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Abstract

Multi-agent reinforcement learning in mixed-motive settings presents a fundamen-
tal challenge: agents must balance individual interests with collective goals, which
are neither fully aligned nor strictly opposed. To address this, reward restructuring
methods such as gifting and intrinsic motivation have been proposed. However,
these approaches primarily focus on promoting cooperation by managing the trade-
off between individual and collective returns, without explicitly addressing fairness
with respect to agents’ task-specific rewards. In this paper, we propose an adaptive
conflict-aware gradient adjustment method that promotes cooperation while ensur-
ing fairness in individual rewards. The proposed method dynamically balances
policy gradients derived from individual and collective objectives in situations
where the two objectives are in conflict. By explicitly resolving such conflicts, our
method improves collective performance while preserving fairness across agents.
We provide theoretical results that guarantee monotonic non-decreasing improve-
ment in both the collective and individual objectives and ensure fairness. Empirical
results in sequential social dilemma environments demonstrate that our approach
outperforms baselines in terms of social welfare, while maintaining fairness.

1 Introduction

Multi-agent reinforcement learning (MARL) aims to train multiple agents to maximize cumulative
rewards in a given task. Depending on the reward structure, MARL is typically categorized into
three settings: cooperative, adversarial, and mixed-motive. In the mixed-motive setting, agents’
rewards are neither fully aligned (as in cooperative settings) nor entirely opposed (as in adversarial
settings), necessitating that each agent balances self-interest with the collective interest. This mixed-
motive setting is frequently encountered in real-world applications. For example, in traffic control
systems, each agent (e.g., a local intersection controller) may aim to minimize local congestion,
which can conflict with global traffic flow optimization if not coordinated. A similar tension happens
in sequential social dilemmas (SSDs) such as Cleanup or Harvest [18]], where agents must invest in
public goods (e.g., cleaning waste or harvesting resources judiciously) that benefit the group but do
not yield immediate individual rewards.

However, achieving such a balance in mixed-motive settings is inherently challenging. Excessively
selfish behavior by agents can deteriorate collective welfare, which, in turn, negatively impacts each
agent’s own return—creating a vicious cycle that ultimately harms all participants. Additionally, in
some scenarios, certain agents must sacrifice their own returns to improve the collective outcome,
potentially leading to unfairness. Conversely, an excessive focus on fairness can hinder learning in
tasks that require cooperation. Therefore, it is crucial to enhance collective outcome while ensuring
fairness by appropriately balancing individual and collective interests.
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In mixed-motive settings, many approaches adopt reward restructuring by incorporating intrinsic
rewards such as social influence [12]], formal contracts [9]], gifting [23L117], and inequity aversion [10].
These methods primarily aim to maximize the collective return by mediating the trade-off between
self-interest and collective interests. For example, gifting mechanisms promote cooperation by
enabling agents to share a portion of their rewards with others. However, despite their effectiveness in
inducing cooperation, such reward restructuring may raise fairness concerns, for example, the gifted
reward is intrinsic and not part of the task-defined reward that agents are fundamentally trained to
maximize. Consider the Cleanup environment: agents only receive extrinsic rewards for collecting
apples, yet apples will only regrow if waste is cleaned. It is often observed that some agents specialize
in cleaning waste while others collect apples and subsequently gift a portion of their reward to those
who sacrificed their own gain. Although this leads to improved collective performance, the agents
engaged in waste cleaning never directly receive task rewards from apple collection. This becomes
even worse if the agents are trained with the collective return, since some agents are encouraged to
clean the waste all the time. Aside from reward restructuring, an approach has been proposed to align
individual and collective objectives by adjusting policy gradients toward stable fixed points of the
collective return, while still considering individual interests [20]. However, this method does not
adequately consider fairness, as it primarily focuses on stability without explicitly addressing the
conflict between individual and collective objectives.

In order to enhance cooperation while ensuring fairness, we propose a fair and conflict-aware gradient
adjustment method (FCGrad) that dynamically balances gradients derived from individual and
collective objectives by explicitly handling conflicts between them. FCGrad first detects the presence
of conflicts, and when conflicts are found, it projects one gradient onto the normal plane of the other—
preserving one objective’s direction while avoiding interference with the other. Notably, FCGrad
prioritizes the gradient associated with the lower objective value. For example, if the individual
objective is lower than the collective objective, indicating that the agent is in an unfair situation, we
project the individual gradient onto the normal plane of the collective gradient and use the result as
the final update. This enables cooperation to be enhanced while maintaining fairness by resolving
conflicts. We provide theoretical results showing that, under certain assumptions, the proposed
gradient method guarantees monotonic non-decreasing improvement in both collective and individual
objectives. We further show that the two objectives converge to the same value, leading to all agents’
objectives aligning—thus ensuring individual fairness. In addition, we empirically demonstrate the
effectiveness of FCGrad in terms of a-fairness [25]], which captures both performance and fairness,
in the Unfair Coin Game and two sequential social dilemma environments: Cleanup and Harvest.

2 Background and Related Works

2.1 Partially Observable Stochastic Game

A PFartially Observable Markov Game (POMG) models multi-agent decision-making under un-
certainty [21L4]. A POMG is defined as a tuple (N, S, {A;} N, T,{0:} N 1, {R:;} Y1, ~), where
N is the number of agents, S is the set of states, A; is the action set of agent 4, T' : S x A; X

- X Axy — A(S) is the transition function, O; : S — A(Q;) is the observation function,
R;: S x A x---x Ay — R is the reward function for agent i, and v € [0,1) is the discount
factor. Here, depending on the reward structure, a POMG can represent various types of multi-agent
settings: cooperative settings [13} (14} 15, [16], where all agents share an identical reward function (i.e.,

r! = ... = rN); adversarial settings [8] [31]], where agents have directly opposing objectives, often

modeled as zero-sum (i.e., Ef\il r* = 0); or mixed-motive settings [24} [17], where agents’ rewards
are neither fully aligned nor strictly opposed, creating simultaneous incentives for both cooperation
and competition.

2.2 Mixed-motive Coordination in Multi-Agent RL

We consider mixed-motive settings, where agents’ self-interest often conflicts with collective
outcomes. Let us define the collective return as the average of individual returns: R.,, =
+ Zf\il R(s,a), where R(s,a) is the individual return of Agent i. In the context of gradient-
based learning, a conflict occurs when the local and collective return gradients are misaligned, that is,
when V., E [RZ] - Vo, E [Reol] < 0, where 6; denotes the parameters of Agent ¢’s policy.



To enhance cooperation (i.e. maximize collective reward) while avoiding conflicts, a variety of
approaches have been proposed, including inequity aversion [[10,30], social influence [12]], reciprocal
reward shaping [33]], formal contract mechanisms [9], and gifting-based cooperation [23| [17]. Many
of these approaches are studied in the context of Sequential Social Dilemmas (SSDs) [18]], a prominent
class of mixed-motive settings in which agents repeatedly arbitrate between short-term selfish actions
and long-term collective returns. For example, [17] proposed a gift-based method that balances
altrusim and self-interest based based on social relationships between agents. [12] proposed an
intrinsic motivation method that rewards agents for exerting causal influence over others’ actions,
thereby improving coordination in SSDs. [10] introduced inequity-averse agents that learn to
cooperate by assigning temporal credit to prosocial behavior and penalizing inequitable outcomes.
The aforementioned methods can be broadly viewed as forms of reward shaping, wherein additional
intrinsic or socially-informed rewards guide agents toward cooperative behavior.

In contrast to reward shaping approaches, recent work [20] has explored direct optimization in the
gradient space to reconcile individual and collective objectives. Specifically, the Altruistic Gradient
Adjustment (AgA) method [20] modifies the policy gradients of both the collective and individual
objectives, pulling agents toward stable fixed points of the collective objective and pushing them away
from unstable ones. The adjusted gradient for Agent i is defined as g/, ,, = geol + A(glpg + Hoygcot):

where g.,; and g;,,4 are the gradients of the collective and individual objectives for Agent i, H g)l is
the Hessian of the collective return with respect to the policy parameters, and A is the adjustment
coefficient and its sign is determined by sign[(gcot - HX9co) [(9ina - HE19co1) + 1HE, - geotll?]]-
This adjustment steers the update direction according to the local stability of the collective objective.
Despite its effectiveness, AgA incurs additional computational complexity, focuses on the stability of
the collective objective rather than directly resolving gradient conflicts, and provides no guarantees
of monotonic improvement or fairness.

2.3 Gradient Adjustment

Gradient adjustment approaches have been actively investigated in multi-task learning [32] 22|
20, 28]]. For example, CAGrad [22] formulates a quadratic program to compute a conflict-averse
convex combination of gradients, achieving better trade-offs at the cost of increased complexity, and
Nash-MTL [26] frames the task-weighting problem as a bargaining game, using the Nash bargaining
solution to promote fairness and efficiency across tasks. Another method that inspires our work is
PCGrad [32], which mitigates conflicts by projecting each conflicting gradient onto the normal plane
of the other, offering a simple yet effective solution with low computational overhead. Specifically,
when two gradients ¢g; and g» are conflicted, PCGrad adjusts them by projecting one onto the normal

plane of the other, i.e., gy “¢"4 = g, — {24% g2, and then uses the average of gfcGrad gpg ghcGrad

as the final update.

2.4 Fairness in Multi-agent RL

Fairness concerns how returns are distributed among agents rather than how large the total return
is, making it complementary, but often orthogonal to cooperation and efficiency. Fairness has been
considered in multi-agent RL literature in both cooperative and mixed-motive settings (34, 16} [1} 29].
For example, in cooperative settings, [34] formulates fairness as the optimization of a fair social
welfare function and [6] proposes a method for achieving team fairness by enforcing permutation-
equivariant policies, which mitigate emergent unfairness caused by asymmetric role assignment.
In mixed-motive settings, [17] shows enhanced fairness when measuring the sum of individual
rewards and gifts, whereas in this paper we evaluate fairness using individual rewards only. [10],
inspired by the literature on inequality in economics [5]], explicitly leverages fairness by adding both
disadvantage and advantage inequality terms to the reward of each agent to improve cooperation in
SSD. Specifically, the shaped reward for Agentis r* = 7* —ara/(N —1) 3, ,; max(r; —7;,0) —
Bra/(N=-1)>" ki max(r;—r;,0), where ay 4 and 31 4 weight disadvantage and advantage inequity,
respectively.

Note that throughout this paper, we define fairness in terms of task-defined extrinsic individual
rewards, the quantities that agents are fundamentally trained to maximize, and do not consider
intrinsic rewards such as gifting, as they do not directly reflect actual participation in the underlying
task. A more detailed discussion on this assumption is provided in Appendix [A]



(Veol < Vina)

Algorithm 1: FCGrad IrCGrad
- - SV Geol
Input: Policy parameters 6, learning rate 7, (Vgl Z Vina)
weighting factor /3 Geol FCGrad IrcGrad
Compute ging := Vo Vina(0), .
Yeol ‘= VS‘/COI(H) . .
if <gindu gcol> 2 0 then gmd gmd
‘l IrcGraa & (1 = B)gina + BYcols (a) Conflict (b) Non-conflict
else
if Vioi(0) > Vina(0) then Figure 1: FCGrad illustration: (a) When con-
— e — (Geols Gind) . flicts occur, the gradient corresponding to the
IrCGraa * Jind lgeor|? col> lower objective—either individual or collective—
else is projected onto the normal plane of the gradient
(Ginds Geol) of the higher objective; (b) When no conflict is
L IrCGrad € Jeol — ngnd; detected, a task-dependent weighted sum of the
ind two gradients is applied.

Return 6 < 6 + N9k cGrad:

3 Methodology

In mixed-motive settings, the individual and collective objectives may be either aligned or in conflict.
When they are aligned, optimizing both objectives is sufficient, as neither interferes with the other. In
such cases, an appropriately weighted combination of the two can be effective. However, when the
objectives are in conflict, it becomes essential to explicitly address the interference between them, as
prioritizing one may hinder the other. This is because focusing solely on the individual objective may
hinder learning in tasks where cooperative behavior is essential for maximizing individual returns,
while focusing solely on the collective objective may compromise fairness among agents. Therefore,
it is important to (1) recognize when such conflicts arise and (2) correspondingly adjust the individual
and collective objectives, appropriately considering both fairness and cooperation.

To this end, we propose a fair and conflict-aware gradient adjustment method, called FCGrad, which
guarantees the monotonic non-decrease of both individual and collective objectives, while preserving
fairness across individual objectives. Specifically, when the individual and collective gradients are
in conflict, FCGrad projects the gradient associated with the lower expected return onto the normal
plane of the other. This projected gradient remains a valid ascent direction for its own objective
while avoiding interference with the other, and is then used as the final update. For example, if the
individual expected return is lower than the collective expected return, indicating that the agent is
disadvantaged in terms of fairness, we project the gradient of the individual objective onto the normal
plane of the collective gradient and use it as the update direction. The detailed procedure and a visual
illustration of FCGrad are provided in Algorithm [T]and Fig. [I] respectively. In the following, we
present the detailed method along with its theoretical analysis.

3.1 FCGrad: Fair and Conflict-aware Gradient Adjustment

We now describe how FCGrad operates from the perspective of Agent i. Let § € R? denote the
parameters of the policy g for Agent . Let us define Vipq(6) and V() as the expected individual
and collective returns, respectively, computed under the initial state distribution. Note that Vi,q4(6)
and V,(6) are the individual and collective objectives, respectively. Let ging := Vo Vina(6) and
geol := Vg Vio1(0) denote the gradients of the individual and collective objectives, respectively. These
represent ascent directions for Vi,q(6) and V4 (#), meaning that for a sufficiently small > 0, the
following holds: Vina (6 + 7gina) > Vina(0) and Vo1 (0 + ngeor) > Vool (0).

FCGrad proceeds as follows: (1) check whether gi,g and g., are in conflict by examining the
sign of their inner product, where a negative inner product indicates the presence of a conflict.
(2) if {ging; geot) > O (i.e., non-conflict), FCGrad uses the weighted sum of two gradients: g =
(1 = B)gina + BYcols (3) {Gind; geor) < 0 (i-e., conflict), FCGrad places more weight on the individual
(collective) gradient when the collective (individual) objective is greater, in order to ensure fairness.



The corresponding gradient is given by
g — gind if (‘/col 2 Vind)
FCGrad gcol if (‘/col < ‘/ind)

where g.o and ginq are the projections of g.o; and ging, respectively, onto the normal plane of another
gradient vector, given by

ey

<gcola gind>
chol H 2

<ginda gcol>

Jeol 2
|| ginal|? CO

Jeol = Geol — Jind, Jind := Jind —
(4) update the policy parameter with the step size 1: 6 <— 6 + ng. Note that §c, projects geor onto
the normal plane of gi,g. Thus, g. is still a valid ascent direction for the collective objective while
preserving the individual reward. This indicates that FCGrad prioritizes the individual objective
without compromising the collective one when the agent is in an unfair situation, i.e., when the
individual objective is lower. Conversely, when the collective objective is lower, FCGrad prioritizes
the collective objective without compromising the individual one.

3.2 Theoretical Analysis

In this section, we prove that FCGrad guarantees monotonically non-decreasing improvements in
both the collective and individual objectives, and that both objectives converge to the same value.
This ensures that the expected individual returns across agents also converge to the same value.

Theorem 3.1 Assume V;,4(0) and V,,1(0) are differentiable and L-smooth. Let the update direction
g be defined as in Equation[I} Then, for a sufficiently small step size 1 > 0, the update 0 < 0 + ng
yields monotonically non-decreasing improvements in both V.,(0) and Vi, (6).

Proof. See Appendix [B]

Theorem [3.1]states that FCGrad ensures monotonic non-decreasing improvements in both Vi,q(6;)
and V.1 (0;) under certain assumptions. Note that all agents are updated using FCGrad, so both the
individual objectives of all agents and the collective objective, defined as the expected return averaged
across agents, are improved accordingly. However, monotonic improvement alone does not guarantee
fairness. To establish fairness, it is necessary to further show that the individual and collective values
converge to the same value over time, which in turn implies that all agents’ individual values also
become equal. The next theorem formalizes this result by proving that the gap between Vi,q(6;) and
Vo1 (0¢) vanishes under mild conditions.

Theorem 3.2 Assume Vi, (0) and V.,1(0) be L-smooth, and let §; := Viyy(0) — Veoi(01) denote the
value gap at iteration t. Assume the step size satisfies the Robbins—Monro conditions: 0 < 1y <
64| /L with >, = 0o and >, m? < oo. Also assume conflict recurrence, meaning that for any
€ > 0and any t, if |0,| > ¢, then there exists t' > t such that (Gina’ * Geor,r) < 0. Then, the value
gap converges to zero:

Jim [Vina(6,) = Veor(01)] = 0. 3)

Proof. See Appendix [B]

Theorem [3.2] states that the gap between the collective and individual objectives converges to zero
under certain assumptions, including conflict recurrence, where conflicts occur continuously. This
assumption is reasonable in mixed-motive settings, especially near equilibrium, because agents
face inherent tensions between cooperation and self-interest, and as they approach equilibrium,
misalignments in their objectives can continue to induce conflicts, even with small policy updates.
Under the assumption that all agents use FCGrad, the individual objectives of all agents converge to
the collective objective, and thus all individual objectives converge to the same value. This, in turn,
implies that individual fairness is achieved.

3.3 Practical Algorithm

We now introduce a practical FCGrad-based multi-agent RL algorithm for mixed-motive settings.
We consider decentralized training and execution, where each agent does not have access to other



(a) Unfair coins (b) Cleanup (c) Harvest

Figure 2: The environments considered in our experiments: (a) Unfair Coins—green coins appear
more frequently than red coins, inducing fairness challenges; (b) Cleanup with distinct spawn
positions—two agents (cyan and pink) spawn near waste areas, while the rest (blue and purple) spawn
farther away; and (c) Harvest with distinct spawn positions—two agents (blue and green) spawn near
apple (red) regions, while the rest spawn farther away.

agents’ information but shares rewards, as commonly assumed in gifting mechanisms [17]]. Each
agent trains its policy and value functions for both individual and collective returns solely based on
its own local observations and the shared rewards. For this, we construct two separate value networks
for the individual and collective objectives, while sharing a common encoder between them. Each
value function is trained using generalized advantage estimation to compute the corresponding
advantage estimates. Using the two value functions, we compute the policy gradients of the individual
and collective objectives, denoted as gjng and gy, respectively, via the PPO policy gradient. These
gradients are then combined using FCGrad to determine the final update direction.

4 Experimental Results

4.1 Experimental Setup

Environments We conduct our experiments using the JAX-based codebase and environments
provided by the SocialJAX suite [7]. We modify the existing environments—Coins, Cleanup, and
Harvest—to incorporate a fairness perspective. Specifically, since Cleanup and Harvest already
involve inherent fairness dilemmas, we introduce only minor changes by assigning distinct respawn
positions to the agents. For the Coin Game, which originally focuses on the conflict between
individual and collective objectives, we introduce asymmetry in the potential rewards that agents can
obtain, creating a disparity in individual incentives. Fig[2]illustrates the considered environments. We
provide detailed descriptions in the following sections.

Metric As our goal is to maximize returns while ensuring fairness, both performance and fairness
metrics should be jointly considered for evaluation. We use a-fairness [23] as the evaluation metric,

where, given individual returns (r1,- - - , 7y ), the fairness utility is defined as
N ril*"‘ .
Ua(""l,-.. 7TN): 2?1 1—a’ lfa#l’ (4)
Zi:l log(r;), ifa=1.

Notably, the fairness utility recovers several well-known objectives for specific values of a: it
corresponds to the collective return when o = 0, the geometric mean of individual rewards—also
known as Nash Social Welfare—when o = 1, and the minimum individual reward when o« — 0.
Thus, o = 0 reflects no consideration of fairness, and as « increases, the evaluation increasingly
prioritizes fairness over aggregate performance. In summary, we consider the following three
representative instances of a-fairness return in our evaluation: (i) average return (Mean, o = 0), (ii)
geometric mean return (GeoMean, o = 1), and (iii) minimum individual return (Min, o« — 00). Note
that a-fairness return considers both performance and fairness, where a determines the trade-off
between them. The reported results are averaged over four random seeds.

Baselines We evaluate FCGrad with six baselines: (a) collective reward optimization (Col), (b)
individual reward optimization (Ind), (c) inequity aversion reward restructuring (IA) [10], (d)
weighted gradient combination of gjq and g.o (denoted as Weighted), which corresponds to FCGrad
without conflict handling, (e) PCGrad [32], and (f) Altruistic Gradient Adjustment (AgA) [20]. Note



that baselines (d)-(f) use the same architecture as FCGrad, where two separate value functions are
trained for individual and collective objectives; they differ only in the policy update rule based on
Jind and geo. All methods are implemented on top of the IPPO [3]].

Hyperparameter We introduce a hyperparameter /3 for FCGrad, which determines the weight
between the collective and individual objectives when there is no conflict. § plays a particularly
important role in tasks that require high-level cooperation. We set /3 to 0.5, 0.7, and 0.8 for the Unfair
Coin Game, Cleanup, and Harvest, respectively. The same values of § are used for the baseline
method, Weighted. Additional hyperparameters for IPPO are provided in Appendix [C]

4.2 Unfair Coins

The Coins environment [[19] consists of two agents (green and red) and two types of coins, each
associated with one of the agents. When a coin appears, it is assigned a color with probabilities pgrecn
and prq. An agent receives a reward of 1 for collecting any coin, regardless of its color. However,
collecting a coin of the opposite color imposes a penalty of —2 on the other agent, creating a conflict
between individual gain and cooperative behavior. In contrast to the original setting [19], where
Dareen and preq are both set to 0.5—so that collecting coins matching each agent’s color naturally
aligns with fairness and also maximizes the collective reward—we consider an unfair variant where
Pereen = 15/16 and preq = 1/16, introducing an inherent asymmetry in coin appearances. Although
optimal collective performance still requires agents to collect coins matching their own color, this
setup raises a fairness concern: the green agent receives substantially more rewards due to the higher
frequency of green coins. To mitigate this imbalance and achieve a fairer outcome, the green agent
must occasionally yield coins to the red agent, sacrificing some collective reward in favor of equity.

Results. In the Unfair Coin environment,
achieving fairness requires the green agent to
yield some of its coins to the red agent, thereby 120
reducing its own reward. In other words, there 100
exists a strong trade-off between collective per- 80
formance and fairness. Therefore, we particu-
larly focus on the performance trend with re-
spect to «, as well as the Min performance,
which places greater emphasis on fairness—the
return of the most disadvantaged agent.
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nities, gains higher returns, leading to unfairness.

In contrast, with the individual objective, the red agent outperforms the green agent, possibly because
the green agent is more frequently penalized by negative rewards due to the abundance of green coins.
Meanwhile, the red agent learns without such penalties, accelerating its progress. However, FCGrad
shows little variation across agents as « changes, indicating achieved fairness. Notably, FCGrad
outperforms the baselines in terms of Min performance. As shown in Fig. 3] both the green and red
agents converge to nearly identical returns, showing that fairness is effectively achieved.

4.3 Cleanup

The Cleanup environment consists of N = 4 agents, apples, and waste. Each agent receives a
reward of 1 for collecting an apple. Apples grow in an orchard, but their growth depends on the
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Figure 4: a-fairness returns and individual returns in the cleanup and harvest environments.

amount of waste present in the environment. Waste accumulates at a constant rate, and beyond
a certain threshold, apple growth ceases entirely. Therefore, in order to sustain apple regrowth,
some agents must sacrifice their immediate reward by cleaning up the waste. This creates a social
dilemma, as the necessary act of cleaning benefits the group but does not provide direct individual
reward, thereby generating a tension between self-interest and cooperative behavior. In contrast to
the original configuration, where agents are randomly spawned across the map, we fix the spawn
positions of agents: some (Agents 2 and 3 in our case) are placed near the apple orchard, while others
(Agents 0 and 1) are positioned closer to the waste area. This spatial asymmetry further amplifies the
conflict between fairness and efficiency. Note that, unlike the Unfair Coin, Cleanup introduces an
intertemporal perspective, involving a trade-off between short-term individual interest and long-term
collective interest [[10].

Results. Fig.[4](a) and (b) show the a-fairness performance and individual rewards during training
in the Cleanup environment. FCGrad outperforms the baselines in terms of both GeoMean and
Min, which reflect not only total return but also fairness. In addition, FCGrad achieves comparable
performance to Col in terms of Mean, which is the optimization target of Col. As shown in Fig.[4]
(b), under Col, Agent 3 learns to monopolize apple collection, while Agent 0 is trained to sacrifice
by primarily cleaning waste. In contrast, FCGrad leads all four agents to obtain reasonably similar
returns—demonstrating more fair behavior and achieving the best result in terms of Min. Since using
the collective reward is essential in this environment, methods that rely heavily on individual rewards,
such as Ind and IA, fail to learn effectively. In addition, AgA fails to properly balance between
individual and collective objectives, also struggle to learn successfully.

4.4 Harvest

The Harvest environment features /N = 4 agents and apples distributed across orchard patches. Each
agent receives a reward of 1 per apple, but regrowth is stochastic and depends on nearby apples
within a fixed radius. Over-harvesting depletes resources, risking environmental collapse, and thus
agents must coordinate implicitly to sustain long-term returns. This creates a social dilemma between



short-term individual gain and long-term collective benefit. We also introduce spatial asymmetry:
Agents 0 and 1 spawn near apples, while Agents 2 and 3 spawn farther away, making collection
easier for the former. Similar to the Cleanup, Harvest also poses intertemporal challenges for both
cooperation and fairness.

Results. Fig. E](c) and (d) show the a-fairness returns and
individual agent returns during training. FCGrad outper- Harvest
forms the baselines across the considered « values. With
the Col, Agents 0 and 1 achieve higher returns than Agents
2 and 3, indicating that they focus solely on collecting ap-
ples while accounting for the intertemporal dilemma, but
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account the outcomes of Agents 2 and 3. Similar to the

results in Cleanup, methods that rely heavily on individual ~Figure 5: GeoMean of FCGrad with re-
rewards, such as Ind and IA, perform poorly, though they ~spect to 3 in the harvest environment.
achieve marginal learning. AgA performs better than the

individual-reward-based methods, but still underperforms compared to FCGrad.

4.5 Additional Analysis: Ablation and Fairness Metrics

Weighting factor: 5 determines the balance be- Coin Cleanup Harvest
tween the collf:cti've and individual objectiv'es Alg Gini Jain  Gini Jain Gini Jain
when no conflict is detected. It plays a partic-

ularly important role in tasks that require high- ~ Col 0.474 0.526 0.558 0.432 0.182 0.882
level cooperation. For example, in Cleanup, ig- Ind 0.509 0.498 0.522 0.515 0.136 0.936
noring the collective objective makes it difficult 1A 0.122 0.942 0.536 0.497 0.087 0.973

for agents to discover how to improve their indi- Weighted 0.048 0.991 0.266 0.801 0.146 0.928
vidual rewards. We observed this phenomenon =~ PCGrad  0.039 0.994 0.469 0.572 0.101 0.965
in the previous section—solely maximizing in- AgA 0.238 0.749 0.331 0.723 0.123 0.948
dividual rewards does not perform well. We FCGrad 0.010 0.999 0.223 0.835 0.093 0.959

present the GeoMean performance of FCGrad ] ] ] ] -
in the Harvest environment in Fig. 5] which Table 1: Addtional fairness evaluation using Gini

shows that a 3 value between 0.7 and 0.8 yields ~coefficient and Jain’s index. Lower Gini and higher
the best performance. Thus, /3 reflects the re- Jain indicate greater fairness. Top-2 most fair
quired degree of cooperation over self-interest. ~ SCOT€S in each column are highlighted in bold.

Additional Fairness metrics: We additionally evaluate fairness using the Gini coefficient [2] and
_ Zf\;l E;'V:1 Iri—75]

Jain’s index [[11]]. The Gini coefficient is defined as Gini(ry,--- ,rn) = SN SN and Jain’s
i=1Ti
N )2
index is defined as Jain(rq,--- ,ry) = (NZE%, where both metrics range between 0 and 1 and
i=1T%

lower Gini and higher Jain values indicate better fairness. Table presents the results, showing that
FCGrad generally achieves superior fairness.

5 Conclusion

In this work, we address the long-standing challenge of achieving both cooperation and fairness in
mixed-motive multi-agent RL. We propose FCGrad, a conflict-aware gradient adjustment method
that explicitly resolves gradient-level conflicts between individual and collective objectives. FCGrad
dynamically adjusts the update direction based on which objective is more disadvantaged by projecting
one gradient onto the normal plane of the other. We theoretically prove that this mechanism guarantees
monotonic improvement and convergence of both objectives to the same value. Consequently,
individual objectives across agents also converge, ensuring fairness. Extensive experiments in the
Unfair Coin environment and sequential social dilemma settings, Cleanup and Harvest, demonstrate
that FCGrad not only improves overall performance but also achieves superior fairness, as measured
by a-fairness return metrics.



Limitation In practice, the recurrence of gradient conflicts, required for our theoretical guarantee,
may not hold, as it can be influenced by the weighting factor in non-conflict cases. Understanding
this interplay is a promising direction for future work.

Broader Impact Our work promotes fairness in learned behaviors, potentially preventing emergent
inequalities in decentralized systems. We believe it has a positive societal impact.
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A Discussion on Fairness

In this appendix, we clarify the modeling assumption underlying our notion of fairness and contrast
it with alternative perspectives such as reward-redistribution-based fairness. Our formulation inten-
tionally focuses on a different regime: fairness is grounded purely in task-defined extrinsic rewards
that directly reflect each agent’s actual behavior, rather than assuming the availability of contract or
currency-like mechanisms (e.g., reward exchanges or gifting) for compensating agents.

A.1 Extrinsic-Reward-Based Fairness vs. Reward Redistribution

Prior approaches such as gifting or incentive mechanisms (e.g., [9}17,123]]) allow agents to redistribute
rewards among one another—often interpreted as a currency-like signal or contract that enables
division of labor. Under such assumptions, reward transfers are considered real, tangible returns and
can be used to compensate agents for sacrificial roles (e.g., pollution cleaning without harvesting

apples).

In contrast, our work adopts a more primitive perspective of fairness: we consider only task-defined
extrinsic rewards that arise directly from environment state—action outcomes (e.g., rewards from
collecting apples in the Cleanup environment). We intentionally do not assume the existence of an
auxiliary payment mechanism, such as money or transferable reward tokens, that is external to the
environment dynamics. From this viewpoint, if one agent continuously cleans while others only
harvest apples, such an outcome is deemed unfair unless the cleaner also receives direct extrinsic
returns. This modeling choice focuses on fairness that reflects actual participation in the task, rather
than contractual compensation.

A.2 Pareto Optimality and the Role of o-Fairness

We emphasize that our objective is not to compute or approximate a game-theoretic equilibrium (e.g.,
Nash or correlated equilibrium), but rather to learn Pareto-optimal outcomes. In particular, a-fairness
is used only as an evaluation metric, not as a training objective. By varying «, one can evaluate
different trade-offs between pure efficiency (o = 0), multiplicative balance (o = 1), and max-min
fairness (o« — o0). FCGrad yields outcomes that lie on the Pareto frontier across these trade-offs: in
terms of collective return it performs comparably to the best baselines, while in terms of « = 1 or
«a = oo it significantly improves fairness without degrading performance.

13



B Theoretical Results

Lemma B.1 Let J : RY — R be a continuously differentiable and L-smooth function. Let g, =
VJ(0) be the gradient of J at point 0, and let go € R? be any vector satisfying (g1, g2) > 0. Then,

2(g91,92)
Lllg=(1*"

for small step size n < the update 0 < 0 + ngs yields a strict improvement:

J(0 +ng2) > J(0).

Proof. Since J is L-smooth, for any # € R¢, update direction g, € R, and step size > 0, the
following inequality holds:

I
J(0 +ng2) > J(0) +n(VeJ (0), 92) — 50*[l9a]1*.

Let g1 = Vo J(6). Then:

L

J(0 +ng2) > J(0) +n{g1,92) — 5’72H92||2~

Define the right-hand side as a function of 7:

L
A) = nlgr, 92) = 57’ llga1*
Since (g1, g2) > 0, this is a concave quadratic function that is positive for small enough 7). Specifically,
the inequality A(#n) > 0 holds when:
2(g1,92)

n< 2
Llg2|”

Therefore, for any 1 € (0, 2L<|£\7;’2£\]|22> ) , we have:

J(0 4+ nga2) > J(0).

Theorem B.2 Assume V;,4(0) and V. (0) are differentiable and L-smooth. Let the update direction
g be defined as in Equation|l| Then, for a sufficiently small step size 1 > 0, the update 0 < 6 + ng
yields monotonically non-decreasing improvements in both V,;(0) and Vi, (0).

We consider three cases:

Case 1: (Non-conflict) ging - geot > 0. Then g = Bgina + (1 — 8)geor. Since ging, geol are ascent
directions for Viyq, Viol, respectively, their convex combination also satisfies:

Gind - 9 = Bllginall* + (1 = B)gina  Geor > 0 %)

Geol - 9 = Bgcol * Gind + (1 - ﬁ)||gcol||2 >0 (6)
Since ging - g and ging - g are positive, according to Lemma 3.1, g yields a strict improvement in both
V}nd and ch01~

Case 2: (Conflict) ging - geot < 0 and Vipg(0) < Vi1(0). We then use: g = ging — ﬂ;il;f’li‘"g Jeol- Now,

. 2 2 2
Gind * 9 = Yind * Jind — (gmd gc2ol) (gind : gcol) = Hgde cho}ll z(gmd gcol) >0
cholH ”gcolH
Geol * 9 = Gcol * Gind — W<gcol7 gcol> =0 @)
co

Since ging - g is positive, according to Lemma 3.1, g yields a strict improvement in Vj,q. In addition,
since geol - g 1S zero, g does not decrease V.

Case 3: (Conflict) ging - geot < 0 and Vipa(0) > Vei(0). Symmetric to Case 2: g yields a strict
improvement in both V. and does not decrease Vpq.

Thus, in all cases, g induces monotonically non-decreasing improvements in Vi,q and Vo).
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Lemma B.3 (Single conflict step) When the conflict happens (i.e., (Gina * geot) < 0), then for suffi-
ciently small step size, 0 < ny < ||0¢||/L, we have

Lig1—Li < —% 6] |1 ®)
Proof. When 6; < 0 (i.e. Vo1 > Vina), We use g = Gind — Wgcol. Since L is L-smooth function,
the following holds
L
Lip1— Ly <ni(VLg - g) + 5771:2“9H2 ®
Here,
(VLi - g) = 6¢(gina — Geol) * 9 = 0¢(Gina * 9 — Geot = 9) = 6¢(Gina - 9) = ¢\ 9> (10)

Thus, we have
L [[0¢ || e e
Lipr — Le < midelgl® + 5m2llgll2|\ < mbillgll® + — lglI* = *5ll5tlngH2 (11

Lemma B.4 (Single non-conflict step) When the conflict does not happen, (i.e., (gina * geor) > 0),
the proposed gradient is used. We assume that the step size meets the Robbins-Monro conditions (i.e.
Zfio N = 00, Zio n2 < 00.) Then, the following holds:

> L1 — Lil < o0 (12)
teN

where N is the set of all non-conflict indices.

Proof. g = Bgina + (1 — B)geol- Let us define G := supt(Hgl,tH + ||gz,t||) (< 00).

Since L is L-smooth, we have

Lip1 — Ly < qi(VoLy, g) + §Wt2||9”2~ (13)

Since Vg Li = 8¢(Gind — geol)>
{VeLt, 9)l| = [16t(gina — geol, Bgina + (1 — B)gear) l (14)
< |64 {ﬂ”gind”Hgind — geolll + (1 = B)|geot|l[|gina — gc01||} (Cauchy-Schwarz) (15)
< 130l [Bllgnall + (1 = B)lgeatl| 26 < 2623 (16)

Based on the assumption of the step size 1 (n; < |d;|/L), we have
ne(VoLe,di)| < 2G?|6;|m: < 2G*Loj;. ©
Since ||g|| = [|Bgina + geotl| < Bllginall + (1 = B)[|geat[| < G, the following holds.
Sl < oniG? an
Combined above, we have
5

L
[Lis1 — Le|l < 2G°L + §G2)7lt2 = §G2L77152 (18)

Define Cj := % G?L to obtain
|Liy1 — Le| < Comy.

Because .-, n? < oo (Robbins—-Monro assumption),

Z\Lt-i-l*Lt\ < COZUE < COZUE < oo.
teN teN t=0
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Theorem B.5 Let V,,; and V., be L-smooth. Assume the step size satisfies the Robbins—Monro
conditions: 0 < ny < |&|/L with Y, ny = oo and y_, ni < oo. Also assume conflict recurrence,
meaning that for any ¢ > 0 and any t, if |6;] > ¢, then there exists t' > t such that (Ging,v’ - geot,r') < 0.
Then, the value gap converges to zero:

Jim [Viua(61) = Vear(602)| = 0. (19)

Proof. Denote conflict indices by C and non-conflict by A/. Lemma A.3 and Lemma A.4 give for
every horizon T’

1
Lr < Lo—35 ST omldelld*+ Co > n. (20)

teC,t<T teN, t<T

According to the assumption of the Robbins-Monro, the following holds:

> e |64 [|de* < 0. 1)

teC

For any conflict step the projection property and bounded gradients imply ||g;|| > o > 0 with
> || gcol.¢]])- Thus, we have

0 = 5 min(||gind,¢|
S oneldl <o mléilllgll® < oo (22)
teC teC

Here, we use contradiction. Assume limsup,_, ., |0¢| = g9 > 0. Set € := £(/2. By the assumption,
there exists an infinite set C. = {t € C | |0;| > ¢}. Then for every ¢t € C., n; |0:| > n: €. Because
D07 = 00, Y yee, T € = 00, contradicting the finiteness of Eq. [22} Therefore, lim sup, _, ., [:] =
0.
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C Implementation Details

All experiments were run on a local server equipped with an AMD EPYC 7713 64-Core CPU and five
NVIDIA RTX 6000 Ada Generation GPUs. Each rollout consisted of 64—-256 parallel environments
depending on the task, and training time per run ranged from 2 to 8 hours. The official implementation
of FCGrad is available at: https://github.com/wjkim1202/fcgrad.

C.1 Unfair Coin

Each agent has a CNN-based actor-critic network. The observation is processed through three
convolutional layers with kernel sizes of 5 x 5, 3 x 3, and 3 x 3, each with 32 channels and ReLU
activations, followed by a fully connected layer with 64 units. The actor head outputs a categorical
distribution over discrete actions, while the critic consists of two separate heads estimating the
individual and collective value functions.

We train the networks using the Adam optimizer with a learning rate of 1 x 10—, linearly annealed
over time. PPO is used with a clipping threshold of 0.2 and two update epochs per iteration, using
500 minibatches. We collect trajectories from 256 parallel environments, each running for 1000 steps
per rollout. The discount factor is set to v = 0.99 and the GAE parameter to A = 0.95. The entropy
and value loss coefficients are set to 0.1, respectively. Gradients are clipped to a maximum global
norm of 0.5.

C.2 Cleanup

Each agent is equipped with a convolutional actor-critical network. The observation is processed
through three convolutional layers with kernel sizes of 5 X 5, 3 x 3, and 3 x 3, each with 32 channels
and ReLU activations, followed by a fully connected layer with 64 units. The actor outputs a
categorical distribution over discrete actions, and the critic consists of two heads that estimate the
individual and collective value functions, respectively.

Training is performed using PPO with a clipping threshold of 0.2 and two update epochs per iteration.
A total of 500 minibatches are used per update, with data collected from 64 parallel environments
running 1000 steps per rollout. The discount factor is set to v = 0.99, and the GAE parameter is set
to A = 0.95. We use the Adam optimizer with an initial learning rate of 5 x 10~%, which is linearly
annealed during training. The value loss coefficient and entropy coefficient are both set to 0.01, and
the value function loss is weighted by 0.5. Gradients are clipped with a maximum global norm of 0.5.

C.3 Harvest

Each agent is equipped with a convolutional actor-critical network. The observation is processed
through three convolutional layers with kernel sizes of 5 x 5, 3 x 3, and 3 x 3, each with 32 channels
and ReLU activations, followed by a fully connected layer with 64 units. The actor outputs a
categorical distribution over discrete actions, and the critic consists of two heads that estimate the
individual and collective value functions, respectively.

Training is performed using PPO with a clipping threshold of 0.2 and two update epochs per iteration.
A total of 500 minibatches are used per update, with data collected from 64 parallel environments
running 1000 steps per rollout. The discount factor is set to v = 0.99, and the GAE parameter is set
to A = 0.95. We use the Adam optimizer with an initial learning rate of 5 x 10~%, which is linearly
annealed during training. The entropy and value function loss coefficients are set to 0.01 and 0.5,
respectively. Gradients are clipped to a maximum global norm of 0.5.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the core contributions and are
consistent with both theoretical and empirical results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We stated the limitation in the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We included the proof in the Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided the details in the Appendix and the main paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We cited the corresponding paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provided the implementation details in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provided the mean and variance of individual returns.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

20


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We stated this in the Appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We stated the broader impacts in the conclusion.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: [NA]
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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