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ABSTRACT
Visual-language models based on CLIP have shown remarkable
abilities in general few-shot image classification. However, their
performance drops in specialized fields such as healthcare or agri-
culture, because CLIP’s pre-training does not cover all category
data. Existing methods excessively depend on the multi-modal in-
formation representation and alignment capabilities acquired from
CLIP pre-training, which hinders accurate generalization to unfa-
miliar domains. To address this issue, this paper introduces a novel
visual-language collaborative representation network (MCRNet),
aiming at acquiring a generalized capability for collaborative fu-
sion and representation of multi-modal information. Specifically,
MCRNet learns to generate relational matrices from an information
fusion perspective to acquire aligned multi-modal features. This
relationship generation strategy is category-agnostic, so it can be
generalized to new domains. A class-adaptive fine-tuning infer-
ence technique is also introduced to help MCRNet efficiently learn
alignment knowledge for new categories using limited data. Addi-
tionally, the paper establishes a new broad-domain few-shot image
classification benchmark containing seven evaluation datasets from
five domains. Comparative experiments demonstrate that MCRNet
outperforms current state-of-the-art models, achieving an average
improvement of 13.06% and 13.73% in the 1-shot and 5-shot settings,
highlighting the superior performance and applicability of MCRNet
across various domains.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.
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Visual-language modeling, Representation learning, Few-shot im-
age classification
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1 INTRODUCTION
Few-shot image classification (FSIC) is a fundamental task in com-
puter vision that has garneredwidespread attention in recent years [38,
40, 42]. FSIC aims for models to acquire meta-knowledge from a
large number of base classes and subsequently adapt rapidly to
novel classes using a few support images, enabling the classifica-
tion of query images. Numerous visual few-shot learning (FSL)
models based on meta-learning [12, 23, 25, 30] or metric learn-
ing [17, 39, 44, 48] have been employed to tackle FSIC, but they
have not yielded satisfactory performance. Recently, the emergence
of CLIP [34] presents a new multi-modal view to address FSIC.
Based on CLIP, the state-of-the-art (SOTA) visual-language meth-
ods (VLMs) [14, 51, 53] have showcased impressive performance
on general domain datasets, achieving over 60% accuracy on Im-
ageNet [8] and 90% accuracy on Caltech-101 [11] with only one
support image.

However, when existing VLMs are applied to specific fields such
as medicine [33, 45], agriculture [24], or industry [15], their perfor-
mance is less than ideal. This deficiency arises from the challenge
that CLIP’s pre-training classes are difficult to encompass all cate-
gories across various domains, leading to its limited capability in
representing and aligning images and text from unfamiliar cate-
gories. Existing works focus on enhancing CLIP by designing new
text prompts or adapters, yet they fail to address CLIP’s poor gener-
alization when confronted with unfamiliar domains. For example,
in fine-grained butterfly classification, as shown in Fig. 1 (a) and
(b), CLIP struggles to accurately extract information from new cat-
egories such as “cabbage butterfly” or “pachliopta aristolochiae
butterfly”, resulting in biased matching computations. Other mod-
els based on CLIP fail to align features of images and text from new
classes, hence yielding inaccurate results.

To address the issue, this paper introduces a novel visual-language
collaborative representation network (MCRNet) that aims to learn
a generalized capability for aligning and representing multi-modal
information. As depicted in Fig. 1 (c), MCRNet comprises three com-
ponents: visual-text encoders, a collaborative relation learner, and
a multi-feature re-presentation module. The visual-text encoders
are used to extract prototype features of multi-modal information.
The collaborative relation learner extensively interacts with proto-
type features of support or query images and texts and generates
relationshipmatrices for support or query. The re-presentationmod-
ule recalculates the prototype features and relationship matrices
through weighted computations. What sets it apart from existing
methods is that MCRNet coordinates the representation and fusion
processes of visual and language modalities, which strengthens the
alignment between multi-modal information by learning relation-
ships among different modal semantics. This ability to generate
relationships between different modalities to enhance representa-
tion can be widely applied in various tasks, allowing MCRNet to
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Figure 1: The comparison of framework between (a) the baseline CLIP [34], (b) CLIP-based visual-language models, and the (c)
visual-language collaborative representation network (MCRNet) proposed in this paper.

adapt more quickly to new category knowledge. To better apply to
new category tasks, a class-adaptive fine-tuning inference method
is also proposed, aiming to rapidly learn from the given support
data and save testing time under the 𝑛-support images scenario.

Furthermore, this paper establishes a new broad-domain few-
shot image classification (BD-FSIC) benchmark to evaluate the
generalization and applicability of existing models across a wide
range of domain tasks. This benchmark comprises seven evalua-
tion datasets covering five domains including biology, agriculture,
medicine, mining industry, and archaeology. Finally, the evaluation
studies on the BD-FSIC benchmark validate that existing visual-
language models exhibit notably lower performance on unfamiliar
domain tasks when compared to general datasets. The compara-
tive experiments show that MCRNet surpasses the current SOTA
models, achieving an average improvement of 13.06% in the 1-shot
scenario and 13.73% in the 5-shot scenario, outperforming both ex-
isting visual-language models and visual few-shot learning models.
These results demonstrate the superiority of MCRNet, as well as
its transferability and generalizability across multi-domain tasks.
In summary, this paper has the following contributions:

• This paper introduces a novel multi-modal collaborative
representation network (MCRNet) to enhance the align-
ment and representation capabilities of multi-modal infor-
mation in unfamiliar domains. Unlike existing methods,
MCRNet adopts a universal relational matrix learning ap-
proach to facilitate the fusion and feature representation of
multi-modal information.

• This paper constructs a new broad-domain few-shot im-
age classification benchmark comprising seven evaluation
datasets spanning five domains.

• Comparative experiments demonstrate that MCRNet out-
performs the existing SOTA methods by over 12% average
accuracy on seven evaluation datasets across multiple set-
tings, showcasing the advancement and domain applicabil-
ity of MCRNet.

2 RELATEDWORK
2.1 Few-Shot Learning
Visual few-shot learning (FSL) is the primary approach used to
address few-shot image classification tasks. Existing FSL models
mainly focus on a purely visual perspective and can be catego-
rized into three types. The first type involves prototype representa-
tion learning [6, 28, 35, 36, 42, 47, 49], which focuses on learning
more generalizable feature representations to classify query images
quickly on new categories after fine-tuning. The second type is
based on metric learning [17, 39, 44, 48], which deals with how to
measure feature distances in the manifold space, and this meta-
ability of measurement can be transferred to new categories. The
third type is based onmeta-learning [12, 23, 25, 30], known as “learn-
ing to learn”, where multiple different tasks are constructed during
pre-training to learn a general classification ability from these tasks,
which is then applied to new categories. Recently, more research
has been focusing on transferring FSL models to specific domains
such as healthcare [5, 16, 31] and industry [13, 21]. However, their
performance decreases compared to general domains because, in
specific domain applications, textual descriptions play a crucial role
in capturing important information in images. Therefore, this paper
aims to draw inspiration from representation learning methods in
visual FSL and fully utilize the textual information provided by
support to address the aforementioned challenges.

2.2 Vision-Language Models
In recent years, there has been a growing focus on leveraging lan-
guage cues to enhance the performance of visual tasks. This has
led to significant attention being drawn to vision-language models
(VLMs) [26, 32, 50], which are pre-trained using a vast amount of
image-text pairs readily available on the internet and can be directly
applied to downstream visual tasks. In particular, the introduction
of the CLIP [34] has sparked a wave of interest in using CLIP-based
approaches to address basic visual tasks such as image classification
or segmentation. CLIP utilizes an image-text contrastive objective,
aligning paired images and texts closely while pushing others apart

2
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Figure 2: The overview of visual-language collaborative representation network (MCRNet). MCRNet consists of three parts:
prototype representation, collaborative relation learning, and re-representation. The entire network is supervised by the
contrastive loss. 𝐸𝑣 and 𝐸𝑡 refer to the visual and text encoders of CLIP respectively.

in the embedding space. This approach allows pre-trained VLMs
to capture intricate vision-language correspondence knowledge.
Subsequently, CLIP-based models [14, 51–53] have been proposed
to enhance CLIP’s performance in few-shot image classification.
These models primarily achieve this by designing adapters that can
be quickly fine-tuned or by incorporating methods such as image
matching. They leverage the multi-modal information features gen-
erated by CLIP to compute similarities between the test image and
prompt text or between the test image and known images to deter-
mine the category of the test image. However, excessive reliance
on features generated by CLIP can lead to representation biases
when the model encounters text and images of categories that were
rarely seen or unseen during pre-training. This bias in represen-
tations can result in classification errors when further matching
is performed based on these representations. To improve the per-
formance of existing VLMs in unfamiliar domains or categories,
such as fine-grained butterfly classification in the field of biology
or plant virus classification in agriculture, this study proposes a
novel visual-language cooperative representation method to learn
a highly generalizable multi-modal information representation for
multi-domain few-shot image classification.

2.3 Related Datasets
FSL models and VLMs are evaluated on general domain bench-
marks such as miniImageNet [20], CIFAR [11], CUB [9], or tiered-
ImageNet [11]. However, there is a scarcity of evaluation datasets
specific to domains. Despite the introduction of a cross-domain

few-shot learning benchmark by Guo Y et al. [18], which only in-
cludes two datasets from the medical domain and one from the
agricultural domain. To bridge this gap, this study establishes a
new benchmark encompassing five domains with seven datasets, to
offer a comprehensive platform for assessing model transferability
and generalization across diverse domains in image classification.

3 METHOD
3.1 Problem Formulation
In broad-domain few-shot image classification (BD-FSIC), we ad-
here to the classic FSIC problem setting, where the model is pre-
trained on a large-scale base class dataset Cbase and then evaluated
on novel classes Cnovel in unfamiliar domains. Both training and
evaluation are conducted in 𝑁 -way-𝐾-shot episodes [37]. Specifi-

cally, let the D𝑡𝑟𝑎𝑖𝑛 =

{(
𝐼
𝑞

𝑖
, 𝑦
𝑞

𝑖
,
{
𝐼
𝑠𝑘
𝑖
,𝑇 𝑠
𝑖
, 𝑦
𝑠𝑘
𝑖

}𝐾
𝑘=1

)}𝑁𝑡

𝑖=1
represent 𝑁𝑡

training episodes from C𝑏𝑎𝑠𝑒 and 𝐾 refers to the 𝐾-th sample of
class 𝑁 . Here, 𝐼𝑞

𝑖
represents the query image and 𝑦𝑞

𝑖
represents

the corresponding class label. 𝐼𝑠𝑘
𝑖

represents the support image, 𝑇 𝑠
𝑖

represents the text prompt of support image, and 𝑦𝑠𝑘
𝑖

represents
the class label. In each training episode, K images 𝐼𝑠𝑘

𝑖
, 𝑇 𝑠
𝑖
, and their

corresponding labels 𝑦𝑠𝑘
𝑖

are sampled from each of the randomly
selected N classes to form the support set. Additionally, other im-
ages 𝐼𝑞

𝑖
are sampled from these classes to form the query set, and

𝑦
𝑞

𝑖
is used as supervision to optimize the model. For evaluation,

3
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let D𝑡𝑒𝑠𝑡 =

{(
𝐼
𝑞

𝑖
,
{
𝐼
𝑠𝑘
𝑖
,𝑇 𝑠
𝑖
, 𝑦
𝑠𝑘
𝑖

}𝐾
𝑘=1

)}𝑁𝑒

𝑖=1
represent the test episodes.

𝑁𝑡 is from Cnovel. The model predicts the class 𝑦𝑞
𝑖
of 𝐼𝑞

𝑖
based on

𝐼
𝑠𝑘
𝑖
, 𝑇 𝑠
𝑖
, and 𝑦𝑠𝑘

𝑖
, compares it with the true label 𝑦𝑞

𝑖
, and calculates

the model’s accuracy. Hence, for visual FSL models and VLMs, the
key to addressing BD-FSIC lies in learning more generalized repre-
sentations or aligning meta-knowledge from Cbase and effectively
leveraging the relevant information from 𝐼

𝑠𝑘
𝑖

in Cnovel.

3.2 Overview
The proposed MCRNet is designed to achieve feature alignment
with generalization capabilities through a collaborative fusion and
representation method for vision and text. As illustrated in Fig. 2,
MCRNet consists of three components: the prototype representa-
tion based on CLIP, the collaborative relation learning, and the
re-representation part. The prototype representation comprises
text and visual encoders from CLIP, mapping input images and
text information into prototype features. The collaborative rela-
tion learner, including a fusion layer and two unidirectional 3D-
convolutional layers, fuses visual-text prototype features and learns
the relationship matrix between support and query information.
The multi-feature re-presentation learner incorporates a simple
self-attention layer to relearn the alignment of the relationship ma-
trix and prototype features for a refined feature representation. The
entire network is supervised by a contrastive learning loss, aiming
to bring similar support and query features closer while pushing
different-class features apart. Additionally, a category-adaptive fine-
tuning method was proposed to assist MCRNet in rapid learning
on limited data.

3.3 Collaborative Relation Learner
During each training or testing episode, we acquire support images
𝐼𝑠
𝑖
and query images 𝐼𝑞

𝑖
along with support category textual de-

scriptions 𝑇 𝑠
𝑖
. If 𝐼𝑠

𝑖
and 𝐼𝑞

𝑖
belong to the same category, they form a

positive sample pair; if they belong to different categories, they form
a negative sample pair. Subsequently, through the image encoder
𝐸𝑣 and text encoder 𝐸𝑡 of CLIP, the aforementioned multi-modal
information is mapped to 𝑓 𝑠

𝑖
∈ R𝑊 ×𝐻×𝐶 , 𝑓 𝑞

𝑖
∈ R𝑊 ×𝐻×𝐶 , and

𝑡𝑠
𝑖
∈ R𝑀×1. These features are referred to as prototype features, As

in Fig. 2 (Prototype Representation).
Subsequently, as illustrated in Fig. 2 (Collaborative Relation

Learning), MCRNet merges the prototype features and generates a
multi-modal information relational matrix. The first step involves
multi-modal information fusion. The textual prototype feature 𝑡𝑠

𝑖
obtained is fused and computed with the image prototype features
of support 𝑓 𝑠

𝑖
and query 𝑓 𝑞

𝑖
. Specifically, initially, these features are

tokenized, transforming 𝑓 𝑠
𝑖
and 𝑓 𝑞

𝑖
dimensions to R(𝑊 ×𝐻 )×𝐶 and

adding position embedding. Subsequently, 𝑡𝑖 is concatenated with
𝑓 𝑠
𝑖
and 𝑓 𝑞

𝑖
to obtain the fused feature tokens 𝑢𝑠

𝑖
and 𝑢𝑞

𝑖
. Following

this, an attention mechanism is utilized, defined as:

Attention(𝑄,𝐾,𝑉 ) = Softmax
(
𝑄𝐾𝑇
√
𝑑

)
𝑉 . (1)

We perform self-attention calculations on 𝑢𝑠
𝑖
and 𝑢𝑞

𝑖
separately.

Since the fused features include both image and text features, im-
portant category features in the fused features are assigned higher

weights during multiple similarity calculations. This is expressed
as:

𝑓 𝑢𝑖 = Attention(𝑢𝑖𝑊𝑄

𝜙
, 𝑢𝑖𝑊

𝐾
𝜙
, 𝑢𝑖𝑊

𝑉
𝜙
), (2)

where𝑊𝑄

𝜙
,𝑊𝐾

𝜙
,𝑊𝑉

𝜙
are learnable weights with a size of 𝑑 ×𝑑 . The

resulting features are then normalized and mapped back to the
original R(𝑊 ×𝐻 )×𝐶 through a linear layer, obtaining the initialized
fused features 𝑓 𝑢𝑠𝑖 and 𝑓 𝑢

𝑞

𝑖
.

After obtaining 𝑓 𝑢𝑠𝑖 and 𝑓 𝑢
𝑞

𝑖
, we proceed with the subsequent re-

lationalmatrix generation process. Initially, we reshape 𝑓 𝑢𝑠𝑖 and 𝑓 𝑢
𝑞

𝑖

to R𝑊 ×𝐻×𝐶 , then vertically concatenate the two three-dimensional
feature matrices to form 𝑓 𝑢𝑖 ∈ R𝑊 ×𝐻×2×𝐶 . This means that the
fused features of support and query are stored without compression
in 𝑓 𝑢𝑖 . Afterward, we designed a unidirectional 3D-convolutional
process to compress and learn from 𝑓 𝑢𝑖 . The aim is to compress
from the direction of 𝑓 𝑢𝑞

𝑖
to 𝑓 𝑢𝑠𝑖 within 𝑓 𝑢𝑖 for 𝑓 𝑢𝑠𝑖 specifically.

The purpose of this convolutional compression is to gradually map
the information from 𝑓 𝑢

𝑞

𝑖
into 𝑓 𝑢𝑠𝑖 , thereby generating a relational

matrix 𝜔𝑠 in 𝑓 𝑢𝑠𝑖 that maximizes the similarity with 𝑓 𝑢
𝑞

𝑖
. Con-

versely, for 𝑓 𝑢𝑞
𝑖
, a reverse convolutional compression is performed

to generate 𝜔𝑞 . When learning the relational matrix 𝜔𝑠 for 𝑓 𝑢𝑠𝑖 , we
assume that 𝐿 ×𝑀 × 𝑁 is the shape of the 3D convolutional kernel.
𝑊 represents the weight at position 𝑙,𝑚, 𝑛 of the kernel, and we set
𝑁 to 1. When learning the relational matrix 𝜔𝑞 for 𝑓 𝑢𝑞

𝑖
, we set 𝐿

to 1. The specific operations are as follows:

𝜔𝑠 =𝐹 (
𝐶∑︁
𝑐

1∑︁
𝑛𝑙=0

𝑊∑︁
𝑤𝑙=0

𝐻∑︁
ℎ𝑙=0

𝑊(ℎ𝑙 ,𝑤𝑙 ,𝑛𝑙 )

𝑓 𝑢𝑐,(𝑙+ℎ𝑙 ),(𝑚+𝑤𝑙 ),(𝑛+𝑛𝑙 ) ) + 𝑏 (ℎ𝑙 ,𝑤𝑙 ,𝑛𝑙 ) ,

(3)

𝜔𝑞 =𝐹 (
𝐶∑︁
𝑐

2∑︁
𝑛𝑙=1

𝑊∑︁
𝑤𝑙=0

𝐻∑︁
ℎ𝑙=0

𝑊(ℎ𝑙 ,𝑤𝑙 ,𝑛𝑙 )

𝑓 𝑢𝑐,(𝑙+ℎ𝑙 ),(𝑚+𝑤𝑙 ),(𝑛+𝑛𝑙 ) ) + 𝑏 (ℎ𝑙 ,𝑤𝑙 ,𝑛𝑙 ) ,

(4)

where 𝐹 (.) is an activation function and 𝑏 (ℎ𝑙 ,𝑤𝑙 ,𝑛𝑙 ) is the bias of the
computed feature map. Thus, Based on the collaborative relation
learner, we obtain the weight relational matrix 𝜔𝑞 representing the
impact of query fused features on support fused features, and the
relational matrix 𝜔𝑠 representing the weighted impact of support
fused features on query fused features.

3.4 Re-representation and Loss Function
We concatenate the obtained relational matrices 𝜔𝑠 and 𝜔𝑞 with
the prototype features of support and query, 𝑓 𝑠

𝑖
and 𝑓 𝑞

𝑖
respectively.

Subsequently, we pass them through a self-attention layer and
a linear mapping layer to regenerate the final fused features of
support and query, 𝐹𝑠

𝑖
and 𝐹𝑞

𝑖
:

𝐹𝑖 = 𝑀𝐿𝑃 (Attention(𝑓𝑖𝑊𝑄

𝜙
, 𝑓𝑖𝑊

𝐾
𝜙
, 𝑓𝑖𝑊

𝑉
𝜙
)) . (5)

The resulting features are 𝐹𝑞
𝑖

∈ R1×𝐶 and 𝐹𝑠
𝑖

∈ R1×𝐶 . This re-
representation learner is lightweight, and designed for quick fine-
tuning during the evaluation process. During the training phase, we
use the contrastive loss described above to supervise the training
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Figure 3: This paper constructs a new broad-domain few-shot image classification (BD-FSIC) benchmark, covering five domains:
biology, agriculture, medicine, mining industry, and archaeology, and encompassing seven evaluation datasets: Animal, Insect,
Mushroom, LeafVirus, ISIC, Ore. and OracleScrip.

process beyond the prototype representation:

L𝑐𝑜𝑛 = − 1
𝑁

𝑁∑︁
𝑖=1

I(𝑦𝑠𝑖 == 𝑦
𝑞

𝑖
)𝑙𝑜𝑔(𝑑 (𝐹𝑞 ,𝐹𝑠 ) ), (6)

where I(𝑦𝑠
𝑖
== 𝑦

𝑞

𝑖
) indicates that if the class labels of support and

query are the same, it is 1; otherwise, it is 0. The𝑑 (𝐹𝑞 ,𝐹𝑠 refers to the
L2 distance. By reducing the distance between support and query
instances of the same class and increasing the distance between
instances of different classes, the goal is to enable the Collaborative
Relation Learner to align multi-modal information of the same
class and separate multi-modal information of different classes.
This process helps in learning the final support-query relational
matrix. The ability to incorporate multi-modal information of the
same and different classes into the relation learning process is
category-agnostic and can be generalized to new classes.

3.5 Class-Adaptive Fine-Tuning Inference
During the evaluation process, to fully utilize the support infor-
mation, we design a fast fine-tuning method for MCRNet. Since
the relational matrices learned in the collaborative relation learner
exhibit strong generalization properties, we only fine-tune the Re-
representation part. This is why the Re-representation learner is
designed to be lightweight. Taking 5-way-5-shot as an example,
where 5 classes are randomly selected from Cnovel, each with five
support images 𝐼𝑠

𝑖
and𝑇 𝑠

𝑖
, we augment each 𝐼𝑠

𝑖
into 𝑁 images using

random rotations, cropping, and other data augmentation tech-
niques. These augmented images are then combined with different
𝑇 𝑠
𝑖
and fed into MCRNet to obtain multiple relational matrices.

By randomly combining an augmented support image with the
relational matrix generated from that image, we can create multi-
ple sets of new class data for re-representation. These class data
are sequentially input into the re-representation network as ei-
ther the same class or a different class to fine-tune MCRNet. This
method alleviates overfitting issues caused by the limited number
of support instances and helps the model learn more accurate class
distributions for new classes.

4 THE PROPOSED BENCHMARK
This paper constructs a new broad-domain few-shot image classifi-
cation benchmark (BD-FSIC), aiming to provide a comprehensive

evaluation platform for existing methods in the field of image classi-
fication. As shown in Fig. 3, this benchmark covers five domains: Bi-
ology, Agriculture, Medicine, Mining, and Archaeology, encompass-
ing evaluation datasets for seven different domain-specific tasks.
The biological domain includes three datasets for different classifi-
cation tasks, while each of the other domains contains one dataset.
Furthermore, except for Animal, the other seven datasets are fine-
grained classification datasets as these tasks are more challenging
and have practical applications. Therefore, except for Animal, the
other seven datasets are fine-grained. The descriptions of these
datasets are provided below:

• Animal is a coarse-grained dataset containing 34 animal
categories, with a total of 50, 304 images sourced primarily
from the COD10K dataset [10] and collected from the web.

• Insect is a fine-grained classification dataset comprising 70
categories and 22, 242 images. It is sourced from the InsectD
dataset [43] and collected from the web. Notably, the cat-
egory of butterflies alone includes 18 species, challenging
models to accurately differentiate between closely related
categories with minimal intra-class variations.

• Mushroom consists of 51 fine-grainedmushroom categories,
totaling 21, 096 images sourced from AI Studio [1] and the
Mushroom dataset [2, 3].

• LeafVirus is an agricultural dataset containing 6 categories
of plant diseases, with a total of 1, 810 images sourced from
Plant-Village [22] and AI Studio [1].

• ISIC [4, 7] consists of 2, 594 images categorized into “melanoma”,
“melanocytic nevus”, “basal cell carcinoma”, “actinic kerato-
sis/Bowen’s disease”, “benign keratosis”, “dermatofibroma”,
and “vascular lesion”. It is a skin lesion classification dataset.

• Ore dataset comprises 6 different types of ores, totaling 867
images, sourced from AI Studio [1].

• OracleScript is a dataset for Oracle bone script recognition,
consisting of 241 different Chinese character categories
with a total of 308, 593 images sourced from [41]. Com-
pared to MINIST [29], this dataset features more complex
font characteristics, with many images having low resolu-
tions, demanding a higher capability frommodels in feature
extraction and matching.
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Table 1: Experimental comparison results ofMCRNet and SOTAmodels in the biological domain (Animal, Insect, andMushroom)
as well as in the agricultural domain (LeafVirus) on 5-way-1-shot and 5-way-5-shot settings. The numbers in bold indicate the
best performance, while the underlined ones denote the second best. All the backbone of the following models is ViT.

Method Animal Insect Mushroom LeafVirus
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Unimodality Few-Shot Learning Models
FewTURE [CVPR2020] [46] 34.28±0.26 44.44±0.53 32.59±0.40 44.13±0.55 29.29±0.34 43.89±0.58 53.94±0.48 74.99±0.51
HTCTrans [CVPR2022] [20] 42.15±0.60 47.82±0.75 47.47±0.42 59.03±0.63 32.71±0.29 34.17±0.52 64.87±0.55 82.92±0.48

CPEA [ICCV2023] [19] 42.46±0.63 52.07±0.49 44.54±0.53 60.67±0.87 33.21±0.42 48.24±0.57 65.94±0.39 81.54±0.55
Vision-Language Models

CLIP [ICML2021] [34] 73.61±0.25 74.40±0.32 20.67±0.37 20.79±0.33 45.58±0.35 46.23±0.35 35.59±0.40 34.64±0.34
Tip-Adapter [ECCV2022] [51] 74.06±0.47 75.38±0.49 23.10±0.56 36.68±0.53 44.25±0.46 47.99±0.41 39.91±0.44 47.24±0.55

CoOP [CVPR2022] [52] 75.19±0.62 75.23±0.69 20.02±0.71 19.98±0.89 46.24±0.72 45.30±0.70 33.32±0.62 35.29±0.58
APE-T [ICCV2023] [53] 74.80±0.47 79.97±0.58 21.33±0.62 21.02±0.58 48.60±0.30 48.97±0.34 39.75±0.57 41.00±0.59

CLIP-Adapter [IJCV2024] [14] 74.20±0.28 75.80±0.33 22.57±0.36 22.99±0.41 49.85±0.51 52.17±0.69 36.48±0.66 37.24±0.47
MCRNet (Ours) 75.86±0.54 84.33±0.72 70.27±0.76 81.09±0.40 51.25±0.35 64.97±0.88 70.79±0.68 88.87±0.67

Table 2: Experimental comparison results of MCRNet and SOTA models in the medical domain (ISIC), the mining industry
(Ore), and the archaeology domain (OracleScript), as well as the average results across seven datasets on 5-way-1-shot and
5-way-5-shot settings. The numbers in bold indicate the best performance, while the underlined ones denote the second best.
All the backbone of the following models is ViT.

Method ISIC Ore OracleScript Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Unimodality Few-Shot Learning Models
FewTURE [CVPR2020] [46] 33.75±0.20 39.23±0.20 34.38±0.35 44.13±0.38 28.61±0.72 33.09±0.45 35.26 46.27
HTCTrans [CVPR2022] [20] 35.76±0.46 49.97±0.54 43.76±0.39 56.21±0.44 28.60±0.48 37.04±0.57 43.05 52.45

CPEA [ICCV2023] [19] 34.95±0.33 50.67±0.36 38.47±0.41 59.94±0.36 27.10±0.36 31.60±0.38 40.95 54.96
Vision-Language Models

CLIP [ICML2021] [34] 20.00±0.55 20.02±0.54 55.35±0.50 56.40±0.54 19.93±0.58 20.03±0.56 38.68 38.93
Tip-Adapter [ECCV2022] [51] 20.40±0.46 22.20±0.44 57.62±0.53 61.12±0.55 21.60±0.53 26.39±0.53 40.13 43.67

CoOP [CVPR2022] [52] 19.80±0.54 20.06±0.58 55.21±0.50 57.34±0.47 20.03±0.52 20.98±0.44 38.54 3917
APE-T [ICCV2023] [53] 20.08±0.52 21.74±0.59 55.70±0.49 59.26±0.42 21.57±0.47 23.23±0.44 40.26 42.17

CLIP-Adapter [IJCV2024] [14] 21.36±0.79 22.83±0.64 55.74±0.66 60.24±0.63 20.63±0.77 25.47±0.78 40.12 42.39
MCRNet (Ours) 35.25±0.44 52.29±0.46 59.60±0.47 68.95±0.48 29.73±0.30 40.30±0.34 56.11 68.69

5 EXPERIMENTS
5.1 Experiment Setup
Dataset. All VLMs were loaded with pre-trained parameters based
on CLIP. All visual FSL models were pre-trained on the ILSVRC
dataset [8]. It is worth noting that the proposed MCRNet is a CLIP-
based model, thus loaded with pre-trained CLIP parameters. During
subsequent training, the prototype representation learner, i.e., the
CLIP part, was frozen and others were trained on ILSVRC. The
reason for not training other VLMs on ILSVRC is that the categories
pre-trained by CLIP far surpass those in ILSVRC. Training existing
CLIP-based models on ILSVRC did not yield any improvements; in
fact, it led to a decline due to catastrophic forgetting. Hence, for
an equitable comparison, MCRNet was benchmarked against the
top existing methods without relying on VLMs trained on ILSVRC.

All the above methods were evaluated on the seven datasets of the
BD-FSIC benchmark mentioned in Sec. 4.
Testing Strategy. During the test phase, a standardized 𝑁 -way-𝐾-
shot approach was used to select support images, with 15 query
images sampled per class. The reported results in the tables are
presented in both 5-way-1-shot and 5-way-5-shot formats, where 5
novel classes are randomly selected each time, with 1 or 5 support
images per class. This constitutes a single-episode test. To ensure
fairness, each method underwent 600 random tests. The reported
metrics include the average accuracy and a 95% confidence interval.
All results are presented as accuracy, representing the proportion
of correctly predicted outcomes to the total count.
Implementation Details. All models were trained and tested on
the same GPU. In the case of MCRNet, the training process was
parallelized across eight NVIDIA A800-SXM4-80GB GPUs. After
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Figure 4: The performance comparison, as the number of support images increases, among our MCRNet, typical FSL method
HTCTrans, the baseline CLIP, and the latest CLIP-based model CLIP-Adapter.

loading the pre-trained CLIP parameters, both the text and im-
age encoders in CLIP were frozen, and only the other parts were
trained on the ILSVRC dataset. The training utilized the Adam op-
timizer [27] with a learning rate of 0.001. Weight decay was set to
0.05 every 30 epoch, totaling 120 rounds of training. During class-
adaptive fine-tuning inference, the collaborative relation learner is
frozen, with only the re-representation part undergoing fine-tuning.
We employed data augmentation techniques such as rotation and
cropping to generate five images per support image, forming 100
image-text triplets for 5-way-5-shot. In the 𝑛-shot setting, the pro-
totype features of each class’s images were averaged to obtain class
prototype features for subsequent predictions.

5.2 Comparative Experiments and Analysis
We compared MCRNet with SOTA visual FSL models, VLMs, and
the baseline CLIP on the BD-FSIC benchmark, as shown in Tab. 1
and 2. Apart from a slight 0.51% lower performance compare to
HTCTrans in the 5-way-1-shot setting on the ISIC dataset, MCR-
Net outperform all other models in all settings on the remaining
datasets. On average across the seven datasets, MCRNet surpass the
second-best model by 13.06% in the 1-shot and 13.73% in the 5-shot.
Specifically, on the coarse-grained Animal, MCRNet outperform
VLMs, particularly surpassing APE-T by 4.36% in the 5-shot setting
and the best FSL model by 32.26%. On the Insect dataset, MCRNet’s
performance is even more remarkable, significantly outperform-
ing existing methods by 22.80% and 22.06%. This demonstrates
MCRNet’s ability to generalize effectively across different classi-
fication granularities, handling scenarios with small intra-class
variances. MCRNet maintains a stable advantage on other fine-
grained datasets as well, especially on ISIC where its 5-shot results
exceed the second-best model. Compared to MCRNet’s baseline
CLIP, MCRNet show an improvement of 17.43% and 29.76% on av-
erage. These results collectively showcase the superiority of our
approach, highlighting its strong generalization and practical ap-
plicability across multiple domain datasets. Furthermore, we have
the following discoveries and analyses:

1) Weaknesses of VLMs: Visual FSL models outperform VLMs on
OracleScript and LeafVirus. This demonstrates that existing VLMs

overly rely on the representational abilities learned during CLIP
pretraining. When faced with unfamiliar tasks, the textual features
in CLIP fail to provide the image encoder with accurate cues, re-
sulting in the image encoder’s performance being inferior to that
of pretraining models trained solely on visual data. The proposed
MCRNet effectively addresses this limitation by incorporating rela-
tionship learners that conduct relation learning between support
and query images with text. These fused image-text features un-
dergo a re-representation process, correcting the representational
biases introduced by CLIP’s unfamiliarity. Besides, this also sug-
gests the need to design supplementary representational structures
when applying VLMs in specific domains, rather than solely relying
on simple adapters or metric enhancements.

2) N-shot inference comparison: We conducted a comparison be-
tween the performance of MCRNet and two top-performing models
across different 𝑛-shot scenarios, as in Fig. 4. It is clear that as the
amount of provided support data increases, the growth trend of con-
ventional VLMs is not as significant as that of visual FSL models and
MCRNet. For example, in the case of 1-shot scenarios, CLIP’s accu-
racy is 4% lower than MCRNet, but by the 15-shot mark, CLIP lags
behind MCRNet by almost 25%. Results from CLIP-adapter show
a slight improvement but still trail MCRNet by 4% in the 1-shot
scenario, surpassing it by more than 15% in the 15-shot scenario.
These comparisons underscore that, in contrast to existing VLMs,
MCRNet effectively utilizes support image information, swiftly
grasping the data distribution of new classes through category-
adaptive fine-tuning methods. Furthermore, when compared to
FSL models, MCRNet adeptly employs textual cues, maintaining its
superiority over them.

3) Dataset analysis: Existing models perform well in general
domains, but they show overall poor performance on the BD-FSIC
benchmark, especially on the skin disease classification dataset
ISIC and the OracleScript dataset for Oracle bone script recognition.
Even with an increase in the number of support provided, their
performance improvement remains slow. This is because the rep-
resentation attention of these medical data often focuses on local
features such as color and texture, rather than the target shapes
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Figure 5: The comparison between the results of MCRNet after fine-tuning and the original results. The baseline is CLIP [34].

in general data. Oracle bone script fonts are more sensitive to ex-
tracted features because of the significant feature variance within
similar fonts. These results indicate the need to pay more atten-
tion to the generalization performance of enhancement methods
in domain applications to meet practical requirements, while also
highlighting the importance of the proposed BD-FSIC benchmark.

5.3 Ablation Studies

Table 3: The impact of the number of iterations on perfor-
mance in fine-tuning. All results are based on the 5-way-5-
shot setting.

Iteration(#) Animal Ore LeafVirus Time(s)
0 63.29 82.37 80.46 0.065
1 68.95 84.33 88.87 0.14
3 69.25 84.01 88.92 0.23
5 67.25 85.32 86.72 0.41
10 67.01 83.24 81.54 0.69

The Effectiveness of the Class-adaptive Fine-tuning Infer-
ence. To fully utilize support images and text information, we de-
signed a class-adaptive fine-tuning inference method for MCRNet.
In the 5-way-5-shot scenario, 100 image-text pairs were constructed
using support images, and so forth. The results in Fig. 5 demonstrate
its effectiveness. It can be observed that with five or more support
images, this fine-tuning technique consistently boosts performance
by 6% on Ore, 2% on Animal, and around 5% on LeafVirus compared
to the non-fine-tuned model. The results in the figure are based on
a single iteration of constructed data. Tab. 3 illustrates the impact of
different numbers of iterations on the results. It is evident that after
more than 5 iterations, the model tends to overfit due to the limited
data for fine-tuning. Iterating once yields the optimal performance
on average with the least time consumption. Therefore, we set the
standard number of fine-tuning iterations for MCRNet as one.
The Flexibility ofMCRNet.MCRNet integrates and re-represents
multi-modal information relationships based on prototype features,

Table 4: The experimental results of integrating MCRNet
with FSL models. All results are based on the 5-way-5-shot
setting.

Method Animal Insect Ore LeafVirus
FewTURE 44.44 44.13 44.13 74.99
+MCRNet 55.01 58.23 46.65 76.24
HTCTrans 47.82 59.03 56.21 82.92
+MCRNet 56.33 64.98 59.47 83.29

making it independent of feature extraction. To demonstrate the
flexibility of MCRNet, we integrated it with visual FSL methods,
using CLIP’s text encoder to extract textual information. As shown
in Tab. 4, MCRNet is capable of enhancing textual semantics and
improving domain performance on top of visual FSL. Therefore,
both visual FSL methods and VLMs can benefit from our work.

5.4 Conclusion
To address the under-performance of existing visual few-shot learn-
ing models and CLIP-based vision-language models in domain-
specific tasks, this paper introduces a novel vision-language collab-
orative representation network. Building upon CLIP, this network
innovatively integrates and collaborates visual and textual features
for joint feature fusion and representation, enabling the learning
of aligned representations that generalize to new classes. Further-
more, a new evaluation benchmark comprising five domains with
seven datasets is proposed to offer a comprehensive domain im-
age classification assessment platform. Comparative experiments
demonstrate the superiority and generalization of our approach,
with extension experiments showing MCRNet’s flexibility in inte-
gration with other methods to enhance performance. In the future,
we aim to incorporate large language models to enrich existing
semantic information, and explore more detailed descriptions to
guide multi-domain visual tasks.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Visual-Language Collaborative Representation Network for Broad-Domain Few-Shot Image Classification MM ’24, 28 October - 1 November 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] [n. d.]. AIstudio. https://aistudio.baidu.com/aistudio/datasetoverview.
[2] [n. d.]. Mushroom. https://archive.ics.uci.edu/dataset/73/mushroom.
[3] Dafni Anagnostopoulou, George Retsinas, Niki Efthymiou, Panayiotis Paraskevas

Filntisis, and Petros Maragos. 2023. A Realistic Synthetic Mushroom Scenes
Dataset. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2023 - Workshops, Vancouver, BC, Canada, June 17-24, 2023. IEEE, 6282–
6289.

[4] Matt Berseth. 2017. ISIC 2017 - Skin Lesion Analysis Towards Melanoma Detec-
tion. CoRR abs/1703.00523 (2017). arXiv:1703.00523 http://arxiv.org/abs/1703.
00523

[5] Yuanyuan Chen, Xiaoqing Guo, Yongsheng Pan, Yong Xia, and Yixuan Yuan.
2023. Dynamic feature splicing for few-shot rare disease diagnosis. Medical
Image Anal. 90 (2023), 102959. https://doi.org/10.1016/J.MEDIA.2023.102959

[6] Zhengyu Chen, Jixie Ge, Heshen Zhan, Siteng Huang, and Donglin Wang. 2021.
Pareto Self-Supervised Training for Few-Shot Learning. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021.
Computer Vision Foundation / IEEE, 13663–13672. https://doi.org/10.1109/
CVPR46437.2021.01345

[7] Noel C. F. Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi,
Stephen W. Dusza, David A. Gutman, Brian Helba, Aadi Kalloo, Konstantinos
Liopyris, Michael A. Marchetti, Harald Kittler, and Allan Halpern. 2019. Skin
Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the
International Skin Imaging Collaboration (ISIC). CoRR abs/1902.03368 (2019).
arXiv:1902.03368 http://arxiv.org/abs/1902.03368

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
ageNet: A large-scale hierarchical image database. In 2009 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-
25 June 2009, Miami, Florida, USA. IEEE Computer Society, 248–255. https:
//doi.org/10.1109/CVPR.2009.5206848

[9] Qishuai Diao, Yi Jiang, Bin Wen, Jia Sun, and Zehuan Yuan. 2022. MetaFormer:
A Unified Meta Framework for Fine-Grained Recognition. CoRR abs/2203.02751
(2022). https://doi.org/10.48550/ARXIV.2203.02751 arXiv:2203.02751

[10] Deng-Ping Fan, Ge-Peng Ji, Guolei Sun, Ming-Ming Cheng, Jianbing Shen, and
Ling Shao. 2020. Camouflaged Object Detection. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020. Computer Vision Foundation / IEEE, 2774–2784. https://doi.org/10.
1109/CVPR42600.2020.00285

[11] Li Fei-Fei, Robert Fergus, and Pietro Perona. 2007. Learning generative visual
models from few training examples: An incremental Bayesian approach tested
on 101 object categories. Comput. Vis. Image Underst. 106, 1 (2007), 59–70.
https://doi.org/10.1016/J.CVIU.2005.09.012

[12] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup
and Yee Whye Teh (Eds.). PMLR, 1126–1135. http://proceedings.mlr.press/v70/
finn17a.html

[13] Sichao Fu, Qiong Cao, Yunwen Lei, Yujie Zhong, Yibing Zhan, and Xinge You.
2024. Few-Shot Learning With Dynamic Graph Structure Preserving. IEEE Trans.
Ind. Informatics 20, 3 (2024), 3306–3315. https://doi.org/10.1109/TII.2023.3306929

[14] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang,
Hongsheng Li, and Yu Qiao. 2024. CLIP-Adapter: Better Vision-Language Models
with Feature Adapters. Int. J. Comput. Vis. 132, 2 (2024), 581–595.

[15] Zhaopeng Gu, Bingke Zhu, Guibo Zhu, Yingying Chen, Ming Tang, and Jin-
qiao Wang. 2024. AnomalyGPT: Detecting Industrial Anomalies Using Large
Vision-Language Models. In Thirty-Eighth AAAI Conference on Artificial Intelli-
gence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, Michael J.
Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (Eds.). AAAI Press, 1932–1940.
https://doi.org/10.1609/AAAI.V38I3.27963

[16] Qianyu Guo, Huifang Du, Xing Jia, Shuyong Gao, Yan Teng, Haofen Wang,
and Wenqiang Zhang. 2023. Plug-and-Play Feature Generation for Few-Shot
Medical Image Classification. In IEEE International Conference on Bioinformatics
and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023, Xingpeng
Jiang, Haiying Wang, Reda Alhajj, Xiaohua Hu, Felix Engel, Mufti Mahmud,
Nadia Pisanti, Xuefeng Cui, and Hong Song (Eds.). IEEE, 1096–1103. https:
//doi.org/10.1109/BIBM58861.2023.10385845

[17] Qianyu Guo, Haotong Gong, XujunWei, Yanwei Fu, Yizhou Yu, Wenqiang Zhang,
and Weifeng Ge. 2023. RankDNN: Learning to Rank for Few-Shot Learning. In
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-
Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023,
Thirteenth Symposium on Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7-14, 2023, Brian Williams, Yiling Chen,
and Jennifer Neville (Eds.). AAAI Press, 728–736. https://doi.org/10.1609/AAAI.
V37I1.25150

[18] Yunhui Guo, Noel Codella, Leonid Karlinsky, James V. Codella, John R. Smith,
Kate Saenko, Tajana Rosing, and Rogério Feris. 2020. A Broader Study of Cross-
Domain Few-Shot Learning. In Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXVII (Lecture
Notes in Computer Science, Vol. 12372), Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm (Eds.). Springer, 124–141. https://doi.org/10.1007/
978-3-030-58583-9_8

[19] Fusheng Hao, Fengxiang He, Liu Liu, Fuxiang Wu, Dacheng Tao, and Jun Cheng.
2023. Class-Aware Patch Embedding Adaptation for Few-Shot Image Classifica-
tion. In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris,
France, October 1-6, 2023. IEEE, 18859–18869.

[20] Yangji He, Weihan Liang, Dongyang Zhao, Hong-Yu Zhou, Weifeng Ge, Yizhou
Yu, and Wenqiang Zhang. 2022. Attribute Surrogates Learning and Spectral
Tokens Pooling in Transformers for Few-shot Learning. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022. IEEE, 9109–9119.

[21] Wenkai Hu, Guang Yang, Yupeng Li, Weihua Cao, and Min Wu. 2024. Root
Cause Identification of Industrial Alarm Floods Using Word Embedding and
Few-Shot Learning. IEEE Trans. Ind. Informatics 20, 2 (2024), 1465–1475. https:
//doi.org/10.1109/TII.2023.3274223

[22] David P. Hughes and Marcel Salathé. 2015. An open access repository of images
on plant health to enable the development of mobile disease diagnostics through
machine learning and crowdsourcing. CoRR abs/1511.08060 (2015).

[23] Adam Jelley, Amos J. Storkey, Antreas Antoniou, and Sam Devlin. 2023. Con-
trastive Meta-Learning for Partially Observable Few-Shot Learning. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net. https://openreview.net/pdf?id=
6iVJOtr2zL2

[24] Kai Jiang, Wenzhong Guo, Liping Chen, Wenqian Huang, Yiyuan Ge, and Xi-
aoming Wei. 2022. Design and experiment of automatic clip-feeding mechanism
for vegetable-grafting robot. Agriculture 12, 3 (2022), 346.

[25] Tianjun Ke, Haoqun Cao, Zenan Ling, and Feng Zhou. 2023. Revisiting Logistic-
softmax Likelihood in Bayesian Meta-Learning for Few-Shot Classification. In
Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko,
Moritz Hardt, and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/
2023/hash/6cdb2cbb2083477cca5243843d6dad06-Abstract-Conference.html

[26] Zaid Khan, B. G. Vijay Kumar, Samuel Schulter, Xiang Yu, Yun Fu, andManmohan
Chandraker. 2023. Q: How to Specialize Large Vision-Language Models to Data-
Scarce VQATasks? A: Self-Train on Unlabeled Images!. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June
17-24, 2023. IEEE, 15005–15015. https://doi.org/10.1109/CVPR52729.2023.01441

[27] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[28] Jinxiang Lai, Siqian Yang, Wenlong Liu, Yi Zeng, Zhongyi Huang, Wenlong
Wu, Jun Liu, Bin-Bin Gao, and Chengjie Wang. 2022. tSF: Transformer-Based
Semantic Filter for Few-Shot Learning. In Computer Vision - ECCV 2022 - 17th
European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XX
(Lecture Notes in Computer Science, Vol. 13680), Shai Avidan, Gabriel J. Brostow,
Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer,
1–19. https://doi.org/10.1007/978-3-031-20044-1_1

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324. https://doi.org/10.1109/5.726791

[30] Elan Sopher Markowitz, Keshav Balasubramanian, Mehrnoosh Mirtaheri, Sami
Abu-El-Haija, Bryan Perozzi, Greg Ver Steeg, and Aram Galstyan. 2021. Graph
Traversal with Tensor Functionals: A Meta-Algorithm for Scalable Learning.
In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/forum?
id=6DOZ8XNNfGN

[31] Angshuman Paul, Yuxing Tang, Thomas C. Shen, and Ronald M. Summers. 2021.
Discriminative ensemble learning for few-shot chest x-ray diagnosis. Medical
Image Anal. 68 (2021), 101911. https://doi.org/10.1016/J.MEDIA.2020.101911

[32] Fang Peng, Xiaoshan Yang, Linhui Xiao, Yaowei Wang, and Changsheng Xu.
2024. SgVA-CLIP: Semantic-Guided Visual Adapting of Vision-Language Models
for Few-Shot Image Classification. IEEE Trans. Multim. 26 (2024), 3469–3480.
https://doi.org/10.1109/TMM.2023.3311646

[33] Ziyuan Qin, Huahui Yi, Qicheng Lao, and Kang Li. 2023. MEDICAL IMAGE
UNDERSTANDING WITH PRETRAINED VISION LANGUAGE MODELS: A
COMPREHENSIVE STUDY. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https:
//openreview.net/pdf?id=txlWziuCE5W

[34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

9

https://arxiv.org/abs/1703.00523
http://arxiv.org/abs/1703.00523
http://arxiv.org/abs/1703.00523
https://doi.org/10.1016/J.MEDIA.2023.102959
https://doi.org/10.1109/CVPR46437.2021.01345
https://doi.org/10.1109/CVPR46437.2021.01345
https://arxiv.org/abs/1902.03368
http://arxiv.org/abs/1902.03368
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/ARXIV.2203.02751
https://arxiv.org/abs/2203.02751
https://doi.org/10.1109/CVPR42600.2020.00285
https://doi.org/10.1109/CVPR42600.2020.00285
https://doi.org/10.1016/J.CVIU.2005.09.012
http://proceedings.mlr.press/v70/finn17a.html
http://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1109/TII.2023.3306929
https://doi.org/10.1609/AAAI.V38I3.27963
https://doi.org/10.1109/BIBM58861.2023.10385845
https://doi.org/10.1109/BIBM58861.2023.10385845
https://doi.org/10.1609/AAAI.V37I1.25150
https://doi.org/10.1609/AAAI.V37I1.25150
https://doi.org/10.1007/978-3-030-58583-9_8
https://doi.org/10.1007/978-3-030-58583-9_8
https://doi.org/10.1109/TII.2023.3274223
https://doi.org/10.1109/TII.2023.3274223
https://openreview.net/pdf?id=6iVJOtr2zL2
https://openreview.net/pdf?id=6iVJOtr2zL2
http://papers.nips.cc/paper_files/paper/2023/hash/6cdb2cbb2083477cca5243843d6dad06-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6cdb2cbb2083477cca5243843d6dad06-Abstract-Conference.html
https://doi.org/10.1109/CVPR52729.2023.01441
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-031-20044-1_1
https://doi.org/10.1109/5.726791
https://openreview.net/forum?id=6DOZ8XNNfGN
https://openreview.net/forum?id=6DOZ8XNNfGN
https://doi.org/10.1016/J.MEDIA.2020.101911
https://doi.org/10.1109/TMM.2023.3311646
https://openreview.net/pdf?id=txlWziuCE5W
https://openreview.net/pdf?id=txlWziuCE5W


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

MM ’24, 28 October - 1 November 2024, Melbourne, Australia Anon. Submission Id: 1441

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Mod-
els From Natural Language Supervision. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Pro-
ceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang
(Eds.). PMLR, 8748–8763.

[35] Mamshad Nayeem Rizve, Salman H. Khan, Fahad Shahbaz Khan, and Mubarak
Shah. 2021. Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision
Foundation / IEEE, 10836–10846. https://doi.org/10.1109/CVPR46437.2021.01069

[36] Aniket Roy, Anshul Shah, Ketul Shah, Prithviraj Dhar, Anoop Cherian, and Rama
Chellappa. 2022. FeLMi : Few shot Learning with hard Mixup. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
9af2b1d6acf561af9c4cf70d52c7a49d-Abstract-Conference.html

[37] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks
for Few-shot Learning. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 4077–4087. https://proceedings.neurips.cc/paper/2017/hash/
cb8da6767461f2812ae4290eac7cbc42-Abstract.html

[38] Yisheng Song, TingWang, Puyu Cai, Subrota K. Mondal, and Jyoti Prakash Sahoo.
2023. A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
Challenges, and Opportunities. ACM Comput. Surv. 55, 13s (2023), 271:1–271:40.
https://doi.org/10.1145/3582688

[39] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M.
Hospedales. 2018. Learning to Compare: RelationNetwork for Few-Shot Learning.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018. Computer Vision Foundation / IEEE
Computer Society, 1199–1208. https://doi.org/10.1109/CVPR.2018.00131

[40] Songsong Tian, Lusi Li, Weijun Li, Hang Ran, Xin Ning, and Prayag Tiwari. 2024.
A survey on few-shot class-incremental learning. Neural Networks 169 (2024),
307–324. https://doi.org/10.1016/J.NEUNET.2023.10.039

[41] Mei Wang and Weihong Deng. 2022. Oracle-MNIST: a Realistic Image Dataset
for Benchmarking Machine Learning Algorithms. CoRR abs/2205.09442 (2022).

[42] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2021. Generaliz-
ing from a Few Examples: A Survey on Few-shot Learning. ACM Comput. Surv.
53, 3 (2021), 63:1–63:34. https://doi.org/10.1145/3386252

[43] Xiaoping Wu, Chi Zhan, Yu-Kun Lai, Ming-Ming Cheng, and Jufeng Yang. 2019.
IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE, 8787–8796.
https://doi.org/10.1109/CVPR.2019.00899

[44] Jiangtao Xie, Fei Long, Jiaming Lv, Qilong Wang, and Peihua Li. 2022. Joint
Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Clas-
sification. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 7962–7971.
https://doi.org/10.1109/CVPR52688.2022.00781

[45] Hitomi Yanaka, Yuta Nakamura, Yuki Chida, and Tomoya Kurosawa. 2023.
Medical Visual Textual Entailment for Numerical Understanding of Vision-
and-Language Models. In Proceedings of the 5th Clinical Natural Language Pro-
cessing Workshop, ClinicalNLP@ACL 2023, Toronto, Canada, July 14, 2023, Tris-
tan Naumann, Asma Ben Abacha, Steven Bethard, Kirk Roberts, and Anna
Rumshisky (Eds.). Association for Computational Linguistics, 8–18. https:
//doi.org/10.18653/V1/2023.CLINICALNLP-1.2

[46] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. 2020. Few-Shot Learning
via Embedding Adaptation With Set-to-Set Functions. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020. Computer Vision Foundation / IEEE, 8805–8814.

[47] Baoquan Zhang, Xutao Li, Yunming Ye, Zhichao Huang, and Lisai Zhang. 2021.
Prototype Completion With Primitive Knowledge for Few-Shot Learning. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual,
June 19-25, 2021. Computer Vision Foundation / IEEE, 3754–3762. https://doi.
org/10.1109/CVPR46437.2021.00375

[48] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. 2023. DeepEMD:
Differentiable Earth Mover’s Distance for Few-Shot Learning. IEEE Trans. Pattern
Anal. Mach. Intell. 45, 5 (2023), 5632–5648. https://doi.org/10.1109/TPAMI.2022.
3217373

[49] Hongguang Zhang, Piotr Koniusz, Songlei Jian, Hongdong Li, and Philip H. S.
Torr. 2021. Rethinking Class Relations: Absolute-Relative Supervised and Unsu-
pervised Few-Shot Learning. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021. Computer Vision Foundation /
IEEE, 9432–9441. https://doi.org/10.1109/CVPR46437.2021.00931

[50] Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. 2023. Vision-Language
Models for Vision Tasks: A Survey. CoRR abs/2304.00685 (2023). https://doi.org/

10.48550/ARXIV.2304.00685 arXiv:2304.00685
[51] Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai,

Yu Qiao, and Hongsheng Li. 2022. Tip-Adapter: Training-Free Adaption of CLIP
for Few-Shot Classification. In Computer Vision - ECCV 2022 - 17th European
Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXV (Lecture
Notes in Computer Science, Vol. 13695), Shai Avidan, Gabriel J. Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer, 493–510.

[52] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Condi-
tional Prompt Learning for Vision-Language Models. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022. IEEE, 16795–16804.

[53] Xiangyang Zhu, Renrui Zhang, Bowei He, Aojun Zhou, Dong Wang, Bin Zhao,
and Peng Gao. 2023. Not All Features Matter: Enhancing Few-shot CLIP with
Adaptive Prior Refinement. In IEEE/CVF International Conference on Computer
Vision, ICCV 2023, Paris, France, October 1-6, 2023. IEEE, 2605–2615. https:
//doi.org/10.1109/ICCV51070.2023.00246

10

https://doi.org/10.1109/CVPR46437.2021.01069
http://papers.nips.cc/paper_files/paper/2022/hash/9af2b1d6acf561af9c4cf70d52c7a49d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9af2b1d6acf561af9c4cf70d52c7a49d-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/cb8da6767461f2812ae4290eac7cbc42-Abstract.html
https://doi.org/10.1145/3582688
https://doi.org/10.1109/CVPR.2018.00131
https://doi.org/10.1016/J.NEUNET.2023.10.039
https://doi.org/10.1145/3386252
https://doi.org/10.1109/CVPR.2019.00899
https://doi.org/10.1109/CVPR52688.2022.00781
https://doi.org/10.18653/V1/2023.CLINICALNLP-1.2
https://doi.org/10.18653/V1/2023.CLINICALNLP-1.2
https://doi.org/10.1109/CVPR46437.2021.00375
https://doi.org/10.1109/CVPR46437.2021.00375
https://doi.org/10.1109/TPAMI.2022.3217373
https://doi.org/10.1109/TPAMI.2022.3217373
https://doi.org/10.1109/CVPR46437.2021.00931
https://doi.org/10.48550/ARXIV.2304.00685
https://doi.org/10.48550/ARXIV.2304.00685
https://arxiv.org/abs/2304.00685
https://doi.org/10.1109/ICCV51070.2023.00246
https://doi.org/10.1109/ICCV51070.2023.00246

	Abstract
	1 Introduction
	2 Related Work
	2.1 Few-Shot Learning
	2.2 Vision-Language Models
	2.3 Related Datasets

	3 Method
	3.1 Problem Formulation
	3.2 Overview
	3.3 Collaborative Relation Learner
	3.4 Re-representation and Loss Function
	3.5 Class-Adaptive Fine-Tuning Inference

	4 The Proposed Benchmark
	5 Experiments
	5.1 Experiment Setup
	5.2 Comparative Experiments and Analysis
	5.3 Ablation Studies
	5.4 Conclusion

	References

