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ABSTRACT
To protect user DNS privacy, DNS over TLS (DoT), DNS over HTTPS
(DoH), DNS over QUIC (DoQ), and DNS over HTTP/3 (DoH3) are
proposed to encrypt DNS traffic. Collectively, we term them DNS
over Encryption (DoE). Existing studies have preliminarily mea-
sured the reachability of DoE services. However, they either focus
on a few DoT/DoH domains or a few vantage points (VPs).

In this paper, we present the first comprehensive worldwide
view of DoE service reachability. By collecting data from our 15-
month-long scan, we elaborately built a list of 1302 operational
DoE domains as measurement targets, 448 of which support IPv6.
Then we performed 10M DoE over IPv4 (DoEv4) and 570K DoE
over IPv6 (DoEv6) queries from 5K VPs over a two-month period,
encompassing 102 countries. Our results reveal that the accessibility
of DoE services is poor in some regions. Specifically, 592K DoEv4
queries and 28K DoEv6 queries were blocked during our measure-
ments. Internet not free countries more often block DoEv4 queries
by interfering with TCP connections and QUIC version negotiation.
Compared to DoEv4, the reachability of DoEv6 services is better.
In particular, some DoE blocking policies target only specific IP
addresses or DoE protocols, providing clients with the opportunity
to access blocked DoE domains. Our study highlights the need for
the community to pay attention and improve the reachability of
DoE services.

1 INTRODUCTION
DomainName System (DNS) was initially designed based on UDP or
TCP protocols, which lacks privacy and security protection [6, 37].
One promisingmitigation approach is to encrypt DNS traffic. To this
end, four encrypted DNS protocols, DNS over TLS (DoT) [26], DNS
over HTTPS (DoH) [24], DNS over QUIC (DoQ) [27], and DNS over
HTTP/3 (DoH3) [27], were standardized by the IETF community. In
this paper, we term them collectively as DNS over Encryption (DoE).
Currently, many DNS providers [3, 39, 56], clients [8, 38, 44], and
operating systems [22, 30, 52] already support DoE.

Since DoE may be abused by malicious attackers [48], and users
may utilize DoE to bypass DNS regulation [10]. Some countries/ISPs
have blocked DoE queries to maintain their grip on Internet gover-
nance [4]. However, previous work only preliminarily measured
the reachability of DoE services [5, 23, 35], either by focusing on a
few DoT/DoH domains or a few vantage points (VPs). Furthermore,
no studies comprehensively evaluated the blocking types of DoE
services and the connectivity of DoE services over IPv6.
Challenges. Considering the dependence of other protocols on
DoE [21, 50] and QUIC censorship in some countries [16], it is
imperative to thoroughly assess the reachability of DoE service.
This task primarily encounters the following two challenges.

Firstly, many DoE servers are unable to reliably serve users [34,
35], and the community lacks a public comprehensive list of DoE
domains. Therefore, it is necessary to meticulously collect oper-
ational DoE servers. Secondly, blocking behaviors may occur at
various stages of DoE communication. Therefore, it is crucial to

systematically monitor all levels of the network stack from the
global VPs, and identify different types of DoE blocking.
Our study. In this paper, we measure the reachability of DoE
services through the following three steps.

Firstly, we conducted a 15-month-long Internet-wide scan to
collect open DoE resolvers and implement an automated method
to filter operational DoE servers. Ultimately, we obtained 1302 DoE
over IPv4 (DoEv4) and 448 DoE over IPv6 (DoEv6) domains.

Secondly, we collected 5031 and 473 VPs that support sending
DoE queries to IPv4 and IPv6 addresses, respectively. In the end, we
performed 10M DoEv4 and 560K DoEv6 queries from 102 countries
over the course of two months.

Thirdly, we monitored the entire process of DoE communication,
encompassing the resolution of DoE domains to the reception of
DoE responses from global VPs. At last, we observed seven block-
ing types, including Pre-resolve, Ping, TCP, TLS, QUIC version
negotiation, QUIC, and Response blocking.

Based on our measurement results, we can answer the following
research questions: How is the global deployment of DoE services (see
Section 4.1)?Which regions block DoEv4 services (see Section 4.2)?
What blocking types do DoEv4 services suffer (see Section 4.3)? How
is the reachability of DoEv6 service (see Section 4.4)? How many DoE
queries are censored (see Section 4.5)? Can clients access blocked DoE
domains (see Section 4.6)?
Major findings. Throughout 15 monthly scans, the number of
open DoT/DoH IPv4 addresses consistently remained at 20K/11K. In
addition, the number of open DoQ/DoH3 IPv4 addresses increased
significantly, eventually stabilizing at 3.7K/300. However, the num-
ber of stable DoE domains, which provide DoE services for three
consecutive months, is only about 1K and generally remains steady.

Considering DoE service reachability, our results reveal that 592K
DoEv4 queries and 28K DoEv6 queries are blocked. VPs located
in China, Indonesia and Vietnam exhibit the worst reachability to
DoEv4 services. In addition, some autonomous systems (ASes) in
Russia and Ukraine obviously block DoH3 services. The majority
of DoEv4 service blocking occurs when VPs ping DoE servers, and
about one-third of them are VPs try to connect DoE servers in China.
Furthermore, certain VPs are unable to obtain authentic IP addresses
of DoE domains. In particular, the reachability of DoEv4 services is
poor in Internet not free countries, and they are more often blocked
during the TCP connection and QUIC version negotiation. We also
observe behavior strongly indicative of censorship in 27.18% of
blocked DoEv4 queries and 19.73% of blocked DoEv6 queries.

The reachability of DoEv6 services is generally better, especially
for DoQv6 and DoH3v6. The TLS handshake failure is the primary
cause of DoEv6 service unreachability. Furthermore, our results
suggest that many DoE service blocking policies are defective, as
they allow clients to access blocked DoE domains by changing IP
addresses or DoE protocols. For example, 96/120 blocked DoTv4
domains can provide DoTv6/DoHv4 services in China.

We hope our study can drive future efforts to improve the reach-
ability of DoE services. To help the community reproduce and
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extend our research, we publish our code and collected data at
https://github.com/DNS-over-Encryption/Reachability/.

2 BACKGROUND AND RELATEDWORK
In this section, we first outline DoE protocols. Then, we present
previous research related to our work.

2.1 DNS over Encryption protocols
In recent years, encrypted DNS has emerged as one of the consensus
approaches to mitigate active manipulation and passive monitoring
of DNS traffic [3, 39, 56]. We present the comparison of four DoE
protocols in Table 1.

Table 1: Comparison of four DoE protocols.

DoE Port Underlying protocol Server template
DoT TCP/853 TCP+TLS dns.nextdns.io
DoH TCP/443 TCP+TLS+HTTP https://dns.nextdns.io/dns-query
DoQ UDP/853 UDP+QUIC dns.nextdns.io
DoH3 UDP/443 UDP+QUIC+HTTP https://dns.nextdns.io/dns-query

Standardized in 2016 [26] and 2018 [24], DoT and DoH utilize
TLS sessions to encrypt DNS packets and embed DNS queries into
TCP and HTTP messages, respectively. However, the performance
of DoT and DoH suffers from the unavoidable overhead introduced
by TCP and TLS. Two QUIC-based DNS protocols, DoQ and DoH3,
were introduced in 2022 [27] to protect user DNS privacy. Benefiting
from the advantages of QUIC, DoQ/DoH3 can provide security
properties similar to DoT/DoH while improving performance.

The client relies on URI templates to locate DoH/DoH3 services
and sends DoH/DoH3 requests using the GET or POST method.
Unfortunately, the IETF has not defined a standard path template
for DoH/DoH3. In addition, since DoT and DoQ run on a dedicated
port 853, attackers or firewalls can easily identify and block their
traffic. Considering the community’s preference for DoH [8, 30, 38],
DoH3 may get better support in the future, which is confirmed by
Google’s announcement of adding DoH3 support in Android [22].

2.2 Related work
DNS manipulation is widespread in the wild, causing numerous
security and privacy concerns [43]. Several works have evaluated
the efficacy of encrypted DNS protocols in circumventing DNS ma-
nipulation. Specifically, Jin et al. [31] revealed that 37% of censored
domains are accessible in China by using DoT/DoH. Moreover,
Hoang et al. [23] reported that DoH and ESNI [50] enable over half
of the censored domains to evade blocking in China.

To utilize DoE for preventing DNS manipulation, the client first
needs to ensure that the DoE server is accessible. However, previous
studies only preliminarily evaluated the accessibility of DoT and
DoH services over IPv4 in the wild. In 2019, Lu et al. [35] measured
the reachability of three public DoT/DoH servers. They pointed
out that the reachability of DoT/DoH service is affected by censor-
ship and TLS interception. In addition, Basso et al. [5] analyzed the
blocking of 123 DoT/DoH servers in Kazakhstan, Iran, and China.
They found that 50% of DoT servers are blocked in Iran, and Cloud-
flare/Google services are highly censored. After that, Hoang et
al. [23] evaluated the accessibility of 12 DoT and 59 DoH servers in

85 countries. Their results disclosed strict censorship of DoT/DoH
services in China, Russia, Iran, Saudi Arabia, and Venezuela. Fur-
thermore, Jin et al. [31] investigated DNS manipulation on 3818
DoT and 75 DoH IP addresses. They discovered that more than
two-thirds of DoT/DoH services manipulate DNS responses from
at least one domain. Regrettably, the community currently lacks
comprehensive awareness of the reachability of global DoE services,
which is our dedicated work to focus on.

3 METHODOLOGY
In this section, we first introduce our collection process of DoE do-
mains. Then, we describe our method of DoE reachability measure-
ment. Figure 1 illustrates the workflow of our researchmethodology.
Finally, we discuss the ethics and limitations of our study.

3.1 DoE domain collection
Our study aims to evaluate the global reachability of DoE services.
However, numerous open DoE servers are merely artifacts of some
providers that do not serve real-world users [34, 35]. It is not ap-
propriate to include these servers in our evaluation.

Therefore, the first problem we should solve is the lack of a com-
prehensive list of operational DoE servers. Specifically, operational
DoE servers are expected to meet the following criteria: 1) replying
correct DoE responses; 2) holding usable domain names; 3) config-
uring valid certificates; 4) providing continuous DoE service. To
this end, we first perform long-term scans to discover open DoE
domains, and then select operational DoE domains.
DoEdomain discovery. Wediscover openDoE domains through
the following three steps. The first step is to scan IPv4 addresses
that open DoE ports. The second step is to identify IPv4 addresses
that can correctly respond to DoE queries. The third step is to
associate IP addresses with DoE domains.

1) Scan port. Our study only considers DoE services deployed
on standard ports. In practice, we use ZMap [15] to obtain all IPv4
addresses opening ports TCP/853, TCP/443, UDP/853, and UDP/443.

2) Identify service. Identifying open DoT/DoQ servers is simple.
If the IP address correctly responds to DoT andDoQ requests on port
TCP/853 and port UDP/853, we consider it as a DoT and DoQ server,
respectively. All DoE requests only lookup the A record of our
domain name, which is hosted on our authoritative nameservers.

Since the lack of a standard URI template, identifying open
DoH/DoH3 servers is relatively complicated. To find asmany servers
as possible, we first need to determine common path templates.
Based on some public lists [12, 47] and previous studies [34–36],
we select four path templates (/dns-query, /query, /resolve, and /)
to construct URI templates. After that, we probe each IP address
opening port TCP/443 with 16 test suites, which comprise four path
templates, two HTTP methods (GET, POST), and two HTTP ver-
sions (HTTP/1.1, HTTP/2). Furthermore, since DoH3 servers only
support HTTP/3, 8 of the 16 test suites are applied to IP addresses
opening port UDP/443. If any test suite successfully responds to
our DoH and DoH3 requests, we consider the corresponding IP
address provides DoH and DoH3 services, respectively.

3) Associated domain name. The CN value in the subject field
and DNS names in the SAN extension list all domains protected by
the certificate [11]. Therefore, we can extract domains associated
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Figure 1: Workflow for DoE domain collection and reachability measurement of DoE services.

with DoE IP addresses through leaf certificates saved during DoE
service identification. However, not all domain names listed in the
certificate are used for DoE services. Based on previous reports [20,
34, 47], we only retain non-wildcard domain names that include
"dns", "dot", "doh" or "doq". At last, we build DoE domain datasets.

From July 2022 to September 2023, we monthly repeated the
above scanning process from Hong Kong.
DoE domain selection. The DoE protocol is currently designed
specifically for client usage [24, 26, 27]. As such, only reachability
measurements for operational DoE servers are meaningful.

Recall the four criteria of operational DoE servers. One of them
is providing continuous DoE service. To this end, we obtain the in-
tersection of DoE domain datasets collected from May 2023 to July
2023 as a candidate list, and supplement it with some public DoE
domains [12, 47]. To satisfy the other three criteria, we first resolve
the IPv4/IPv6 addresses of candidate DoE domains and apply the
method mentioned above for identifying DoE services to these IP
addresses. Remarkably, we specify the DoE domain as the value of
the SNI field during the TLS and QUIC handshake. Then, we reserve
DoE domains for which all IP addresses respond correctly and con-
figure valid certificates as targets for our reachability measurement.
In particular, we refer to the remaining 1302/448 operational DoE
servers that support IPv4/IPv6 as DoEv4/DoEv6 domains.

3.2 Reachability measurement
Service unreachability may arise from deliberate behavior of net-
work middleware or target servers. For instance, ISPs can restrict
local users from using DoE services [23], and DoE servers can deny
access from unauthorized users [31]. Hence, our measurement plat-
form needs globally distributed VPs capable of monitoring the
entire DoE communication process.
Vantage points. To avoid ethical issues arising from human
participation, we collect VPN-based VPs from eight commercial
VPN providers. Due to the lack of stable VPN servers in the Chinese
mainland, we deploy two EC2 cloud instances located in Beijing,
China and Hangzhou, China.

Considering commercial platforms may falsely claim server lo-
cations, we use ip-api [28] to verify the geolocation of each VP.
Furthermore, providers may implement DNS hijacking on their
servers, which affects the resolution of DoE domains. As such, we
lookup the A record of our domain name1 from all VPs to two

1The domain name in each lookup includes a unique random string. This ensures that
our authoritative nameservers can receive queries from DNS resolvers.

popular DNS providers (8.8.8.8, 1.1.1.1). Subsequently, we examine
whether the DNS resolver querying our authoritative nameservers
belong to two popular DNS providers [1, 2]. Our investigation un-
covers DNS query hijacking by the NordVPN [42], affecting queries
directed to 8.8.8.8, and by the Surfshark [54], affecting both 8.8.8.8
and 1.1.1.1. Ultimately, we removed 324 unreliable VPN nodes.

Given the potential occurrence of server downtime and spurious
responses, determining that the DoE service is blocked relies on the
comparison of measurement results from VPs and control nodes.
To this end, we deploy five EC2 cloud instances in Hong Kong,
Frankfurt, Virginia, São Paulo, and Sydney as our control nodes.
Blocking types. Accurate classification of blocking types is piv-
otal for evaluating service reachability. According to the DoE query
process shown in Figure 2, we define seven blocking types and
describe threat models2 concerning network middleware (e.g., fire-
walls, censors, and ISPs).

DoT/DoH Server

DoQ/DoH3 Server

DNS Recursive 
Resolver

⓵
Pre-resolve 
DoE domain

⓶ Ping
Client

TCP connection ⓷
TLS connection ⓸

DoT/DoH communication⓹

QUIC version negotiation ⓷
QUIC connection ⓸

DoQ/DoH3 communication⓹

Figure 2: Process of our VP accessing the DoE domain.

1) Pre-resolve blocking: The client is unable to obtain authentic IP
addresses of the DoE domain through DNS lookup. Since the DNS
query is in plain text, networkmiddleware can easily intercept these
lookups and return either empty responses or forged IP addresses.
In such cases, the client is unable to establish subsequent DoE
connections, or they may face redirection to a fake server.

2) Ping blocking: The client is unable to receive ICMP packet re-
sponses from the DoE server. Network middleware can completely
prevent clients from connecting to DoE servers based on the IP
address. This is the most direct way to implement blocking policies,
but it often results in extensive collateral damage.

3) TCP blocking: The client is unable to establish a TCP con-
nection with the DoT/DoH server on port TCP 853/443. Network
2The implementation of service blocking by target servers, according to their security
policies or service scopes, is relatively straightforward.
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Figure 3: Flowchart of detecting DoE service blocking.

middleware can inspect TCP packet headers and port numbers to
intercept TCP traffic for specific IP addresses.

4) TLS blocking: The client is unable to complete a TLS hand-
shake with the DoT/DoH server on port TCP 853/443. The TLS
handshake exposes many sensitive information, such as the server
domain name, server certificate, and ALPN. As such, network mid-
dleware can implement complex blocking strategies to block the
TLS connections or return invalid server certificates to clients.

5) QUIC-VN blocking: The client is unable to complete a QUIC
version negotiation (QUIC-VN) with the DoQ/DoH3 server on port
UDP 853/443. This indicates that network middleware directly in-
tercept the QUIC session between the client and the DoE server,
without considering contents in the subsequent QUIC traffic.

6) QUIC blocking: The client is unable to establish a QUIC con-
nection with the DoQ/DoH3 server on port UDP 853/443. Certain
sensitive information, such as the server domain name and ALPN,
is exposed in the initial packet during QUIC handshake. Network
middleware can intercept or refuse QUIC connections.

7) Response blocking: The client is unable to receive correct DoE
responses from the server. Once the TLS/QUIC encrypted channel
is established, network middleware between the client and the DoE
server can only intercept the DoE session without the capacity to
modify its contents3. However, clients might receive inaccurate
DNS results. This may arise from the manipulation of the DNS
session between the DoE server and the authoritative server, or
from the authoritative server replying with incorrect IP addresses.
Blocking detection. Our control nodes are responsible for con-
necting to VPN-based VPs and detecting blocking behavior. Figure 3
presents the flowchart for the detection of DoE service blocking.

At first, the VP uses Google DNS (8.8.8.8) to resolve the IPv4/IPv6
addresses of the tested DoE domain (test.doe.com). If the VP re-
ceives the DNS error code (e.g., REFUSED), empty DNS response,

3Network middleware that hold cryptographic keys or valid certificates of DoE servers
can modify the content of the DoE response.

bogon IP address [29], or timeout error, we consider that Pre-resolve
blocking occurs. Otherwise, we perform a consistency test on each
tested IP address (t.e.s.t) to determine whether it is forged. The
consistency test involves three ground truths as follows.

1) 𝐺𝑇𝑎𝑠 : We resolve IP addresses of test.doe.com from five con-
trol nodes and use ip-api [28] to obtain the AS for all IP addresses.
Then, we aggregate all AS results as the 𝐺𝑇𝑎𝑠 for test.doe.com.

2)𝐺𝑇𝑡𝑖𝑡𝑙𝑒 : We send HTTP GET requests to https://test.doe.com/
from five control nodes. Then, we aggregate all <title> tags in the
page contents as the 𝐺𝑇𝑡𝑖𝑡𝑙𝑒 for test.doe.com.

3)𝐺𝑇𝑝𝑟𝑜𝑚𝑝𝑡 : Many DoE servers return user-friendly prompts for
malformed DoE requests4. As such, we send HTTP GET requests
to https://test.doe.com/dns-query from five control nodes. Then,
we aggregate all prompts as the 𝐺𝑇𝑝𝑟𝑜𝑚𝑝𝑡 for test.doe.com.

The detailed process of the consistency test is as follows.
1) We check whether the AS of t.e.s.t is in the 𝐺𝑇𝑎𝑠 . If yes, we

consider t.e.s.t is authentic. Otherwise,
2) We try to establish a TLS connection from the control node

with t.e.s.t and include test.doe.com in the SNI extension. If the
TLS connection fails, we consider t.e.s.t is forged. Otherwise,

3) We verify whether server certificates received in the TLS hand-
shake is valid. If yes, we consider t.e.s.t is authentic. Otherwise,

4) We send an GET request to https://test.doe.com/ from the
control node. If the response contains the <title> tag in the 𝐺𝑇𝑡𝑖𝑡𝑙𝑒 ,
we consider t.e.s.t is authentic. Otherwise,

5) We send an GET request to https://test.doe.com/dns-query
from the control node. If the response contains the prompt in the
𝐺𝑇𝑝𝑟𝑜𝑚𝑝𝑡 , we consider t.e.s.t is authentic, and vice versa.

If all control nodes determine that the tested IP is forged, we con-
sider that Pre-resolve blocking occurs. Otherwise, we then ping the
tested IP address. If the VP fails to receive correct ICMP responses,
we consider that Ping blocking occurs. Otherwise, we establish sub-
sequent connections with the tested domain, determined by the
type of DoE service it supports.

Regarding DoT/DoH, the VP tries to establish a TCP connection
with the tested IP address on port TCP 853/443. If it fails, we con-
sider TCP blocking occurs. Otherwise, the VP tries to establish a
TLS connection with the tested IP address. Regarding DoQ/DoH3,
the VP tries to perform QUIC version negotiation with the tested
IP address on port UDP 853/443. If the VP does not receive a valid
QUIC version, we consider QUIC-VN blocking occurs. Otherwise,
we establish a QUIC connection with the tested IP address.

During the TLS and QUIC handshake, we specify the SNI field
as the tested DoE domain. If the TLS/QUIC connection establish-
ment fails or the DoE server certificate is invalid, we consider TLS
blocking/QUIC blocking occurs. Otherwise, the VP sends a DoE
request to the tested IP address to lookup the A record for our
domain name. If the VP does not receive a correct DNS response,
we consider Response blocking occurs. Otherwise, we consider the
DoE query is Unblocked.

Particularly, we detect each tested DoE domain three times. We
only consider the DoE domain blocked if blocking occurs in all three
detections. Since the differences in the blocking types suffered by
blocked DoE domains in the three detections are minimal, this paper

4For example, dns.google returns "Your client has issued a malformed or illegal request.
Query must have a valid ’dns’ parameter".
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focuses only on the last blocked query. Furthermore, we perform
daily scans of DoE domains from control nodes and remove all
inaccessible domains. From August 7, 2023 to October 9, 2023, we
weekly repeated the above reachability measurement.

3.3 Ethics and limitations
Since our study involves large-scale network scanning, we have the
following ethical considerations. We scan for open ports and DoE
services on a monthly basis, and close connections immediately
after completing service identification. We set up reverse DNS
records for our scanning platforms and providemeasurement details
on the corresponding websites. We did not receive any opt-out
requests during our scan. Since human participation in reachability
testing inevitably raises ethical issues, all of our VPs are commercial
VPN nodes or cloud servers, and we only resolve our domains
through DoE servers. Furthermore, we rate-limit requests sent by
VPs to minimize traffic burden and measurement errors. Overall,
the risks posed by our measurements are limited and controllable.
Compared with the pressure on Internet infrastructure, we believe
that our research can bring more benefits to communities and users.

Regrettably, VPN nodes are typically located in commercial data
centers and Internet free areas, which means we can only obtain
the lower bound of DoE service blocking. In addition, our method
cannot accurately distinguish whether the blocking is caused by
DoE servers or network middleware.

4 RESULTS
In this section, we first introduce our DoE server dataset and VP dis-
tribution. Then, we evaluate the reachability of DoEv4 and DoEv6
services. Following this, we analyze whether DoE services are
blocked due to censorship. Finally, we investigate the incomplete
blocking of DoE domains.

4.1 Dataset
Open DoE servers. Figure 4 shows the number of open DoE
servers per scan over a 15-month period. The histogram represents
the number of DoE domains, aligning with the left y-axis. The bro-
ken line represents the number of DoE IPv4 addresses, aligning
with the right y-axis. In particular, we define a server that pro-
vide DoE services for three consecutive months as a stable DoE IP
address/domain.

Since July 2022, we observe a relative stability in the number
of DoT/DoH IPv4 addresses, while the number of DoQ/DoH3 IPv4
addresses is on the rise overall. Furthermore, Kosek et al. [32] found
only 1217 open DoQ IPv4 addresses in April 2022. The above trends
are mainly due to the fact that DoQ/DoH3 is standardized by RFC
9250 [27] in May 2022. In addition, the number of stable DoE do-
mains is consistently steady, whereas the number of stable DoE IPv4
addresses exhibits fluctuations. This also illustrates the importance
of our meticulous selection of operational DoE domains.

Furthermore, the number of DoE domains is significantly smaller
than DoE IPv4 addresses. Digging deeper, we find two main reasons.
Firstly, many DoE servers are embedded in firewalls or proxies that
are not designed to offer usable domains for real-world users. For
example, in May 2023, we observed 3896 DoT servers belonging
to FortiGate [19] firewalls that were configured with self-signed

Figure 4: Number of open DoE servers per month.

certificates. These certificates only contained domains following
the GT[.*] format. Secondly, some organizations configure the same
certificate for their DoE servers. For example, in May 2023, we
observed that certificates for 2491 DoQ IPv4 addresses, belonging
to the NextDNS [40], were associated only with dns.nextdns.io.
Operational DoE servers. As illustrated in Table 2, we collect
1302 DoEv4 and 448 DoEv6 domains, most of which are located in
Germany, the United States and China. Furthermore, about 95% of
DoH/DoH3 domains support the /dns-query path template. To the
best of our knowledge, our DoE domain dataset is the most compre-
hensive one to date. Specifically, [5, 13, 14, 20, 31, 35] only identified
DoT/DoH IPv4 addresses; [23, 34, 36] only gathered DoT/DoH do-
mains; and [32, 33] only collected DoQ IPv4 addresses.
Vantage points. As indicated in Table 3, we collect 5031 VPs, 473
of which support IPv6. According to Internet Freedom Scores [25],
our VPs cover 15 of 21 not free (NF) countries and 17 of 32 partially
free (PF) countries. Compared with other studies that use VPN
nodes to measure the DoE service reachability, our VPs cover the

Table 2: Number and top-3 countries of DoE domains.

Operational DoEv4 domains (1302)
DoT 1143 DoH 565 (716)1
Country Country

Germany 279 (24.41%) United States 114 (20.18%)
United States 173 (15.14%) Germany 80 (14.16%)
China 89 (7.79%) China 36 (6.37%)

DoQ 240 DoH3 15 (24)1
Country Country

China 32 (13.33%) United States 4 (26.67%)
Germany 32 (13.33%) Cyprus 3 (20.00%)
United States 30 (12.50%) Australia 2 (13.33%)

Operational DoEv6 domains (448)
DoT 400 DoH 180 (234)1
Country Country

Germany 124 (31.00%) Germany 38 (21.11%)
United States 61 (15.25%) United States 35 (19.44%)
France 31 (7.75%) Denmark 21 (11.67%)

DoQ 38 DoH3 13 (19)1
Country Country

France 5 (13.16%) United States 4 (30.77%)
United States 4 (10.53%) Cyprus 3 (23.08%)
Japan 3 (7.89%) Australia 2 (15.38%)

1 In parentheses is the number of URIs of DoH/DoH3 domains.
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most countries (e.g., 102 in our work vs. 85 in [23]). However, our
VPs in eight countries only cover one AS, which may bias the
assessment for these countries.

Table 3: Geographic distribution of vantage points.

IPv4 IPv6 IPv4 IPv6
VP 5031 473 Continent
AS 105 35 Asia 33/48 14/48
Country Africa 5/54 1/54

Total 102 42 N. America 9/23 2/23
NF1 15 5 S. America 10/12 2/12
PF1 17 5 Europe 42/44 31/44
F1 72 32 Oceania 3/14 2/14

4.2 Which regions block DoEv4 services?
During our measurement period, we sent 10M DoEv4 queries to
1302 DoEv4 domains from 5K VPs, of which 592K queries were
blocked. Our results show that in nine countries, the blocked ratio
of DoEv4 queries performed by VPs is higher than 10%. Figure 5
plots the blocked ratio of DoEv4 queries performed by VPs in each
country.We can observe that DoEv4 queries in China5 are extremely
blocked (36.11%), which is consistent with the findings of previous
studies [4, 23]. Furthermore, since Russia and Ukraine implement
censorship of HTTP/3 traffic [17], VPs located in them also exhibit
obvious blocking of DoH3v4 services.

DoTv4 DoHv4

DoQv4 DoH3v4

0 5 10 15 20 25 30 35 40
Blocked ratio of DoEv4 queries (%)

Figure 5: Blocked ratio of DoEv4 queries performed by VPs
in each country/region.

Figure 5 also reveals two additional phenomena. Firstly, VPs
located in China demonstrate better reachability when accessing
DoQv4 services. Specifically, only nine DoQv4 domains are inac-
cessible from VPs in China. However, there are many obstacles for
non-Chinese VPs to access DoQv4 domains located in China. Sec-
ondly, DoE queries performed by VPs in most countries experience
a comparable blocked ratio. This is mainly due to DoE commu-
nications between China and most other countries are hampered
by considerable obstructions. For better illustration, we plot the
blocked ratio of DoE queries across various country/region pairs in
Figure 6. The y-axis is the top 20 countries with the most DoEv4
5Since the blocked ratio of DoE services varies significantly between mainland China
and Hong Kong/Macau/Taiwan, "China/Chinese/CN" refers exclusively to mainland
China unless otherwise specified in this paper.

domains, and the x-axis is the top 20 countries with the most DoEv4
queries blocked. We can clearly see the two-way blockade of DoE
services in China. In addition, VPs in China, Indonesia, and Vietnam
exhibit the poorest reachability to DoE services.
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Figure 6: Blocked ratio of DoE queries between VPs and
DoEv4 domains in different country/region pairs.

Furthermore, we clearly observe DoEv4 service blocking at the
AS-level in 12 countries. We define AS-level blocking as the differ-
ence in the blocked ratio of DoE queries between ASes in a country
exceeding 20%. Remarkably, the AS-level blocking of DoH3v4 ser-
vices in Russia and Ukraine is particularly prominent. For example,
when accessing DoH3v4 services from VPs in AS9009 (Russia) and
AS59564 (Ukraine), the blocked ratios are 8.62% and 1.92%, respec-
tively. In contrast, the corresponding ratios for AS50867 (Russia) and
AS30860 (Ukraine) are significantly higher at 67.42% and 78.06%.

4.3 What blocking types do DoEv4 services
suffer?

Digging deeper into blocking types can provide the community
with a clearer perception of DoE service accessibility. Figure 7
shows the percentage of blocking types suffered by DoEv4 queries,
performed from VPs located in countries with different levels of
Internet freedom. We can observe that the reachability of DoE
queries performed from VPs in NF countries is poorer, and they
experience more frequent blocking in the TCP and QUIC-VN phases.
Surprisingly, 62.83% of DoEv4 service are inaccessible due to Ping
blocking. If other network services share the same IP address as
DoE services, this inevitably leads to significant collateral damage.
Furthermore, a small fraction of DoE services are affected by Pre-
resolve blocking. We analyze the blocking types in detail below.

The common Pre-resolve blocking behaviors are DNS request
timeout (39.77%), and DNS responses present the SERVFAIL code
(29.88%) or NXTOMAIN code (13.27%). Furthermore, the majority
(40.81%) of Pre-resolve blocking are caused by VPs resolving DoE
domains located in China. In particular, we observe that some DNS
responses are injected with reserved or invalid IP addresses. These
behaviors mainly (81.97%) occur when VPs located in China resolve
18 DoEv4 domains associated with a VPN provider [57].
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Figure 7: Statistics on blocking types of DoEv4 queries.

We observe that VPs in countries with different levels of freedom
experience comparable degrees of Ping blocking. The primary fac-
tor behind this is China’s restriction on a considerable amount of
VPs. Specifically, 30.97% of ICMP connections between VPs located
outside of China and DoE IPv4 addresses within China failed.

The main errors of TCP connection failure are timeout (60.71%)
and receipt of RST packets (39.13%). In particular, the DoT ser-
vice running on the dedicated port 853 suffered from more severe
TCP blocking. Considering the subsequent TLS handshake, timeout
remained the most common error (61.59%), followed by invalid
certificates (27.02%). Certificate errors include expiration (79.23%),
domain namemismatch (14.36%), and CAuntrusted (6.41%). Digging
deeper, the primary reason for certificate expiration is the failure
of providers to promptly renew certificates for all their servers.
In addition, other invalid certificates are mainly due to network
middleware injection or intentional behavior by server providers.

Regarding errors during QUIC-VN, 64.88% are connection time-
outs and the remainder are connection refused. Furthermore, more
DoQ/DoH3 services are blocked during QUIC-VN than subsequent
QUIC connections, especially for DoH3 services. This indicates that
current blocking strategies for DoQ/DoH3 services generally do not
consider the TLS payload (e.g., SNI), but directly block QUIC traffic.
For example, all DoQ queries sent to Russia from VPs located in
Ukraine are blocked during QUIC-VN.

As for Response blocking, most of cases are since DoEv4 responses
present the REFUSED code (39.34%) or empty result (33.65%). Fur-
thermore, we find 16 DoEv4 domains respond with non-routable
IP addresses. For example, a DoTv4 domain in Russia only returns
0.0.0.0 to some VPs located in the United States.

4.4 How is the reachability of DoEv6 services?
In the following, we introduce the reachability of DoEv6 services.
During ourmeasurement period, we sent 560KDoEv6 queries to 448
DoEv6 domains from 473 VPs, of which 28K queries were blocked.

Compared to DoEv4, DoEv6 services exhibit better global reach-
ability. Our results show that the blocked ratio of DoEv6 queries
performed by VPs in most (88.37%) countries is less than 5%, and
China (19.13%) is the only country with a blocked ratio higher
than 10%. Surprisingly, VPs located in China are able to access
all DoQv6 domains, and only two DoH3v6 domains (dns.google
and dns.google.com) are inaccessible. Furthermore, unlike DoEv4,
DoEv6 queries are less prone to Ping blocking and TCP blocking, and
failures are more likely to occur during the TLS handshake. Specif-
ically, among blocked DoHv6 queries, 10.61% are TCP blocking,

19.21% are Ping blocking, and 42.87% are TLS blocking. Considering
Pre-resolve blocking, most VPs that fail to retrieve the correct A
record of the DoE domain also encounter difficulties in obtaining
the AAAA record. Overall, we recommend that server administra-
tors and client software strengthen support for IPv6 to improve the
DoE service reachability.

4.5 How many DoE queries are censored?
Censors may block DoE services to ensure their ability to monitor
user DNS traffic. In this section, we focus on analyzing whether
the motivation behind DoE blocking is censorship. We know that
accurately identifying censorship from blocking behavior is difficult.
Combined with previous research [17, 41, 55], we list conditions
below that strongly indicate that DoE queries are censored.

1) fake IP address: DNS responses contain bogon or forged IP
addresses. Please refer to section 3.2 for the judgment method.

2) RST/FIN packet injection: The TCP reset (RST) or close (FIN)
packets are injected into the TCP connection.

3) self-signed certificate with mismatched domain name: The DoE
server returns a self-signed certificate, and the domain names in-
cluded in the certificate do not match the DoE domain name.

4) HTTP(s) blockpage: The HTTP(s) page scraped from the VP
explicitly contains censorship information [46, 49].

5) HTTP 403 status code: The HTTP status code of the DoE re-
sponse returned by the DoH/DoH3 server is 403 (Forbidden).

Our results indicate that 27.18% of blocked DoEv4 queries and
19.73% of blocked DoEv6 queries met at least one of the aforemen-
tioned conditions. Since we do not consider complex censorship
behaviors, our method may not detect all censored DoE queries.
Furthermore, the above six conditions cannot entirely signify cen-
sorship, potentially leading to an exaggeration of DoE censorship.
However, our findings already demonstrate that censorship has
significantly hindered the accessibility of DoE services.

4.6 Can clients access blocked DoE domains?
The DoE domain may be hosted on multiple IP addresses and pro-
vide various types of DoE services. The strict blocking policy aims
to completely prevent clients from accessing DoE services. How-
ever, our results suggest that the blocking of some DoE domains is
incomplete, which is reflected in two aspects.

The first aspect is that clients can access blocked DoE domains
using other IP addresses. For example, VPs in China is unable to es-
tablish the DoT session with one IPv4 address (8.8.8.8) of dns.google,
but it can receive DoT responses from another IPv4 address and
all IPv6 addresses of dns.google. The second aspect is that clients
can access blocked DoE domains using other DoE protocols. For
example, the DoT/DoH service of dns-family.adguard.com is not
accessible in China, while the DoQ/DoH3 service is accessible.

To quantify the incomplete blocking of DoE domains, we filter
DoE domains that support multiple IP addresses or DoE protocols.
Then, we check the blocked queries between VPs and these DoE
domains. The results show that in 59.31% of cases, VPs can use
other IP addresses or DoE protocols to access blocked DoE domains.
Since our VPs located in China exhibit the worst DoE service reach-
ability, we then take China as an example to analyze the incomplete
blocking of DoE services in detail.
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Figure 8: Blocked ratio of VPs located in China to access
different DoE service types.

As shown in Figure 8, we investigate the reachability differences
between eight types of DoE services. For example, we select do-
mains that support both DoTv4 and DoHv6, and then calculate
their blocked ratios respectively. The bottom number in each white
square corresponds to the bottom DoE service type, and the top
number corresponds to the left DoE service type. We find that the
blocked ratio of DoTv4 services is usually at least 30% higher than
other types of DoE services. Furthermore, DoQv6 and DoH3v6
services clearly exhibit better reachability. Hence, we can deduce
that China has yet to effectively implement targeted blocking of
DoQ/DoH3 protocols, and the block list of IPv6 addresses is not as
extensive as that of IPv4 addresses.
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Figure 9: Blocking changes when VPs located in China access
DoTv6/DoHv4 service instead of DoTv4 service.

Next, we analyze the flow of blocking types when changing
DoE service types in China. The left and right subplots in Figure 9
demonstrate the blocking changes for DoTv4 to DoTv6 services (376
domains) and DoTv4 to DoHv4 services (445 domains), respectively.
We find that 25.53%/27.70% of blocked DoTv4 domains can still
provide DoTv6/DoHv4 services. In addition, many TCP blocking
strategies specifically target port 853. Therefore, we recommend
that new mechanism designs should try to reuse widely used ports
and protocols. However, almost all DoTv4 domains that suffer from

TLS blocking have no chance of converting to unblocked. This indi-
cates that China restricts traffic to some DoE domains based on the
SNI field in the TLS handshake.

5 DISCUSSIONS
Considering the substantial reliance of emerging privacy protocols
upon DoE [21, 51], the enhancement of DoE service accessibility has
progressively become a pivotal concern within the community [7,
45, 53]. In the following, we discuss methods for improving the
reachability of DoE services that require no extra effort from users.
Hidden DoE domain name. Recalling Section 4, the leakage of
DoE domain names in DNS queries and TLS/QUIC handshakes may
incur targeted blocking. Regarding DNS queries, we recommend
that clients embed trusted DoE domains and IP addresses. Although
Chrome already does this [9], DoE domain name resolution is also
triggered when users access DoE services. Considering TLS/QUIC
handshakes, the client can not specify the real DoE domain in the
SNI field. To evaluate the effectiveness of this approach, we estab-
lish DoE connections from our VPs to each DoE domain without
specifying the SNI field. We find that 69.79% of TLS blocking and
53.84% of QUIC blocking are eliminated.
Enhance IP address rotation. Our results indicate that many
blocking strategies are based on the IP address of the DoE domain.
Therefore, we recommend that providers carefully consider the
endpoints hosting their DoE services and ensure rotation of their IP
addresses. For instance, opting for CDN platforms or cloud servers
with minimal susceptibility to blocking is advisable. In particular,
providers can leverage the multi-CDN solution [18] to further im-
prove the global availability of their DoE services. However, from
August 7, 2023 to October 9, 2023, we found that the IP addresses
associated with 1115 DoEv4 domains and 401 DoEv6 domains re-
mained unchanged.
Discover the DoE server. As we mentioned in Section 4.6, the
reachability of different DoE service types under the same domain
may exhibit huge differences. Nonetheless, clients currently lack
a standard method to discover the DoE configuration information
of open resolvers. Encouragingly, the Discovery of Designated Re-
solvers (DDR) [45], proposed by the ADD working group, emerges
as a promising solution to this issue. To this end, we use ZMap [15]
to collect the IPv4 addresses of open DNS resolvers and check their
support for the DDR. We find that 317K DNS resolvers deploy the
DDR, of which 243K (76.67%) belong to Google, 39K (12.32%) belong
to Cloudflare, and 11K (3.47%) belong to OpenDNS.

6 CONCLUSION
Reachability is a basic prerequisite for users to benefit from the
DoE mechanism. In this paper, we perform the first comprehen-
sive and large-scale measurement study on the reachability of DoE
services. Our findings reveal that DoE services are already widely
blocked in some regions. In addition, DoE services over IPv6 exhibit
better reachability. A simple yet effective way for clients to access
blocked DoE domains is by changing IP addresses or DoE protocols.
Our study encourages further exploration by the Internet commu-
nity into approaches for discovering DoE service information and
enhancing the accessibility of DoE services.
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