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Abstract

Markov Decision Processes (MDPs) are a formal framework for modeling and solv-
ing sequential decision-making problems. In finite-time horizons such problems
are relevant for instance for optimal stopping or specific supply chain problems,
but also in the training of large language models. In contrast to infinite horizon
MDPs optimal policies are not stationary, policies must be learned for every single
epoch. In practice all parameters are often trained simultaneously, ignoring the
inherent structure suggested by dynamic programming. This paper introduces a
combination of dynamic programming and policy gradient called dynamic policy
gradient, where the parameters are trained backwards in time.
For the tabular softmax parametrisation we carry out the convergence analysis for
simultaneous and dynamic policy gradient towards global optima, both in the exact
and sampled gradient settings without regularisation. It turns out that the use of
dynamic policy gradient training much better exploits the structure of finite-time
problems which is reflected in improved convergence bounds.

1 Introduction

Policy gradient (PG) methods continue to enjoy great popularity in practice due to their model-free
nature and high flexibility. Despite their far-reaching history [Williams, 1992, Sutton et al., 1999,
Konda and Tsitsiklis, 1999, Kakade, 2001], there were no proofs for the global convergence of these
algorithms for a long time. Nevertheless, they have been very successful in many applications, which
is why numerous variants have been developed in the last few decades, whose convergence analysis,
if available, was mostly limited to convergence to stationary points [Pirotta et al., 2013, Schulman
et al., 2015, Papini et al., 2018, Clavera et al., 2018, Shen et al., 2019, Xu et al., 2020b, Huang
et al., 2020, Xu et al., 2020a, Huang et al., 2022]. In recent years, notable advancements have been
achieved in the convergence analysis towards global optima [Fazel et al., 2018, Agarwal et al., 2021,
Mei et al., 2020, Bhandari and Russo, 2021, 2022, Cen et al., 2022, Xiao, 2022, Yuan et al., 2022,
Alfano and Rebeschini, 2023, Johnson et al., 2023]. These achievements are partially attributed to
the utilisation of (weak) gradient domination or Polyak-Łojasiewicz (PL) inequalities (lower bounds
on the gradient) [Polyak, 1963].
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As examined in Karimi et al. [2016] a PL-inequality and β-smoothness (i.e. β-Lipschitz continuity of
the gradient) implies a linear convergence rate for gradient descent methods. In certain cases, only a
weaker form of the PL inequality can be derived, which states that it is only possible to lower bound
the norm of the gradient instead of the squared norm of the gradient by the distance to the optimum.
Despite this limitation, O(1/n)-convergence can still be achieved in some instances.

This article deals with PG algorithms for finite-time MDPs. Finite-time MDPs differ from discounted
infinite-time MDPs in that the optimal policies are not stationary, i.e. depend on the epochs. While a
lot of recent theoretical research focused on discounted MDPs with infinite-time horizon not much
is known for finite-time MDPs. However, there are many relevant real world applications which
require non-stationary finite-time solutions such as inventory management in hospital supply chains
[Abu Zwaida et al., 2021] or optimal stopping in finance [Becker et al., 2019]. There is a prevailing
thought that finite-time MDPs do not require additional scrutiny as they can be transformed into
infinite horizon MDPs by adding an additional time-coordinate. Seeing finite-time MDPs this way
leads to a training procedure in which parameters for all epochs are trained simultaneously, see
for instance Guin and Bhatnagar [2023]. While there are practical reasons to go that way, we will
see below that ignoring the structure of the problem yields worse convergence bounds. The aim
of this article is two-fold. Firstly, we analyse the simultaneous PG algorithm. The analysis for
exact gradients goes along arguments of recent articles, the analysis of the stochastic PG case is
novel. Secondly, we introduce a new approach to PG for finite-time MDPs. We exploit the dynamic
programming structure and view the MDP as a nested sequence of contextual bandits. Essentially,
our algorithm performs a sequence of PG algorithms backwards in time with carefully chosen epoch
dependent training steps. We compare the exact and stochastic analysis to the simultaneous approach.
Dynamic PG can bee seen as a concrete algorithm for Policy Search by Dynamic Programming,
where policy gradient is used to solve the one-step MDP [Bagnell et al., 2003, Scherrer, 2014]. There
are some recent articles also studying PG of finite-time horizon MDPs from a different perspective
considering fictitious discount algorithms [Guo et al., 2022] or finite-time linear quadratic control
problems [Hambly et al., 2021, 2023, Zhang et al., 2021, 2023b,a, Zhang and Başar, 2023].

This article can be seen to extend a series of

Figure 1: Evolution of the value function during
training.

recent articles from discounted MDPs to finite-
time MDPs. In Agarwal et al. [2021], the
global asymptotic convergence of PG is demon-
strated under tabular softmax parametrisation,
and convergence rates are derived using log-
barrier regularisation and natural policy gradi-
ent. Building upon this work, Mei et al. [2020]
showed the first convergence rates for PG using
non-uniform PL-inequalities [Mei et al., 2021],
specifically for tabular softmax parametrisation.
The convergence rate relies heavily on the dis-
count factor as (1−γ)−6 and does not not read-
ily convert to non-discounted MDPs. Through
careful analysis, we establish upper bounds in-
volving H5 for simultaneous PG, contrasting
with H3 for dynamic PG. Essentially, dynamic
PG offers a clear advantage. Examining the PG
theorem for finite-time MDPs reveals that early
epochs should be trained less if policies for later epochs are suboptimal. A badly learned Q-function-
to-go leads to badly directed gradients in early epochs. Thus, simultaneous training yields ineffective
early epoch training, addressed by our dynamic PG algorithm, optimizing policies backward in time
with more training steps. To illustrate this phenomenon we implemented a simple toy example where
the advantage of dynamic PG becomes visible. In Figure 1 one can see 5 simulations of the dynamic
PG with different target accuracies (blue curves) plotted against one version of the simultaneous PG
with target accuracy 0.1 (dashed magenta curve). The time-horizon is chosen as H = 5. More details
on the example can be found in Appendix E.

A main further contribution of this article is a stochastic analysis, where we abandon the assumption
that the exact gradient is known and focus on the model free stochastic PG method. For this type
of algorithm, very little is known about convergence to global optima even in the discounted case.
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Many recent articles consider variants such as natural PG or mirror descent to analyse the stochastic
scenario [Agarwal et al., 2021, Fatkhullin et al., 2023, Xiao, 2022, Alfano et al., 2023]. Ding et al.
[2022] derive complexity bounds for entropy-regularised stochastic PG. They use a well-chosen
stopping time which measures the distance to the set of optimal parameters, and simultaneously
guarantees convergence to the regularised optimum prior to the occurrence of the stopping time by
using a small enough step size and large enough batch size. As we are interested in convergence
to the unregularised optimum, we consider stochastic softmax PG without regularisation. Similar
to the previous idea, we construct a different stopping time, which allows us to derive complexity
bounds for an approximation arbitrarily close to the global optimum that does not require a set of
optimal parameters and this is relevant when considering softmax parametrisation. To the best of
our knowledge, the results presented in this paper provide the first convergence analysis for dynamic
programming inspired PG under softmax parametrisation in the finite-time MDP setting. Both for
exact and batch sampled policy gradients without regularisation.

2 Finite-time horizon MDPs and policy gradient methods.

A finite-time MDP is defined by a tuple (H,S,A, r, p) withH = {0, . . . ,H − 1} decision epochs,
finite state space S = S0 ∪ · · · ∪ SH−1, finite action space A =

⋃
s∈S As, a reward function

r : S × A → R and transition function p : S × A → ∆(S) with p(Sh+1|s, a) = 1 for every
h < H − 1, s ∈ Sh and a ∈ As. Here ∆(D) denotes the set of all probability measures over a finite
setD. Throughout the article π = (πh)

H−1
h=0 denotes a time-dependent policy, where πh : Sh → ∆(A)

is the policy in decision epoch h ∈ H with πh(As|s) = 1 for every s ∈ Sh. It is well-known that in
contrast to discounted infinite-time horizon MDPs non-stationary policies are needed to optimise
finite-time MDPs. An optimal policy in time point h depends on the time horizon until the end of the
problem (see for example Puterman [2005]). The epoch-dependent value functions under policy π
are defined by

V
π(h)

h (µh) := Eπ(h)
µh

[H−1∑
k=h

r(Sk, Ak)
]
, h ∈ H, (1)

where µh is an initial distribution, π(h) = (πk)
H−1
k=h denotes the sub-policy of π from h to H − 1

and Eπ(h)
µh is the expectation under the measure such that Sh ∼ µh, Ak ∼ πk(·|Sk) and Sk+1 ∼

p(·|Sk, Ak) for h ≤ k < H − 1. The target is to find a (time-dependent) policy that maximises the
state-value function V0 at time 0. In the following we will discuss two approaches to solve finite-time
MDPs with PG: (i) An algorithm that is often used in practice, where parametrised policies are trained
simultaneously, i.e. the parameters for π0, ..., πH−1 are trained at once using the objective V0. (ii) A
new algorithm that trains the parameters sequentially starting at the last epoch. We call this scheme
dynamic PG because it combines dynamic programming (backwards induction) and PG.

In fact, one can also consider PG algorithms that train stationary policies (i.e. independent of h)
for finite-time MDPs. However, this violates the intrinsic nature of finite-time MDPs (optimal
policies will only be stationary in trivial cases). In order to carry out a complete theoretical analysis
assumptions are required. In this article we will assume that all policies are softmax parametrised, an
assumption that appeared frequently in the past years. It is a first step towards a full understanding
and already indicates why PG methods should use the dynamic programming structure inherent in
finite-time MDPs. This paper should not be seen as limited to the softmax case, but more like a
kick-off to analyse a new approach which is beneficial in many scenarios.

Simultaneous Policy Gradient. Let us start by formulating the simultaneous PG algorithm that is
often used in practice. The action spaces may depend on the current state and the numbers of possible
actions in epoch h is denoted by dh =

∑
s∈Sh

|As|. To perform a PG algorithm all policies πh (or
the entire policy π) must be parametrised. While the algorithm does not require a particular policy
we will analyse the tabular softmax parametrisation

πθ(a|sh) =
exp(θ(sh, a))∑
a′ exp(θ(sh, a

′))
, θ = (θ(sh, a))sh∈S[H],a∈Ash

∈ R
∑

h dh , (2)

where the notation S [H] defines the enlarged state space, containing all possible states associated to
their epoch (see Remark A.1 for more details). The tabular softmax parametrisation uses a single
parameter for each possible state-action pair at all epochs. Other parametrised policies, e.g. neural
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networks, take states from all epochs, i.e. from the enlarged state space S [H], as input variables.
The simultaneous PG algorithm trains all parameters at once and solves the optimisation problem
(to maximize the state value function at time 0) by gradient ascent over all parameters (all epochs)
simultaneously.

Algorithm 1: Simultaneous Policy Gradient for finite-time MDPs
Result: Approximate policy π̂∗ ≈ π∗

Choose initial θ(0) ∈ R
∑

h dh , fixed step sizes η > 0, number of steps N and start distribution µ
for n = 0, . . . , N − 1 do

θ(n+1) = θ(n) + η∇θV π
θ(n)

0 (µ)
∣∣
θ(n)

end
Set π̂∗ = πθ

(N)

Most importantly, the algorithm does not treat epochs differently, the same training effort goes into
all epochs. For later use the objective function will be denoted by

J(θ, µ) := V π
θ

0 (µ) = Eπ
θ

µ

[H−1∑
h=0

r(Sh, Ah)
]

(3)

Furthermore, let ρπ
θ

µ (s) =
∑H−1
h=0 Pπθ

µ (Sh = s) be the state-visitation measure on S and dπ
θ

µ (s) =
1
H ρ

πθ

µ (s) be the normalised state-visitation distribution. We denote by J∗(µ) = supθ J(θ, µ) the
optimal value of the objective function and note that J∗(µ) = V ∗

0 (µ) = supπ: Policy V
π
0 (µ) under the

tabular softmax parametrisation, as an optimal policy can be approximated arbitrarily well.

Dynamic Policy Gradient. First of all, recall that the inherent structure of finite-time MDPs is a
backwards induction principle (dynamic programming), see for instance [Puterman, 2005]. To see
backwards induction used in learning algorithms we refer for instance to Bertsekas and Tsitsiklis
[1996, Sec 6.5]. In a way, finite-time MDPs can be viewed as nested contextual bandits. The dynamic
PG approach suggested in this article builds upon this intrinsic structure and sets on top a PG scheme.
Consider H different parameters θ0, . . . , θH−1 such that θh ∈ Rdh . A parametric policy (πθh)H−1

h=0 is
defined such that the policy in epoch h depends only on the parameter θh. An example is the tabular
softmax parametrisation formulated slightly differently than above. For each decision epoch h ∈ H
the tabular softmax parametrisation is given by

πθh(a|s) = exp(θh(s, a))∑
a′∈A exp(θh(s, a′))

, θh = (θh(s, a))s∈Sh,a∈As
∈ Rdh . (4)

The total dimension of the parameter tensor (θ0, . . . , θH−1) equals the one of θ from the (2) because
θh(sh, a) = θ(sh, a) for sh ∈ Sh ⊂ S [H]. The difference is that the epoch dependence is made more
explicit in (4).

The main idea of this approach is as follows. The dynamic programming perspective suggests to
learn policies backwards in time. Thus, we start by training the last parameter vector θH−1 on the
sub-problem VH−1, a one-step MDP which can be viewed as contextual bandit. After convergence
up to some termination condition, it is known how to act near optimality in the last epoch and one can
proceed to train the parameter vector from previous epochs by exploiting the knowledge of acting
near optimal in the future. This is what the proposed dynamic PG algorithm does. A policy is trained
up to some termination condition and then used to optimise an epoch earlier.

A bit of notation is needed to analyse this approach. Given any fixed policy π̃, the objective
function Jh in epoch h is defined to be the h-state value function in state under the extended policy
(πθh , π̃(h+1)) := (πθh , π̃h+1, . . . , π̃H−1),

Jh(θh, π̃(h+1), µh) := V
(πθh ,π̃(h+1))

h (µh) = E(πθh ,π̃(h+1))
µh

[H−1∑
k=h

r(Sk, Ak)
]
. (5)

While the notation is a bit heavy the intuition behind is easy to understand. If the policy after epoch h
is already trained (this is π̃(h+1)) then Jh as a function of θh is the parametrised dependence of the
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Algorithm 2: Dynamic Policy Gradient for finite-time MDPs
Result: Approximate policy π̂∗ ≈ π∗

initialise θ(0) = (θ
(0)
0 , . . . , θ

(0)
H−1) ∈ Θ

for h = H − 1, . . . , 0 do
Choose fixed step size ηh, number of training steps Nh and start distribution µh
for n = 0, . . . , Nh − 1 do

θ
(n+1)
h = θ

(n)
h + ηh∇θhV

(πθh ,π̂∗
(h+1))

h (µh)
∣∣
θ
(n)
h

end
Set π̂∗

h = πθ
(Nh)

h

end

value function when only the policy for epoch h is changed. Gradient ascent is then used to find a
parameter θ∗h that maximises Jh(·, π̃(h+1), δs), for all s ∈ Sh, where δs the dirac measure on s. Note
that to train θh one chooses π̃(h+1) = π̂∗

(h+1) in Algorithm 2.

A priori it is not clear if simultaneous or dynamic programming inspired training is more efficient.
Dynamic PG has an additional loop but trains less parameters at once. We give a detailed analysis for
the tabular softmax parametrisation but want to give a heuristic argument why simultaneous training
is not favorable. The policy gradient theorem, see Theorem A.5, states that

∇J(θ, µ) =
∑

sh∈S[H]

ρ̃π
θ

µ (sh)
∑
a∈Ash

πθ(a|sh)∇ log(πθ(a|sh))Qπ
θ

h (sh, a),

involving Q-values under the current policy1. It implies that training policies at earlier epochs are
massively influenced by estimation errors of Qπ

θ

h . Reasonable training of optimal decisions is only
possible if all later epochs have been trained well, i.e. Qπ

θ

h ≈ Q∗
h. This may lead to inefficiency in

earlier epochs when training all epochs simultaneously. It is important to note that the policy gradient
formula is independent of the parametrisation. While our precise analysis is only carried out for
tabular softmax parametrisations this general heuristic remains valid for all classes of policies.

Assumption 2.1. Throughout the remaining manuscript we assume that the rewards are bounded in
[0, R∗], for some R∗ > 0. The positivity is no restriction of generality, bounded negative rewards can
be shifted using the base-line trick.

In what follows we will always assume the tabular softmax parametrisation and analyse both PG
schemes. First under the assumption of exact gradients, then with sampled gradients à la REIN-
FORCE.

3 Convergence of Softmax Policy Gradient with exact gradients

In the following, we analyse the convergence behavior of the simultaneous as well as the dynamic
approach under the assumption to have access to exact gradient computation. The presented conver-
gence analysis in both settings is inspired from the discounted setting considered recently in Agarwal
et al. [2021], Mei et al. [2020]. The idea is to combine smoothness of the objective function and a
(weak) PL-inequality in order to derive a global convergence result.

3.1 Simultaneous Policy Gradient

To prove convergence in the simultaneous approach we will interpret the finite-time MDP as an
undiscounted stationary problem with state-space S [H] and deterministic absorption time H . This
MDP is undiscounted but terminates in finite-time. Building upon Agarwal et al. [2021], Mei et al.
[2020], Yuan et al. [2022] we prove that the objective function defined in (3) is β-smooth with

1See Appendix A, (12) and (13) for the definition of the state-action value function Q and the enlarged state
visitation measure ρ̃.
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parameter β = H2R∗(2− 1
|A| ) and satisfies a weak PL-inequality of the form

∥∇J(θ, µ)∥2 ≥
minsh∈S[H] πθ(a∗(sh)|sh)√

|S [H]|

∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−1

∞
(J∗(µ)− J(θ, µ)).

Here π∗ denotes a fixed but arbitrary deterministic optimal policy for the enlarged state space S [H]

and a∗(sh) = argmaxa∈Ash
π∗(a|sh) is the best action in state sh. The term∥∥∥dπ∗

µ

dπθ

µ

∥∥∥
∞

:= max
s∈S

dπ
∗

µ (s)

dπθ

µ (s)
(6)

is the distribution mismatch coefficient introduced in Agarwal et al. [2021, Def 3.1]. Both properties
are shown in Appendix B.1. To ensure that the distribution mismatch coefficient can be bounded
from below uniformly in θ (see also Remark B.4) we make the following assumption.
Assumption 3.1. For the simultaneous PG algorithm we assume that the state space is constant over
all epochs, i.e. Sh = S for all epochs.

As already pointed out in Mei et al. [2020] one key challenge in providing global convergence is
to bound the term mins∈S π

θ(a∗h(s)|s) from below uniformly in θ appearing in the gradient ascent
updates. Techniques introduced in Agarwal et al. [2021] can be extended to the finite-horizon
setting to prove asymptotic convergence towards global optima. This can then be used to bound
c = c(θ(0)) = infnmins∈S π

θ(n)

(a∗h(s)|s) > 0 (Lemma B.5). Combining smoothness and the
gradient domination property results in the following global convergence result.
Theorem 3.2. Under Assumption 3.1, let µ be a probability measure such that µ(s) > 0 for all
s ∈ S, let η = 1

5H2R∗ and consider the sequence (θ(n)) generated by Algorithm 1 with arbitrary

initialisation θ(0). For ϵ > 0 choose the number of training steps as N = 10H5R∗|S|
c2ϵ

∥∥∥dπ∗
µ

µ

∥∥∥2
∞

. Then
it holds that

V ∗
0 (µ)− V π

θ(N)

0 (µ) ≤ ϵ.

One can compare this result to Mei et al. [2020, Thm 4] for discounted MDPs. A discounted MDP
can be seen as an undiscounted MDP stopped at an independent geometric random variable with
mean (1− γ)−1. Thus, it comes as no surprise that algorithms with deterministic absorption time H
have analogous estimates with H instead of (1− γ)−1. See Remark B.6 for a detailed comparison.
Furthermore, it is noteworthy that it cannot be proven that c is independent of H . We omitted this
dependency when we compare to the discounted case because the model dependent constant there
could also depend on γ in the same sense.

3.2 Dynamic Policy Gradient

We now come to the first main contribution of this work, an improved bound for the convergence
of the dynamic PG algorithm. The optimisation objectives are Jh defined in (5). The structure of
proving convergence is as follows. For each fixed h ∈ H we provide global convergence given that
the policy after h is fixed and denoted by π̃. After having established bounds for each decision epoch,
we apply backwards induction to derive complexity bounds on the total error accumulated over all
decision epochs. The β-smoothness for different Jh is then reflected in different training steps for
different epochs.

The backwards induction setting can be described as a nested sequence of contextual bandits (one-step
MDPs) and thus, can be analysed using results from the discounted setting by choosing γ = 0. Using
PG estimates for dicounted MDPs [Mei et al., 2020, Yuan et al., 2022] we prove in Appendix B.2 that
the objective Jh from (5) is a smooth function in θh with parameter βh = 2(H − h)R∗ and satisfies
also a weak PL-inequality of the form

∥∇Jh(θh, π̃(h+1), µh)∥2 ≥ min
s∈Sh

πθh(a∗h(s)|s)(J∗
h(π̃(h+1), µh)− Jh(θh, π̃(h+1), µh)).

It is crucial to keep in mind that classical theory from non-convex optimisation tells us that less
smooth (large β) functions must be trained with more gradient steps. It becomes clear that the
dynamic PG algorithm should spend less training effort on later epochs (earlier in the algorithm) and
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more training effort on earlier epochs (later in the algorithm). In fact, we make use of this observation
by applying backwards induction in order to improve the convergence behavior depending on H (see
Theorem 4.2). The main challenge is again to bound mins∈S π

θh(a∗h(s)|s) from below uniformly in
θh appearing in the gradient ascent updates from Algorithm 2. In this setting the required asymptotic
convergence follows directly from the one-step MDP viewpoint using γ = 0 obtained in Agarwal
et al. [2021, Thm 5] and it holds ch = infn≥0 mins∈Sh

πθ
(n)
h (a∗h(s)|s) > 0 (Lemma B.10).

There is another subtle advantage in the backwards induction point of view. The contextual bandit
interpretation allows using refinements of estimates for the special case of contextual bandits. A
slight generalisation of work of Mei et al. [2020] for stochastic bandits shows that the unpleasant
unknown constants ch simplify if the PG algorithm is uniformly initialised:

Proposition 3.3. For fixed h ∈ H, let µh be a probability measure such that µh(s) > 0 for all
s ∈ Sh and let 0 < ηh ≤ 1

2(H−h)R∗ . Let θ(0)h ∈ Rdh be an initialisation such that the initial policy
is a uniform distribution, then ch = 1

|A| > 0.

This property is in sharp contrast to the simultaneous approach, where to the best of our knowledge it
is not known how to lower bound c explicitly. Comparing the proofs of c > 0 and ch > 0 one can see
that this advantage comes from the backward inductive approach and is due to fixed future policies
which are not changing during training. For fixed decision epoch h combining β-smoothness and
weak PL inequality yields the following global convergence result for the dynamic PG generated in
Algorithm 2.

Lemma 3.4. For fixed h ∈ H, let µh be a probability measure such that µh(s) > 0 for all s ∈ Sh,
let ηh = 1

2(H−h)R∗ and consider the sequence (θ
(n)
h ) generated by Algorithm 2 with arbitrary

initialisation θ(0)h and π̃. For ϵ > 0 choose the number of training steps as Nh = 4(H−h)R∗

c2hϵ
. Then it

holds that

V
(π∗

h,π̃(h+1))

h (µh)− V
(πθ

(Nh)
h ,π̃(h+1))

h (µh) ≤ ϵ

Moreover, if θ(0)h initialises the uniform distribution the constants ch can be replaced by 1
|A| .

The error bound depends on the time horizon up to the last time point, meaning intuitively that an
optimal policy for earlier time points in the MDP (smaller h) is harder to achieve and requires a
longer learning period then later time points (h near to H). We remark that the assumption on µh
is not a sharp restriction and can be achieved by using a strictly positive start distribution µ on S0
followed by a uniformly distributed policy. Note that assuming a positive start distribution is common
in the literature and Mei et al. [2020] showed the necessity of this assumption. Accumulating errors
over time we can now derive the analogous estimates to the simultaneous PG approach. We obtain a
linear accumulation such that an ϵ

H -error in each time point h results in an overall error of ϵ which
appears naturally from the dynamic programming structure of the algorithm.

Theorem 3.5. For all h ∈ H, let µh be probability measures such that µh(s) > 0 for all s ∈ Sh, let
ηh = 1

2(H−h)R∗ . For ϵ > 0 choose the number of training steps as Nh = 4(H−h)HR∗

c2hϵ

∥∥ 1
µh

∥∥
∞. Then

for the final policy from Algorithm 2, π̂∗ = (πθ
(N0)
0 , . . . , πθ

(NH−1)

H−1 ), it holds for all s ∈ S0 that

V ∗
0 (s)− V π̂

∗

0 (s) ≤ ϵ.

If θ(0)h initialises the uniform distribution the constants ch can be replaced by 1
|A| .

Comparison of the algorithms: Comparing Theorem 3.5 to the convergence rate for simultaneous
PG in Theorem 3.2, we first highlight that the constant ch in the dynamic approach can be explicitly
computed under uniform initialisation. This has not yet been established in the simultaneous PG
(see Remark B.12) and especially it cannot be guaranteed that c is independent of the time horizon.
Second, we compare the overall dependence of the training steps on the time horizon. In the dynamic
approach

∑
hNh scales with H3 in comparison to H5 in the convergence rate for the simultaneous

approach. In particular for large time horizons the theoretical analysis shows that reaching a given
accuracy is more costly for simultaneous training of parameters. In the dynamic PG the powers are
due to the smoothness constant, the ϵ

H error which we have to achieve in every epoch and finally the
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sum over all epochs. In comparison, in the simultaneous PG a power of 2 is due to the smoothness
constant, another power of 2 is due to the distribution mismatch coefficient in the PL-inequality which
we need to bound uniformly in θ (see also Remark B.3) and the last power is due to the enlarged state
space |S [H]| = |S|H . Note that we just compare upper bounds. However, we refer to Appendix E
for a toy example visualising that the rate of convergence in both approaches is of order O( 1n ) and
the constants in the dynamic approach are indeed better then for the simultaneous approach.

4 Convergence Analysis of Stochastic Softmax Policy Gradient

In the previous section, we have derived global convergence guarantees for solving a finite-time MDP
via simultaneous as well as dynamic PG with exact gradient computation. However, in practical
scenarios assuming access to exact gradients is not feasible, since the transition function p of the
underlying MDP is unknown. In the following section, we want to relax this assumption by replacing
the exact gradient by a stochastic approximation. To be more precise, we view a model-free setting
where we are only able to generate trajectories of the finite-time MDP. These trajectories are used to
formulate the stochastic PG method for training the parameters in both the simultaneous and dynamic
approach.

Although in both approaches we are able to guarantee almost sure asymptotic convergence similar
to the exact PG scheme, we are no longer able to control the constants c and ch respectively along
trajectories of the stochastic PG scheme due to the randomness in our iterations. Therefore, the derived
lower bound in the weak PL-inequality may degenerate in general. In order to derive complexity
bounds in the stochastic scenario, we make use of the crucial property that c (and ch respectively)
remain strictly positive along the trajectory of the exact PG scheme. To do so, we introduce the
stopping times τ and τh stopping the scheme when the stochastic PG trajectory is too far away from
the exact PG trajectory (under same initialisation). Hence, conditioning on {τ ≥ n} (and {τh ≥ n}
respectively) forces the stochastic PG to remain close to the exact PG scheme and hence, guarantees
non-degenerated weak PL-inequalities. The proof structure in the stochastic setting is then two-fold:

1. We derive a rate of convergence of the stochastic PG scheme under non-degenerated weak
PL-inequality on the event {τ ≥ n}. Since we consider a constant step size, the batch size
needs to be increased sufficiently fast for controlling the variance occurring through the
stochastic approximation scheme. See Lemma D.4 and Lemma D.8.

2. We introduce a second rule for increasing the batch-size depending on a tolerance δ > 0
leading to P(τ ≤ n) < δ. This means, that one forces the stochastic PG to remain close to
the exact PG with high probability. See Lemma D.5 and Lemma D.9.

A similar proof strategy has been introduced in Ding et al. [2022] for proving convergence for
entropy-regularised stochastic PG in the discounted case. Their analysis heavily depends on the
existence of an optimal parameter which is due to regularisation. In the unregularised problem this
is not the case since the softmax parameters usually diverge to +/−∞ in order to approximate a
deterministic optimal solution. Consequently, their analysis does not carry over straightforwardly
to the unregularised setting. One of the main challenges in our proof is to construct a different
stopping time, independent of optimal parameters, such that the stopping time still occurs with
small probability given a large enough batch size. We again first discuss the simultaneous approach
followed by the dynamic approach.

Simultaneous stochastic policy gradient estimator: Consider K trajectories (sih, a
i
h)
H−1
h=0 , for

i = 1, . . . ,K, generated by si0 ∼ µ, aih ∼ πθ(·|sih) and sih ∼ p(·|sih−1, a
i
h−1) for 0 < h < H . The

gradient estimator is defined by

∇̂JK(θ, µ) =
1

K

K∑
i=1

H−1∑
h=0

∇ log(πθ(aih|sih))R̂ih, (7)

where R̂ih =
∑H−1
k=h r(s

i
k, a

i
k) is an unbiased estimator of the h-state-action value function in (sih, a

i
h)

under policy πθ. This gradient estimator is unbiased and has bounded variance (Lemma D.1). Then
the stochastic PG updates for training the softmax parameter are given by

θ̄(n+1) = θ̄(n) + η∇̂JK(θ̄(n), µ). (8)
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Our main result for the simultaneous stochastic PG scheme is given as follows.
Theorem 4.1. Under Assumption 3.1, let µ be a probability measure such that µ(s) > 0 for all
s ∈ S. Consider the final policy using Algorithm 1 with stochastic updates from (8) denoted
by π̂∗ = πθ̄

(N)

. Moreover, for any δ, ϵ > 0 assume that the number of training steps satisfies

N ≥
( 21|S|H5R∗

ϵδc2

)2∥∥∥dπ∗
µ

µ

∥∥∥4
∞

, let η = 1
5H2R∗

√
N

and K ≥ 10max{R∗,1}2N3

c2δ2 . Then it holds true that

P(V ∗
0 (µ)− V π̂

∗

0 (µ) < ϵ) > 1− δ .

Dynamic stochastic policy gradient estimator: For fixed h consider Kh trajectories (sik, a
i
k)
H−1
k=h ,

for i = 1, . . . ,Kh, generated by sih ∼ µh, aih ∼ πθ and aik ∼ π̃k for h < k < H . The estimator is
defined by

∇̂JKh (θ, π̃(h+1), µh) =
1

Kh

Kh∑
i=1

∇ log(πθ(aih|sih))R̂ih, (9)

where R̂ih =
∑H−1
k=h r(s

i
k, a

i
k) is an unbiased estimator of the h-state-action value function in (sih, a

i
h)

under policy π̃. Then the stochastic PG updates for training the parameter θh are given by

θ̄
(n+1)
h = θ̄

(n)
h + ηh∇̂JKh

h (θ̄
(n)
h , π̃(h+1), µh). (10)

Our main result for the dynamic stochastic PG scheme is given as follows.
Theorem 4.2. For all h ∈ H, let µh be probability measures such that µh(s) > 0 for all h ∈ H,
s ∈ Sh. Consider the final policy using Algorithm 2 with stochastic updates from (10) denoted by

π̂∗ = (πθ̄
(N0)
0 , . . . , πθ̄

(NH−1)

H−1 ). Moreover, for any δ, ϵ > 0 assume that the numbers of training steps

satisfy Nh ≥
(

12(H−h)R∗H2
∥∥ 1

µh

∥∥
∞

δc2hϵ

)2

, let ηh = 1
2(H−h)R∗√Nh

and Kh ≥ 5N3
hH

2

c2hδ
2 . Then it holds

true that
P(∀s ∈ S0 : V ∗

0 (s)− V π̂
∗

0 (s) < ϵ) > 1− δ.

Comparison: In both scenarios the derived complexity bounds for the stochastic PG uses a very
large batch size and small step size. It should be noted that the choice of step size and batch size
are closely connected and both strongly depend on the number of training steps N . Specifically, as
N increases, the batch size increases, while the step size tends to decrease to prevent exceeding the
stopping time with high probability. However, it is possible to increase the batch size even further
and simultaneously benefit from choosing a larger step size, or vice versa.

An advantage of the dynamic approach is that ch can be explicitly known for uniform initialisation.
Hence, the complexity bounds for the dynamic approach results in a practicable algorithm, while c is
unknown and possibly arbitrarily small for the simultaneous approach. Finally, we will also compare
the complexity with respect to the time horizon. For the simultaneous approach the number of training
steps scales withH10, and the batch size withH30, while in the dynamic approach the overall number
of training steps scale with H7 and the batch size with H20. We are aware that these bounds are
far from tight and irrelevant for practical implementations. Nevertheless, these bounds highlight
once more the advantage of the dynamic approach in comparison to the simultaneous approach and
show (the non-trivial fact) that the algorithms can be made to converge without knowledge of exact
gradients and without regularisation.

5 Conclusion and Future Work

In this paper, we have presented a convergence analysis of two PG methods for undiscounted MDPs
with finite-time horizon in the tabular parametrisation. Assuming exact gradients we have obtained an
O(1/n)-convergence rate for both approaches where the behavior regarding the time horizon and the
model-dependent constant c is better in the dynamic approach than in the simultaneous approach. In
the model-free setting we have derived complexity bounds to approximate the error to global optima
with high probability using stochastic PG. It would be desirable to derive tighter bounds using for
example adaptive step sizes or variance reduction methods that lead to more realistic batch sizes.

Similar to many recent results, the presented analysis relies on the tabular parametrisation. However,
the heuristic from the policy gradient theorem does not, and the dynamic programming perspective

9



suggests that parameters should be trained backwards in time. It would be interesting future work to
see how this theoretical insight can be implemented in lower dimensional parametrisations using for
instance neural networks.
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A Preliminary results

Before we prove some preliminary results we will give a more detailed description of the enlarged
state space S [H] and introduce more functions and notation used throughout the proofs.

Remark A.1. The enlarged state space introduced for the simultaneous approach encompasses all
possible states across all epochs. Therefore initially, states are associated with their respective
epochs, resulting in disjoint state spaces between epochs, which are subsequently fused into a single
comprehensive state space S [H]. Formally, this means that for every state space Sh = {s1, . . . , sLh}
one constructs disjoint sets Dh = Sh × {h} = {s1h, . . . , s

Lh

h } for h = 0, . . . ,H − 1. Then,
S [H] := D0 ⊎ · · · ⊎ DH−1 contains all possible states associated with their epoch.

The h-state-action value function for every tuple (s, a) ∈ Sh ×As is defined by

Q
π(h+1)

h (s, a) := r(s, a) +
∑

s′∈Sh+1

p(s′|s, a)V π(h+1)

h+1 (s′), h ≤ H − 2, (11)

where V πh (s) = V πh (δs) the h-state value function with start state s ∈ Sh. Note thatQh is independent
of policy πh and for H − 1, QH−1(s, a) := r(s, a) independently of any policy. Furthermore, define
the h-state-action advantage function

A
π(h)

h (s, a) := Q
π(h+1)

h (s, a)− V π(h)

h (s), s ∈ Sh, a ∈ As. (12)

In the following, we will suppress the dependence of π(h) and write π in the superscripts of Vh, Qh
and Ah, when the policy is clear out of context.

Remark A.2. Note that we can drop the subscript h in the value function, state-action value function
or advantage function, when we define them on the enlarged state-space S [H]. Then, V is a vector
of dimension |S [H]| and Q and A are matrices of dimension |S [H]| × |A|. Hence, using the state
sh ∈ S [H] assigned to the epoch h, we use the notation V π

θ

(sh) := V π
θ

h (sh) to denote the assigned
value function in epoch h. Similar also for Q and A.

Moreover we define the state visitation measure on the enlarged state space as

ρ̃π
θ

µ (sh) := Pπ
θ

µ (Sh = sh), (13)

for every sh ∈ S [H] and the state visitation distribution as d̃π
θ

µ = 1
H ρ̃

πθ

µ . Note that it holds∑
sh∈S[H] ρ̃π

θ

µ (sh) =
∑
s∈S ρ

πθ

µ (s) = H .

The performance difference lemma [Kakade and Langford, 2002] is a useful identity to compare
policies. It turns out to be very useful to prove convergence of PG methods [Agarwal et al., 2021].
For finite-time MDPs we obtain the following version.

Lemma A.3 (Performance difference lemma). For any h ∈ H and for any pair of policies π and π′

the following holds true for every s ∈ Sh:

V πh (s)− V π
′

h (s) =

H−1∑
k=h

EπSh=s

[
Aπ

′

k (Sk, Ak)
]
.

14



Proof.

V πh (s)− V π
′

h (s) = Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak)
]
− V π

′

h (s)

= Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak) +

H−1∑
k=h

V π
′

k (Sk)−
H−1∑
k=h

V π
′

k (Sk)
]
− V π

′

h (s)

= Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak) +

H−1∑
k=h+1

V π
′

k (Sk)−
H−1∑
k=h

V π
′

k (Sk)
]

= Eπ(h)

Sh=s

[H−1∑
k=h

r(Sk, Ak) +

H−2∑
k=h

V π
′

k+1(Sk+1)−
H−1∑
k=h

V π
′

k (Sk)
]

= Eπ(h)

Sh=s

[H−1∑
k=h

(
r(Sk, Ak) + V π

′

k+1(Sk+1)− V π
′

k (Sk)
)]

= Eπ(h)

Sh=s

[H−1∑
k=h

Aπ
′

k (Sk, Ak)
]

=

H−1∑
k=h

Eπ(h)

Sh=s

[
Aπ

′

k (Sk, Ak)
]
,

where we have used that r(Sk, Ak) + V π
′

k+1(Sk+1) = Qπ
′

k (Sk, Ak). In the fifth equation we used the
notation VH ≡ 0 and note that QH−1 ≡ r independent of any policy.

This implies a corollary for the two objectives J(θ, µ) and Jh(θh, π̃(h+1), µh).
Corollary A.4. For the objective J(θ, µ) defined in (3) and Jh(θh, π̃(h+1), µh) defined in (5) it holds

J∗(µ)− J(θ, µ) = Eπ
∗

µ

[H−1∑
h=0

Aπ
θ

h (Sh, Ah)
]
=

∑
sh∈S[H]

ρ̃π
∗

µ (sh)A
πθ

h (sh, a
∗(sh))

and

J∗
h(π̃(h+1), µ)− Jh(θh, π̃(h+1), µh) = Eπ

∗

µ

[
A

(πθ,π̃(h+1))

h (Sh, Ah)
]
.

Proof. The first claim follows directly from Lemma A.3 and the definition of the state visitation
measure in (13).

For the second claim, we proof a more general result: For any h ∈ H and two policies π and π′: If
π(h+1) = π′

(h+1), it holds that

V πh (s)− V π
′

h (s) = Eπ(h)

Sh=s

[
Aπ

′

h (Sh, Ah)
]
.

To see this, let k > h, then

Eπ(h)

Sh=s

[
Aπ

′

k (Sk, Ak)
]

=
∑
a∈A

πh(a|s)
∑
s′∈S

p(s′|s, a)Eπ(h+1)

Sh+1=s′

[
Qπ

′

k (Sk, Ak)− V π
′

k (Sk)
]

=
∑
a∈A

πh(a|s)
∑
s′∈S

p(s′|s, a)Eπ
′
(h+1)

Sh+1=s′

[
Qπ

′

k (Sk, Ak)− V π
′

k (Sk)
]

=
∑
a∈A

πh(a|s)
∑
s′∈S

p(s′|s, a)
(
E
π′
(h+1)

Sh+1=s′

[
Eπ

′

Sk
[Qπ

′

k (Sk, Ak)]
]
− E

π′
(h+1)

Sh+1=s′

[
V π

′

k (Sk)
])

=
∑
a∈A

πh(a|s)
∑
s′∈S

p(s′|s, a)
(
E
π′
(h+1)

Sh+1=s′

[
V π

′

k (Sk)
]
− E

π′
(h+1)

Sh+1=s′

[
V π

′

k (Sk)
])

= 0.

15



The claim follows with Lemma A.3.

Next we derive the policy gradient theorems for finite-time horizon MDPs in both, the simultaneous
and the dynamic approach.
Theorem A.5 (Policy Gradient Theorem for the simultaneous approach). Consider any parametri-
sation πθ on the enlarged state space S [H], then the gradient of the J(θ, µ) defined in (3) is given
by

∇J(θ, µ) = Eπ
θ

µ

[ H∑
h=0

∇ log(πθ(Ah|Sh))Qπ
θ

h (Sh, Ah)
]

=
∑

sh∈S[H]

ρ̃π
θ

µ (sh)
∑
a∈Ash

πθ(a|sh)∇ log(πθ(a|sh))Qπ
θ

h (sh, ah).

Proof. The second equality follows directly from the definition of the state visitation measure in (13).
For the first equality consider the probability of a trajectory τ = (s0, a0, . . . , sH−1, aH−1) under the
policy πθ and initial state distribution µ, i.e.

pπ
θ

µ (τ) = µ(sh)π
θ(a0|s0)

H−1∏
k=1

p(sk|sk−1, ak−1)π
θ(ak|sk).

Then,

∇ log(pπ
θ

µ (τ)) = ∇
(
log(µ(sh)) + log(πθ(a0|s0))

+

H−1∑
k=1

log(p(sk|sk−1, ak−1)) + log(πθ(ak|sk))
)

= ∇
H−1∑
k=0

log(πθ(ak|sk)),

which is known as the log-trick. LetW be the set of all trajectories from 0 to H − 1. Note thatW is
finite due to the assumption that state and action space is finite. Then,

∇J(θ, µ) = ∇
∑
τ∈W

pπ
θ

µ (τ)

H−1∑
k=0

r(sk, ak)

=
∑
τ∈W

pπ
θ

µ (τ)∇ log(pπ
θ

µ (τ))

H−1∑
k=0

r(sk, ak)

=
∑
τ∈W

pπ
θ

µ (τ)

H−1∑
h=0

∇ log(πθ(ah|sh))
H−1∑
k=0

r(sk, ak)

=
∑
τ∈W

pπ
θ

µ (τ)

H−1∑
h=0

∇ log(πθ(ah|sh))
H−1∑
k=h

r(sk, ak)

= Eπ
θ

µ

[H−1∑
h=0

∇ log(πθ(Ah|Sh))
H−1∑
k=h

r(Sk, Ak)
]

= Eπ
θ

µ

[H−1∑
h=0

∇ log(πθ(Ah|Sh))Eπ
θ

Sh

[H−1∑
k=h

r(Sk, Ak)
∣∣Sh, Ah]]

= Eπ
θ

µ

[H−1∑
h=0

∇ log(πθ(Ah|Sh))Qπ
θ

h (Sh, Ah)
]
.

In the forth equation we have used that for every k < h it holds

Eπ
θ

µ

[
∇ log(πθ(Ah|Sh))r(Sk, Ak)

]
= Eπ

θ

µ

[
Eπ

θ

µ

[
∇ log(πθ(Ah|Sh))

∣∣∣S0, A0, . . . Sh−1, Ah−1, Sh

]
r(Sk, Ak)

]
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and furthermore

Eπ
θ

µ

[
∇ log(πθ(Ah|Sh))

∣∣∣S0, A0, . . . Sh−1, Ah−1, Sh

]
= Eπ

θ

µ

[
∇ log(πθ(Ah|Sh))

∣∣∣Sh]
=

∑
a∈ASh

πθ(a|Sh)∇ log(πθ(Ah|Sh))

= ∇
( ∑
a∈ASh

πθ(a|Sh)
)
= 0.

Theorem A.6 (Policy Gradient Theorem for the dynamic approach). For a fixed policy π̃ and h ∈ H
the gradient of Jh(θh, π̃(h+1), δs) defined in (5) is given by

∇Jh(θh, π̃(h+1), δs) = ESh=s,Ah∼πθh (·|s)[∇ log(πθ(Ah|Sh))Qπ̃h(Sh, Ah)].

Proof. The probability of a trajectory τ = (sh, ah, . . . , sH−1, aH−1) under the policy
(πθ, π̃(h+1)) = (πθ, π̃h+1, . . . , π̃H−1) and initial state distribution δs is given by

p
(πθ,π̃(h+1))
s (τ) = δs(sh)π

θ(ah|sh)
H−1∏
k=h+1

p(sk|sk−1, ak−1)π̃k(ak|sk).

Then,

∇ log(p
(πθ,π̃(h+1))
s (τ)) = ∇

(
log(δs(sh)) + log(πθ(ah|sh))

+

H−1∑
k=h+1

log(p(sk|sk−1, ak−1)) + log(π̃k(ak|sk))
)

= ∇ log(πθ(ah|sh)),
which is known as the log-trick. LetW be the set of all trajectories from h to H − 1. Note thatW is
finite due to the assumption that state and action space is finite. Then for s ∈ Sh

∇Jh(θh, π̃(h+1), δs) = ∇
∑
τ∈W

p
(πθ,π̃(h+1))
s (τ)

H−1∑
k=h

r(sk, ak)

=
∑
τ∈W

p
(πθ,π̃(h+1))
s (τ)∇ log(p

A.4πθ,π̃(h+1))
s )

H−1∑
k=h

r(sk, ak)

=
∑
τ∈W

p
(πθ,π̃(h+1))
s (τ)∇ log(πθ(ah|sh))

H−1∑
k=h

r(sk, ak)

= E(πθ,π̃(h+1))

Sh=s

[
∇ log(πθ(Ah|Sh))

H−1∑
k=h

r(Sk, Ak)
]

= E(πθ,π̃(h+1))

Sh=s

[
∇ log(πθ(Ah|Sh))Eπ̃Sh

[H−1∑
k=h

r(Sk, Ak)
∣∣Sh, Ah]]

= ESh=s,Ah∼πθ(·|s)

[
∇ log(πθ(Ah|Sh))Qπ̃h(Sh, Ah)

]
.

Using these two theorems we can explicitly derive the derivatives of our objective functions under
the softmax parametrisation. First, we compute the derivative of the softmax policy for every s ∈ Sh
and a ∈ As,

πθ(a|s) = eθ(s,a)∑
a′∈A e

θ(s,a′)
,
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with parameter θ ∈ Rdh :
∂ log(πθ(a|s))
∂θ(a′, s′)

= 1{s=s′}(1{a=a′} − πθ(a′|s′)).

Hence,

∇ log(πθ(a|s)) =
(
1{s=s′}(1{a=a′} − πθ(a′|s′))

)
s′∈Sh,a′∈As′

∈ Rdh .

Lemma A.7. The partial derivative of the objective defined in (3) is given by:
∂J(θ, µ)

∂θ(sh, a)
= ρ̃π

θ

µ (sh)π
θ(a|sh)Aπ

θ

h (sh, a),

for every sh ∈ S [H] and a ∈ Ash .

Proof. Let sh ∈ S [H] and a ∈ Ash . Using Theorem A.5, it holds that

∂J(θ, µ)

∂θ(sh, a)
= Eπ

θ

µ

[H−1∑
h=0

∂

∂θ(sh, a)
log(πθ(Ah|Sh))Qπ

θ

h (Sh, Ah)
]

= Eπ
θ

µ

[H−1∑
h=0

1{Sh=sh}
(
1{Ah=a} − π

θ(a|sh)
)
Qπ

θ

h (Sh, Ah)
]

= Pπ
θ

µ (Sh = sh)
∑
a′

πθ(a′|sh)
(
1{a′=a} − πθ(a|sh)

)
Qπ

θ

h (sh, a
′)

= ρ̃π
θ

µ (sh)
(
πθ(a|sh)Qπ

θ

(sh, a)−
∑
a′

πθ(a′|sh)πθ(a|sh)Qπ
θ

h (sh, a
′)
)

= ρ̃π
θ

µ (sh)π
θ(a|sh)Aπ

θ

h (sh, a).

Lemma A.8. For fix h ∈ H, the partial derivative of the objective defined in (5) is given by:
∂Jh(θ, π̃(h+1), µh)

∂θ(s, a)
= µh(s)π

θ(a|s)A(πθ,π̃(h+1))

h (s, a),

for every s ∈ Sh and a ∈ As

Proof. By the policy gradient Theorem A.6,
∇Jh(θ, π̃(h+1), µh) = ∇Es∼µh

[Jh(θ, π̃(h+1), δs)]

=
∑
s∈S

µh(s)∇Jh(θ, π̃(h+1), δs)

=
∑
s∈S

µh(s)ESh=s,Ah∼πθ(·|s)[∇ log(πθ(Ah|Sh))Qπ̃h(Sh, Ah)].

Next we plug in the derivative of the softmax parametrisation and obtain
∇Jh(θ, π̃(h+1), µh)

=
∑
s∈S

µh(s)ESh=s,Ah∼πθ(·|s)

[(
1{Sh=s′}(1{Ah=a′} − π

θ(a′|s′))
)
s′∈Sh,a′∈As′

Qπ̃h(Sh, Ah)
]

=
(∑
s∈S

µh(s)
∑
a∈As

πθ(a|s)1{s=s′}(1{a=a′} − πθ(a′|s′))Qπ̃h(s, a)
)
s′∈Sh,a′∈As′

=
(
µh(s

′)πθ(a′|s′)Qπ̃h(s′, a′)− µh(s′)πθ(a′|s′)
∑
a∈As

πθ(a|s′)Qπ̃h(s′, a)
)
s′∈Sh,a′∈As′

=
(
µh(s

′)πθ(a′|s′)(Qπ̃h(s′, a′)− V
(πθ,π̃(h+1))

h (s′))
)
s′∈Sh,a′∈As′

=
(
µh(s

′)πθ(a′|s′)A(πθ,π̃(h+1))

h (s′, a′)
)
s′∈Sh,a′∈As′

,

where we used that
∑
a∈As

πθ(a|s′)Qπ̃h(s′, a) = Jh(θ, π̃(h+1), δs′) = V
(πθ,π̃(h+1))

h (s′).
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B Proofs of Section 3

B.1 Proofs of Section 3.1

Lemma B.1. The objective J(θ, µ) from (3) is smooth in θ with parameter β = H2R∗(2− 1
|A| ).

Comparing this result to Lemma E.1. in Yuan et al. [2022] where the smoothness constant of a
discounted MDP under softmax parametrisation is given by R∗

(1−γ)2
(
2− 1

|A|
)
, we can see that 1

1−γ ,
the expectation of a geometric r.v. and the expected length of a discounted MDP, is replaced by H ,
the expected length of the finite-time MDP.

Proof. We are going to bound the norm of the hessian. Therefore, we first calculate the first and second
derivative if J for finite-time horizon stationary MDPs. So, let τ = (s0, a0, s1, . . . , sH−1, aH−1) be
a trajectory of the MDP under policy πθ and denote by pθµ the discrete probability density. Then,

∇J(θ, µ) = ∇
(∑

τ

pθµ(τ)

H−1∑
h=0

r(sh, ah)
)

=
∑
τ

pθµ(τ)
(H−1∑
h=0

∇ log(πθ(ah|sh))
H−1∑
h=0

r(sh, ah)
)

= Eπ
θ

µ

[H−1∑
h=0

∇ log(πθ(ah|sh))
H−1∑
h=0

r(sh, ah)
]
.

For the second derivative we have

∇2J(θ, µ) = ∇
(∑

τ

pθµ(τ)
(H−1∑
h=0

∇ log(πθ(ah|sh))
H−1∑
h=0

r(sh, ah)
))

=
∑
τ

pθµ(τ)
((H−1∑

h=0

∇ log(πθ(ah|sh))
)(H−1∑

h=0

∇ log(πθ(ah|sh))
)T H−1∑

h=0

r(sh, ah)
)

︸ ︷︷ ︸
(1)

+
∑
τ

pθµ(τ)
(H−1∑
h=0

∇2 log(πθ(ah|sh))
H−1∑
h=0

r(sh, ah)
)

︸ ︷︷ ︸
(2)

.

Using the bounded reward assumption we get for the second term, that

||(2)|| ≤ Eπ
θ

µ

[H−1∑
h=0

∥∇2 log(πθ(ah|sh))∥
]
HR∗

= HR∗
H−1∑
h=0

Eπ
θ

µ

[
∥∇2 log(πθ(ah|sh))∥

]
.

By Lemma 4.8 in Yuan et al. [2022], we have for the softmax parametrisation that
Eπθ

µ

[
∥∇2 log(πθ(ah|sh))∥

]
≤ 1. Hence,

||(2)|| ≤ H2R∗.

Next for the first term,

||(1)|| ≤ Eπ
θ

µ

[
∥
H−1∑
h=0

∇ log(πθ(ah|sh))∥2
]
HR∗

= HR∗
H−1∑
h=0

Eπ
θ

µ

[
∥∇ log(πθ(ah|sh))∥2

]
≤ H2R∗(1− 1

|A|
)
,
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where we first used the bounded reward assumption, then Lemma 3.6 and again Lemma 4.8 from
Yuan et al. [2022]. Finally, we obtain that

∥∇2J(θ, µ)∥ ≤ H2R∗(2− 1

|A|
)
.

Lemma B.2. It holds that

∥∇J(θ, µ)∥2 ≥
minsh∈S[H] πθ(a∗(sh)|sh)√

|S [H]|

∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−1

∞
(J∗(µ)− J(θ, µ)).

Proof. The idea of the proof follows the outline of Mei et al. [2020, Lem. 8] from the discounted
setting. It holds

∥∇J(θ, µ)∥2 =
[ ∑
sh∈S[H]

∑
a

( ∂V πθ

0 (µ)

∂θ(sh, a)

)2]1/2
≥

[ ∑
sh∈S[H]

( ∂V π
θ

0 (µ)

∂θ(sh, a∗(sh))

)2]1/2
≥ 1√

|S [H]|

∑
sh∈S[H]

∣∣∣ ∂V π
θ

0 (µ)

∂θ(sh, a∗(sh))

∣∣∣
=

1√
|S [H]|

∑
sh∈S[H]

ρ̃π
θ

µ (sh)π
θ(a∗(sh)|sh)|Aπ

θ

(sh, a
∗(sh))|

≥
minsh∈S[H] πθ(a∗(sh)|sh)√

|S [H]|

∑
sh∈S[H]

ρ̃π
∗

µ (sh)
∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−1

∞
Aπ

θ

(sh, a
∗(sh))

=
minsh∈S[H] πθ(a∗(sh)|sh)√

|S [H]|

∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−1

∞

∑
sh∈S[H]

ρπ
∗

µ (sh)A
πθ

(sh, a
∗(sh))︸ ︷︷ ︸

=Eπ∗
µ [

∑H−1
h=0 Aπθ

h (Sh,Ah)]

=
minsh∈S[H] πθ(a∗(sh)|sh)√

||S [H]|

∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−1

∞
(J∗(µ)− J(θ, µ)).

The third line is due to Cauchy-Schwarz, afterwards we used the derivative of the objective function

from Lemma A.7. For the firths line, not that
∥∥∥ ρ̃π∗

µ

ρ̃πθ
µ

∥∥∥
∞

=
∥∥∥dπ∗

µ

dπθ
µ

∥∥∥
∞

by definition of the state visitation

measures and the distribution mismatch coefficient (see (6)). Finally, the last equation is due to
Corollary A.4 from the performance difference lemma.

Remark B.3. Note that in order to use this weak PL-inequality uniformly we also have to bound
the distribution mismatch coefficient uniform in θ. Therefore, under Assumption 3.1 it holds
dπ

θ

µ (s) ≥ 1
Hµ(s) by definition for any θ, since

dπ
θ

µ (s) =
1

H

H−1∑
h=0

Pπ
θ

µ (Sh = s) ≥ 1

H
µ(s). (14)

Hence, we obtain that

∥∇J(θ, µ)∥2 ≥
minsh∈S[H] πθ(a∗(sh)|sh)

H
√
|S|H

∥∥∥dπ∗

µ

µ

∥∥∥−1

∞
(J∗(µ)− J(θ, µ)).

Remark B.4. Without Assumption 3.1 the expression∑
s∈S

H−1∑
h=0

Pπ
θ

µ (Sh = s) =
∑
sh∈Sh

P(Sh = sh) (15)
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cannot be bounded from below by µ, since the probability to visit states in later epochs depends
crucially on θ. This cannot be covered by µ as the state sh might not belong to S0.

Lemma B.5. Let µ be a probability measure such that µ(s) > 0 for all s ∈ S and let 0 < η ≤
1

5H2R∗ . Consider the sequence (θ(n)) generated by Algorithm 1 for arbitrary θ(0) ∈ R
∑

h dh . Then,
c = c(θ(0)) = infnminsh∈S[H] πθ

(n)

(a∗(sh)|sh) > 0.

The proof is adapted to the finite-time horizon from Mei et al. [2020, Lem. 9].

Proof. We will drop the µ in J(θ, µ) for the rest of the proof. Define for all sh ∈ S [H],

∆∗(sh) = Q∞(sh, a
∗
h(s))− max

a̸=a∗(sh)
Q∞(sh, a) > 0, and ∆∗ = min

sh∈S[H]
∆∗(sh) > 0,

where Q∞ is the optimal Q-function from Lemma C.2.

Now consider for any sh ∈ S [H] the following sets

R1(sh) =
{
θ :

∂J(θ)

∂θ(sh, a∗(sh))
≥ ∂J(θ)

∂θ(sh, a)
, for all a ̸= a∗(sh)

}
,

R2(sh) =
{
θ : Qπ

θ

(sh, a
∗(sh)) ≥ Q∞(sh, a

∗(sh))−
∆∗(sh)

2

}
,

R3(sh) =
{
θ(n) : V π

θ(n)

(sh) ≥ Qπ
θ(n)

(sh, a
∗(sh))−

∆∗(sh)

2
, for all n ≥ 1 large enough

}
.

Furthermore, we define c(sh) =
|A|HR∗

∆∗(sh)
− 1 and

Nc(sh) =
{
θ : πθ(a∗h(sh)|sh) ≥

c(sh)

c(sh) + 1

}
.

We divide the proof into the following Claims:

Claim 1. R(sh) = R1(sh) ∩R2(sh) ∩R3(sh) is a nice region, i.e.

(i) θ(n) ∈ R(sh)⇒ θ(n+1) ∈ R(sh).

(ii) πθ
(n+1)

(a∗(sh)|sh) ≥ πθ
(n)

(a∗(sh)|sh).

Claim 2. Nc(sh) ∩R2(sh) ∩R3(sh) ⊆ R1(sh) ∩R2(sh) ∩R3(sh).

Claim 3. For every sh ∈ S [H], there exists a finite-time n0(sh) ≥ 1, such that

θ(n0(sh)) ∈ Nc(sh) ∩R2(sh) ∩R3(sh) ⊆ R1(sh) ∩R2(sh) ∩R3(sh)

and thus

inf
n≥1

πθ
(n)

(a∗(sh)|sh) = min
1≤n≤n0(sh)

πθ
(n)

(a∗(sh)|sh)

.

If all three claims hold true, we can finally define n0 = maxsh∈S[H] n0(sh), such that

inf
n≥1

min
s∈S[H]

πθ
(n)

(a∗(sh)|sh) = min
1≤n≤n0

min
sh∈S[H]

πθ
(n)

(a∗(sh)|sh) > 0.

Due to the positiveness of the softmax parametrisation the assertion follows.
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Claim 1. We first prove (i). Let θ(n) ∈ R(sh) and a ̸= a∗(sh). Then θ(n+1) ∈ R3(sh) by definition
ofR3(sh). To see that θ(n+1) ∈ R2(sh) note that

Qπ
θ(n+1)

(sh, a
∗(sh)) = Qπ

θ(n+1)

h (sh, a
∗(sh))

= Qπ
θ(n)

h (sh, a
∗(sh)) +Qπ

θ(n+1)

h (sh, a
∗(sh))−Qπ

θ(n)

h (sh, a
∗(sh))

= Qπ
θ(n)

h (sh, a
∗(sh)) + r(sh, a

∗(sh)) +
∑
s′S[H]

p(s′|sh, a∗(sh))V π
θ(n+1)

h+1 (s′)

− r(sh, a∗(sh))−
∑
s′S[H]

p(s′|sh, a∗(sh))V π
θ(n)

h+1 (s′)

= Qπ
θ(n)

h (sh, a
∗(sh)) +

∑
s′S[H]

p(s′|sh, a∗(sh))
(
V π

θ(n+1)

h+1 (s′)− V π
θ(n)

h+1 (s′)
)

≥ Qπ
θ(n)

h (sh, a
∗(sh)) = Qπ

θ(n)

(sh, a
∗(sh))

≥ Q∞(sh, a
∗(sh))−

∆∗(sh)

2
,

where the first inequality is due to monotonicity of V π
θ(n+1)

(s′) in n for every s′ ∈ S [H] and the last
inequality follows from θ(n) ∈ R2(sh).

Next we show θ(n+1) ∈ R1(sh). Therefore we first show that

Qπ
θ(n)

(sh, a
∗(sh))−Qπ

θ(n)

(sh, a) ≥
∆∗(sh)

2
, (16)

for all a ̸= a∗(sh). This holds true, because

Qπ
θ(n)

(sh, a
∗(sh))−Qπ

θ(n)

(sh, a)

= Qπ
θ(n)

(sh, a
∗(sh))−Q∞(sh, a

∗(sh)) +Q∞(sh, a
∗(sh))−Qπ

θ(n)

(sh, a)

≥ −∆∗(sh)

2
+Q∞(sh, a

∗(sh))−Q∞(sh, a) +Q∞(sh, a)−Qπ
θ(n)

(sh, a)

≥ −∆∗(sh)

2
+ ∆∗(sh) +

∑
s′∈S[H]

p(s′|sh, a)(V∞(s′)− V π
θ(n)

(s′))

≥ ∆∗(sh)

2
.

The first inequality follows from θ(n) ∈ R2(s), second by the definition of ∆∗(sh) and the last from

mononicity of V π
θ(n)

(s′) for every s′ and V∞ beeing the limit. Using Lemma A.7 we obtain for any
a ̸= a∗(sh) that

∂J(θ(n))

∂θ(sh, a∗(sh))
≥ ∂J(θ(n))

∂θ(sh, a)

⇔ πθ
(n)

(a∗(sh)|sh)
(
Qπ

θ(n)

h (sh, a
∗(sh))− V π

θ(n)

h (sh)
)
≥ πθ

(n)

(a|s)
(
Qπ

θ(n)

h (sh, a)− V π
θ(n)

h (sh)
)
.

(17)

We divide into two cases:

a) πθ
(n)

(a∗(sh)|sh) ≥ πθ
(n)

(a|sh),

b) πθ
(n)

(a∗(sh)|sh) < πθ
(n)

(a|sh).
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In a) the assumption πθ
(n)

(a∗(sh)|sh) ≥ πθ
(n)

(a|sh) implies θ(n)(sh, a∗(sh)) ≥ θ(n)(sh, a). Thus,

θ(n+1)(s, a∗(sh)) = θ(n)(s, a∗(sh)) + η
∂J(θ(n))

∂θ(n)(sh, a∗(sh))

≥ θ(n)(s, a) + η
∂J(θ(n))

∂θ(n)(sh, a)

= θ(n+1)(s, a),

which implies πθ
(n+1)

(a∗(sh)|sh) ≥ πθ
(n+1)

(a|sh). Moreover, we have

Qπ
θ(n+1)

h (sh, a
∗(sh))−Qπ

θ(n+1)

h (sh, a) ≥
∆∗(sh)

2
≥ 0,

Qπ
θ(n+1)

h (sh, a
∗(sh))− V π

θ(n+1)

h (sh) ≥ Qπ
θ(n+1)

h (sh, a)− V π
θ(n+1)

h (sh).

Thus, both together yields

πθ
(n+1)

(a∗(sh)|sh)
(
Qπ

θ(n+1)

h (sh, a
∗(sh))− V π

θ(n+1)

h (sh)
)
≥ πθ

(n+1)

t (a|sh)
(
Qπ

θ(n+1)

h (sh, a)− V π
θ(n+1)

h (sh)
)
,

which is by (17) equivalent to

∂J(θ(n+1))

∂θ(n+1)(s, a∗(sh))
≥ ∂J(θ(n+1))

∂θ(n+1)(sh, a)
.

Hence, θ(n+1) ∈ R1(sh).
In b) assume now that πθ

(n)

(a∗(sh)|sh) < πθ
(n)

(a|sh). As θ(n) ∈ R1(sh) (17) is also true in this
case and rearranging of terms gives

∂J(θ(n))

∂θ(n)(sh, a∗(sh))
≥ ∂J(θ(n))

∂θ(n)(sh, a)

⇔ Qπ
θ(n)

h (sh, a
∗(sh))−Qπ

θ(n)

h (sh, a) ≥
(
1− πθ

(n)

(a∗(sh)|sh)
πθ(n)(a|sh)

)(
Qπ

θ(n)

h (sh, a
∗(sh))− V π

θ(n)

h (sh)
)

⇔ Qπ
θ(n)

h (sh, a
∗(sh))−Qπ

θ(n)

h (sh, a) ≥
(
1− exp(θ(n)(sh, a

∗(sh))− θ(n)(sh, a)
)(
Qπ

θ(n)

h (sh, a
∗(sh))− V π

θ(n)

h (sh)
)
.

(18)

Note next that by θ(n) ∈ R1(sh) and definition ofR1(sh) we have

θ(n+1)(sh, a
∗(sh))− θ(n+1)(sh, a)

= θ(n)(sh, a
∗(sh)) + η

∂J(θ(n))

∂θ(n)(sh, a∗(sh))
− θ(n)(sh, a)− η

∂J(θ(n))

∂θ(n)(sh, a)

≥ θ(n)(sh, a∗(sh))− θ(n)(sh, a)

and is follows
(
1 − exp(θ(n+1)(sh, a

∗(sh)) − θ(n+1)(sh, a))
)
≤

(
1 − exp(θ(n)(sh, a

∗(sh)) −
θ(n)(sh, a))

)
< 1 by assumption b). We already know θ(n+1) ∈ R3(sh) and therefore

V π
θ(n+1)

h (sh) ≥ Qπ
θ(n+1)

h (sh, a
∗(sh))− ∆∗(s)

2 . This leads to

Qπ
θ(n+1)

h (sh, a
∗(sh))− V π

θ(n+1)

h (sh) ≤
∆∗(s)

2
≤ Qπ

θ(n+1)

h (sh, a
∗(sh))−Qπ

θ(n+1)

h (sh, a),

where the last inequality is due to (16). Combining everything leads to(
1− exp(θ(n+1)(s, a∗h(s))− θ(n+1)(s, a))

)[
Qπ

θ(n+1)

h (sh, a
∗(sh))− V π

θ(n+1)

h (sh)
]

≤ Qπ
θ(n+1)

h (sh, a
∗(sh))−Qπ

θ(n+1)

h (sh, a),

which is by (18) equivalent to θ(n+1) ∈ R1(sh).
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Now we come to Claim (ii).

πθ
(n+1)

(a∗(sh)|sh)

=
exp(θ(n+1)(sh, a

∗(sh)))∑
a∈A

exp(θ(n+1)(sh, a))

=
exp(θ(n)(sh, a

∗(sh)) + η ∂J(θ(n))
∂θ(n)(sh,a∗(sh))

)∑
a∈A

exp(θ(n)(sh, a) + η ∂J(θ(n))
∂θ(n)(sh,a)

)

≥
exp(θ(n)(sh, a

∗(sh))) exp(η
∂J(θ(n))

∂θ(n)(sh,a∗(sh))
)∑

a∈A
exp(θ(n)(sh, a)) exp(η

∂J(θ(n))
∂θ(n)(sh,a∗(sh))

)

= πθ
(n)

(a∗(sh)|sh),

where the inequality follows by θ(n) ∈ R1(sh).

Claim 2. Assume θ ∈ Nc(sh) ∩ R2(sh) ∩ R3(sh) and divide again in two cases. If a)
πθ(a∗(sh)|sh) ≥ max

a∈A
πθ(a|sh), then for all a ̸= a∗(sh) we have

∂J(θ)

∂θ(sh, a∗(sh))

= ρ̃π
θ

µ (sh)π
θ(a∗(sh)|sh)Aπ

θ

(sh, a
∗(sh))

≥ ρ̃π
θ

µ (sh)π
θ(a|sh)Aπ

θ

(sh, a)

=
∂J(θ)

∂θ(sh, a)
.

Where the inequality follows fromAπ
θ

(sh, a
∗(sh))−Aπ

θ

(sh, a) = Qπ
θ

(sh, a
∗(sh))−Qπ

θ

(sh, a) ≥
∆∗(sh)

2 > 0 by (16). Hence, θ ∈ R1(sh).
The case b) where πθ(a∗(sh)|sh) < max

a∈A
πθ(a|sh) is not possible for θ ∈ Nc(sh). Assume there

exists a ̸= a∗(sh) such that πθ(a∗(sh)|sh) < πθ(a|sh). Then

πθ(a∗(sh)|sh) + πθ(a|sh) >
2c(sh)

c(sh) + 1
=

2|A|HR∗

∆∗(s) − 2

|A|HR∗

∆∗(s)

= 2− 2∆∗(s)

|A|HR∗ ≥ 2− 2

|A|
≥ 1,

because ∆∗(s) ≤ HR∗ by definition and |A| ≥ 2. This is a contradiction as πθ is a probability
distribution and Claim 2 is proven.
Claim 3. By the asymptotic convergence of Theorem C.1, we have that πθ

(n)

(a∗(sh)|sh) → 1

for n → ∞. Thus, there exists an N0(sh) > 0, such that πθ
(n)

(a∗(sh)|sh) ≥ c(sh)
c(sh)+1 for all

n ≥ N0(sh), i.e. θ(n) ∈ Nc(sh) for all n ≥ N0(sh).

Furthermore, as Qπ
θ(n)

(sh, a
∗(sh)) → Q∞(sh, a

∗(sh)) for n → ∞ there exists N1(sh) such that
θ(n) ∈ R2(sh) for all n ≥ N1(sh).

Moreover, as Qπ
θ(n)

(sh, a
∗(sh)) → Q∞(sh, a

∗(sh)) = V∞(sh) and V π
θ(n)

(sh) → V∞(sh) for
n→∞ there exists N2(sh) such that θ(n) ∈ R3(sh) for all n ≥ N2(sh).
We choose n0(sh) = max{N0(sh), N1(sh), N2(sh)} which proves Claim 3.

Theorem 3.2. Under Assumption 3.1, let µ be a probability measure such that µ(s) > 0 for all
s ∈ S, let η = 1

5H2R∗ and consider the sequence (θ(n)) generated by Algorithm 1 with arbitrary

initialisation θ(0). For ϵ > 0 choose the number of training steps as N = 10H5R∗|S|
c2ϵ

∥∥∥dπ∗
µ

µ

∥∥∥2
∞

. Then
it holds that

V ∗
0 (µ)− V π

θ(N)

0 (µ) ≤ ϵ.

24



Proof. We will show that

J∗(µ)− J(θ(n), µ) = V ∗
0 (µ)− V π

θ(n)

0 (µ) ≤ 10H5R∗|S|
c2n

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
,

then the claim follows immediately from this.

For any β-smooth function f : Rd → R the descent lemma gives [see Beck, 2017, Lemma 5.7]

f(y) ≤ f(x) +∇f(x)T (y − x) + β

2
∥y − x∥2.

As −f is also β-smooth we follow

−f(y) ≤ −f(x)−∇f(x)T (y − x) + β

2
∥y − x∥2,

which is equivalent to

f(y) ≥ f(x) +∇f(x)T (y − x)− β

2
∥y − x∥2. (19)

Now for gradient ascent updates

xk+1 = xk + α∇f(xk)

we have that

f(xk+1) ≥ f(xk) +∇f(xk)T (xk+1 − xk)−
β

2
∥xk+1 − xk∥2

= f(xk) + α∥∇f(xk)∥2 −
βα2

2
∥∇f(xk)∥2

= f(xk) +
(
α− βα2

2

)
∥∇f(xk)∥2.

It follows for the maximum f∗ of f that

f∗ − f(xk+1) ≤ f∗ − f(xk)−
(
α− βα2

2

)
∥∇f(xk)∥2.

Now assume that there exists a b > 0 such that ∥∇f(xk)∥ > b(f∗ − f(xk)) for all k ≥ 0, then

f∗ − f(xk+1) ≤ f∗ − f(xk)−
(
α− βα2

2

)
b2(f∗ − f(xk))2.

We choose the step size α ≤ 1
β , then

f∗ − f(xk+1) ≤ f∗ − f(xk)−
αc2

2
(f∗ − f(xk))2.

When f∗ − f(x1) ≤ 2
αb2 , then f∗ − f(xn) ≤ 2

αb2n (see Lemma B.7).

We apply this to our objective J(θ, µ) with α = η = 5H2R∗ and b = c√
|S|HH

∥d
π∗
µ

µ ∥
−1. Note for b,

that dπ
θ

µ (s) ≥ 1
Hµ(s) by definition for any θ (see also Remark B.3. So, we only need to check that

J∗(µ)− J(θ(0), µ) ≤ 2H2R∗5H2H|S|
c2

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
.

This is directly given by the bounded reward assumption and the fact that c < 1 and
∥∥∥dπ∗

µ

µ

∥∥∥2
∞
> 1.

Then, we yield the claim

J∗(µ)− J(θ(n), µ) ≤ 10H5R∗|S|
c2n

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
.
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Remark B.6. In the discounted setting Mei et al. [2020] obtain the factor (1− γ)−6, where a power
of 3 is due to their smoothness constant 8

(1−γ)3
2, a power of 2 is due to the distribution mismatch

coefficient and the additional power is due to comparing value functions with a different start
distribution ρ instead of µ. Comparing to our results, directly using µ leads also to a factor (1− γ)−5.
For the simultaneous PG the smoothness of order H2R∗ leads to a H2 in the convergence rate, then
the distribution mismatch coefficient adds another H2 and the additional H comes from the PL-
inequality, as the cardinality of the enlarged state space under Assumption 3.1 is |S [H]| = |S|H . As
mentioned in the article, it cannot be proven that c is independent of H . We omitted this dependency
when we compare to the discounted case because the model dependent constant there could also
depend on γ in the same sense.

Lemma B.7. Let (dn)n∈N0
be a positive sequence, such that dn+1 ≤ dn − qd2n for some q > 0 and

d0 <
1
q , then dn ≤ 1

qn .

Proof. We use an argument similar to Nesterov [2013, Thm. 2.1.14]. It holds

1

dn+1
≥ 1

dn
+

qdn
dn+1

≥ 1

dn
+ q,

where the first inequality is due to dividing by dndn+1 and the second inequality follows by mono-
tonicity. Using a telescope-sum argument we obtain

1

dn
=

1

d0
+

n−1∑
k=0

1

dk+1
− 1

dk
≥ 1

d0
+ nq.

Finally,

dn ≤
1

nq + 1
d0

≤ 1

q(n+ 1)
≤ 1

qn
.

B.2 Proofs of Section 3.2

Lemma B.8. Let h ∈ H, then the objective Jh(θh, π̃(h+1), µh) from (5) is smooth in θh with
parameter βh = 2(H − h)R∗.

Proof. Note that we can interpret the objective function Jh(θh, π̃(h+1), µh) as a value function of
a one-step discounted MDP with γ = 0 and bounded rewards between [0, R∗(H − h)]. Hence, we
can use Yuan et al. [2022, Lem 4.4 and 4.8] to obtain that the softmax policy πθh fulfills the desired
properties with

EA∼πθh

[
||∇ log πθh(A|s)||22

]
≤ 1− 1

|As|
≤ 1 ∀s ∈ S

EA∼πθh

[
||∇2 log πθh(A|s)||2

]
≤ 1,

which leads to a smoothness constant βh = 2(H − h)R∗ for the objective function Jh.

Lemma B.9. It holds that

∥∇Jh(θh, π̃(h+1), µh)∥2 ≥ min
s∈Sh

πθh(a∗h(s)|s)(J∗
h(π̃(h+1), µh)− Jh(θh, π̃(h+1), µh)).

Proof. First note that by the definition of π∗
h, we have J∗

h(π̃(h+1), µh) = V
(π∗

h,π̃(h+1))

h (µh), because
the tabular softmax parametrisation can approximate any deterministic policy arbitrarily well. Using

2Choosing the learning rate (1− γ)3/8 leads to the (1− γ)−3 factor in the convergence rate. Using recent
results in [Yuan et al., 2022, Lem 4] one can improve the smoothness constant for discounted MDPs. Still, the
global convergence result in [Agarwal et al., 2021, Thm 5] holds only for a learning rate (1− γ)3/8 and hence
does not lead to direct improvement in the convergence rate.
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the performance difference lemma in the dynamic setting from Corollary A.4 and the derivative of
the objective given in Lemma A.8, we obtain∥∥∥∂Jh(θh, π̃(h+1), µh)

∂θh

∥∥∥
2

=
∥∥∥ ∑
s∈Sh

µh(s)
∂Jh(θh, π̃(h+1), δs)

∂θh

∥∥∥
2

=
[ ∑
s′∈Sh

∑
a′∈As′

( ∑
s∈Sh

µh(s)
∂Jh(θh, π̃(h+1), δs)

∂θh(s′, a′)

)2] 1
2

≥
∑
s∈Sh

µh(s)
∣∣∣∂Jh(θh, π̃(h+1), δs)

∂θh(s, a∗h(s))

∣∣∣
=

∑
s∈Sh

µh(s)π
θh(a∗h(s)|s)A

(πθh ,π̃(h+1))

h (s, a∗h(s))

=
∑
s∈Sh

µh(s)π
θh(a∗h(s)|s)

(
J∗
h(π̃(h+1), δs)− Jh(θh, π̃(h+1), δs)

)
≥ min
s∈Sh

πθh(a∗h(s)|s)
(
J∗
h(π̃(h+1), µh)− Jh(θh, π̃(h+1), µh)

)
.

The first inequality is due to the non-negativity of all other terms, and we just drop them.

Lemma B.10. Let µh be a probability measure such that µh(s) > 0 for all s ∈ Sh and let
0 < ηh ≤ 1

2(H−h)R∗ . Consider the sequence (θ
(n)
h ) generated by Algorithm 2 for arbitrary

θ
(0)
h ∈ Rdh and π̃. Then, ch = ch(θ

(n)
h ) = infn≥0 mins∈Sh

πθ
(n)
h (a∗h(s)|s) > 0.

The idea of the proof is based on Mei et al. [2020, Lemma 5] for bandits and extended to the
contextual bandit case.

Proof. Throughout the proof we abuse notation as follows:

• As we consider a fixed time point h we will only write θn instead of θ(n)h .

• We denote the objective function by Jh(θ) instead of Jh(θ, π̃(h+1), µh) for a fixed policy π̃
and start distribution µh. Furthermore, we will just write J∗

h instead of J∗
h(π̃(h+1), µh).

• We will write Jh,s(θ) for the objective function which starts almost surly in s ∈ Sh, i.e.
Jh,s(θ) = Jh(θ, π̃(h+1), δs).

First note that

Jh,s(θh) =
∑
a∈As

πθh(a|s)Qπ̃h(s, a),

where Qπ̃h(s, a) is independent of θ. We will drop the subscript π̃ in Qh for the rest of the proof and
define for all s ∈ Sh,

∆∗(s) = Qh(s, a
∗
h(s))− max

a̸=a∗h(s)
Qh(s, a) > 0, and ∆∗ = min

s∈Sh

∆∗(s) > 0.

Consider the following sets

R1
h(s) = {θ :

∂Jh,s(θ)

∂θ(s, a∗h(s))
≥ ∂Jh,s(θ)

∂θ(s, a)
∀a ̸= a∗h(s)}

R2
h(s) = {θ : πθ(a∗h(s)|s) ≥ πθ(a|s)∀a ̸= a∗h(s)}

Nh(s) = {θ : πθ(a∗h(s)|s) ≥
ch(s)

ch(s) + 1
},
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for ch(s) =
|A|(H−h)R∗

∆∗
h(s)

− 1 and ∆∗
h(s) = Qh(s, a

∗(s)) −maxa ̸=a∗ Qh(s, a). Then consider the
following Claims:

1. θn ∈ R1
h(s)⇒ θn+1 ∈ R1

h(s),

2. If θn ∈ R1
h(s), then πθn+1(a∗h(s)|s) ≥ πθn(a∗h(s)|s),

3. Nh(s) ⊆ R2
h(s) ⊆ R1

h(s).

Claim 1. Let θn ∈ R1
h(s) and a ̸= a∗h(s). Using the derivative of the value function we obtain

∂Jh,s(θn)

∂θ(s, a∗h(s))
≥ ∂Jh,s(θn)

∂θ(s, a)

⇔ πθn(a∗h(s)|s)
(
Qh(s, a

∗
h(s))− Jh,s(θn)

)
≥ πθn(a|s)

(
Qh(s, a)− Jh,s(θn)

)
.

(20)

We divide into two cases:

a) πθn(a∗h(s)|s) ≥ πθn(a|s),

b) πθn(a∗h(s)|s) < πθn(a|s).

In a) the assumption πθn(a∗h(s)|s) ≥ πθn(a|s) implies θn(s, a∗h(s)) ≥ θn(s, a). Thus,

θn+1(s, a
∗
h(s)) = θn(s, a

∗
h(s)) + ηhµh(s)

∂Jh,s(θn)

∂θn(s, a∗h(s))

≥ θn(s, a) + ηhµh(s)
∂Jh,s(θn)

∂θn(s, a)

= θn+1(s, a),

which implies πθn+1(a∗h(s)|s) ≥ πθn+1(a|s). By the optimality of a∗h(s) we follow

π
θn+1

t (a∗h(s)|s)
(
Qh(s, a

∗
h(s))− Jh,s(θn+1)

)
≥ πθn+1

t (a|s)
(
Qh(s, a)− Jh,s(θn+1)

)
,

which is by (20) equivalent to

∂Jh,s(θn+1)

∂θn+1(s, a∗h(s))
≥ ∂Jh,s(θn+1)

∂θn+1(s, a)
.

Hence, θn+1 ∈ R1
h(s).

In b) assume now that πθn(a∗h(s)|s) < πθn(a|s). As θn ∈ R1
h(s) (20) is also true in this case and

rearranging of terms gives

∂Jh,s(θn)

∂θn(s, a∗h(s))
≥ ∂Jh,s(θn)

∂θn(s, a)

⇔ Qh(s, a
∗
h(s))−Qh(s, a) ≥

(
1− πθn(a∗h(s)|s)

πθn(a|s)

)(
Qh(s, a

∗
h(s))− Jh,s(θn)

)
⇔ Qh(s, a

∗
h(s))−Qh(s, a) ≥

(
1− exp(θn(s, a

∗
h(s))− θn(s, a)

)(
Qh(s, a

∗
h(s))− Jh,s(θn)

)
.

(21)

Note next that by θ(n) ∈ R1
h(s) and definition ofR1

h(s) we have

θn+1(s, a
∗
h(s))− θn+1(s, a)

= θn(s, a
∗
h(s)) + ηhµh(s)

∂Jh,s(θn)

∂θn(s, a∗h(s))
− θn(s, a)− ηhµh(s)

∂Jh,s(θn)

∂θn(s, a)

≥ θn(s, a∗h(s))− θn(s, a)

and is follows
(
1− exp(θn+1(s, a

∗
h(s))− θn+1(s, a))

)
≤

(
1− exp(θn(s, a

∗
h(s))− θn(s, a))

)
< 1

by assumption b). By the ascent lemma for smooth functions we get monotonicity in the objective
function, so

Qh(s, a
∗
h(s))− Jh,s(θn+1) ≤ Qh(s, a∗h(s))− Jh,s(θn),
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where the last inequality is due to the definition of ∆∗(s). Combining everything leads to(
1− exp(θn+1(s, a

∗
h(s))− θn+1(s, a))

)[
Qh(s, a

∗
h(s))− Jh,s(θn+1)

]
≤

(
1− exp(θn(s, a

∗
h(s))− θn(s, a))

)[
Qh(s, a

∗
h(s))− Jh,s(θn)

]
≤ Qh(s, a∗h(s))−Qh(s, a),

which is by (21) equivalent to θn+1 ∈ R1(s).

Claim 2. If θn ∈ R1
h(s), then

πθn+1(a∗h(s)|s)

=
exp(θn+1(s, a

∗
h(s)))∑

a∈A
exp(θn+1(s, a))

=
exp(θn(s, a

∗
h(s)) + ηhµh(s)

∂Jh,s(θn)
∂θn(s,a∗h(s))

)∑
a∈As

exp(θn(s, a) + ηhµh(s)
∂Jh,s(θn)
∂θn(s,a)

)

≥
exp(θn(s, a

∗
h(s))) exp(ηhµh(s)

∂Jh,s(θn)
∂θn(s,a∗h(s))

)∑
a∈As

exp(θn(s, a)) exp(ηhµh(s)
∂Jh,s(θn)
∂θn(s,a∗h(s))

)

= πθn(a∗h(s)|s),

where the inequality follows by θn ∈ R1
h(s).

Claim 3. Let θn ∈ R2
h(s), then by the optimality of a∗(s),

πθn(a∗(s)|s)(Qh(s, a∗h(s))− Jh,s(θn)) ≥ πθn(a|s)(Qh(s, a)− Jh,s(θn)) (22)

⇔ ∂Jh,s(θn)

∂θn(s, a∗(s))
≥ ∂Jh,s(θn)

∂θn(s, a)
. (23)

Hence, θn ∈ R1
h(s).

On the other hand, let θn ∈ Nh(s), then assume there exists a ̸= a∗h(s) such that πθ(a∗h(s)|s) <
πθ(a|s). Then

πθ(a∗h(s)|s) + πθ(a|s) > 2c(s)

c(s) + 1
=

2|A|(H−h)R∗

∆∗
h(s)

− 2

|A|(H−h)R∗

∆∗
h(s)

= 2− 2∆∗
h(s)

|A|(H − h)R∗ ≥ 2− 2

|A|
≥ 1,

because ∆∗(s) ≤ (H −h)R∗ by definition and |A| ≥ 2. This is a contradiction as πθ is a probability
distribution and Claim 3 is proven.

To follow the claim of the lemma from the claims 1 to 3, we need asymptotic convergence to the
global optimum. This is given by Agarwal et al. [2021, Theorem 5], since we can interpret the
objective Jh as a one-step MDP with γ = 0. Then, assuring that the step size is smaller than one over
the smoothness parameter is enough to use the same proof as provided in Agarwal et al. [2021].

So, there exists a time t0 such that θ ∈ Nh(s) for all s ∈ S. Finally,

inf
n

min
s
πθn(a∗(s)|s) = min

0≤n≤t0
min
s
πθn(a∗(s)|s) > 0.

Proposition B.11. For fixed h ∈ H, let µh be a probability measure such that µh(s) > 0 for all
s ∈ Sh and let 0 < ηh ≤ 1

2(H−h)R∗ . Let θ(0)h ∈ Rdh be an initialisation such that the initial policy
is a uniform distribution, then ch = 1

|A| > 0.
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Proof. If we initialise uniformly, then θ0 ∈ R2
h(s) for all s ∈ Sh from the proof of the previous

Lemma B.10. Therefore, θn ∈ R1
h(s) for all n ≥ 0 and from Claim 2 we have

ch = inf
n

min
s
πθ

(n)
h (a∗(s)|s) = min

s
πθ

(0)
h (a∗(s)|s) = 1

|A|
.

Remark B.12. Let us shortly discuss why the constant ch in the dynamic case can be bound explicitly,
but c in the simultaneous case can not. In the dynamic case, the future policy is fixed and the optimal
action a∗(s) is chosen with respect to the best policy π∗

h dependent on the fixed future policy π̃(h+1).
This leads to monotone improvements in epoch h (due to smoothness), and so the probability to
choose the best action increases over the training steps. In the simultaneous approach the future
policy changes in ever training step, as θ changes after every update. Smoothness just guarantees
improvement in the value function, i.e. improvement in expectation over the time horizon. As π∗ is
the final best policy, we have to bound minsh∈S[H] πθ(a∗(sh)|sh) for every sh in the enlarged state
space. This the cannot be followed from improvement in expectation.
Lemma B.13. For fixed h ∈ H, let µh be a probability measure such that µh(s) > 0 for all s ∈ Sh,
let ηh = 1

2(H−h)R∗ and consider the sequence (θ
(n)
h ) generated by Algorithm 2 with arbitrary

initialisation θ(0)h and π̃. For ϵ > 0 choose the number of training steps as Nh = 4(H−h)R∗

c2hϵ
. Then it

holds that

V
(π∗

h,π̃(h+1))

h (µh)− V
(πθ

(Nh)
h ,π̃(h+1))

h (µh) ≤ ϵ

Moreover, if θ(0)h initialises the uniform distribution the constants ch can be replaced by 1
|A| .

Proof. First, note that V
(π∗

h,π̃(h+1))

h (µh) = J∗
h(π̃(h+1), µh) and V

(πθ
(n)
h ,π̃(h+1))

h (µh) =

Jh(θ
(n)
h , π̃(h+1), µh) by definition of Jh and choice of π∗

h. We will proof

J∗
h(π̃(h+1), µh)− Jh(θ

(n)
h , π̃(h+1), µh) ≤

4(H − h)R∗

c2hn
,

Then the claim follows directly from this.

We use the same arguments as in the proof of Theorem 3.2 for our objective function
Jh(θh, π̃(h+1), µh). Thus, we only need to assure, that

J∗
h(π̃(h+1), µh)− Jh(θ

(0)
h , π̃(h+1), µh) ≤

1

q
.

for q = αb2

2 , with α = ηh = 1
βh

and b = ch. It holds that

J∗
h(π̃(h+1), µh)− Jh(θ

(0)
h , π̃(h+1), µh) ≤ (H − h)R∗ ≤ 4(H − h)R∗

c2h
=

2βh
c2h

=
1

q

and the claim follows as in the proof of Theorem 3.2.

Theorem 3.5. For all h ∈ H, let µh be probability measures such that µh(s) > 0 for all s ∈ Sh, let
ηh = 1

2(H−h)R∗ . For ϵ > 0 choose the number of training steps as Nh = 4(H−h)HR∗

c2hϵ

∥∥ 1
µh

∥∥
∞. Then

for the final policy from Algorithm 2, π̂∗ = (πθ
(N0)
0 , . . . , πθ

(NH−1)

H−1 ), it holds for all s ∈ S0 that

V ∗
0 (s)− V π̂

∗

0 (s) ≤ ϵ.

If θ(0)h initialises the uniform distribution the constants ch can be replaced by 1
|A| .

Proof. First note that by our choice of the future policy π̃ = π̂∗ we have

Jh(θ
(Nh)
h , π̃(h+1), δs) = V π̂

∗

h (s). (24)
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By Lemma 3.4 we obtain

J∗
h(π̃(h+1), µh)− Jh(θ

(Nh)
h , π̃(h+1), µh) ≤

4(H − h)R∗

c2hNh
.

For every s ∈ Sh,

J∗
h(π̃(h+1), δs)− Jh(θ

(Nh)
h , π̃(h+1), δs) =

∑
s′∈Sh

µh(s
′)
δs(s

′)

µh(s′)
J∗
h(π̃(h+1), δs)− Jh,s(θ

(Nh)
h , π̃(h+1), δs)

≤
∥∥∥ 1

µh

∥∥∥
∞

(
J∗
h(π̃(h+1), µh)− Jh(θ

(Nh)
h , π̃(h+1), µh)

)
≤ 4(H − h)R∗

c2hNh

∥∥∥ 1

µh

∥∥∥
∞
,

(25)

where
∥∥∥ 1
µh

∥∥∥
∞

= maxs∈Sh

1
µh(s)

> 0 by assumption. As Nh = 4(H−h)HR∗

c2hϵ

∥∥∥ 1
µh

∥∥∥
∞

, it holds that

J∗
h(π̃(h+1), δs)− Jh(θ

(Nh)
h , π̃(h+1), δs) ≤

ϵ

H
(26)

for every s ∈ Sh. For h = H − 1 it follows directly by (24) and the specialty of the last time point
that for all s ∈ SH−1,

V ∗
H−1(s)− V π̂

∗

H−1(s) = J∗
H−1(δs)− JH−1(θ

(NH−1)
H−1 , δs) ≤

ϵ

H
.

Note that the last epoch is independent of π̃. Assume now that for all s ∈ Sh,

V ∗
h (s)− V π̂

∗

h (s) ≤ ϵ(H − h)
H

. (27)

Then it holds for all s ∈ Sh−1 that,

J∗
h−1(π̃(h), δs) = max

a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)−

∑
s′∈Sh

p(s′|s, a)(V ∗
h (s)− V π̂

∗

h (s))
)

≥ max
a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)

)
− ϵ(H − h)

H

= V ∗
h−1(s)−

ϵ(H − h)
H

,

(28)

by the Bellman expectation equation for finite-time MDPs (Puterman [2005]). We close the backward
induction using (24) such that for all s ∈ Sh−1,

V ∗
h−1(s)− V π̂

∗

h−1(s) = V ∗
h−1(s)− J∗

h−1(π̃(h), δs) + J∗
h−1(π̃(h), δs)− V π̂

∗

h−1(s)

≤ ϵ(H − h)
H

+
ϵ

H

=
ϵ(H − (h− 1))

H
.

(29)

Finally, it holds for h = 0 and all s ∈ S0 that

V ∗
0 (s)− V π̂

∗

0 (s) ≤ ϵ.

C Asymptotic convergence for simultaneous PG

In this section we will proof asymptotic convergence of simultaneous softmax PG towards the global
optimum. Therefore, we use the extended notation of the state value, state-action value and advantage
function introduced in Remark A.2. For the rest of the section we will write θn = θ(n) to save
notation.
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Theorem C.1. Let µ be a probability measure such that µ(s) > 0 for all s ∈ S and let 0 < η ≤
1

5H2R∗ . Consider the sequence (θ(n)) generated by Algorithm 1 for arbitrary θ(0) ∈ R
∑

h dh . Then,

for all sh ∈ S [H] we have V π
θ(n)

(sh) → V ∗(sh) as n → ∞. Especially we have V π
θ(n)

0 (s) →
V ∗
0 (s) as n→∞ for all s ∈ S0.

Before we can proof this result we have to proof a row of lemmata. The outline follows the proof of
Agarwal et al. [2021, Theorem 5]. For the rest of this section we will just write J(θ) or J∗ instead of
J(θ, µ) or J∗(µ).
Lemma C.2 (Monotonicity). If the learning rate satisfies 0 < η ≤ 1

H2R∗5 ≤
1

H2R∗
(
2− 1

|A|

) = 1
β

then V π
θn+1

(sh) ≥ V π
θn
(sh) and Qπ

θn+1
(sh, a) ≥ Qπ

θn
(sh, a) for all sh ∈ S [H] and all a ∈ A.

Furthermore, there exist limits V∞(s) and Q∞(s, a) such that

lim
n→∞

V π
θn
(s) = V∞(s) <∞.

lim
n→∞

Qπ
θn
(s, a) = Q∞(s, a) <∞.

Proof. We will show that V π
θn

h (s) ≤ V π
θn+1

h (s) for each state s ∈ S (in the not enlarged state
space) and each epoch h. Then by the bounded reward assumption there exists V∞

h (s) such that
V π

θn

h (s) → V∞
h for n → ∞. If this holds true we see the mononicity and convergence of the

Q-functions from the relation

Qπ
θ

h (s, a) = r(s, a) +
∑
s′∈S

p(s′|s, a)V π
θ

h+1(s
′),

with VH ≡ 0.

In order to show the claim we first see from the performance difference lemma, that

V π
θn+1

h (s)− V π
θn

h (s) = Eπ
θn+1

Sh=s

[H−1∑
t=h

Aπ
θn

t (St, At)
]

=
∑

sl∈S[H]

ρ̃π
θn+1

s,h (sl)
∑
a∈A

πθn+1(a|sl)Aπ
θn
(sl, a),

where ρ̃π
θn+1

s,h (sl) :=
∑H−1
t=h Pπ

θn+1

Sh=s
(St = sl) the state visitation measure from epoch h to H − 1

on the enlarged state space S [H]. Note that ρ̃π
θn+1

s,h (sl) = 0 for l < h, as we cannot visit states from
previous epochs.

We will prove that
∑
a∈A π

θn+1(a|sh)Aπ
θn
(sh, a) ≥

∑
a∈A π

θn(a|sh)Aπ
θn
(sh, a), for any sh ∈

S [H]. Then the fact that
∑
a∈A π

θn(a|s)Aπθn
(s, a) = 0 leads to the desired result.

Therefore, we consider the function

Fsh(θ
sh) :=

∑
a∈A

πθ
sh
(a|sh)c(sh, a) sh ∈ S [H],

for θsh = (θ(sh, a))a∈A ∈ R|A|. We will set c(sh, a) = Aπ
θn

h (sh, a), but for θn fix, i.e. the
following derivatives with respect to θsh of F are independent of Aπ

θn . From Agarwal Lemma C.2
we know that

∂Fsh(θ
sh)

∂θ(sh, a)

∣∣∣
θ
sh
n

= πθ
(n)
sh (a|sh)Aπ

θn

h (sh, a). (30)

Furthermore, Fsh(θsh) is 5HR∗-smooth for every sh by Lemma D.1 in Agarwal and the bounded
reward assumption. Considering our gradient ascent updates from simultaneous training we get

θn+1(sh, a) = θn(sh, a) + η
∂V π

θn
(µ)

∂θn(sh, a)
(31)

= θn(sh, a) + ηρ̃π
θn

µ (sh)π
θn(a|sh)Aπ

θn
(sh, a) (32)

= θn(sh, a) + ηρ̃π
θn

µ (sh)
∂Fsh(θsh)

∂θn(sh, a)

∣∣∣
θ
sh
n

. (33)

32



As ηρ̃π
θn

µ (sh) = ηHdπ
θn

µ (sh) and dπ
θn

µ (sh) a probability measure we see that ηρ̃π
θn

µ (sh) ≤ 1
5HR∗

by our choice of η ≤ 1
H2R∗5 . Then the descent lemma for the 5HR∗-smooth function Fsh gives the

desired inequality ∑
a∈A

πθn+1(a|sh)Aπ
θn
(sh, a) ≥

∑
a∈A

πθn(a|sh)Aπ
θn
(sh, a).

Remark C.3. We want to point out that the proof of Lemma C.2 is crucial for the choice of the step
size in the convergence analysis of the simultaneous PG algorithm. As we can only use the descent
lemma for a step size 0 < η ≤ 1

5H2R∗ , we can only achieve asymptotic convergence towards global
minima under this assumption. Hence, we also need this step size requirement in the convergence
analysis.

We introduce the following definitions:

∆ = min
{(sh,a)∈(SH)×A :A∞(sh,a)̸=0}

|A∞(sh, a)|

where A∞(sh, a) = Q∞(sh, a)− V∞(sh).

We define the sets for each sh ∈ S [H]:

Ish0 = {a ∈ A |Q∞(sh, a) = V∞(sh)},
Ish+ = {a ∈ A |Q∞(sh, a) > V∞(sh)},
Ish− = {a ∈ A |Q∞(sh, a) < V∞(sh)}.

We aim to prove that Ish+ is an empty set, then V∞(sh) = V ∗(sh) the optimal value function (epoch
wise true).

Lemma C.4. There exists a time N1 > 0 such that for all n > N1, and sh ∈ S [H], we have

Aθn(sh, a) < −
∆

4
for a ∈ Ish− ; Aθn(sh, a) >

∆

4
for a ∈ Ish+ .

Proof. Fix sh ∈ S [H] arbitrarily. As V π
θn
(sh)→ V∞(sh) for n→∞ and S is finite, we have that

there exists N1 > 0 such that for all n > N1 and sh ∈ S [H],

V π
θn
(sh) > V∞(sh)−

∆

4
.

It follows for all n > N1, sh ∈ S [H] and a ∈ Ish− by the definition of ∆:

Aθn(sh, a) = Qθn(sh, a)− V π
θn
(sh) ≤ Q∞(sh, a)− V∞(sh) +

∆

4
≤ −∆+

∆

4
< −∆

4
.

Similarly, for all n > N1, sh ∈ S [H] and a ∈ Ish+ we obtain from monotonicity Lemma C.2 and the
definition of ∆,

Aθnh (s, a) = Qθn(sh, a)− V π
θn
(sh) ≥ Q∞(s, a)− ∆

4
− V∞(sh) ≥ ∆− ∆

4
>

∆

4
.

Lemma C.5. It holds that ∂J(θn)
∂θn(sh,a)

→ 0 as n → ∞ for all sh ∈ S [H], a ∈ As. This implies that
for a ∈ Ish+ ∪ I

sh
− , πθn(a|sh)→ 0 and that

∑
a∈Ish0

πθn(a|sh)→ 1 for n→∞.

Proof. From [Beck, 2017, Theorem 10.15] we deduce for any β-smooth function f : Rd → R,
that ∥∇f(xk)∥ → 0 for k → ∞, if xk+1 = xk − η∇f(xk), when η < 1

β . By Lemma B.1 J(·) is

H2R∗(2− 1
|A| )-smooth. It follows by our choice of η < 1

5H2R∗ that ∂J(θn)
∂θn(sh,a)

→ 0 as n→∞ for
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all sh ∈ S [H], a ∈ As. Now remember the derivative of the softmax parametrisation in the stationary
case

∂J(θn)

∂θn(sh, a)
= ρ̃π

θn

µ (sh)π
θn(a|sh)Aθn(sh, a),

and by Lemma C.4 |Aθn(sh, a)| > ∆
4 for all n > N1 and a ∈ Ish+ ∪ I

sh
− . As ρ̃π

θn

µ (sh) > 0 by
assumption on µ and the positivity of the softmax parametrisation. It follows that πθn(a|s)→ 0 for
n→∞ for all a ∈ Ish+ ∪ I

sh
− from ∂J(θn)

∂θn(sh,a)
→ 0 as n→∞.

The last claim,
∑
a∈Is0

πθn(a|sh)→ 1 for n→∞, follows immediately from
∑
a∈As

πθn(a|sh) = 1

by:

lim
n→∞

∑
a∈Ish0

πθn(a|sh) = lim
n→∞

(∑
a∈A

πθn(a|sh)−
∑

a∈Ish+ ∪Ish−

πθn(a|sh)
)

= 1−
∑

a∈Ish+ ∪Ish−

lim
n→∞

πθn(a|sh)

= 1.

Lemma C.6. For a ∈ Ish+ , the sequence (θn(sh, a))n≥0 is strictly increasing for n > N1 and for
a ∈ Ish− , the sequence (θn(sh, a))n≥0 is strictly decreasing for n > N1.

Proof. With Lemma C.4 we know that for n > N1

Aθnh (sh, a) > 0 for a ∈ Ish+ ; Aθnh (sh, a) < 0 for a ∈ Ish− ,

and by the derivative of the value function

∂J(θn)

∂θn(sh, a)
= ρ̃π

θn

µ (sh)π
θn(a|sh)Aθnh (sh, a).

As ρ̃π
θn

µ (sh) > 0 by the assumption µ(s) > 0 and the positivity of the softmax parametrisation, we
have for all n > N1

∂J(θn)

∂θn(sh, a)
> 0 for a ∈ Ish+ ;

∂J(θn)

∂θn(sh, a)
< 0 for a ∈ Ish− .

This implies for a ∈ Ish+ ,

θn+1(sh, a)− θn(sh, a) = η
∂J(θn)

∂θ(sh, a)
> 0,

i.e. (θn(sh, a))n≥0 is strictly increasing for n > N1 and similar for a ∈ Ish− ,

θn+1(sh, a)− θn(sh, a) = η
∂J(θn)

∂θn(sh, a)
< 0,

i.e. (θn(sh, a))n≥0 is strictly decreasing for n > N1.

Lemma C.7. For all sh ∈ S [H] where Ish+ ̸= ∅, we have that

max
a∈Ish0

θn(sh, a)→∞ and min
a∈A

θn(sh, a)→ −∞ for n→∞.

Proof. By assumption Ish+ ̸= ∅ there exists an a+ ∈ Ish+ and by Lemma C.5 we have πθn(a+|sh)→
0, as n→∞. Hence, by softmax parametrisation this is equivalent to

exp(θn(sh, a+))∑
a∈A

exp(θn(sh, a))
→ 0, for n→∞.
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Using Lemma C.6, i.e. θn(sh, a+) is strictly increasing for n > N1, we imply that exp(θn(sh, a+))
is strictly increasing for n > N1. This implies that∑

a∈A
exp(θn(sh, a))→∞, for n→∞.

Again by Lemma C.5 we know that∑
a∈Ish0

πθn(a|sh)→ 1, for n→∞,

i.e. by definition ∑
a∈Ish0

exp(θn(sh, a))∑
a′∈A

exp(θn(sh, a′))
→ 1, for n→∞.

As
∑
a′∈A

exp(θn(sh, a
′))→∞ it follows that∑

a∈Ish0

exp(θn(sh, a))→∞, for n→∞

implying

max
a∈Ish0

θn(sh, a)→∞, for n→∞.

For the second claim it holds that∑
a∈A

∂J(θn)

∂θn(sh, a)
= ρ̃π

θn

µ (sh)
∑
a∈A

πθn(a|sh)(Qπ
θn

h (sh, a)− V π
θn

h (sh))

= ρ̃π
θn

µ (sh)(Eπ
θn

Sh=s
[Qπ

θn

h (sh, a)]− V π
θn

h (sh))

= ρ̃π
θn

µ (sh)(V
πθn

h (sh)− V π
θn

h (sh))

= 0.

By induction, we obtain
∑
a∈A θn(sh, a) =

∑
a∈A θ0(sh, a) := c for every n > 0 and hence

min
a∈A

θn(sh, a) <
∑
a∈A

θn(sh, a)−max
a∈A

θn(sh, a) = −max
a∈A

θn(sh, a) + c.

Since maxa∈A θn(sh, a) → ∞, because maxa∈Ish0
θn(sh, a) → ∞, we conclude

mina∈A θn(sh, a)→ −∞ for n→∞.

Lemma C.8. Suppose a+ ∈ Ish+ . If there exists a ∈ Ish0 such that for some n > N1, πθn(a|sh) ≤
πθn(a+|sh), then for all m > n it holds that πθm(a|sh) ≤ πθm(a+|sh).

Proof. Suppose there exists a ∈ Is0 such that for an n > 0, πθn(a|sh) ≤ πθn(a+|sh). We show that
πθn+1(a|sh) ≤ πθn+1(a+|sh), then the claim follows by induction. We have

∂Jh(θn)

∂θn(sh, a)
= ρ̃π

θn

µ (sh)π
θn(a|sh)(Qπ

θn

h (sh, a)− V π
θn

h (sh))

≤ ρ̃π
θn

µ (sh)π
θn(a+|sh)(Qπ

θn

h (sh, a+)− V π
θn

h (sh))

=
∂J(θn)

∂θn(sh, a+)
,

where the inequality follows with

Qπ
θn

h (sh, a+) ≥ Q∞
h (sh, a+)−

∆

4

≥ Q∞
h (sh, a) + ∆− ∆

4

> Qπ
θn

h (sh, a).
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The first inequaility is due to Lemma C.4 and the second by the definition of ∆ and a ∈ Ish0 . Now by
assumption we have πθn(a|sh) ≤ πθn(a+|sh) and thus θn(sh, a) ≤ θn(sh, a+). It follows

θn+1(sh, a) = θn(sh, a) + η
∂J(θn)

∂θn(sh, a)
≤ θ(sh, a+) + η

∂J(θn)

∂θn(sh, a+)
= θn+1(sh, a+).

Now define for every a+ ∈ Ish+ the set

Bsh0 (a+) = {a ∈ Ish0 |πθn(a+|sh) ≤ πθn(a|sh) for all l > 0}

and denote its complement in Ish0 as B̄sh0 (a+) = Ish0 \B
sh
0 (a+).

Lemma C.9. Suppose Ish+ ̸= ∅. For all a+ ∈ Ish+ , we have that Bsh0 (a+) ̸= ∅ and∑
a∈Bsh

0 (a+)

πθn(a|sh)→ 1, as n→∞.

This implies:

max
a∈Bsh

0 (a+)
θn(sh, a)→∞, for n→∞.

Proof. Let a+ ∈ Ish+ and consider a ∈ B̄sh0 (a+). Then by definition of B̄sh0 (a+) there exists
n′ > N1 such that πθn′ (a+|sh) ≥ πθn′ (a|sh). Hence, by Lemma C.8 for all n ≥ n′ we have
πθn(a+|sh) ≥ πθn(a|sh). As πθn(a+|sh)→ 0 for n→∞. We obtain πθn(a|sh)→ 0 for n→∞,
for all a ∈ B̄sh0 (a+). Since by Lemma C.5

∑
a∈Ish0

πθn(a|sh) → 1 for n → ∞, we have that
Bsh0 (a+) ̸= ∅ and that

∑
a∈Bsh

0 (a+) π
θn(a|sh)→ 1, as n→∞. The second claim follows from this

as in Lemma C.7.

Lemma C.10. Consider sh ∈ S × H such that Ish+ ̸= ∅. Then, for any a+ ∈ Ish+ , there exists an
Na+ such that for all n > Na+ we have

πθn(a+|sh) > πθn(a|sh) for all a ∈ B̄sh0 (a+).

Proof. For every a ∈ B̄sh0 (a+) exists time na such that

πθn(a+|sh) > πθn(a|sh) for all a ∈ B̄sh0 (a+)

for all n > na by definition. Set Na+ = maxa∈B̄sh
0 (a+) na and the proof is completed.

Lemma C.11. Assume again Ish+ ̸= ∅. For all actions a ∈ Ish+ , we have that θn(sh, a) is bounded
from below as n→∞. And for all a ∈ Ish− , we have that θn(sh, a)→ −∞ as n→∞.

Proof. The first claim follows directly with Lemma C.6 as θn(sh, a) is strictly increasing for all
a ∈ Ish+ , n > N1, and thus for all n > N1 we have θn(sh, a) ≥ θN1

(sh, a). Now suppose a ∈ Ish− ,
then by Lemma C.6 we have that θn(sh, a) is strictly decreasing for n > N1. Assume there exists
b such that lim

n→∞
θn(sh, a) = b, then θn(sh, a) > b for all n > N1. By Lemma C.7 there exists an

action a′ ∈ A such that θn(sh, a′)→ −∞ for n→∞. Consider δ > 0 such that θN1
(sh, a

′) ≥ b−δ.
Define for all n > N1

τ(n) = max{k ∈ (N1, n] : θk(sh, a
′) ≥ b− δ}.

Define also

T (n) =
{
τ(n) < n′ < n :

∂J(θn′)

∂θn′(sh, a′)
≤ 0

}
,
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as the set of all indices n′ in (τ(n), n), where θn′(sh, a
′) is decreasing. Next we define Zn :=∑

n′∈T (n)
∂J(θn′ )

∂θn′ (sh,a′)
, then it holds that

Zn =
∑

n′∈T (n)

∂J(θn′)

∂θn′(sh, a′)

≤
n−1∑

n′=τ(n)+1

∂J(θn′)

∂θn′(sh, a′)

≤
n−1∑

n′=τ(n)

∂J(θn′)

∂θn′(sh, a′)
+
∣∣∣ ∂J(θτ(n))

∂θτ(n)(sh, a′)

∣∣∣.
By Lemma A.7 and the bounded reward assumption we have∣∣∣ ∂J(θτ(n))

∂θτ(n)(sh, a′)

∣∣∣ = ρ̃π
θτ(n)

µ (sh)π
θτ(n)(a′|sh)|A

θτ(n)

h (sh, a
′)| ≤ H2R∗.

Hence,

Zn ≤
n−1∑

n′=τ(n)

∂J(θn′)

∂θn′(sh, a′)
+H2R∗

=
1

η
(θn(sh, a

′)− θτ(n)(sh, a′)) +H2R∗

≤ 1

η
(θn(sh, a

′)− b+ δ) +H2R∗.

Then θn(sh, a′) → −∞ for n → ∞ implies that Zn → −∞ for n → ∞. As we chose a ∈ Ish− it
holds that |Aθnh (sh, a)| ≥ ∆

4 for n > N1 with Lemma C.4 and so for all n′ ∈ T (n):∣∣∣∣∣
∂J(θn′ )
∂θn′ (sh,a)

∂J(θn′ )
∂θn′ (sh,a′)

∣∣∣∣∣ =
∣∣∣∣∣ πθn′ (a|sh)Aθn′

h (sh, a)

πθn′ (a′|sh)Aθn′
h (sh, a′)

∣∣∣∣∣
≥ πθn′ (a|sh)
πθn′ (a′|sh)

∆

4HR∗

= exp(θn′(sh, a)− θn′(sh, a
′))

∆

4HR∗

≥ exp(b− (b− δ)) ∆

4HR∗

= exp(δ)
∆

4HR∗ ,

where we used in the last inequality that θn′(sh, a
′) ≤ b− δ for all n′ > τ(n) and θn′(sh, a) > b for

all n′ > N1. By the definition of T (n) these inequalities holds especially for all n′ ∈ T (n). Using
this we can imply that for all n > N1 with T (n) ̸= ∅,

1

η

(
θN1

(sh, a)− θn(sh, a)
)
=

n−1∑
n′=N1+1

∂J(θn′)

∂θn′(sh, a)

≤
∑

n′∈T (n)

∂J(θn′)

∂θn′(sh, a)

≤ exp(δ)
∆

4HR∗

∑
n′∈T (n)

∂J(θn′)

∂θn′(sh, a′)

= exp(δ)
∆

4HR∗Zn,
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where the first inequality holds because θn′(sh, a) is strictly decreasing for n′ > N1, i.e. ∂J(θn′ )
∂θn′ (sh,a)

<

0 for all n′ ∈ {N1 + 1, . . . , n− 1}. In the second inequality we used∣∣∣∣∣
∂J(θn′ )
∂θn′ (sh,a)

∂J(θn′ )
∂θn′ (sh,a′)

∣∣∣∣∣ ≥ exp(δ)
∆

4HR∗ .

Note that ∂J(θn′ )
∂θn′ (sh,a)

< 0 and ∂J(θn′ )
∂θn′ (sh,a′)

< 0 for n′ ∈ T (n) so that the sign of the inequality reverses.
Finally, we deduce from Zn → −∞ that θn(sh, a) → ∞ for n → ∞, which is a contradiction to
θn(sh, a) strictly decreasing for all n > N1.

Lemma C.12. Consider s ∈ S [H] such that Ish+ ̸= ∅. Then for any a+ ∈ Ish+ it holds that∑
a∈Bsh

0 (a+)

θn(sh, a)→∞, for n→∞.

Proof. Let a+ ∈ Ish+ and a ∈ Bsh0 (a+). Then by definition of Bsh0 (a+) we have

πθn(a+|sh) ≤ πθn(a|sh)

for all n > 0 and hence by softmax parametrisation θn(sh, a+) ≤ θn(sh, a) for all n > 0. By
Lemma C.11 we have that θn(sh, a+) and thus also θn(sh, a) is bounded from below for n → ∞.
Together with

max
{a∈Bsh

0 (a+)}
θn(sh, a)→∞, for n→∞

by Lemma C.9 we deduce the claim.

Finally, we are ready to prove the asymptotic convergence of simultaneous PG with tabular softmax
parametrisation.

Proof of Theorem C.1. We have to show that Ish+ = ∅ for all sh ∈ S [H]. So assume there exists
sh ∈ S [H] such that Ish+ ̸= ∅ and let a+ ∈ Ish+ . Then by Lemma C.12 we have∑

a∈Bsh
0 (a+)

θn(sh, a)→∞, for n→∞. (34)

For any a ∈ Ish− we have by Lemma C.11 that

πθn(a|sh)
πθn(a+|sh)

= exp(θn(sh, a)︸ ︷︷ ︸
→−∞

− θn(sh, a+)︸ ︷︷ ︸
bounded from below

)→ 0, n→∞.

Hence, there exists N2 > N1 such that for all n > N2

πθn(a|sh)
πθn(a+|sh)

<
∆

16|A|HR∗ ,

which leads for n > N2 to

−HR∗
∑
a∈Ish−

πθn(a|sh) > −
∆

16
πθn(a+|sh). (35)

Note that if Ish− = ∅ we can just ignore this sum later on.
Next consider a ∈ B̄sh0 (a+) ⊆ Ish0 . By the definition of Ish0 we have that Aθnh (sh, a) →
A∞
h (sh, a) = 0 for n→∞. By Lemma C.10 we have for n ≥ Na+

1 <
πθn(a+|sh)
πθn(a|sh)

.
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Thus, there exists N3 > max{N2, Na+} such that for all n ≥ N3

|Aθnh (sh, a)| <
πθn(a+|sh)
πθn(a|sh)

∆

16|A|
.

This implies ∑
a∈B̄sh

0 (a+)

πθn(a|sh)|Aθnh (sh, a)| < πθn(a+|sh)
∆

16

and so

−πθn(a+|sh)
∆

16
<

∑
a∈B̄sh

0 (a+)

πθn(a|s)Aθnh (sh, a) < πθn(a+|sh)
∆

16
, (36)

for all n > N3. We can conclude again for n > N3,

0 =
∑
a∈A

πθn(a|sh)Aθnh (sh, a)

=
∑

a∈Bsh
0 (a+)

πθn(a|sh)Aθnh (sh, a) +
∑

a∈B̄sh
0 (a+)

πθn(a|sh)Aθnh (sh, a)

+
∑
a∈Ish+

πθn(a|sh)Aθnh (sh, a) +
∑
a∈Ish−

πθn(a|sh)Aθnh (sh, a)

>
∑

a∈Bsh
0 (a+)

πθn(a|sh)Aθnh (sh, a)− πθn(a+|sh)
∆

16
+ πθn(a+|sh)

∆

4
−HR∗

∑
a∈Ish−

πθn(a|sh)

≥
∑

a∈Bsh
0 (a+)

πθn(a|sh)Aθnh (sh, a)− πθn(a+|sh)
∆

16
+ πθn(a+|s)

∆

4
− ∆

16
πθn(a+|sh)

>
∑

a∈Bsh
0 (a+)

πθn(a|sh)Aθnh (sh, a),

where we used Equation (36) and Lemma C.4 in the first inequality and Equation (35) in the second
inequality. Finally, by our assumption and Equation (34) for n > N3,

∞ n→∞←−
∑

a∈Bsh
0 (a+)

(θn(s, a)− θN3(sh, a))

= η

n∑
n′=N3

∑
a∈Bsh

0 (a+)

∂J(θn′)

∂θn′(sh, a)

= η

n∑
n′=N3

ρ̃π
θ
n′

µ (sh)
∑

a∈Bsh
0 (a+)

πθn′ (a|sh)Aθn′
h (sh, a),

which contradicts
∑
a∈Bs

0(a+) π
θn(a|s)Aθnh (s, a) < 0 for all n > N3.

D Proofs of section 4

D.1 Simultaneous Approach

We first proof that the gradient estimator is unbiased and has bounded variance.
Lemma D.1. Consider the estimator from (7). For any K > 0 it holds that

Eπ
θ

µ [∇̂JK(θ, µ)] = ∇J(θ, µ)
and

Eπ
θ

µ [∥∇̂JK(θ, µ)−∇J(θ, µ)∥2] ≤ 3H4 max{R∗, 1}4

K
=:

ξ

K
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Proof. By the definition of ∇̂JK we have

Eπ
θ

µ [∇̂JK(θ, µ)]

= Eπ
θ

µ

[ 1

K

K∑
i=1

H−1∑
h=0

∇ log(πθ(Aih|Sih))R̂ih
]

= Eπ
θ

µ

[H−1∑
h=0

∇ log(πθ(Ah|Sh))R̂h
]

= Eπ
θ

µ

[H−1∑
h=0

∇ log(πθ(Ah|Sh))
H−1∑
k=h

r(Sk, Ak)
]
,

where we used that we consider independent samples for i = 1, . . . ,K. From the proof of the policy
gradient Theorem, we obtain that

Eπ
θ

µ [∇̂JK(θ, µ)] = ∇J(θ, µ).

For the second claim we first see that

∥∇J(θ, µ)∥ =
( ∑
s∈S[H]

∑
a∈A

(Hdπ
θ

µ (s)πθ(a|s)Aπ
θ

(s, a))2
) 1

2

≤ H2R∗
( ∑
s∈S[H]

∑
a∈A

(dπ
θ

µ (s)πθ(a|s))2
) 1

2

≤ H2(R∗)2,

because πθ(·|s) ≤ 1, dπ
θ

µ (s) ≤ 1 and both are probability distributions.

Next we have that

Eπ
θ

µ [∥∇̂J1(θ, µ)∥] ≤ Eπ
θ

µ

[H−1∑
h=0

∥∇ log(πθ(Ah|Sh))∥|R̂h|
]

≤ H2R∗Eπ
θ

µ

[
∥∇ log(πθ(Ah|Sh))∥

]
≤ H2R∗,

where the last inequality follows with by Yuan et al. [2022, Lem 4.8] and Jensen’s inequality.

Thus,

Eπ
θ

µ [∥∇̂JK(θ, µ)−∇J(θ, µ)∥2]

≤ 1

K
Eπ

θ

µ

[
∥∇̂J1(θ, µ)−∇J(θ, µ)∥2

]
≤ 1

K
Eπ

θ

µ

[
∥∇̂J1(θ)∥2 + 2∥∇̂J1(θ, µ)∥∥∇J(θ)∥+ ∥∇J(θ, µ)∥2

]
≤ 1

K

[
H4(R∗)2 +H4(R∗)2 +H4(R∗)4

]
.

Define ξ = 3H4 max{R∗, 1}4 ≥ H4(R∗)2 +H4(R∗)2 +H4(R∗)4 proves the claim.

Recall the stochastic PG updates for training the softmax parameter from (8)

θ̄(n+1) = θ̄(n) + η∇̂JK(θ̄(n), µ).

In the following denote by (θ(n))n≥0 the deterministic sequence generated by Algorithm 1 such that
the initial parameter agree, θ(0) = θ̄(0), and the step size η is the same for both processes. The natural
filtration of (θ̄(n)h )n≥0 is denoted by (F (n))n≥0. Recall that for the deterministic scheme we could
assure c = infnminsh∈S[H] πθn(a∗(sh)|sh) is bounded away from 0 by Lemma B.5. This cannot be
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guaranteed for the stochastic trajectory. The idea of the convergence analysis for stochastic softmax
PG is now to define the following stopping time

τ := min{n ≥ 0 : ∥θ(n) − θ̄(n)∥2 ≥
c

4
}.

This means, τ is the first time when the stochastic process (θ̄(n))n≥0 is too far away from the PG
trajectory (θ(n))n≥0. Hence, all challenges encountered in the deterministic case transfer to the
stochastic context, indicating that the model dependent constant c naturally appears in the error
bounds of the stochastic case. We emphasise that τ is a stopping time with respect to the filtration
(F (n))n≥0 by construction.

First, consider the event {n ≤ τ}, i.e. ∥θ(n) − θ̄(n)∥2 ≤ ch
4 . Then, it follows from the

√
2-Lipschitz

continuity of θ 7→ πθ(a∗(s)|s) that min0≤n≤τ mins∈S π
θ̄(n)

(a∗(s)|s) ≥ c
2 > 0.

Lemma D.2. The softmax policy πθ(a|s) is
√
2-Lipschitz with respect to θ ∈ Rd for every s, a.

Proof. The derivative of the softmax function is

∂πθ(a|s)
∂θ(s′, a′)

= 1s′=s

[1a′=a exp(θ(s, a))(∑ã∈As
exp(θ(s, ã))

)
− exp(θ(s, a)) exp(θ(s, a′))(∑

ã∈As
exp(θ(s, ã))

)2 ]
= 1s′=s

[
1a′=aπ

θ(a|s)− πθ(a|s)πθ(a′|s)
]
.

Therefore,

∥∇πθ(a|s)∥2 =

√ ∑
ã∈As

(
1a′=aπθ(a|s)− πθ(a|s)πθ(a′|s)

)2

≤
√
πθ(a|s)2 − 2πθ(a|s)3 +

∑
ã∈As

πθ(a′|s)2πθ(a|s)2

≤
√
2.

Lemma D.3. Let µ be a probability measure such that µ(s) > 0 for all s ∈ S
and consider the sequence (θ̄(n))n≥0 generated by (8). Then, it holds almost surely that
min0≤n≤τ mins∈Sh

πθ̄
(n)

(a∗(s)|s) ≥ c
2 is strictly positive.

Proof. For every n ≤ τ we obtain by the
√
2-Lipschitz continuity in Lemma D.2 that

πθ̄
(n)

(a∗(s)|s) ≥ πθ
(n)

(a∗(s)|s)− |πθ
(n)

(a∗(s)|s)− πθ̄
(n)

(a∗(s)|s)|

≥ πθ
(n)

(a∗(s)|s)−
√
2∥θ̄(n) − θ(n)∥2

>
c

2
> 0,

holds almost surely. The claim follows directly.

This allows us to use the weak PL-inequality of Lemma B.2 to derive a convergence rate on the event
{n ≤ τ} in the following sense:
Lemma D.4. Under Assumption 3.1, let µ be a probability measure such that µ(s) > 0 for all s ∈ S
and consider the sequence (θ̄(n))n≥0 generated by (8). Suppose that

• the batch size K(n) ≥ 9
8

c2 max{R∗,1}2(1− 1
2
√

N
)

N3/2|S|H19

∥∥∥dπ∗
µ

µ

∥∥∥−2

∞
n2 is increasing for fix N ≥ 1,

• the step size η = 1
5H2R∗

√
N

.
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Then,

E
[
(J∗(µ)− J(θ̄(n), µ))1{n≤τ}

]
≤ 20|S|H5R∗

c2 1√
N
(1− 1

2
√
N
)n

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
.

Proof. Throughout the proof we drop the µ in J and J∗.

First, we deduce from the β-smoothness of J , as in the proof of Theorem 3.2 that almost surely

J(θ̄(n+1)) ≥ J(θ̄(n)) +
(
∇J(θ̄(n))

)T
(θ̄(n+1) − θ̄(n))− β

2
∥θ̄(n+1) − θ̄(n)∥2.

We continue with

J(θ̄(n+1)) ≥ J(θ̄(n)) + η
(
∇J(θ̄(n))

)T ∇̂JK(θ̄(n))− βη2

2
∥∇̂JK(θ̄(n))∥2

= J(θ̄(n)) + η
(
∇J(θ̄(n))

)T∇J(θ̄(n)) + η
(
∇J(θ̄(n))

)T (∇̂JK(θ̄(n))−∇J(θ̄(n))
)

− βη2

2
∥
(
∇̂JK(θ̄(n))−∇J(θ̄(n))

)
+∇J(θ̄(n))∥2.

Thus,

J(θ̄(n+1)) ≥ J(θ̄(n), ) +
(
η − βη2

2

)
∥∇J(θ̄(n))∥2 +

(
η − βη2

)
⟨∇J(θ̄(n)), ϕn⟩ −

βη2

2
∥ϕn∥2,

where ϕn := ∇̂JK(θ̄(n)) − ∇J(θ̄(n)). Next we take the conditional expectation on Fn. Then by
Lemma D.1 we obtain

E
[
J(θ̄(n+1))|Fn

]
≥ J(θ̄(n)) +

(
η − βη2

2

)
∥∇J(θ̄(n))∥2 − βη2ξ

2Kn
.

Subtracting this equation form J∗ and taking the expectation under the event {n+ 1 ≤ τ} results in:

E
[
(J∗ − J(θ̄(n+1)))1{n+1≤τ}

]
= E

[
E
[
(J∗ − J(θ̄(n+1)))|Fn

]
1{n+1≤τ}

]
≤ E

[(
J∗ − E

[
J(θ̄(n+1))|Fn

])
1{n≤τ}

]
≤ E

[
(J∗ − J(θ̄(n)))1{n≤τ}

]
−
(
η − βη2

2

)
E
[
∥∇J(θ̄(n))∥21{n≤τ}

]
+
βη2ξ

2Kn

≤ E
[
(J∗ − J(θ̄(n)))1{n≤τ}

]
− η(1− 1

2
√
N

)E
[
∥∇J(θ̄(n))∥21{n≤τ}

]
+
βη2ξ

2Kn
,

where we used that {n+1 ≤ τh} = {τh ≤ n}C isFn-measurable and that 1{n+1≤τh} ≤ 1{n≤τh} a.s.
With the PL-type inequality Lemma B.2 and min0≤n≤τ mins∈S π

θ̄(n)

(a∗(s)|s) ≥ c
2 by Lemma D.3

we have

E
[
(J∗ − J(θ̄(n+1)))1{n+1≤τ}

]
≤ E

[
(J∗ − J(θ̄(n)))1{n≤τ}

]
− η(1− 1

2
√
N

)
c2

|S|H

∥∥∥dπ∗

µ

dπθ

µ

∥∥∥−2

∞
E
[
(J∗ − J(θ̄(n)))1{n≤τ}

]2
+
βη2ξ

2Kn

≤ E
[
(J∗ − J(θ̄(n)))1{n≤τ}

]
− η(1− 1

2
√
N

)
c2

|S|H3

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
E
[
(J∗ − J(θ̄(n)))1{n≤τ}

]2
+
βη2ξ

2Kn
,

where we used in the last inequality that under Assumption 3.1 we have dπ
θ

µ (s) ≥ 1
Hµ(s) (see

Remark B.3). For dn := E
[
(J∗ − J(θ̄(n)))1{n≤τ}

]
we obtain the recursive inequality

dn+1 ≤ dn − η(1−
1

2
√
N

)
c2

|S|H3

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
d2n +

βη2ξ

2Kn
.
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We define w := η(1− 1
2
√
N
) c2

|S|H3

∥∥∥dπ∗
µ

µ

∥∥∥−2

∞
and B = βη2ξ

2 > 0 such that

dn+1 ≤ dn(1− wdn) +
B

Kn
.

Note that w > 0 by the assumption µ(s) > 0 for all s ∈ S. Then by our choice of Kn it holds that

9

4
wBn2 =

9

8

c2η3β(1− 1
2
√
N
)ξ

|S|H3

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
n2

≤ 9

8

c2η2(1− 1
2
√
N
)ξ

√
N |S|H3

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
n2 ≤ 9

8

c2 max{R∗, 1}2(1− 1
2
√
N
)

N3/2|S|H19

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
n2 ≤ Kn.

Furthermore, we have for η = 1
5H2R∗

√
N

that

4

3w
=

4|S|H3

3η(1− 1
2
√
N
)c2

∥∥∥dπ∗

µ

µ

∥∥∥2
∞

=
20|S|H5R∗

c2 1√
N
(1− 1

2
√
N
)

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
.

We obtain that

d1 ≤ HR∗ ≤ 4

3w
≤ 4

3w · 1
,

because c ≤ 1,
∥∥∥dπ∗

µ

µ

∥∥∥2
∞
≥ 1 and 1√

N
(1− 1

2
√
N
) < 1 for all N ≥ 1.

Suppose the induction assumption dn ≤ 4
3wn holds true. First, recall the recursive inequality

dn+1 ≤ dn − wd2n +
B

Kn
.

The function f(x) = x− wx2 is monotonically increasing in [0, 1
2w ], and by induction assumption

dn ≤ 1
4wn ≤

1
2w . Thus,

dn+1 ≤ dn − wd2n +
B

Kn

≤ 4

3wn
− 16

9wn2
+

B

Kn

≤ 4

3wn
− 16

9wn2
+

4B

9wBn2

=
4

3wn
− 12

9wn2

=
4

3w

( 1

n
− 1

n2

)
≤ 4

3wn
,

by the choice of Kn ≥ 9
4wBn

2. We deduce the claim

dn ≤
4

3wn
=

20|S|H5R∗

c2 1√
N
(1− 1

2
√
N
)n

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
.

Secondly, consider the complementary event {τ ≤ n}. We can bound the probability of this event by
δ for a large enough batch size K. The proof is inspired by a similar result obtained by Ding et al.
[2022, Lem. 6.3] for discounted MDPs.

Lemma D.5. Let µ be a probability measure such that µ(s) > 0 for all s ∈ S and consider the
sequence (θ̄(n))n≥0 generated by (8). For any δ > 0, suppose that
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• the batch size K ≥ 10max{R∗,1}2n3

c2δ2 ,

• the step size η = 1√
n5H2R∗ .

Then we have P(τ ≤ n) < δ.

Proof. By the definition of τ we have

P(τ ≤ n) = P( max
0≤t≤n

∥θ(t) − θ̄(t)∥ ≥ ch
4
),

so we first study ∥θ(t) − θ̄(t)∥. We emphasise that [Ding et al., 2022, Lemma 6.3] established a
similar recursive inequality.

∥θ̄(t) − θ(t)∥ = ∥θ̄(0) +
t−1∑
k=1

η∇̂JK(θ̄(k), µ)− (θ(0) +

t−1∑
k=1

η∇J(θ(k), µ))∥

≤
t−1∑
k=1

η∥∇̂JK(θ̄(k), µ)−∇J(θ(k), µ)∥

≤ η
t−1∑
k=1

(∥∇̂JK(θ̄(k), µ)−∇J(θ̄(k), µ)∥+ ∥∇J(θ̄(k), µ)−∇J(θ(k), µ)∥).

We define again ϕKk = ∇̂JK(θ̄(k), µ)−∇J(θ̄(k), µ) and continue using the β-lipschitz continuity
of∇J(θ) such that

∥θ(t) − θ̄(t)∥ ≤ η
t−1∑
k=1

(∥ϕKk ∥+ β∥θ(k) − θ̄(k)∥)

= η

t−1∑
k=1

∥ϕKk ∥+ ηβ

t−1∑
k=1

∥θ(k) − θ̄(k)∥.

Using this inequality sequentially leads to

∥θ(t) − θ̄(t)∥ ≤ η
t−1∑
k=1

∥ϕKk ∥+ ηβ

t−1∑
k=1

∥θ(k) − θ̄(k)∥

≤ η
t−1∑
k=1

∥ϕKk ∥+ ηβ

t−2∑
k=1

∥θ(k) − θ̄(k)∥+ ηβ
(
η

t−2∑
k=1

∥ϕKk ∥+ ηβ

t−2∑
k=1

∥θ(k) − θ̄(k)∥
)

= η

t−1∑
k=1

∥ϕKk ∥+ η2β

t−2∑
k=1

∥ϕKk ∥+ (1 + ηβ)ηβ

t−2∑
k=1

∥θ(k) − θ̄(k)∥

= η∥ϕKt−1∥+ η(1 + ηβ)

t−2∑
k=1

∥ϕKk ∥+ (1 + ηβ)ηβ
t−2∑
k=1

∥θ(k) − θ̄(k)∥

≤
t−1∑
k=1

η(1 + ηβ)t−k−1∥ϕKk ∥.
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Applying Markov’s inequality results in

P(τ ≤ n) = P( max
0≤t≤n

∥θ(t) − θ̄(t)∥ ≥ c

4
)

≤ P(
n−1∑
k=1

η(1 + ηβ)n−k−1∥ϕKk ∥ ≥
ch
4
)

≤
4
∑n−1
k=1 η(1 + ηβ)n−k−1E[∥ϕKk ∥]

c

≤
4nη(1 + ηβ)n−1

√
ξ
K

c
,

where in the last inequality E[∥ϕKk ∥] ≤
√
E[∥ϕKk ∥2] ≤

√
ξ
K by Jensen’s inequality and Lemma D.1.

Now we plug in the choice of η = 1√
n5H2R∗ <

1√
nβ

,

P(τ ≤ n) ≤
4n 1√

n5H2R∗ (1 +
1√
nβ
β)n−1

√
ξ
K

c

=
4
√
n(1 + 1√

n
)n−1
√
Ch

5H2R∗c
√
K

≤ 4
√
nn
√
ξ

5H2R∗c
√
K
,

where the last step is due to f(x) = (1+ 1√
x
)x−1 ≤ x for all x ≥ 1. We follow that P(τ < n) < δ if

16n3ξ

25H4(R∗)2c2δ2
=

16n3H4 max{R∗, 1}43
25H4(R∗)2c2δ2

≤ 48max{R∗, 1}2n3

5c2δ2
≤ 10max{R∗, 1}2n3

c2δ2
= K.

Theorem 4.1. Under Assumption 3.1, let µ be a probability measure such that µ(s) > 0 for all
s ∈ S. Consider the final policy using Algorithm 1 with stochastic updates from (8) denoted
by π̂∗ = πθ̄

(N)

. Moreover, for any δ, ϵ > 0 assume that the number of training steps satisfies

N ≥
( 21|S|H5R∗

ϵδc2

)2∥∥∥dπ∗
µ

µ

∥∥∥4
∞

, let η = 1
5H2R∗

√
N

and K ≥ 10max{R∗,1}2N3

c2δ2 . Then it holds true that

P(V ∗
0 (µ)− V π̂

∗

0 (µ) < ϵ) > 1− δ .

Proof. First note again, that by definition J∗(µ) = V ∗
0 (µ) and J(θ̄(N), µ) = V π

θ̄(N)

0 (µ). We
separate the probability using the stopping time τ and obtain

P
(
(J∗(µ)− J(θ̄(N), µ)) ≥ ϵ

)
≤ P

(
{τ ≥ N} ∩ {(J∗(µ)− J(θ̄(N), µ)) ≥ ϵ}

)
+ P

(
{τ ≤ N} ∩ {(J∗(µ)− J(θ̄(N), µ)) ≥ ϵ}

)
≤

E
[
(J∗(µ)− J(θ̄(N), µ))1{τ≥N}

]
ϵ

+ P(τ ≤ N)

≤ 1

ϵ

20|S|H5R∗

c2 1√
N
(1− 1

2
√
N
)N

∥∥∥dπ∗

µ

µ

∥∥∥2
∞

+
δ

2

≤ δ

2
+
δ

2
= δ,

where the second inequality holds due to Lemma D.4 and Lemma D.5. The last inequality follows by
our choice of N :

20|S|H5R∗

c2
√
N(1− 1

2
√
N
)

∥∥∥dπ∗

µ

µ

∥∥∥2
∞
≤ δ

2
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if and only if N ≥
( 20|S|H5R∗

ϵδc2

∥∥∥dπ∗
µ

µ

∥∥∥2
∞

+ 1
2

)2
, which is satisfied if N ≥

( 21|S|H5R∗

ϵδc2

)2∥∥∥dπ∗
µ

µ

∥∥∥4
∞

.
Note that we can use Lemma D.4 in the equation above with a constant batch size, because by our
choice of η

max
{9

8

c2 max{R∗, 1}2(1− 1
2
√
N
)

N3/2|S|H19

∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
n2,

10max{R∗, 1}2N3

c2δ2

}
=

10max{R∗, 1}2N3

c2δ2
,

for all n ≤ N . The last equality holds, as c < 1,
∥∥∥dπ∗

µ

µ

∥∥∥−2

∞
< 1.

D.2 Dynamic Approach

We start again by showing that the gradient estimator is unbiased and has bounded variance.

Lemma D.6. For any h ∈ H and Kh > 0 it holds that

E(πθ,(π̃)(h+1))
µh [∇̂JKh

h (θ, π̃(h+1), µh)] = ∇Jh(θ, π̃(h+1), µh)

and

E(πθ,(π̃)(h+1))
µh [∥∇̂JKh

h (θ, π̃(h+1), µh)−∇Jh(θ, π̃(h+1), µh)∥2] ≤
5(H − h)2(R∗)2

Kh
=:

ψh
K
.

Proof. By the definition of ∇̂JKh we have

E(πθ,(π̃)(h+1))
µh [∇̂JKh

h (θ, π̃(h+1), µh)]

= E(πθ,(π̃)(h+1))
µh

[ 1

Kh

Kh∑
i=1

∇ log(πθ(Ait|Sit))R̂ih
]

= E(πθ,(π̃)(h+1))
µh

[
∇ log(πθ(A1

h|S1
h))R̂

1
h

]
= E(πθ,(π̃)(h+1))

µh

[
∇ log(πθ(Ah|Sh))

H−1∑
k=h

r(Sk, Ak)
]
,

where we used that we consider independent samples for i = 1, . . . ,Kh. From the proof of the policy
gradient Theorem A.6, we obtain that

E(πθ,(π̃)(h+1))
µh [∇̂JKh

h (θ, π̃(h+1), µ)]

= E(πθ,(π̃)(h+1))
µh

[
∇ log(πθ(A1|Sh))

H−1∑
k=h

r(Sk, Ak)
]

= ∇Jh(θ, π̃(h+1), µh).

For the second claim we have

E(πθ,(π̃)(h+1))
µh

[
∥∇̂JKh

h (θ, π̃(h+1), µh)−∇Jh(θ, π̃(h+1), µh)∥2
]

≤ 1

Kh
E(πθ,(π̃)(h+1))
µh

[
∥∇ log(πθ(Ah|Sh))Q̂h(Sh, Ah)−∇Jh(θ)∥2

]
=

1

Kh
E(πθ,(π̃)(h+1))
µh

[ ∑
s∈Sh

∑
a∈As

(
1s=Sh

(1a=Ah
− πθ(a|s))

H−1∑
k=h

r(Sk, Ak)

− µh(s)πθ(a|s)A
(πθ,(π̃)(h+1))

h (s, a)
)2]

,
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by the definition of ∇̂JKh

h (θ, π̃(h+1), µh) and the derivative of∇Jh(θ, π̃(h+1), µh) for the softmax
parametrisation. Further,

E(πθ,(π̃)(h+1))
µh

[
∥∇̂JKh

h (θ, π̃(h+1), µh)−∇Jh(θ, π̃(h+1), µh)∥2
]

≤ 1

Kh
E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

(1a=Ah
− πθ(a|Sh))2

(H−1∑
k=h

r(Sk, Ak)
)2

− 2
∑
a∈As

(1a=Ah
− πθ(a|Sh))

H−1∑
k=h

r(Sk, Ak)µh(s)π
θ(a|Sh)A

(πθ,(π̃)(h+1))

h (Sh, a)

+
∑
s∈Sh

∑
a∈As

µh(s)
2πθ(a|s)2A(πθ,(π̃)(h+1))

h (s, a)2
]
.

We consider all three terms separately. For the first term we have

E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

(1a=Ah
− πθ(a|Sh))2

(H−1∑
k=h

r(Sk, Ak)
)2]

= E(πθ,(π̃)(h+1))
µh

[ (H−1∑
k=h

r(Sk, Ak)
)2]
− 2E(πθ,(π̃)(h+1))

µh

[
πθ(Ah|Sh)

(H−1∑
k=h

r(Sk, Ak)
)2]

+ E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

πθ(a|Sh)2
(H−1∑
k=h

r(Sk, Ak)
)2]

≤ ((H − h)R∗)2 − 0 + ((H − h)R∗)2

= 2((H − h)R∗)2,

by bounded reward assumption and the fact that πθ is a probability distribution. For the second

term, we note that A
(πθ,(π̃)(h+1))

h (Sh, a) can be negative, therefore we consider the absolute value
and obtain

2E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

(1a=Ah
− πθ(a|Sh))

H−1∑
k=h

r(Sk, Ak)µh(s)π
θ(a|Sh)

∣∣A(πθ,(π̃)(h+1))

h (Sh, a)
∣∣]

≤ 2E(πθ,(π̃)(h+1))
µh

[ ∑
a∈As

1 · (H − h)R∗ · 1 · πθ(a|Sh) · (H − h)R∗
]

= 2((H − h)R∗)2.

For the last term we have

E(πθ,(π̃)(h+1))
µh

[ ∑
s∈Sh

∑
a∈As

µh(s)
2πθ(a|s)2A(πθ,(π̃)(h+1))

h (s, a)2
]
≤ ((H − h)R∗)2.

In total, it holds that

E(πθ,(π̃)(h+1))
µh

[
∥∇̂JKh

h (θ, π̃(h+1), µh)−∇Jh(θ, π̃(h+1), µh)∥2
]
≤ 5((H − h)R∗)2

Kh
.

Recall (θ̄(n)h )n≥0 be the stochastic process from (10) and let (θ(n)h )n≥0 be the deterministic sequence
generated by PG with exact gradients,

θ
(n+1)
h = θ

(n)
h + ηh∇Jh(θ(n)h , π̃(h+1), µh)

such that the initial parameter agree, θ(0)h = θ̄
(0)
h , and the step size ηh is the same for both processes.

The natural filtration of (θ̄(n)h )n≥0 is denoted by (F (n)
h )n≥0.
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For the deterministic scheme we could assure ch = minn≥0 mins∈S π
θ
(n)
h (a∗(s)|s) is bounded away

from 0 by Lemma B.10. As for the simultaneous PG this cannot be guaranteed for the stochastic
trajectory. Define for every epoch the following stopping time

τh := min{n ≥ 0 : ∥θ(n)h − θ̄(n)h ∥2 ≥
ch
4
}.

We emphasise that τh is a stopping time with respect to the filtration (F (n)
h )n≥0 by construction.

It follows again by the
√
2-Lipschitz continuity of θ 7→ πθ(a∗(s)|s) (Lemma D.2) that

min0≤n≤τh mins∈S π
θ̄
(n)
h (a∗(s)|s) ≥ ch

2 > 0.

Lemma D.7. Let µh be probability measures such that µh(s) > 0 for all s ∈ Sh
and consider the sequence (

¯
θ
(n)
h )n≥0 generated by (10). Then, it holds almost surely that

min0≤n≤τh mins∈Sh
πθ̄

(n)
h (a∗(s)|s) ≥ ch

2 is strictly positive.

Proof. For every n ≤ τ we obtain by the
√
2-Lipschitz continuity in Lemma D.2 that

πθ̄
(n)
h (a∗(s)|s) ≥ πθ

(n)
h (a∗(s)|s)− |πθ

(n)
h (a∗(s)|s)− πθ̄

(n)
h (a∗(s)|s)|

≥ πθ
(n)
h (a∗(s)|s)−

√
2∥θ̄(n)h − θ(n)h ∥2

>
ch
2
> 0,

holds almost surely. The claim follows directly.

We derive a convergence rate on the event {n ≤ τh} in the following sense:

Lemma D.8. Let µh be probability measures such that µh(s) > 0 for all s ∈ Sh and consider the

sequence (
¯
θ
(n)
h )n≥0 generated by (10). Suppose that

• the batch size K(n)
h ≥ 45c2h

64N
3
2
h

(1− 1
2
√
Nh

)n2 is increasing for some Nh ≥ 1

• the step size ηh = 1
2(H−h)R∗√Nh

.

Then,

E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))1{n≤τh}

]
≤ 32

√
Nh(H − h)R∗

3(1− 1
2
√
Nh

)c2hn
.

Proof. As in the proof of Theorem 4.1 we deduce from the βh-smoothness and Lemma D.6, that

E
[
J(θ̄

(n+1)
h , π̃(h+1), µh)|F

(n)
h

]
≥ J(θ̄(n)h , π̃(h+1), µh) +

(
ηh −

βhη
2
h

2

)
∥∇J(θ̄(n)h , π̃(h+1), µh)∥2 −

βhη
2
hψh

2K
(n)
h

.
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We take the expectation of this inequality on both sides under the event {n + 1 ≤ τh}. Note that
{n+ 1 ≤ τh} = {τh ≤ n}C is Fn-measurable and that 1{n+1≤τh} ≤ 1{n≤τh} a.s., thus

E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n+1)
h , π̃(h+1), µh))1{n+1≤τh}

]
= E

[
E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n+1)
h , π̃(h+1), µh))|F

(n)
h

]
1{n+1≤τh}

]
≤ E

[(
J∗
h(π̃(h+1), µh)− E

[
Jh(θ̄

(n+1)
h , π̃(h+1), µh)|F

(n)
h

])
1{n≤τh}

]
≤ E

[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))1{n≤τh}

]
−
(
ηh −

βhη
2
h

2

)
E
[
∥∇Jh(θ̄(n)h , π̃(h+1), µh)∥21{n≤τh}

]
+
βhη

2
hψh

2K
(n)
h

= E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))1{n≤τh}

]
− ηh

(
1− 1

2
√
Nh

)
E
[
∥∇Jh(θ̄(n)h , π̃(h+1), µh)∥21{n≤τh}

]
+

5(H − h)R∗

2K
(n)
h Nh

.

By Lemma B.9 we have that

∥∇Jh(θ̄(n)h , π̃(h+1), µh)∥2 ≥ min
s∈S

πθn(a∗(s|s))2(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))

2

almost surely, and by Lemma D.7 we have that min0≤n≤τh mins∈S π
θ̄
(n)
h (a∗(s|s))2 ≥ ch

2 > 0
almost surly. Therefore,

E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n+1)
h , π̃(h+1), µh)1{n+1≤τh}

]
≤ E

[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))1{n≤τh}

]
− ηh

(
1− 1

2
√
Nh

)
E
[
min
s∈S

πθn(a∗(s|s))2(J∗
h(π̃(h+1), µh)− Jh(θn))21{n≤τh}

]
+

5(H − h)R∗

2K
(n)
h Nh

,

≤ E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))1{n≤τh}

]
− ηh

(
1− 1

2
√
Nh

)c2h
4
E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))1{n≤τh}

]2
+

5(H − h)R∗

2K
(n)
h Nh

,

where we used Jensen’s inequality in the last step.

For dn := E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(n)
h , π̃(h+1), µh))1{n≤τh}

]
we imply the recursive inequality

dn+1 ≤ dn − ηh
(
1− 1

2
√
Nh

)c2h
4
d2n +

5(H − h)R∗

2K
(n)
h Nh

.

Define w := ηh

(
1− 1

2
√
Nh

)
c2h
4 > 0 and B = 5(H−h)R∗

2Nh
> 0, then

dn+1 ≤ dn(1− wdn) +
B

K
(n)
h

and by our choice of ηh,

K
(n)
h ≥ 45c2h

64N
3
2

h

(1− 1

2
√
Nh

)n2 =
9

4
wBn2,

Moreover, it holds that

d1 ≤ (H − h)R∗ ≤ 1

ηh
≤ 4

3w
≤ 4

3w · 1
,
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because ch ≤ 1 and 1√
Nh

(1 − 1
2
√
Nh

) < 1 for all Nh ≥ 1. Suppose the induction assumption
dn ≤ 4

3wn holds true, then for dn+1,

dn+1 ≤ dn − wd2n +
B

K
(n)
h

.

The function f(x) = x− wx2 is monotonically increasing in [0, 1
2w ] and by induction assumption

dn ≤ 1
4wn ≤

1
2w . So dn − wd2n ≤ 4

3wn which implies

dn+1 ≤ dn − wd2n +
B

K
(n)
h

≤ 4

3wn
− 16

9wn2
+

B

Kn

≤ 4

3wn
− 16

9wn2
+

4B

9wBn2

=
4

3wn
− 12

9wn2

=
4

3w

( 1

n
− 1

n2

)
≤ 4

3w(n+ 1)
,

where we used that K(n)
h ≥ 9

4wBn
2. We follow the claim

dn ≤
4

3wn
=

32
√
Nh(H − h)R∗

3(1− 1
2
√
Nh

)c2hn
.

Secondly, consider the complementary event {τ ≤ n}. We can bound the probability of this event by
δ for a large enough batch size Kh. The proof is again inspired by similar results obtained in Ding
et al. [2022, Lem. 6.3] for discounted MDPs.

Lemma D.9. Let µh be probability measures such that µh(s) > 0 for all s ∈ Sh and consider the

sequence (
¯
θ
(n)
h )n≥0 generated by (10). For any δ > 0, suppose that

• the batch size Kh ≥ 5n3

c2hδ
2

• the step size ηh = 1√
nβh

.

Then, we have P(τh ≤ n) < δ.

Proof. The proof follows line by line the one of Lemma D.5. One obtains

P(τh ≤ n) = P( max
0≤t≤n

∥θ(n)h − θ̄(n)h ∥ ≥
ch
4
)

≤
4nηh(1 + ηhβh)

n−1
√

ψh

Kh

ch
,
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where ψh from Lemma D.6. Now we plug in the choice of ηh = 1√
nβh

= 1
2(H−h)R∗√n ,

P(τh ≤ n) ≤
4n 1√

nβh
(1 + 1√

nβh
βh)

n−1
√

ξh
Kh

ch

=
4
√
n(1 + 1√

n
)n−1
√
ψh

βhch
√
Kh

≤ 2n
√
n
√
ψh

βhch
√
Kh

=
n
√
5n

ch
√
Kh

,

where the last step is due to f(x) = (1 + 1√
x
)x−1 ≤ x for all x ≥ 1. We follow that P(τh < n) < δ

if

Kh ≥
5n3

c2hδ
2
.

We are now ready to proof the epoch wise statement.
Lemma D.10. Let µh be probability measures such that µh(s) > 0 for all s ∈ Sh and consider the

sequence (
¯
θ
(n)
h )n≥0 generated by (10). Moreover, for any δ, ϵ > 0, assume that

(i) the number of training steps Nh ≥
( 12(H−h)R∗

ϵδc2h

)2
,

(ii) the step size ηh = 1
2(H−h)R∗√Nh

and the batch size Kh =
5N3

h

c2hδ
2 .

Then, it holds true that P
(
J∗
h(π̃(h+1), µh)− Jh(θ̄

(Nh)
h , π̃(h+1), µh) ≥ ϵ

)
≤ δ.

Proof. We separate the probability using the stopping time τh and obtain

P
(
J∗
h(π̃(h+1), µh)− Jh(θ̄

(Nh)
h , π̃(h+1), µh) ≥ ϵ

)
≤ P

(
{τh ≥ Nh} ∩ {J∗

h(π̃(h+1), µh)− Jh(θ̄
(Nh)
h , π̃(h+1), µh) ≥ ϵ}

)
+ P

(
{τh ≤ Nh} ∩ {J∗

h(π̃(h+1), µh)− Jh(θ̄
(Nh)
h , π̃(h+1), µh) ≥ ϵ}

)
≤

E
[
(J∗
h(π̃(h+1), µh)− Jh(θ̄

(Nh)
h , π̃(h+1), µh))1{τh≥Nh}

]
ϵ

+ P(τh ≤ Nh)

≤ 1

ϵ

32
√
Nh(H − h)R∗

3(1− 1
2
√
Nh

)c2hn
+
δ

2

≤ δ

2
+
δ

2
= δ,

where the second inequality it due to Lemma D.8 and Lemma D.9. The last inequality follows by our
choice of Nh:

32
√
Nh(H − h)R∗

3ϵ(1− 1
2
√
Nh

)c2hn
≤ 11

√
Nh(H − h)R∗

ϵ(1− 1
2
√
Nh

)c2hn
≤ δ

2

for Nh ≥
( 11(H−h)R∗

ϵδc2h
+ 1

2

)2
, which is satisfied for Nh ≥

( 12(H−h)R∗

ϵδc2h

)2
. Note further that we could

use Lemma D.8 in the equation above with a constant batch size Kh, because

max
{ 45c2h

64N
3
2

h

(1− 1

2
√
Nh

)n2,
5N3

h

c2hδ
2

}
=

5N3
h

c2hδ
2
,

for all n ≤ Nh, as (1− 1
2
√
Nh

) < 1 and ch < 1.
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Theorem 4.2. For all h ∈ H, let µh be probability measures such that µh(s) > 0 for all h ∈ H,
s ∈ Sh. Consider the final policy using Algorithm 2 with stochastic updates from (10) denoted by

π̂∗ = (πθ̄
(N0)
0 , . . . , πθ̄

(NH−1)

H−1 ). Moreover, for any δ, ϵ > 0 assume that the numbers of training steps

satisfy Nh ≥
(

12(H−h)R∗H2
∥∥ 1

µh

∥∥
∞

δc2hϵ

)2

, let ηh = 1
2(H−h)R∗√Nh

and Kh ≥ 5N3
hH

2

c2hδ
2 . Then it holds

true that
P(∀s ∈ S0 : V ∗

0 (s)− V π̂
∗

0 (s) < ϵ) > 1− δ.

Proof. As in the proof of the exact gradient case (Theorem 3.5) (24) we have by our choice of the
future policy π̃ = π̂∗ that

Jh(θ̄
(Nh)
h , π̃(h+1), δs) = V π̂

∗

h (s). (37)

By Lemma D.10 we have that

P
(
J∗
h(π̃(h+1), µh)− Jh(θ̄

(Nh)
h , π̃(h+1), µh) ≥

ϵ

H
∥∥∥ 1
µh

∥∥∥
∞

)
≤ δ

H
,

by our choice of Nh, ηh and Kh.

For every s ∈ Sh, denote by δs the dirac measure on state s, then as in (25)

J∗
h(π̃(h+1), δs)− Jh(θ̄

(Nh)
h , π̃(h+1), δs) ≤

∥∥∥ 1

µh

∥∥∥
∞
(J∗
h(π̃(h+1), µh)− Jh(θ

(Nh)
h , π̃(h+1), µh)) a.s.

Thus, for all h ∈ H it holds that

P
(
∃s ∈ Sh : J∗

h(π̃(h+1), δs)− Jh(θ̄
(Nh)
h , π̃(h+1), δs) ≥

ϵ

H

)
≤ P

(
J∗
h(π̃(h+1), µh)− Jh(θ

(Nh)
h , π̃(h+1), µh) ≥

ϵ

H
∥∥∥ 1
µh

∥∥∥
∞

)
≤ δ

H
.

(38)

Define the event Ah := {J∗
h(π̃(h+1), δs) − Jh(θ̄

(Nh)
h , π̃(h+1), δs) <

ϵ
H , ∀s ∈ Sh}. Then (38) is

equivalent to P(ACh ) ≤ δ
H . For h = H − 1 it follows directly with (37) and the special property of

the last time point that

P
(
∃s ∈ Sh : V ∗

H−1(s)− V π̂
∗

H−1(s) ≥
ϵ

H

)
= P

(
∃s ∈ Sh : J∗

H−1(δs)− JH−1(θ̄
(Nh)
h , δs) ≥

ϵ

H

)
≤ δ

H
.

We close the proof by induction. Assume for some 0 < h < H that

P
(
∃s ∈ Sh : V ∗

h (s)− V π̂
∗

h (s) ≥ ϵ(H − h)
H

)
≤ δ(H − h)

H
. (39)

Define Bh := {V ∗
h (s)− V π̂

∗

h (s) < ϵ(H−h)
H ,∀s ∈ Sh}. Similar to (28), on the event Bh it holds that

J∗
h−1(π̃(h), δs) = max

a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)−

∑
s′∈Sh

p(s′|s, a)(V ∗
h (s)− V π̂

∗

h (s))
)

> max
a∈As

(
r(s, a) +

∑
s′∈Sh

p(s′|s, a)V ∗
h (s)

)
− ϵ(H − h)

H

= V ∗
h−1(s)−

ϵ(H − h)
H

.

We obtain on the event Ah−1 ∩Bh that (compare to (29))

V ∗
h−1(s)− V π̂

∗

h−1(s) = V ∗
h−1(s)− J∗

h−1(π̃(h), δs) + J∗
h−1(π̃(h), δs)− V π̂

∗

h−1(s)

<
ϵ(H − h)

H
+

ϵ

H

=
ϵ(H − (h− 1))

H
,
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for every s ∈ Sh−1. Hence, Ah−1 ∩Bh ⊆ Bh−1. Finally, we close the induction by

P
(
∃s ∈ Sh−1 : V ∗

h−1(s)− V π̂
∗

h−1(s) ≥
ϵ(H − (h− 1))

H

)
= 1− P(Bh−1) ≤ 1− P(Ah−1 ∩Bh) = P(ACh−1 ∪BCh ) ≤ P(ACh−1) + P(BCh )

= P
(
∃s ∈ Sh−1 : J∗

h−1(π̃(h), δs)− Jh−1(θ
(Nh−1)
h−1 , π̃(h), δs) ≥

ϵ

H

)
+ P

(
∃s ∈ Sh : V ∗

h (s)− V π̂
∗

h (s) ≥ ϵ(H − h)
H

)
≤ δ

H
+
δ(H − h)

H

=
δ(H − (h− 1))

H
.

Finally, for h = 0 we have shown the assertion

P
(
∃s ∈ S0 : V ∗

0 (s)− V π̂
∗

0 (s) ≥ ϵ
)
≤ δ.

E Example

We enclose a numerical toy example of a very simple MDP problem of optimally stopping when
throwing a dice H = 5 times. This is a non-trivial example for which exact policy gradients can be
computed. The simulations show that the theoretical results (in the exact gradient setup) are sharp up
to constants.

The MDP corresponding to this example is defined as follows:

• a constant state space over the epochs S = {1, . . . , 6,∆} containing all sides of the dice
1, . . . , 6 and a terminal state ∆,

• a constant action space A = {0, 1}, where 1 indicates stopping and jumping into the
terminal state and 0 indicates continuing to the next epoch,

• a transition function p

p(s′
∣∣ s, a) = P(Sh+1 = s′

∣∣ Sh = a,Ah = a)

=


1
6 , if s′, s ∈ {0, 1 . . . , 6}, a = 0,

1, if s′ = ∆, s ∈ S, a = 1 or s′ = s = ∆, a = 0,

0, otherwise.

Thus, we throw the dice iid until stopping for the first time, then we jump into the terminal
state and stay there for the rest of the game.

• a reward function r

r(s, a) =

{
s, if s ∈ {0, 1 . . . , 6}, a = 1,

0, otherwise.

We only observe a reward when we choose action 1 to top the game and the reward equals
the number on the dice.

Having this model with known transition probabilities allows us to implement the simultaneous
and dynamic PG under the exact gradient assumption. In the simulation we always initialised the
parameters uniformly and chose θ ≡ 0. Furthermore we chose the suggested learning rates from
Theorem 3.2 in the simultaneous approach and from Theorem 3.5 in the dynamic approach.

First, note that Figure 2 (a) is the same as Figure 1 from the introduction. The dotted red line in
this plot shows the target: V ∗

0 . On the x-axis we count the number of gradient computations in the
algorithms, a way of measuring the computational complexity. The dashed magenta curve shows the
evolution of the estimated value function trained with the simultaneous training of all parameters. As
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(a) (b)

Figure 2: (a) shows the behavior of V π
θ(n)

0 during the training steps over all epochs. (b) shows the
log-log plot of the same simulation visualizing the convergence rate towards V ∗

0 .

c is unknown for the approach, we trained the parameters until an error of 0.1 was achieved. The
blue curves show the evolution of the estimated value function trained with our algorithm backwards.
Note that the number of gradient steps varies for different epochs, as suggested by Theorem 3.5,
less training for later epochs. This can be seen in the plot by the different lengths of the plateaus
of the blue lines. One plateau shows the training of one parameter. Just when the last parameter θ0
is trained, the value function V π

θ

0 finally converges towards the target. In this simulation we chose
ϵ = 5, 1, 0.5, 0.25, 0.12 to define the length of the training steps according to Theorem 3.5. Note that
the uniform initialisation lead to ch = 0.5 such that Nh could be explicitly calculated. From light to
dark blue ϵ decreases. It can be seen that the final error is better than the chosen epsilon, indicating
that the rate of convergence from the dynamic approach is tight up to constants.

In Figure 2 (b) for comparison the red line is a constant times 1
n . The dashed magenta line is the

optimal value minus the dashed magenta curve from (a) of the simultaneous approach. Also, the
blue curves are the optimal value minus the blue curves from (a). The dotted blue line is the linear
interpolation of the end points of the blue lines. As the dotted blue line, the magenta line and the
red line have the same slop, this shows the 1

n -convergence rate in the accuracy level ϵ. The larger
difference from the dashed magenta line to the red line in comparison the dotted blue line to the red
line indicates the larger constant in the rate of convergence.

Both plots show that the dynamic PG algorithm converges faster than the simultaneous one. As
suggested by the upper bounds the effect gets much stronger for larger H .
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