20]. Given a set of variables
Xg = {X;|i € S}, where S is some indexing set, the average treatment effect (ATE) of X s on an
outcome Y is defined as

ATE(Xs;Y) = E[Y|do(Xs = z1)] — E[Y|do(Xs = 20)] )

where the do-operator denotes an intervention, and x; and z denote the ‘treated’ and ‘untreated’ state,
respectively. The most direct way to estimate quantities like (7) is to perform a randomised controlled
trial, where the treatment X is randomly assigned to the subjects. In that case, P(Y |do(X = x)) =
P(Y|X = ), and the ATE can be estimated from the joint distribution of X and Y. However,
randomised controlled trials are expensive, and one commonly has to rely on observational data. In
that case, the ATE is not directly observable, because P(Y|do(X = z)) # P(Y|X = x). In fact,
probabilities under interventions are by definition not derivable from the joint distribution only. One
always needs additional information about the causal structure, usually given in the form of a directed
acyclic graph (DAG) called the causal graph. To estimate the effect of interventions, Pearl [20]]
developed rules that relate interventional quantities on the causal graph to observational quantities
relative to a transformed graph, collectively referred to as the do-calculus. By combining knowledge



of the joint distribution and the causal graph, one can estimate the effect of interventions, or conclude
that an effect is not identifiable. It is these true causal effects, defined in terms of interventions, that
our method decomposes.

Since we aim to capture the total causal power in a set of variables, not just the effect of a binary
treatment, we slightly modify the ATE to a “‘maximal average causal effect’ by defining:

MACE(Xs;Y) = max (E[Y|do(Xs = )] - E[Y]do(Xs = a')]) ®)

where Xs is the set of possible values that X g can take. Note, however, that this is just one way to
characterise causal strength. For instance, one could instead maximise the difference E[Y |do(Xs =
x)] — E[Y] with the observational state. Many definitions are possible (see e.g. [15]] or the alternative
explored in Appendix [C)), each of which can be similarly decomposed using our method. Further
note that the MACE is not a measure of the causal effect of X on Y, but rather a measure of the
maximal causal power that X g can exert on Y. This is an important distinction, as it identifies which
variables have causal power, but does not indicate which interventions will lead to which outcomes.

The MACE quantifies the maximal causal power that a set of variables Xg can exert on Y. This
definition has the advantage that it does not rely on a priori assumptions about the possible values of
the variables, but it no longer captures the direction of the causal effect. It is this quantity that we
wish to decompose into synergistic, redundant, and unique components. This makes sense, since
while the MACE quantifies the total causal power of a set of variables, it does not tell us ~ow this
power is distributed among the variables. To understand and steer the behaviour of causal systems, it
can be crucial to know if the causal power is redundant, synergistic, or unique.

3.2 Decomposing the causal effects into antichains

In order to decompose the MACE over the antichains, it is necessary to extend its domain to all
antichains. For antichains of cardinality one, the definition from Equation can be used. For a
general antichain «, we define this ‘redundant’” MACE, denoted as MACE («; Y), as the minimum
of the MACEs of elements of the antichain, since this is the causal power that they share:

MACEq (a3 Y) = min MACE(X.4; ) )
@
=min max (E[Y|do(Xa =x)] —E[Y|do(Xa =2")]) (10)
A€az,x'€X4

Note, however, that one could come up with different definitions of redundant causality, as long as
it reduces to the chosen definition of the causal effects on antichains of cardinality one. With this
definition, we can decompose the MACE of a set of variables X7 C X g over the lattice of antichains
as
MACE(X1;Y) = MACE({X7}:Y) = Y C(a;Y) (11)
as{Xr}
where C(c; Y') denotes the ‘partial causal effect’ of antichain « to the full MACE. This corresponds

to a ‘partial causality decomposition’. A Mdobius inversion then shows that the partial causal effects
can be written as

C(B;Y) =Y pacxs) (@, /IMACEA(o; Y) (12)
a<h

where /1 4(x ) is the Mobius function of the antichain poset (A(Xg), <) which can be calculated
using the fast Mobius transform [14]]. One nice property of the MACER is that it is a monotone
function on the antichain poset:

Lemma 1. The function MACE, : A,, — R is monotonic with respect to the redundancy ordering

on A,.
Proof. See Appendix O

This lemma serves to lend credibility to our claim that the definition of MACER is sensible, but also
implies the following:

Theorem 2. The partial causal effects C(a;Y') are nonnegative.
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Figure 2: The causal contributions C(«; Y') of the antichains of logical gates.
Proof. Immediate by inserting LemmalI]into the proof of Theorem 5 in [25]. O
Nonnegativity of causal effects makes intuitive and practical sense. Consider the following:
syn(S;Y) = Y Cla;Y) (13)
acA(S)
AAca:|Al=1

This quantity syn(.S;Y) is the total aggregated synergistic causal power within the set of variables S
on Y. It captures all causal power that requires coordination among multiple variables. Nonnegativity
of the C(a;Y') implies that even when not all these terms in the sum can be calculated, a partial sum
will still give a lower bound on syn(S;Y).

4 Decomposing causality in practice
Code to reproduce the figures in this section is available at [[12].

4.1 Causal power in logic gates

The causal graph of a logic gate with two inputs is simply a collider structure: X; — Y < Xs. In this
case, the do-operator reduces to the see-operator (by the back-door criterion P(Y'|do(X)) = P(Y|X)
if Y 1l X in G, the graph with all arrows out of X removed), thatis, E(Y |do(X1)) = E(Y|X1),
so we can just use the conditional expectation to calculate the MACE.

Let the two inputs be independently drawn from a binomial distribution with P(X; = 1) = P(X, =
1) = p, and the output be their logical OR, AND, XOR, or COPY, where COPY (X1, X5) = Xj;.
The MACE for each of these, as a function of p, can be easily calculated by hand. For example,

—1-p (15)
MACE({1}; X; XOR X,) = |1 — 2p| (16)

The causal contributions C(«; Y') are then simply the Mobius inversion of these values, and shown
in Figure[2| This shows that the causal contributions indeed disentangle the unique, redundant, and
synergistic interventional power of the variables. In the OR gate, at low p the causal power is very
redundant: changing either output to a 1 will probably change the output state. In contrast, at high p
the only way to affect the outcome is generally to set both variables to 0, which requires synergistic
causal control. The inverse is true for the AND gate. Controlling the XOR of the inputs at p = %
requires full synergistic control, whereas for large or small p the causal power is mostly redundant
because flipping either to 1 at low p, or to O at high p, tends to activate the output. The unique
causal power of an input vanishes in all gates that are symmetric under permutations of the inputs. In
contrast, the causality in the COPY gate is completely built from the unique causal power of X .

4.2 Causal power in cellular automata is context-dependent

A more interesting causal structure is that of a cellular automaton. Consider a 1D cellular automaton
with IV cells, where each cell can be 0 or 1. The state of a cell at time ¢ + 1 is determined by the
state of itself and its two neighbours at time . We consider the causal power a cell B and its two
neighbours at time ¢ have over B at time ¢ + 1. The causal graph takes the following form:



By
The MACE of A can be written as
MACE(A;; Biy1) =max (E[Biya|do(A; = s)] = E[Bry1|do(A; = 7))

which shows that we need access to quantities like p(Byy1|do(A; = s)). Note that there are a lot of
backdoor paths from A; to By 1, but all are blocked by the set { By, Cy }, so we can write:

p(Biy1|do(Ar = ar)) = Z P(Biy1|A = at, By = by, Cr = c)p(B = by, Ct = cx)

be,ct

P(Bit1|do(Ar = ar, Cr = ct)) :ZP(Bt+1|A = at, By = b;,Ct = ct)p(Br = by)
bt

p(BtJrl‘dO(At = a¢, Bt = bt7 Ct = Ct)) :p(Bt+1|A = at¢, Bt = bt7 Ct = Ct)

However, we do not have a clear prior probability distribution on B; and C}, so there are multiple
ways to evaluate these expressions. First, we consider the ‘maximum entropy’ solution, which simply
assumes that the input states are drawn from a uniform distribution. For a single intervention, this
implies:
1
p(Bit1ldo(Ar = 5)) = 1 Z p(Bit1]|Ar = 8, By = by, Ct = ¢1) a7
bt,ct

Decomposing causal effects under this assumption essentially decomposes the causal power under
maximal ignorance. To calculate the MACE we just need to calculate the average effect of A; on
By 1, conditional on the possible states of B; and C;, which can be immediately read off from the
rule specification. Another option is to let the inputs always be zero, so that p(By, Ct) = dp, 0c,.0,
which gives the causal power in the context of the empty state.

Alternatively, we could estimate the prior distribution of B; and C based on data from a simulated
automaton, which gives the causal power decomposition of the dynamics conditional on an initial
state. We will consider two possible initialisations: a random initialisation, where each cell is drawn
from a Bernoulli distribution with p = 0.5, and a middle-1 initialisation, where all cells are zero
except for the middle cell, which is set to one.

The studied rules and their causal decompositions are shown in Figure 3] for each of the priors. To
get empirical estimates, we simulated automata with 100 cells and periodic boundary conditions that
evolved over 10k steps, where the first 500 states were discarded.

The results give a nuanced and context dependent description of the causal power inside the automata.
For example, if you want to control the ‘Rule 90’ automata with a single intervention, then this is
possible under a middle-1 initialisation, but not under a random initialisation. More details on the
decomposition for each of the shown rules are available from Appendix

4.3 Rate-dependency in the causal decomposition of a chemical network

We are interested in seeing how the causal decomposition of a system can change as one varies a
parameter. To illustrate this, consider the following chemical network. Two chemicals X; and X can
spontaneously form a molecule Y at rates k1 and ko, but can also come together to form Y at rate ks.
The molecule Y then spontaneously degrades at rate k4, which we set equal to 1. The concentration
of Y is described by the following rate equation and steady-state concentration:

W 0]+ ol + kX X] — Ry ]Y] (18)
[V]5s(X1, X2) = k1 [X1] + ko[ Xa] + ks X1][X2] (19)
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Figure 3: The causal decomposition of the cellular automata as a function of the probability of the
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Figure 4: The causal power of perturbations in a chemical system. Parameters are set to k1 = 10,
kg = 1, [Xﬂ = [XQ] =e=1.

We imagine that the experimenter is able to modify the concentrations of X; and X, by adding an
amount ¢; to the concentration of X;, and that the target variable is the normalised concentration

Y = ﬁ Note that the causal structure of this system is still just a collider X; — Y + Xo,

so to calculate the effect of an intervention on one of the concentrations, we just need to calculate the
conditional expectation of Y given the intervention, which is the steady state concentration (assuming
that the system equilibrates quickly).

[Y]gs(Xl + €, X2)
[Y ss(X17X2)

E(Y|do(6, =€) = (20)

The MACE of an antichain of variables { X1, X5} on Y is then again simply given by Equation (T0),
where the inner maximisation is trivial because we assume that the intervention is either of size € or
0. The different causal contributions are shown in Figure 4| as a function of the rate k3. At low ks,
spontaneous synthesis of Y dominates, and since k; > ko almost all causal power lies uniquely with
X;. At high k3, the combinatorial synthesis dominates, which is reflected by the fact that the causal
power lies mostly with synergistic control. At high k3, the asymmetry in spontaneous synthesis of Y
is no longer relevant, so all non-synergistic causal power is left redundant.

4.4 Synergistic and redundant semantics in a transformer language model

Finally, we demonstrate our causal decomposition in a more realistic scenario: we
study the causal effect of string completions on sentiment analysis scores by the
distilbert-base-uncased-finetuned-sst-2-english language model [23], as made avail-
able through the Transformers Python library [26]]. Let the baseline sentence be ‘‘this movie
is’’. Let an intervention correspond to appending a word to the baseline sentence, and define the
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Figure 5: The causal decomposition of sentence completions in a language model for sentiment
analysis reveals that semantic synergy, redundancy, and uniqueness are accurately captured. The box
plots show the distribution of the causal components across 25 base sentences (see Appendix [D).

causal effect of appending string A to be:
CE(A;Y) = Y("this movie is" 4+ A) — Y("this movie is") @1

where Y is the model’s (logit) positivity score, and addition represents string concatenation. Since
the causal effect is now signed, we slightly modify the definition of the redundant causal effects to
preserve the sign:

mingeo CE(4;Y) ifVA€ a:CE(A4;Y) >0
CEn(o;Y) = < maxacqa CE(A4;Y) ifVA€ a:CE(A4Y)<0 (22)
0 otherwise

That is, the redundant causal effect is the strongest signed effect that all elements from « can
achieve. With this, we can decompose the effect of sentence completions into synergistic, redundant,
and unique effects of words. We investigated examples of each of these three components: the
completion "horribly bad" represents redundant semantics (both words generally signal negative
sentiment), "not bad" represents synergistic semantics (the combined meaning is different from
that of the individual words), and "really bad" represents unique semantic content (the sentiment
is fully contained in the word "bad"). The results are summarised in Figure[5] The decomposition
matches with the above intuitions about synergistic, redundant, and unique semantic content, as the
decomposition for "horribly bad" shows strong negative redundancy, "not bad" shows strong
positive synergy that reflects the semantic negation (as well as a negative redundancy, because the
model associated both "not" and "bad" with negative sentiment), and "really bad" shows strong
unique negative sentiment for the word "bad".

5 Discussion

We have presented a principled decomposition of causal effects into synergistic, redundant, and
unique components. Decomposing causal effects in logic gates, cellular automata, chemical networks,
and language models revealed the synergistic, redundant, and unique causal power of different
variables. Furthermore, we illustrated how the causal decomposition can depend on the dynamical
context of the system, or on the value of its parameters. These insights allow for a more nuanced
understanding of the causal structure of a system, and can be used to guide interventions in a system
to achieve more desirable outcomes.

The formalism is similar in spirit and algebra to that of the partial information decomposition, but
by decomposing an interventional quantity we are able to disentangle synergistic and redundant
causal power. The approach outlined here would in principle work for any quantity where a notion of
synergy and redundancy can be defined, in particular for other definitions of causal power than the one
in Equation (8). We encourage and anticipate further exploration of this approach, as our definition
of the redundant MACE is deliberately simple to keep the presentation of the general formalism
transparent. Two examples of extending the definition of redundant causality were already presented:
one that preserves the sign of the effect of an intervention (Section[4.4), and one that replaces the



MACE by a counterfactual outcome (Appendix [C). Both were inspired by the MMI measure from the
PID literature, but one can imagine deriving different measures of redundant causality from other PID
functions, or even completely novel ones. Causal decompositions in other contexts, like in climate
systems with feedback loops, may require a more sophisticated notion of redundant causality. Janzing
et al. [15]], for example, define causal effects in terms of a Kullback-Leibler divergence, which can
be similarly decomposed [[13]]. More generally, our approach fits into the wider context of deriving
Mbobius inverses of observable quantities to obtain a fine-grained description of complex systems
[L3]], which might be used to derive different decompositions of causality in the future.

While the aim of this study is similar to that of Martinez-Sédnchez et al. [[19], we have taken a very
different approach. We believe that decomposing causality fundamentally requires an interventional
quantity, so decomposing a quantity derived purely in terms of the joint probability distribution, as
is done by Martinez-Sénchez et al. [[19] for mutual information, cannot yield true causal insight.
While Martinez-Sanchez et al. [[19] consider it an advantage of their method that it does not scale
with the Dedekind numbers, we believe that the superexponential growth of the number of antichains
is a feature, not a bug. It is a reflection of the fact that the number of ways information can be
carried among n variables fundamentally grows superexponentially with n. Martinez-Sdnchez et al.
[L9] only consider redundancies among individual variables, not considering possible redundancies
between pairs. For example, they do not include redundancies of the form {{X;, X5}, {X3}}, or
{{X1, X2}, {X3, X4}}, both of which are significantly nonzero in the cellular automata studied here.
In general, their approach decomposes the total mutual information into 2(2" — 1) 4 n terms. By not
including the full set of redundancies, but still requiring that the sum of the terms adds up to the total,
their method conflates multiple sources and does not disentangle the causal structure. While their
results suggest that their method can be useful in understanding the structure of complex systems,
we believe that it does not disentangle redundancy from synergy, and that they do not capture causal
quantities.

Limitations and future work Our approach faces similar limitations to the partial information
decomposition. Most pressingly, the number of ways in which causal relationships can be redundant
and synergistic scales superexponentially with the number of variables. While this Dedekind scaling
in theory limits our analysis to around five variables, we believe that in practice it does not strongly
diminish the applicability of redundancy decompositions like the one introduced here. Our approach
can yield very fast decompositions for up to five variables, the computational bottleneck being the
calculation of the MACE, for which more efficient proxies might be found. While the fast Mobius
transform from [14]] can be employed to calculate parts of the decomposition on even larger systems,
decompositions among more than five variables quickly become hard to interpret and are therefore
not likely to be of practical relevance (partial causal effects quickly become hard to interpret, since the
causal power among n variables can be distributed among up to (Ln7/’2 J) sets by Sperner’s Theorem).

A further limitation shared with the PID is the ambiguity of the definition of redundancy. We chose
to base our definition of redundant causality on the (MMI) measure [[1]], which has been criticised
for its simplicity [12]. Still, these limitations have not hindered widespread application of the PID to
real-world systems (Luppi et al. [[17] and Luppi et al. [18] being two recent MMI-based applications
of the PID to human brain data), so similarly should not hinder real-world applicability of our
approach.

Another limitation is causal inference itself: our method can decompose causal effects, but does not
provide an easy way to estimate them. It is well-known that accurately estimating causal effects is a
hard problem, which can limit the applicability of our method. Still, the decomposition can be used to
gain insights in a variety of real-world systems where we can either do interventions, or have models
that can simulate them. In systems with complex control, like gene regulation or the climate, there
might be a combination of both redundant causality (which could improve robustness) and synergistic
causality (which could allow for more efficient or fine-grained control). Understanding how to
intervene in living systems to achieve a desired outcome is also a major challenge in synthetic biology
and medicine. Disentangling causal power in Al systems is another important application, as it can
help understand, steer, and align their behaviour. Lindsey et al. [16] recently developed a method
to intervene on the computational graph of a large language model, which could be a very natural
setting to apply our method. In the social sciences, one could imagine that individuals can have both
redundant and synergistic control over the behaviour of the group. How to attribute responsibility,
blame, or rewards in such a social network is both a quantitative and a philosophical/ethical question.
We hope that our approach can provide some insight into the former.
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Figure 6: The various cellular automata rules studied, initialised with a single 1 in the middle of a
100-cell array and evolved for 50 steps.

A proofs

A.1 Proof of Lemmal[ll

We first prove the following (obvious) fact:
Lemma 2. The function MACE : P(X) — R is monotonic on (P(X), C).

Proof. Assume that a C (5. Let a* be the element of « that achieves the maximum, such that
MACEnR(o;Y) = MACE(a*;Y). Then, since o C 3, we know that a* € 3, so MACE~(3;Y) >
MACE(a*;Y) = MACEnr(a; Y). Therefore, « C 8 = MACEn(o;Y) < MACEA(B;Y). O
We can now prove Lemmal|T}

Lemmall} The function MACEq, : A,, — R is monotonic with respect to the redundancy ordering

on A,.
Proof. Recallthata < 8 <= Vb € ,3a € o : a C b. Now assume that given a < (3, we have
MACER(3;Y) < MACER(o;Y) (23)
- r;aiélMACE(b; Y) < meinMACE(a; Y) (24)
S aca

By Lemma 2] Equation (2Z4) can only be true as long as #b € B,a € o : a C b. However,
since a < [, we know that Vb € (,da € a : a C b, which is a contradiction. Therefore,
a < f = MACEn(a;Y) < MACER(5;Y). O

B Causal decomposition of cellular automata

The first few steps of a middle-1 initialisation of the automata rules are shown in Figure[] We here
provide further details on how the causal decompositions in Figure [3|relate to these automata rules.

Rule 30 can be written as By+1 = A; XOR (B; OR C}), which shows that A indeed has some unique
causal power, but that there is also synergistic causality between A and C. However, in a context of
only zeros, the XOR reduces to a simple OR gate, which makes the causal power fully redundant.

Rule 54 corresponds to B;11 = (A; OR C}) XOR By so can be fully redundant in the context of
zeros, but contains synergistic causality with B in all other situations. Note, however, that there is
redundancy among the two possible pairwise synergies with B.

Rule 86 is the mirrored version of rule 30, which is reflected by the equivariance of their decomposi-
tions under A < C.

Rule 90 can be written as By 1 = A; XOR C;, which the causal decomposition correctly reveals
as either purely synergistic or redundant causal power among A and C, depending on the context.
Only with middle-1 initialisation does the causal power become mixed, which is the initialisation that
makes rule 90 evolve a fractal Sierpifiski triangle.

Rule 110, famously complex and Turing complete, contains the most complex causal structure of the
rules studied here, though this is not visible from the causal decomposition in the context of zeros.
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Rule 190 can be written as By = (A; XOR B;) OR Cy, which is why the causal power is al-
ways fully redundant in the context of zeros, but shows both pure synergy as well as redundancy
between AB and C in the uniform background. Under different initialisation, however, the causal
decomposition become more complex.

Rule 240 is the exceptionally simple By1 = Ay, which is why every prior results in all causal power
lying with A.

Rule 250 is By;y1 = Ay OR (Y, and so, similar to the OR gate from Fig. E] at p = 0.5, contains
equal parts synergistic and redundant causal power, except in the context of zeros, or under random
initialisation (which under this rule is equivalent to a context of only ones).

C Necessary and sufficient causes

To illustrate the flexibility of the framework for other causal quantities, consider decomposing the
actual value of an outcome Y, which is the value that Y takes when the input variables take their
actually observed (binary) values Xg = xg. We extend the definition of the outcome to antichains as:

Yn(a) = fA}leigY(dO(XA =1),Xs\a = 2s5\4) (25)

This now describes a counterfactual quantity, in contrast to the MACE, which puts it on the same
‘rung’ as the usual notions of necessary and sufficient causes. We follow Halpern and Pearl [9],
and define a cause to be a conjunction of primitive events. A Mdobius inversion of Y can identify
necessary and sufficient causes as follows. We set Vi € S : x; = 0 for simplicity, and calculate the
inversion as

D(B;Y) = pacxs)(a, B)Ya(a) (26)

as<p

Similar as before, this yields a nonnegative decomposition when Y is monotone on (P(Xs), C).
When D(3;Y’) = 1 then the conjunctions {\,. 5 b | B € B} are the sufficient causes of Y = 1. A
necessary cause is a cause that appears in every sufficient cause.

For example, when Y (X) = \/ZE g X (cf. the disjunctive forest fire model from Halpern [8]]), then
D(B8;Y) = 1lifand only if 8 = {{X,} | i € S}, indicating that activation of either of the variables
is a sufficient cause of Y, but there are no necessary causes.

In contrast, when Y (Xg) = /\Z cg Xi (cf. the conjunctive forest fire model from Halpern [8]), then
D(B;Y) = 1if and only if 8 = {Xg}, indicating that the conjunction A,.¢ X; = 1 is both a
necessary and sufficient cause of Y = 1. However, in a context where z; = 1, D(3;Y) = 1 if and
only if 3 = {Xg\ ;) }, indicating that a smaller conjunction is a sufficient cause.

When Y (Xg) = 1iff Y, X; > 2,then D(3;Y) = lifandonly if 3 = {X7 | T C S, |T| = 2}, so
conjunctions of two variables are sufficient causes of Y = 1.

As already noted by Halpern and Pearl [9], one might also allow causes to be formed from disjunctions.
The set of all causes can then be ordered by logical implication, yielding the free distributive lattice
generated by X g. This happens to be isomorphic to the redundancy ordering on the antichains [[14]],
so under this definition of causes, the decomposition simply assigns a value to every possible cause.

D Base sentences for sentiment analysis

The 25 base sentences prepended to the string completions in the sentiment analysis decomposition
are:

"this movie is", "this book is","I found this movie to be", "film rating:", "my
opinion of the film is that it’s", "the acting was", "the plot felt", "overall,
I thought the picture was", "the story is", "this film is considered to be",
"I would describe this movie as", "the director’s work is", "the script is",
"the new series is", "the novel is", "what I saw was", "the performance was",
"this show is", "the reviewer said it was", "my impression was that the film
is", "the hotel room was", "my experience at the museum was", "I found the
service", "Overall experience:", "In conclusion, the event was"
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper claims to provide a method to decompose causality. This is then
verified on both theoretical and empirical examples.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper emphasises that the presented MACE decomposition is not the only
possible decomposition of causal power, and that it is not necessarily the most useful one.
The paper also discusses the limitations of the method in terms of computational complexity.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an import-
ant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Yes, the paper provides proofs in the appendix, and assumptions are clearly
stated.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All relevant (hyper)parameters and sample distributions are provided and the
results can be reproduced with the provided code.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code to reproduce the causal decomposition of the cellular automata is
available from https://github.com/AJnsm/causalDecomposition. The decompos-
itions of the chemical network and the logic gates are simple enough that they can be
reproduced by hand.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All (hyper)parameters to generate the results are provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The only source of randomness is the random initialisation of the cellular
automata, for which error bars are provided. The chemical network, logic gates, and
automata are deterministic systems, so no error bars are needed.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confid-
ence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments that require significant compute
resources. The cellular automata are small (100 cells) and can be run on any platform.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research did not involve human subjects, sensitive data, or any other
aspects that raise ethical concerns under the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: It is explicitly mentioned that the method only makes quantitative claims
about attribution of blame, and that it does not address the ethical dimension of blame and
responsibility
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use any existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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