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Abstract

Learning to predict masked tokens in a se-001
quence has been shown to be a helpful pre-002
training objective for powerful language mod-003
els such as PaLM2. After training, such masked004
language models (MLMs) can provide distri-005
butions of tokens in the masked positions in a006
sequence. However, this paper shows that dis-007
tributions corresponding to different masking008
patterns can demonstrate considerable incon-009
sistencies, i.e., they cannot be derived from a010
coherent joint distribution when considered to-011
gether.012

This fundamental flaw in MLMs can lead013
to self-contradictory behaviors during infer-014
ence. On various benchmark datasets including015
MMLU, MLMs can give different predictions016
to the same input question. From BERT-base017
to UL2-20B, we show that such inconsistencies018
exist ubiquitously in MLMs of diverse sizes019
and configurations. In light of our observations,020
we further propose an inference-time strategy021
for MLMs called Ensemble of Conditionals.022
It jointly considers a selected range of incon-023
sistent conditionals directly produced by the024
MLM for the final prediction, which often leads025
to considerable accuracy improvement.026

1 Introduction027

Pretraining objectives of large language models028

can be roughly divided into two categories. First,029

vanilla next token prediction (also known as casual030

language modeling) aims to learn the distribution031

of the next token in a sequence given the context to032

the left (Brown et al., 2020). Second, the masked033

language modeling (MLM) objective, which masks034

out a portion of the tokens in a sequence and asks035

the model to predict them, aims to learn the dis-036

tribution of one or more tokens given surrounding037

context (Devlin et al., 2018; Raffel et al., 2020).038

While GPT-3 (Brown et al., 2020) used vanilla039

next token prediction, following work such as040

PaLM-2 (Anil et al., 2023), U-PaLM (Tay et al.,041

2022b), GPT-FIM (Bavarian et al., 2022), UL2 (Tay 042

et al., 2022a), and GLM (Zeng et al., 2022) have 043

hinted that incorporating the MLM objective could 044

be highly beneficial to performance. In addition, 045

Tay et al. (2022b) has demonstrated that such bidi- 046

rectional conditionals provide strong infilling capa- 047

bilities. Empirically speaking, predicting masked 048

tokens in the middle of the sentence can be seen 049

as a natural data augmentation technique to vanilla 050

next token prediction, which might be helpful to 051

alleviating the data scarcity problem (Xue et al., 052

2023) in the current large model era. 053

One may notice that, unlike the unidirectional 054

conditional distributions that vanilla next token pre- 055

diction learns, the bidirectional conditionals that 056

MLMs learn are overly abundant in terms of rep- 057

resenting a coherent joint distribution. Therefore, 058

they are not guaranteed to be self-consistent. This 059

paper explains our effort on exposing and quantify- 060

ing this issue and corresponding strategies during 061

inference. 062

Figure 1: Self-ensembling improves MLMs’ accuracies
on standard benchmarks including MMLU, Lambada
and BigBench. Aggregated results based on Figure 5.

To begin with, a simple example for such incon- 063

sistencies is shown in Figure 2. In this example, we 064

obtain the bidirectional conditional distributions 065
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that the T5 model learned using two input masked066

sequences. The two similar sequences are designed067

with a small difference, in order to examine if the068

resulting conditionals satisfy a basic law of prob-069

abilities (hold consistency). Results clearly show070

otherwise. We design experiments to quantify such071

inconsistencies on benchmark datasets in Section072

4.2. We further show an inference-time ensemble073

algorithm in Section 4.3 which utilizes many incon-074

sistent conditionals for a more accurate prediction.075

We demonstrate that ensembling the numerous in-076

consistent conditionals directly provided by the077

MLM can improve its performance (Figure 1).078

In summary, our contributions are (1) We expose079

the commonly overlooked flaw in MLMs that they080

can represent inconsistent distributions depending081

on the mask patterns. (2) We quantify such incon-082

sistencies in benchmark datasets including Lam-083

bada (Paperno et al., 2016), MMLU(Hendrycks084

et al., 2021) and BigBench (Srivastava et al., 2023).085

For example, on multiple choice questions in086

MMLU, 2 different distributions given by UL2-087

20B disagree on the answer 14% of the time on av-088

erage. (3) We show that the numerous inconsistent089

conditionals can be ensembled together to consid-090

erably improve accuracy on said benchmarks.091

2 Why inconsistencies can occur in092

MLMs093

For a set of conditional distributions to be self-094

consistent, they need to be able to be derived from095

a single coherent joint distribution.096

One essential reason for the inconsistencies to097

occur among the conditionals provided by a trained098

MLM is that the number of conditionals it can099

provide far exceeds the degrees of freedom of a100

joint distribution.101

Consider a sequence of length L with vocabulary102

V . The joint distribution of the tokens in such a103

sequence is defined by |V |L probabilities that sum104

to 1. Therefore, the degrees of freedom (D) of such105

a joint distribution is:106

Djoint = |V |L − 1, (1)107

Both vanilla next token prediction models and108

MLMs essentially learn conditionals that predict109

some tokens in the sequence given others. Such110

conditional probabilities and probabilities from the111

joint distribution can be linearly derived from each112

other. Therefore, each free conditional that the113

language model is capable of specifying places a114

constraint on the joint distribution. One can easily 115

verify (by counting the conditionals left to right 116

for a geometric sequence) that a vanilla next to- 117

ken prediction based language model provides just 118

|V |L−1 free conditionals1 to exactly determine the 119

joint distribution. Therefore, a vanilla next token 120

prediction model (no matter how it is trained, or 121

even untrained) would never suffer from inconsis- 122

tencies among its conditionals. 123

MLMs, which can provide distributions of 124

masked tokens given bidirectional context, could 125

specify far more free conditionals. For the sim- 126

plest case, where the MLM predicts the distribution 127

of only 1 (masked) token given L − 1 other (un- 128

masked) tokens in the sequence, the total number 129

of free conditionals (N ) is 130

Nmlm(1) = L× (|V |L − |V |L−1), (2) 131

Just Nmlm(1) is already far larger than Djoint. 132

Not to mention Nmlm(k) for k ∈ [2, N − 1]. See 133

Appendix B for Nmlm(k) and both of their deriva- 134

tions. The fact that the number of conditionals 135

an MLM provides far exceeds what is needed for 136

defining a joint distribution sets up room for there 137

to be inconsistencies among them. 138

The first portion of our experiments (Sections 139

4.2 & 5) focus on exposing and quantifying the 140

inconsistencies that exist among the conditionals 141

provided by common MLMs. The second portion 142

of our experiments (Section 4.3) demonstrates our 143

new inference-time algorithm “Ensemble of Condi- 144

tionals” that unites them for more accurate predic- 145

tions. 146

To begin with, the next section explains the back- 147

bone models that this paper works with. 148

3 Backbone MLMs 149

We work with 3 different MLMs in this paper that 150

belong to two different styles, which can be called 151

the T5-style and the BERT-style. 152

3.1 T5-style 153

For T5-style MLMs, the definition here is that each 154

mask token in the input functions as a placeholder 155

for the prediction of an entire span of tokens of 156

variable length. Below we introduce 2 different 157

1A single softmax operation over V essentially gives |V |−
1 free conditionals. Here we call conditionals free when they
can be assigned any values decided by an underlying neural
network.
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Figure 2: A simple bigram comparison example that exposes the inconsistencies in the T5 model. The conditional
probabilities that the model learned (quoted from T5-11B fed with the shown masked sequences) contradict each
other greatly. Not only are the ratios unbalanced, the model confuses its own preference of the two bigrams.

T5-style MLMs that we will work with in the ex-158

periments. They differ in their architecture design,159

masking strategies and sizes.160

1. T5161

The T5 model (Raffel et al., 2020) uses an162

Encoder-Decoder architecture. It uses a cor-163

ruption rate of 15% and an average span164

length of 3 tokens. The masked spans can be165

anywhere in the sequence. We use the largest166

model T5-11B in the experiments.167

2. UL2-20B168

The UL2 model (Tay et al., 2022a) follows169

T5’s architecture design and aims to mix up 3170

masking strategies to more comprehensively171

utilize the pretraining corpus. The MLM ob-172

jective is also known as the auto-denoising173

objective, since the masks can be considered174

as adding noise to the sequence. UL2 calls175

masking strategies denoisers.176

• The R(Regular)-Denoiser mimics T5’s mask-177

ing scheme.178

• The S(Sequential)-Denoiser simply parti-179

tions the input sequence into two consecu-180

tive sub-sequences and predict the second sub-181

sequence as the masked sequence.182

• The X(Extreme)-Denoiser is an extreme 183

version of denoising marked by long cor- 184

rupted spans or high corruption rates. The 185

X-Denoiser is aimed as an interpolation be- 186

tween R- and S-Denoiser. 187

Tay et al. (2022a) showed that such a mixture 188

of masking strategies achieved a superior per- 189

formance than T5 on many tasks. The 3 differ- 190

ent denoisers were differentiated by 3 respec- 191

tive sentinel tokens ([R], [S], [X]) prepended 192

to the sequence. These sentinel tokens are 193

also used during inference to invoke the corre- 194

sponding behavior from the model. Without 195

losing generality, we restrict ourselves to the 196

X-Denoiser in our experiments due to its su- 197

perior performance in our pilot trials. 198

3.2 BERT-style 199

Our definition for BERT-style MLMs, named af- 200

ter BERT (Devlin et al., 2018), is that the model 201

uses each mask token as the placeholder for the 202

prediction of exactly one real token. We use the 203

better-trained RoBERTa (Liu et al., 2019) for our 204

experiments as our example for BERT-style MLMs, 205

which shares the same architecture as BERT. While 206

considered somewhat deprecated (Tay et al., 2022a) 207

compared to later MLMs like T5, UL2 and PaLM2, 208
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BERTs are unique in terms of their architecture209

design because they use a single transformer with210

bi-directional attention (or, an Encoder-only archi-211

tecture), as opposed to GPTs (Radford et al., 2018;212

Brown et al., 2020), which use a transformer with213

uni-directional attention (Decoder-only) or the T5214

model (Encoder-Decoder).215

Our paper mainly focuses on the inconsisten-216

cies in T5-style MLMs since they are most use-217

ful in practice (Section 4). But we also touch on218

BERT-style MLMs due to its unique architecture219

and historical impact (Section 5).220

4 Inconsistencies in T5-style MLMs221

4.1 Conditionals for various mask patterns222

This section lists a few different types of condi-223

tional distributions that a trained T5-style MLM224

can give depending on the mask pattern. This sets225

up for the next two Sections (4.2 and 4.3 )which dis-226

cusses their inconsistencies and how to ensemble227

them on various benchmark datasets.228

First, we discuss the baseline conditional dis-229

tribution (first row in Figure 3). Since most NLP230

tasks can be formulated as predicting continuing to-231

kens given an input sequence, we consider the use232

case of MLMs where we append a single [MASK]233

token behind the input sequence (Tay et al., 2022a).234

The MLM takes as input this modified sequence235

to generate a distribution of tokens for the [MASK]236

position, which is essentially our distribution of237

interest for the target tokens.238

Tweaking the mask pattern can make the MLM239

generate different values for our target distributions240

of tokens. We consider two types of mask patterns:241

the K-offset pattern and the Multimask pattern.242

1. The K-offset mask pattern additionally masks243

the last K tokens from the input sequence244

(K = 3 in the second row in Figure 3), and245

feed them to the MLM as given output. For246

example, for Encoder-Decoder models like247

UL2, we feed K starting tokens to the decoder248

instead of the usual 02. The model then gen-249

erates a different version of our distribution250

of interest. Because of the inconsistency is-251

sue, this new distribution is often remarkably252

different than the one from the baseline.253

2. The Multimask pattern additionally masks N254

random spans in the input sequence (N = 1255

2For decoder-only MLMs like PaLM2, the input tokens
and the K tokens are simply concatenated.

in the third row in Figure 3). This pattern is 256

also parameterized by span length S and gap 257

length G between spans. Recall that masking 258

multiple spans is a common practice during 259

the pretraining of MLMs. When our input con- 260

tains multiple [MASK]’s, we feed additional to- 261

kens to the decoder, which correspond to the 262

masked tokens in the N spans. The Multimask 263

pattern will prompt the MLM to generate an- 264

other different version of our conditional of 265

interest. 266

While our K-offset and Multimask conditionals 267

may seem contrived at first glance, they potentially 268

represent different knowledge learned by the model 269

during pretraining. And as we will show in the 270

sections next, they often contradict the baseline 271

conditional and can be complementary to it. 272

To begin with, we select a number of specific 273

mask patterns through parameterization of K-offset 274

and Multimask patterns. This is done on the vali- 275

dation set of the evaluation dataset based on their 276

individual accuracies. For any dataset in Lambada, 277

MMLU and BigBench and any model in UL2 and 278

T5, we always consider 10 types of conditional 279

distributions as our set of interest. For example, 280

for the combination of UL2 and Lambada we con- 281

sider the baseline conditional, 6 K-offset condi- 282

tionals (K ∈ [1, 6]), and 3 Multimask conditionals 283

((N,S,G) ∈ {(3, 5, 1), (3, 5, 2), (3, 10, 1)}). See 284

the full list of patterns in Appendix C. 285

4.2 Exposing inconsistencies 286

To quantitatively expose the severity of the incon- 287

sistencies among the numerous conditionals we use 288

3 benchmark datasets. 289

1. Lambada (LAnguage Modeling Broadened to 290

Account for Discourse Aspects): Lambada is 291

a dataset crafted to test the capabilities of com- 292

putational models in language understanding, 293

particularly in predicting the final word of a 294

text passage when it requires understanding 295

the broader context. This dataset focuses on 296

the challenge of word prediction requiring a 297

broad discourse context, aiming to evaluate if 298

models can effectively utilize long-range de- 299

pendencies in text. To evaluate inconsistency 300

and ensembling on Lambada, we use the base- 301

line conditional to generate on average 5 last 302

words as candidates. 303
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Figure 3: K-offset and Multimask patterns. The goal here is to prompt the MLM for different versions of the target
token distribution. The red token is our target token. The coral tokens are taken from the original input sequence
and fed as starting tokens to the decoder of the MLM.

2. MMLU (Massive Multitask Language Under-304

standing): The MMLU benchmark represents305

a leap towards evaluating the comprehensive306

knowledge acquired by models during pre-307

training. It encompasses a wide array of sub-308

jects, spanning elementary to advanced profes-309

sional levels across STEM, humanities, and310

social sciences. MMLU aims to understand311

the depth and breadth of models’ knowledge312

and reasoning abilities. MMLU is a multiple313

choice dataset from which the model chooses314

the best answer given the input question.315

3. BigBench (Beyond the Imitation Game316

Benchmark): BigBench focuses on challeng-317

ing tasks and aim to evaluate and understand318

models’ performance across a spectrum of319

complexities and subject areas. This bench-320

mark is designed not just to test models but321

also to highlight potential areas for future re-322

search and development. Similar to MMLU,323

BigBench is also a multiple choice dataset.324

We show that these incoherent conditionals often325

disagree on which answer is the best for a multi-326

choice question in MMLU and BigBench or which327

word is the best for last word prediction in Lam-328

bada. We demonstrate such incoherence on the329

three datasets by measuring how often the distribu-330

tions cannot agree on the prediction.331

For example, consider a toy last word predic-332

tion task mimicking Lambada: The cutest cat333

breed in the world is the [MASK]. While334

the baseline conditional might rank Munchkin the335

highest, another conditional under our considera- 336

tion might rank Persian the highest. We choose 337

between 2 to 10 conditionals from our set of inter- 338

est. When we choose less than 10 conditionals, all 339

possible combinations are run and the results are 340

aggregated. We count how often the conditionals 341

cannot agree on the prediction. Figure 4 shows 342

that there exists considerable disagreement among 343

the different conditionals we consider. And as ex- 344

pected, the more conditionals are considered, the 345

more likely there is disagreement. But even with 346

2 conditionals, the disagreement can be as high 347

as 20%. However, disagreement converges to an 348

upper bound. This means that there exists some 349

questions in every benchmark on which the model 350

is “confident” on its answer. 351

4.3 Ensemble of Conditionals 352

Since we have shown that there are considerable 353

inconsistencies among the conditionals correspond- 354

ing to different masking patterns, it is worth inves- 355

tigating the potential benefit of ensembling them at 356

inference time. 357

The gist of Ensemble of Conditionals (EOC) is 358

to put the numerous raw conditionals provided by a 359

trained MLM through an ensemble heuristic. EOC 360

can be seen as a self-ensemble approach where the 361

different outputs provided by one model are ensem- 362

bled together, similar to ensembling outputs from 363

multiple models in traditional ensemble learning. 364

To ensemble different conditionals for a final pre- 365

diction, we use the max-pooling approach3. Con- 366

3Outperforms average-pooling in our pilot experiments.
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Figure 4: Different conditionals disagree on the prediction to make.

sider that the ith competing conditional assigns367

probability pij to the jth candidate completion (ei-368

ther a last word candidate in Lambada or an answer369

from a multiple choice question in MMLU). The370

winning conditional and final completion predic-371

tion is372

î, ĵ = argmax pij , (3)373

In our experiments, we progressively ensemble374

more conditionals to observe accuracy changes.375

Similar to in the experiment on disagreement, when376

the number of ensembled conditionals is less that377

the total 10, all combinations are run and the re-378

sults are aggregated. Results in Figure 5 show that379

EOC can improve the accuracy of the model’s final380

prediction. In additional, more ensembled condi-381

tionals can lead to higher accuracy.382

5 Inconsistencies in BERT-style MLMs383

T5-style MLMs have the flexibility of generating384

sequences of variable length and are very useful385

in practice. Although researchers mainly focus386

on T5-style MLMs in the current era, we touch387

on inconsistencies in BERT-style MLMs in this388

section because of the historical impactfulness of389

the BERT model and their unique architecture with390

only bidirectional attention.391

While BERT-style models can only model the392

distributions of individual tokens by their default393

design, there has been research effort (Goyal et al.,394

2021; Wang et al., 2019; Yamakoshi et al., 2022) on395

sampling sequences from it by modeling its implic-396

itly specified joint distribution one way or another.397

For example, Goyal et al. (2021) views it as an398

energy-based model defined using the bidirectional399

conditionals of the masked tokens. Such research400

effort is based on the intuition that bidirectional401

conditionals could be more robust than unidirec- 402

tional conditionals (Goyal, 2021). This line of re- 403

search has operated based on the assumption that 404

the overly abundant bidirectional conditionals that 405

the BERT-style MLMs provide are self-consistent. 406

We demonstrate in this section that this is not 407

the case at all. There are considerable inconsisten- 408

cies that exist among the bidirectional conditionals 409

that a trained BERT-style model provides. Figure 6 410

demonstrates such an example. Since BERT-style 411

models do not easily offer token distributions for 412

completions, here we use bigrams in raw unstruc- 413

tured text to expose the inconsistencies instead of 414

on standard benchmarks. 415

We consider 4 bigrams in a surrounding context: 416

x11x21, x11x22, x12x21 and x12x22. x11 and x12 417

are two possible tokens that the first position can 418

take; x21 and x22 the second. One can easily ver- 419

ify4 that the 8 conditional distributions concerning 420

such four bigrams should theoretically satisfy 421

p(x21|x11)
p(x22|x11)

× p(x11|x22)
p(x12|x22)

=

p(x11|x21)
p(x12|x21)

× p(x21|x12)
p(x22|x12)

(4) 422

One way to test the inconsistencies among the 8 423

conditionals is to try to solve one using the other 424

7 and compare the solved conditional with the 425

original (inferred by model) one. We show the 426

solved conditionals in the example in Figure 6. It 427

clearly demonstrates that the probabilities given by 428

a BERT-style MLM can be in serious inconsisten- 429

cies with each other. 430

We use the first segment of the validation parti- 431

tion of the C4 (Raffel et al., 2020) dataset as the 432

4Clue: converting each fraction term using the basic law
in Figure 2. Equation 4 was discussed in (Arnold and Press,
1989).
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Figure 5: EOC improves MLM accuracy

Table 1: Difference of log-probabilities between inferred and solved conditionals. The difference would be 0 for
self-consistent MLMs. Roughly a 0.8 difference means that one is 120% larger than the other.

Metric RoBERTa-base RoBERTa-large
log-probability difference (dlog p) 0.836 0.792

unstructured text corpus for quantification. Our433

goal here is to come up with quadruples of bigrams434

in the form of (x11x21, x11x22, x12x21, x12x22)435

in a certain context. We perform a full bigram436

sweep for the sequence. We always include the437

original bigram into the quadruple. To find the 3438

alternative bigrams, we mask the whole original bi-439

gram, and generate alternatives using BART (Lewis440

et al., 2019). In practice, we use beam search in441

bart.generate() with beam size 50. Note that442

BART by default is a T5-style MLM therefore it443

can generates multiple tokens for one mask. We444

keep all resulting generations that are 2 tokens. We445

verify if there is a quadruple of bigrams in the gen-446

erations in the said fashion and add them to our447

diagnostics dataset if so. We end up with 7431448

quadruples. The following is an example in our449

diagnostics dataset.450

Original sequence: Brown cats are the most451

common type of pets in America.452

Original bigram: Brown cats (x11x21).453

Alternative bigrams: Brown dogs (x11x22), 454

White cats (x12x21), White dogs (x12x22). 455

To obtain conditionals in Figure 6, we mask the 456

bigram with two [MASK]’s and feed the sequence 457

to Roberta. 458

Note that there are many variables that go into 459

building the diagnostics dataset. Our approaches 460

were automatic but also somewhat unprincipled. 461

We are not surprised if variations in the diagnos- 462

tics dataset could result in some differences in the 463

evaluation results. 464

We quantify inconsistencies using difference of 465

log probabilities5. 466

dlog p = | log psolved − log pinferred| (5) 467

Table 1 shows the results, which clearly indi- 468

cate strong inconsistencies among the bidirectional 469

conditionals provided by the RoBERTa model. 470

5Here using logarithm makes it robust against changes in
scale. One may also use other metrics for quantification.
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Figure 6: Inconsistencies in the BERT-style MLM. Each “inferred” value refers to the probability given by the
MLM (RoBERTa-large in this figure). Each “solved” value is obtained by passing the other 7 “inferred” values to
the equation in the red square. We see that the difference between each inferred and solved value is significant (the
solved value may even be larger than 1).

6 Summary & Discussions471

This paper focused on the inconsistency problem472

concerning the conditionals provided by MLMs.473

We demonstrated and quantified the inconsisten-474

cies that exist in large MLMs. Based on our ob-475

servations, we propose an inference-time approach476

that ensembles multiple inconsistent conditionals477

to improve the models’ performance. The incon-478

sistencies originate from the fact that the number479

of bidirectional conditionals MLMs can learn far480

exceeds what is needed for constructing the joint481

distribution. Given the recent evidence that MLM-482

based pretraining is a useful paradigm, we think483

that resolving its inconsistency issue could be a nec-484

essary step for future work. While our inference-485

time ensembling approach improves accuracy, it486

can only be seen as a limited patch-up method487

that only unite a certain number of selected con-488

ditionals. We believe that for long-term research,489

this problem should be ideally addressed as part490

of the expensive pretraining stage, for which our491

experiment techniques and results can be seen as a492

reference.493

Such inconsistencies may remind readers of494

GPT’s sensitivity to prompts (OpenAI, 2023). It’s495

crucial to understand that those sensitivities refer496

to inconsistencies in the space of semantics, which497

are distinct from the focus of our discussion. The498

inconsistencies highlighted in this paper address499

the peculiarities of MLMs in the fundamental space500

of token distributions. 501

Limitations 502

1. The discussion in Section 2 only specified a 503

prerequisite for inconsistencies. As for why 504

such inconsistencies mechanistically form dur- 505

ing training and how they might be mitigated 506

or avoided during training, we leave the re- 507

search to future work. 508

2. Although we tested mid-sized MLMs such as 509

UL2-20B, it is no secret that some powerful 510

masked language models like U-PaLM and 511

PaLM2 are kept out of open access and they 512

might behave somewhat differently. We leave 513

diagnostics on those models for researchers 514

with access. We don’t expect the issue to com- 515

pletely disappear for those models. 516

3. Apart from pretraining, it has been shown 517

that paradigms like instruction tuning (Wei 518

et al., 2021) and reinforcing (Ouyang et al., 519

2022) can improve the performance of lan- 520

guage models. How those techniques inter- 521

play with the inconsistency phenomenon is 522

worth looking into. 523

Impact Statements 524

This paper presents work whose goal is to advance 525

the field of Machine Learning. There are many 526

potential societal consequences of our work, none 527

which we feel must be specifically highlighted here. 528
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A Why not use Llama in the experiments?638

Llama and Llama2 are causal autoregressive LLMs that did not utilize the MLM training objective (not639

mentioned in paper). We expect the MLM pretraining objective to be a useful supplementary to them.640

B No. bidirectional conditionals specified by MLMs641

Nmlm(1) is given by:642

Nmlm(1) = L× |V |L−1 × (|V | − 1)643

= L× (|V |L − |V |L−1) (6)644

L represents how many positions the predicted one token could be in. The number of variations of645

the surrounding context of length L − 1 is |V |L−1. Given the surrounding context and the position of646

the predicted token, the number of free conditionals is |V | − 1 (we assume a BERT-style MLM here; a647

T5-style MLM naturally provides distributions of tokens of a variable amount). Multiplying the 3 numbers648

together gives Equation 6.649

One may also consider Nmlm(k) for BERT-style MLMs, where the k masked tokens can be anywhere650

in a sequence of L tokens. Note that BERT-style MLMs by default do not model the joint distribution of651

the k tokens. Instead it models their individual marginal distributions conditioned on the context, which652

we let Nmlm(k) denote the number of here.653

Nmlm(k) is given by:654

Nmlm(k) =

(
L

k

)
× |V |L−k × (|V | − 1)k (7)655

In Equation 7 (same as Equation 2),
(
L
k

)
represents how many combinations of positions the predicted656

k tokens could be in. The number of variations of the surrounding context of length L − k is |V |L−k.657

Given the surrounding context and the positions of the predicted tokens, the number of free conditionals658

is (|V | − 1)k.659

One can easily see that the number of conditionals an MLM provides far exceeds what is needed for660

defining a joint distribution, which sets up room for there to be inconsistencies among them. We omit661

detailed discussions for the number of conditionals provided by T5-style MLMs here.662

C Mask patterns663

1. UL2 on MMLU. K ∈ [1, 6]; (N,S,G) ∈ {(3, 5, 1), (3, 5, 2), (3, 10, 1)}664

2. UL2 on Lambada. K ∈ [1, 6]; (N,S,G) ∈ {(3, 5, 1), (3, 5, 2), (3, 10, 1)}665

3. UL2 on BigBench. K ∈ [1, 3]; (N,S,G) ∈ {(3, 5, 1), (3, 5, 2), (3, 3, 1), (3, 3, 2), (3, 4, 1), (3, 4, 2)}666

4. T5 on MMLU. K ∈ [1, 3]; (N,S,G) ∈ {(3, 5, 1), (3, 5, 2), (3, 3, 1), (3, 3, 2), (3, 4, 1), (3, 4, 2)}667

5. T5 on Lambada. K ∈ [1, 6]; (N,S,G) ∈ {(3, 5, 1), (3, 5, 2), (3, 10, 1)}668

6. T5 on BigBench. K ∈ [1, 3]; (N,S,G) ∈ {(3, 5, 1), (3, 5, 2), (3, 3, 1), (3, 3, 2), (3, 4, 1), (3, 4, 2)}669

Some subjects (subsets) in MMLU and BigBench are very challenging for mid-sized models like670

UL2-20B and T5-13B. We report on subjects that the baseline has a decent performance on (accuracy671

> 0.4).672
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