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Abstract

Enhancing the versatility of pretrained diffusion models through advanced

conditioning techniques is crucial for improving their applicability. We

present APCtrl, a novel conditional image generation approach that formu-

lates the latent zt at timestep t as the projection zt = ProjDt
(zt+1) onto the

denosing set Dt. For conditional control, APCtrl integrates the condition

set Ct, defined by a latent control network Aθ(·, ·). Our method simplifies

conditional sampling to recursive projections zt = ProjIt
◦ ProjDt

(zt+1),

where each projection step integrates both the diffusion and condition

priors. By employing Alternative Projection, our approach offers several

key advantages: 1. Multi-Condition Generation: easily expandable with

additional conditional sets; 2. Model and Sampling Agnosticism: works

with any model or sampling method; 3. Unified Control Loss: simplifies

the management of diverse control applications; 4. Efficiency: delivers

comparable control with reduced training and sampling times. Extensive

experiments demonstrate the superior performance of our method.

1 Introduction

Unconditional diffusion models, first introduced by Ho et al. (2020), laid the foundation for

generative image modeling. Characterized by the latent sequence z0, z1, . . . , zT , they have

significantly advanced the generation of high-fidelity images (Yang et al., 2023a). In this

sequence, zt represents progressively noisier data samples for t ∈ (0, T ] and z0 corresponds

to the true data samples. The forward process introduces noise gradually, transitioning

from zt−1 to zt according to the distribution q(zt|zt−1) := N (zt |
√
αtzt−1, (1−αt)I), where

αt is a constant hyperparameter. The objective of diffusion models is to generate a sample

z0 from the data distribution p(z0), which can be formulated as an optimization problem:

argmaxz0
log p(z0), seeking the optimal z0 that maximizes p(z0).

The distribution p(z0) is not directly accessible. In the reverse process, the diffusion models

offer an approximation through the marginal distribution pθ(z0). The model parameters θ
are optimized using the Evidence Lower Bound (ELBO), which serves as a lower bound

for log pθ(z0). Specifically, we have: log pθ(z0) ≥ Eq(z1:T |z0)

[
log pθ(z1:T )

q(z1:T |z0)

]
. The right ELBO

term can be further expanded as follows: Eq(z1 |z0 )
[log pθ(z0|z1)]−DKL(q(zT |z0) ∥ pθ(zT ))−∑

t>1
Eq(zt|z0) [DKL(q(zt−1|zt, z0) ∥ pθ(zt−1|zt))]. Thus, the goal of the diffusion model be-

comes to maximize the reverse transition distribution pθ(zt|zt+1), which in turn maximizes

log pθ(z0). Consequently, sampling from the reverse transition distribution pθ(zt|zt+1) can

then be expressed as Equation (1), where ϵ ∼ N (0, I) and Sθ(zt, t) is the neural network

designed to predict the score function ∇zt log p(zt) (Song et al., 2020b).

zt =
1

√
αt+1

zt+1 +
(1− αt+1)√

αt+1
Sθ(zt+1, t+ 1) +

√
(1− αt+1)(1− ᾱt)

1− ᾱt+1
ϵ (1)

Unconditional diffusion models was further extended by text-conditional models (Rombach

et al., 2022; Yang et al., 2024b). However, these models faced the inherent challenge of
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Table 1: A Feature-Rich Approach for Conditional Image Generation. APCtrl boasts an

array of beneficial features, surpassing the capabilities of previous methods.

Methods

Latent Controlled by Backbones Sampling Unified Control

Control Multi-Condition Agnosticism Agnosticism Control Loss on Sampling

Control-on-Training

ControlNet (Zhang et al., 2023) ✔ ✔ ✘ ✔ ✘ ✘
ControlNet++ (Li et al., 2024b) ✔ ✔ ✘ ✔ ✘ ✘
T2I-Adapter (Mou et al., 2024) ✔ ✔ ✘ ✔ ✘ ✘
UniCtrllNet (Zhao et al., 2024) ✔ ✔ ✘ ✔ ✘ ✘
UniControl (Qin et al., 2023) ✔ ✔ ✘ ✔ ✘ ✘
GLIGEN (Li et al., 2023) ✔ ✘ ✘ ✔ ✘ ✘

Control-on-Sampling

UniGuid (Bansal et al., 2024) ✘ ✘ ✔ ✘ ✘ ✔
DSG (Yang et al., 2024c) ✘ ✘ ✔ ✘ ✘ ✔
FreeDoM (Yu et al., 2023) ✘ ✘ ✔ ✘ ✘ ✔

APCtrl (Ours) ✔ ✔ ✔ ✔ ✔ ✔

accurately capturing all image details from text descriptions alone. To address this, diffusion

models have incorporated additional conditioning signals, such as bounding boxes (Li et al.,

2023; Yang et al., 2023b; Zhao et al., 2024), reference images (Li et al., 2024a; Ruiz et al., 2023),

and segmentation maps (Zhang et al., 2023; Bansal et al., 2024; Zhao et al., 2024; Qin et al.,

2023), offering more granular control over the generated images.

Conditional image generation falls into two camps: methods that integrate control net-

works, and those that adjust the inference process for direct control. Control-on-Training
approaches like ControlNets (Zhang et al., 2023) train networks to refine latent spaces and

match images to attributes, incurring retraining costs due to feature space inconsistencies.

On the other hand, Control-on-Sampling techniques, such as Universal Guidance (Bansal

et al., 2024), use pre-trained models to guide sampling, offering flexibility without re-

training. However, this comes with potential downsides, such as suboptimal gradient

estimations that may degrade sampling quality and prolong sampling times.

APCtrl solves these challenges. Let D0 denote the set of natural images, and Dt represent

the noisy versions, generated by adding noise to D0, such that Dt := {zt | zt =
√
ᾱtz0 +√

1− ᾱtϵ, z0 ∈ D0} with ᾱt =
∏t

i=1 αi. The denoising projection zt = ProjDt
(zt+1), as

defined by Equation (1), maps a noisy point zt+1 ∈Dt+1 to a less noisy point zt ∈Dt. The

diffusion generation process is thus a sequence of such projections. To enhance control, we

introduce a condition set Ct, which defines points that satisfy specific constraints at each

step t. The intersection It := Dt ∩ Ct identifies points that conform to both Dt and Ct.

By defining the intersection projection ProjIt
(·), conditional generation is redefined as a

recursive sequence of projections zt = ProjIt
◦ ProjDt

(zt+1), as shown in Algorithm 1.

Our method lies in the condition projection ProjCt
(·), implemented through a latent con-

trol network that imposes constraints and calculates projections onto the conditional sets.

This approach offers several key advantages: enhanced adaptability to diverse backbones,

more precise and efficient synthesis via latent control, and a unified MSE latent control loss

applicable to numerous conditions. By applying Alternative Projection with the denoising

projection ProjDt
(·) and the condition projection ProjCt

(·), we compose the intersection

projection ProjIt
(·). This method outperforms other sampling techniques. A key feature is

the straightforward implementation of multi-condition control via projections onto inter-

sections of condition sets. Table 1 presents a detailed comparison, highlighting how APCtrl

surpasses previous methods with its array of beneficial features.

2 Related Works

Alternative Projection is a technique with a long-standing history. It aims to find a

point within the intersection of multiple sets through a sequence of successive projec-

tions onto each set, and was seminally studied by Von Neumann (1951), and has since

been applied in a myriad of contexts (Deutsch, 1992). Numerous variants, such as re-

laxed projections (Agmon, 1954; Motzkin & Schoenberg, 1954; Gubin et al., 1967; Brègman,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Dt+1 Dt Dt−1

It+1 It It−1

ProjDt+1 ProjDt
ProjDt−1

ProjDt−2

P
r
o
j
I
t
+

1

P
r
o
j
I
t

P
r
o
j
I
t
−

1

P
r
o
j D
t+

1

P
r
o
j D
t

P
r
o
j D
t−

1

P
r
o
j D
t−

2

Figure 1: APCtrl Sampling: APCtrl trans-

forms traditional diffusion sampling into a

recursive projection, as illustrated in blue in

the figure. It integrates easily, needing just

one extra line of code, highlighted in red

and noted as line 5 in Algorithm 1.

Algorithm 1 APCtrl Sampling

Input: Initial noise zT , denoising and condition set Dt and

Ct.

1 for t = T − 1 to 1 do
2 zt = ProjDt

(zt+1)

3 if conducting APCtrl Sampling then
4 It = Dt ∩ Ct

5 zt = ProjIt
(zt), which be recursively computed by

for n=1 to N do
zt = P̂rojIt

(zt) in Equation (9)

end

6 end
7 end

Output: zt

1965), inexact projections (Kruger & Thao, 2016), Dykstra’s algorithm (Boyle & Dykstra,

1986), Douglas–Rachford splitting (Douglas & Rachford, 1956; Lions & Mercier, 1979),

ADMM (Boyd, 2010), and generalized alternating projections (Fält & Giselsson, 2024), have

been proposed.

Diffusion Models (Croitoru et al., 2023; Yang et al., 2023a) constitute a class of models that

incrementally introduce noise to data in a controlled manner, with the goal of learning to

reverse this process for generating samples. The current research landscape is primarily

dominated by three formulations: Denoising Diffusion Probabilistic Models (Ho et al., 2020;

Nichol & Dhariwal, 2021; Sohl-Dickstein et al., 2015), Score-Based Generative Model (Song

& Ermon, 2019; 2020), and Stochastic Differential Equations (Song et al., 2021; 2020b). The

interconnections between them are elucidated by Luo (2022) and Chan (2024).

Control-on-Training takes supplementary networks to modify the latent representations of

diffusion models according to particular image conditions. Researchers (Bansal et al., 2023;

Nichol et al., 2022; Rombach et al., 2022) have expanded Sθ(zt, t) in Equation (1) to include

both text and image conditions. A notable example of this approach is ControlNet (Zhang

et al., 2023), which has become a significant focus within the field. The broader community

has contributed to this area by sharing a variety of ControlNets trained across diverse

input conditions. Other prominent examples include ControlNet++ (Li et al., 2024b), T2I-

Adapter (Mou et al., 2024), UniControlNet (Zhao et al., 2024), UniControl (Qin et al., 2023),

GLIGEN (Li et al., 2023), and Ctrl-Adapter (Lin et al., 2024).

Control-on-Sampling utilizes frozen pre-trained models, with modifications to the sam-

pling method to reconstruct an image from a given guidance. Prior work has approached

this task with various constraints (Dhariwal & Nichol, 2021; Kawar et al., 2022; Wang et al.,

2022; Chung et al., 2023; Lugmayr et al., 2022; Chung et al., 2022; Graikos et al., 2022). For

instance, Dhariwal & Nichol (2021) trained a classifier on images of different noise scales to

serve as the guidance and incorporated the classifier’s gradients into the sampling process.

However, classifiers for noisy images are often domain-specific and not generally available.

To address the challenge, several state-of-the-art sampling methods have been introduced,

including DSG (Yang et al., 2024c), UniGuidance (Bansal et al., 2024), FreeDoM (Yu et al.,

2023), MultiDiffusion (Bar-Tal et al., 2023), and ReSample (Song et al., 2023).

3 APCtrl Sampling

Diffusion generation involves the successive application of the projection zt = ProjDt
(zt+1),

as outlined in Equation (1). To ensure that the denoised point from Dt also satisfies the

constraint from Ct, i.e. to maintain zt within the intersection It = Dt ∩ Ct, we apply

the intersection projection ProjIt
(·) to ProjDt

(zt+1). This results in the iterative formula

zt = ProjIt
◦ProjDt

(zt+1), detailed in Algorithm 1 and depicted in Figure 1. Building upon

the definition of ProjDt
(zt+1) from Equation 1, this section is dedicated to explaining the

use of Alternative Projection to implement the intersection projection ProjIt
(·).
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"a quaint desk
lamp is on the
wooden table"

(a) Sketch

"aerial view of
highway at night,
long exposure"

(b) Canny Edge

"a modern
staircase made of

the polished wood"

(c) M-LSD Line

"a ship in the
ocean during a
vibrant sunset"

(d) HED Edge

"a cute student
wearing coat
behind table"

(e) Skeleton

"a small lovely
cat is sitting on a

long couch"

(f) Object Location

"landscape
photography of a

long bridge"

(g) Depth Map

"product shot of
a pink cupcake on

the table"

(h) Normal Map

"living room
render grim, sun

rays coming"

(i) Segmentation

"an artistic
paintings of the

tree"

(j) Style Guidance

Figure 2: Image Generation with Single Control: APCtrl facilitates the integration of various

conditions into diffusion models. Each subfigure is structured with the prompt text in the

first row, the conditional image control in the second row, and the resulting controlled

generation in the third row.

3.1 Alternative Projection

The alternative projection method is an iterative process used to identify a point that belongs

to the intersection of two sets, S1 and S2. Although projecting onto each set separately is

easy, projecting directly onto their intersection S1 ∩S2 is challenging. Let the projection

operators onto S1 and S2 be denoted by ProjS1
and ProjS2

, respectively. The alternative

projection method is straightforward: beginning with any point, the vector x is iteratively

updated by applying the composition of projections, such that z = ProjS1
◦ ProjS2

(z).

3.2 From Latent Control to Latent Control

Pixel Control, used in previous Control-on-Sampling methods, computes the controlled

intermediate latent code zt = argminz L(Ic,B(D(z))) with the initial point Z(zt+1) :=
√
ᾱt+1

−1
(zt+1 + (1− ᾱt+1)Sθ(zt+1, t+ 1)). In this formulation, Z(zt+1) acts as a denoiser

at time step t+ 1 for the latent variable at time step 0, Ic represents the control image, such

as segmentation, depth map, or HED. D(·) is the decoder of the diffusion model, and B(·)
is the pre-trained condition network, such as networks for segmentation, depth estimation,

or HED edge. The metric L(·, ·) can be any loss function, such as MSE for depth or HED

images similarity, or Cross-Entropy for segmentation similarity.

Latent Control offers a paradigm shift pixel-level manipulation to operations within the

latent space. This shift to a lower-dimensional and more compact latent space, allows for

more precise control over image generation. Additionally, it simplifies the optimization

process by eliminating the need for a decoder D(·), thus enhancing efficiency. The method

specifically utilizes an encoder E(·) in conjunction with a latent control network Aθ(·, ·), to

determine the controlled intermediate latent representation zt.

zt = argminz ∥E(Ic)−Aθ(z, t)∥2 solving with the initial point ProjDt
(zt+1). (2)

4
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For a well-trained model Aθ(·, ·), the approximation should hold: ∥E(Ic) −Aθ(zt, t)∥2 ≈
L(Ic,B(D(z0|t))),which allows us to use the latent control zt = argminz ∥E(Ic)−Aθ(z, t)∥2
as a substitute for the pixel-level control zt = argminz L(Ic,B(D(z))). This applies to

various types of control, across different control types such as segmentation guidance,

depth map guidance and HED edge guidance.

Training the Latent Control Network focuses on refining the operator Aθ(·, ·). This oper-

ator is built upon the U-Net architecture of the stable diffusion model, with initialization

from the SDv1.5 checkpoint. The training process is conducted as Equation (3). During

optimization, two primary objectives are achieved: image denoising and feature transla-

tion. Denoising improves the latent representation zt by reducing noise, thereby enhancing

data clarity and adherence to constraints. Meanwhile, feature translation converts denoised

image features into control-relevant features, which are essential for specific improvements.

The efficacy of diffusion models in image translation has been demonstrated in previous

work (Parmar et al., 2024). For further details, please refer to Appendix A.

min
θ
∥E(Ic)−Aθ(zt, t)∥2 (3)

Feasible Sets encompass all points fulfilling specific criteria. APCtrl involves two kinds of

feasible sets: the denosing set Dt and the condition set Ct. Let D0 denote the set of natural

images, the denosing set at time step t can be expressed as

Dt = {zt | zt =
√
ᾱtz0 +

√
1− ᾱtϵ, z0 ∈D0} (4)

with the inclusion relation Dt ⊆ Dt+1. Upon the successful training of Aθ(z, t), for any

point z within the feasible set, the loss ∥Aθ(z, t)−E(Ic)∥2 is expected to be minimal. Thus,

with δ as a predefined threshold, the condition set at time step t can be formulated as

Ct = {z | ∥E(Ic)−Aθ(z, t)∥2 < δ} (5)

3.3 Intersection Projection Implementation

In this section, we reveal that the intersection projection ProjIt
(zt) can be effectively com-

puted through the iterative application of the joint up/down projection P̂rojIt
(zt).

Up/Down Projections are integral to our method. We will introduce two down projections

and one up projection here. Specifically, the denoising projection ProjDt
(·) is defined as

ProjDt
(zt+1) =

1
√
αt+1

zt+1 +
(1− αt+1)√

αt+1
Sθ(zt+1, t+ 1) +

√
(1− αt+1)(1− ᾱt)

1− ᾱt+1
ϵ (6)

in accordance Equation (1). This operator serves to map elements from the set Dt+1 to the

set Dt. According to Equation (2), we define the condition projection as

ProjCt
(zt+1) = argmin zt∥E(Ic)−Aθ(zt, t)∥2 solving with initial point zt+1. (7)

This projection is also considered as a mapping from Dt+1 to Dt. Collectively, these two

projections are termed ‘Down Projections’ due to their index decreasing from t+ 1 to t.
Conversely, we introduce an ‘Up Projection’, which maps a point zt from Dt into Dt+1:

ProjDt+1
(zt) =

√
αt+1zt +

√
1− αt+1ϵ (8)

Joint Up/Down Projection P̂rojIt
(zt) is devised to calculate ProjIt

(·). For the computation

of ProjIt
(zt), we define the projection P̂rojIt

(zt) as:

P̂rojIt
(zt) = ProjDt

◦ ProjDt+1
◦ ProjCt

◦ ProjDt+1
(zt) (9)

This equation recursively projects onto the intersection of sets by leveraging the subset

relationship Dt ⊆ Dt+1, facilitating convergence towards It = Dt ∩ Ct. The result is a

point that lies within bothCt andDt. Thus, employing Alternative Projection, we iteratively

obtain the value of ProjIt
(zt) through the repeated application of zt = P̂rojIt

(zt) over N

iterations, as illustrated in Algorithm 1. For more details, please refer to Appendix B.
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"a tumbler and a vase with flowers on a polished
wooden table against a neutral-colored wall"

SD + Two Conditional Feasible Sets

"a cool old man wearing a tailored suit is walking
leisurely down a trail in a picturesque park"

ControlNet + One Conditional Feasible Set

Figure 3: Image Generation with Multiple Controls: APCtrl incorporates multiple con-

ditions into diffusion models. To showcase its capabilities, we present two illustrative

examples, each detailed in dedicated sections of the figure. The left example demonstrates

the fusion of two conditional sets. The right example leverages ControlNet to project onto

the feasible space. Each subfigure includes the prompt text at the top, followed by rows for

conditional image controls, concluding with the controlled generation results at the bottom.

4 Experiments

In this section, we provide a comprehensive evaluation of our method through both quanti-

tative and qualitative analyses, demonstrating its effectiveness. Additionally, we highlight

its versatility by showcasing compatibility with a range of diffusion backbones and sam-

plers. Finally, we underscore the efficiency of our approach.

4.1 Experimental Setup

We utilize SDv1.5, a prevalent checkpoint, as the backbone for constructing latent control

networks. This section details the latent control networks’ training and elucidates the

nuances of APCtrl sampling.

Latent Control Networks Training: Our model utilizes the identical U-Net architecture

found in SDv1.5 and was initialized using the SDv1.5 checkpoint. The training process

was conducted for fewer than 24 GPU hours on a single NVIDIA 3090 GPU. We employed

approximately 118,000 images from the COCO2017 dataset (Lin et al., 2014) across various

tasks. For human pose estimation, we specifically selected a subset of around 6,500 images

from the COCO2017 dataset, concentrating on the “people” category. Additionally, for

Style Guidance, we incorporated approximately 81,000 images from the Wiki-Art dataset.

APCtrl Sampling: A multitude of sampling strategies, including DDPM (Ho et al., 2020),

DDIM (Song et al., 2020a), and LCM (Luo et al., 2023), can be applied to stable diffusion

models. These strategies can be unified by the concept of recursive projection, expressed as

zt = ProjDt
(zt+1). Consequently, ProjIt

(·) is able to integrate with all of these approaches

to form our APCtrl sampling based on Algorithm 1.

4.2 Conditional Generation Results

APCtrl is adept at integrating a diverse set of conditions directly into the image generation

process of diffusion models, offering a framework for sophisticated control over the gen-

eration outcomes. To showcase this capability, we demonstrate ten single-condition cases

in Figure 2, spanning a spectrum of techniques from Canny edge (Canny, 1986), M-LSD

line (Gu et al., 2022), HED edge (Xie & Tu, 2015), Skeleton (Cao et al., 2017), Object Loca-

6
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"a luxurious handbag on the padded armchair"

Condition1 Condition2 ControlNet ControlNet++ T2I-Adapter

"a vibrant beautiful flower"

DDPM DDIM LCM

Figure 4: Compatibility Demonstration for Different Diffusion Backbones and Samplers.

In left part, APCtrl introduces Condition 1, while the conditional diffusion backbone of

the other model introduces Condition 2. The right part shows the generation results using

DDPM (Ho et al., 2020), DDIM (Song et al., 2020a), and LCM (Luo et al., 2023).

Table 2: Quantitative Comparison for Controllable Generation on Single Conditions. The

best results are in bold. “-” indicates that the method does not provide a public model.

Method Depth Canny HED M-LSD Segmentation Normal Skeleton Location Sketch

ControlNet 19.3801 16.5297 19.9832 19.7612 20.7019 27.8210 57.4144 - -

ControlNet++ 17.4087 20.1109 15.8372 - 24.3453 - - - -

T2I-Adapter 23.8945 17.0756 - - 21.7609 - 34.3569 - 28.8883

FID↓ UniCtrlNet 24.9604 17.9107 17.4471 27.7329 22.7066 - 66.5560 - 24.0166
UniControl 24.2885 18.9211 19.2913 - 29.8068 29.5817 40.7635 29.6951 -

GLIGEN 23.2859 24.8351 26.3622 - 27.3867 27.6916 53.2974 23.1426 -

APCtrl 25.0148 25.3836 24.7542 26.9950 25.1360 27.4390 43.5083 33.8875 26.6784

ControlNet 0.2840 0.2897 0.2870 0.2843 0.2838 0.2730 0.2610 - -

ControlNet++ 0.3061 0.3085 0.3008 - 0.2997 - - - -

T2I-Adapter 0.2990 0.3045 - - 0.2956 - 0.3111 - 0.2708

CLIP-scores↑ UniCtrlNet 0.3017 0.3044 0.3039 0.2873 0.3052 - 0.2795 - 0.2927

UniControl 0.3063 0.3032 0.2997 - 0.3069 0.2967 0.3089 0.2974 -

GLIGEN 0.2979 0.2966 0.2806 - 0.2854 0.2718 0.2615 0.2762 -

APCtrl 0.2952 0.3029 0.3035 0.2951 0.2989 0.2943 0.2920 0.2868 0.3006
ControlNet 5.1861 5.2112 5.2536 5.3072 5.2954 5.0815 5.2418 -

ControlNet++ 5.2945 5.1216 5.1125 - 4.9270 - - - -

T2I-Adapter 5.0973 5.1213 - - 4.9737 - 5.2956 - 4.8516

CLIP-acs ↑ UniCtrlNet 5.0129 5.0010 5.0048 4.9704 5.0557 - 4.9568 - 5.0048

UniControl 5.3498 5.1650 5.1683 - 5.3920 5.1061 5.4802 5.2630 -

GLIGEN 5.1342 5.0485 4.9547 - 4.9362 4.7384 4.8970 5.3708 -

APCtrl 5.4225 5.4264 5.4575 5.4341 5.3905 5.4284 5.4794 5.3977 5.4730
MSE↓ SSIM↑ SSIM↑ SSIM↑ mIoU↑ MSE↓ mAP↑ mAP↑ SSIM↑

ControlNet 88.9629 0.4376 0.5845 0.7552 0.4223 86.8804 0.4413 -

ControlNet++ 86.7270 0.5386 0.6907 - 0.5481 - - - -

T2I-Adapter 94.5548 0.3984 - - 0.2339 - 0.4979 - 0.3756

Controllability UniCtrlNet 99.3874 0.4679 0.6159 0.7250 0.3037 - 0.2046 - 0.6704
UniControl 88.8402 0.5340 0.3614 - 0.3273 104.1840 0.2463 0.2731 -

GLIGEN 81.1289 0.3917 0.4094 - 0.2481 90.3527 0.1817 0.2418 -

APCtrl 86.6756 0.4412 0.4752 0.7793 0.3916 70.3443 0.4043 0.2563 0.6118

tion (Redmon et al., 2016), Depth Map (Yang et al., 2024a), Normal Map (Vasiljevic et al.,

2019), Segmentation (Cheng et al., 2022), Style Guidance (Radford et al., 2021). These cases

serve to illustrate the versatility of APCtrl in handling different conditional inputs.

Additionally, APCtrl can be applied to multiple condition generation, which typically in-

volve two strategies. The first strategy, as shown in the left part of Figure 3, involves

augmenting the condition set and computing the projection function, denoted as ProjIt
(·),

where It is defined as the intersection of Dt and Ct, with Ct being redefined as the in-

tersection of multiple condition sets, expressed as Ct =
⋂N

i=1 C
(i)
t . We can then extend

Equation (9) to calculate the updated projection ProjIt
(·). The alternative method, as de-

picted in the right part of Figure 3, involves utilizing ControlNet to define the projection onto

Dt. Given that ControlNet includes a control mechanism, it can be effectively integrated

with other constraints defining the condition set.

7
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Condition ControlNet ControlNet++ T2I-Adapter UniCtrlNet UniControl GLIGEN Ctrl-Adapter APCtrl

Figure 5: Visual Comparison of Single Condition for Control-on-Training Methods. The

prompt for each row is “a book shelf”, “a groot toy”, and “brown wooden dock near

lake”. Although our method is a Control-on-Sampling approach that doesn’t necessitate

retraining the control network, the conditional results of Segmentation, Canny Edge, and

Depth Map, are competitive with other methods.

4.3 Compatibility For Different Diffusion Backbones and Samplers

Condition FreeDoM DSG UniGuid APCtrl

Figure 6: Visual Comparison of Single Condition for

Control-on-Sampling Methods. The current Control-

on-Sampling methods do not provide the same vari-

ety of conditions as Control-on-Training methods, as

shown in Figure 5. In this comparison, we focus on two

prevalent scenarios, Segmentation and Style Guidance.

APCtrl is compatible with any

diffusion model that utilizes the

same encoder E(·) as adopted in

Equation 3. This compatibility

is exemplified in the left side of

Figure 4, where APCtrl is inte-

grated with models such as Con-

trolNet (Zhang et al., 2023), Con-

trolNet++ (Li et al., 2024b), and

T2I-Adapter (Mou et al., 2024).

In these integrations, APCtrl sup-

plies Condition 1, complemented

by Condition 2 from the respective

diffusion backbones.

As per Algorithm 1, APCtrl in-

tegrates an intersection projec-

tion ProjIt
(·) into the diffusion

model’s reverse process, enhanc-

ing it without altering the original

computations. This integration thus is sampling agnosticism, allowing APCtrl to be ver-

satile with various sampling techniques. The right side of Figure 4 illustrates APCtrl’s

application and effectiveness with different sampling methods, including DDPM (Ho et al.,

2020), DDIM (Song et al., 2020a), and LCM (Luo et al., 2023). These examples underscore

APCtrl’s adaptability across a range of diffusion model sampling approaches.

4.4 Quantitative and Qualitative Comparison

Quantitative Evaluation: Our quantitative assessment is conducted on the COCO2017 (Lin

et al., 2014) validation set at a 512 × 512 resolution. This dataset comprises 5000 images,

each with multiple captions. For our evaluation, we randomly select one caption per

image, yielding 5000 generated images. Specifically, for the skeleton, we focused on the

"people" category and selected2900 images. All methods employ 20 DDIM steps for fast

evaluation. We evaluate generation quality using FID (Heusel et al., 2017), CLIP text-

image score (Radford et al., 2021), CLIP aesthetic score (Schuhmann et al., 2022). We also

evaluate controllability using SSIM(Structural Similarity), mAP(mean Average Precision),

8
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"a stone castle in the
cloud"

"a jeep on the snow
field"

"an artistic painting
of woman"

prompt Condition 1 Condition 2 ControlNet T2I-adapter UniControl UniControlNet APCtrl

Figure 7: Comparison for Controllable Generation on Multiple Conditions. Control-

Net (Zhang et al., 2023), T2I-Adapter (Mou et al., 2024), UniControl (Qin et al., 2023),

UniControlNet (Zhao et al., 2024), and APCtrl combine two conditions to generate the final

image. These methods initially lack style guidance capabilities, but integrating APCtrl

provides this functionality to both. The results are demonstrated in the bottom row

MSE(Mean Squared Error), mIoU(Mean Intersection over Union). We take these metrics to

compare the conditions extracted with the natural images (ground truth) with the generated

images and report statistical data in Table 2.

Table 2 enumerates six Control-on-Training methods: ControlNet (Zhang et al., 2023), Con-

trolNet++ (Li et al., 2024b), T2I-Adapter (Mou et al., 2024), UniControlNet (Zhao et al.,

2024), UniControl (Qin et al., 2023), and GLIGEN (Li et al., 2023). The exclusion of Control-

on-Sampling methods is due to their inability to uniformly address all presented conditions

and the impracticality of their long inference times for 5,000 images. Notably, APCtrl stands

as the pioneering Control-on-Sampling method capable of handling the full spectrum of

conditional generation cases associated with Control-on-Training methods. The quantita-

tive analysis in the table demonstrates our model’s superiority over existing approaches in

performance metrics—FID, CLIP-score, and CLIP-acs—and controllability, as evidenced in

the respective rows and the Controllability column, across the majority of conditions.

Qualitative Evaluation: We enrich our analysis with qualitative comparisons of single and

multi-condition controls, as depicted in Figures 5, 6, and 7. In Figure 5, seven Control-

on-Training methods—ControlNet++ (Li et al., 2024b), T2I-Adapter (Mou et al., 2024), Uni-

ControlNet (Zhao et al., 2024), UniControl (Qin et al., 2023), GLIGEN (Li et al., 2023),

and Ctrl-Adapter (Lin et al., 2024)—exhibit strong performance in Segmentation, Canny

Edge, and Depth Map conditions. Our method also shows competitive alignment with the

input conditions. To the best of our knowledge, APCtrl is a groundbreaking Control-on-

Sampling method, capable of delivering the full range of condition controls associated with

Control-on-Training methods. For more visual results, please refer to the Appendix B.

For Control-on-Sampling methods, only UniGuidance (Bansal et al., 2024) and FreeDoM (Yu

et al., 2023) results are featured due to MultiDiffusion’s specialization in image merging (Bar-

Tal et al., 2023) and ReSample’s (Song et al., 2023) focuses on solving linear inverse problems.

Figure 6 documents the generation results for Segmentation and Style Guidance conditions

from UniGuidance, FreeDoM, and our APCtrl.

Given the limitations of GLIGEN and Uni-Guidance in multi-condition scenarios and the

restricted conditions of ControlNet++, our multi-condition comparison is narrowed down

to ControlNet, T2I-Adapter, UniControlNet, and UniControl, as shown in Figure 7. APCtrl’s

performance in multi-condition tasks is comparable to these Control-on-Training methods.

Originally lacking in style guidance for the four methods, the integration with APCtrl has

unlocked this capability, as evidenced in the figure’s bottom row, highlighting APCtrl’s

seamless integration and multi-condition generation capabilities when paired with these

methods. For more visual results, please refer to the Appendix C.

9
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Table 3: Efficiency Comparison. APCtrl achieves a balance between training efficiency

and sampling speed. Compared to Control-on-Training methods, it requires minimal

training investment. When compared to Control-on-Sampling methods, APCtrl provides

accelerated sampling.

Method

Control-on-Training Control-on-Sampling

ControlNet ControlNet++ T2I-Adapter UniCtrlNet UniControl GLIGEN FreeDom DSG UniGuid APCtrl

Training (GPU Hours) 500 60 192 6900 5000 1000 - - - 20

Sampling (Seconds) 3 2 2 4 5 7 115 122 4510 13

4.5 Efficiency Comparison

This section is devoted to compare the efficiency of training and sampling. The latent

control network in APCtrl projects the image space onto the conditional space, aligning it

with the encoded constraints E(Ic). This method is significantly different from Control-

on-Training, as we believe that working with constraint spaces is less complex than the

refinement processes in Control-on-Training. This suggests that APCtrl should require less

training time, as indicated in Table 3. We observe that ControlNet++ requires only 60 hours

because it fine-tunes from a ControlNet checkpoint. The control function of APCtrl is also

applied during the sampling phase. It is essential to compare APCtrl’s sampling efficiency

with that of Control-on-Sampling methods. Thanks to the use of Alternative Projection,

APCtrl notably decreases sampling time, as demonstrated in the last line of Table 3. This

makes APCtrl a promising alternative, offering a favorable compromise for both training

and sampling phases.

4.6 Impact of Iteration Count on Up/Down Alternative Projections

(a) Cond (b) N = 1 (c) N = 3 (d) N = 30

Figure 8: Visualization For iteration Count N

In Algorithm 1, we carry outN iterations of

the Joint Up/Down Projection P̂rojIt
(·), fol-

lowing the definition given in Equation 9.

When N is small, the resulting images may

not align with the desired conditions, as

evidenced in Figure 8b. Conversely, a large

N can lead to images that meet the condi-

tions but display pronounced color discrep-

ancies, diminishing their aesthetic quality,

as shown in Figure 8d. Striking the optimal

balance with N ensures both conditional fi-

delity and visual appeal, as demonstrated

in Figure 8c.

5 Conclusions

Achieving controllable generation remains one of the significant challenges in diffusion

models. We propose a novel direction to address this challenge. Our approach begins with

reinterpreting the diffusion sampling process as a series of recursive projections onto the

denosing set, denoted as Dt. Consequently, a conditional control diffusion model can be

viewed as a sequence of recursive projections onto the intersection of feasible sets, Dt ∩Ct,

where Ct represents the condition set. We employ an alternative projection technique to

effectively implement these projections onto the intersection set Dt∩Ct. This methodology

offers several distinct advantages over previous efforts: 1. Multi-Condition Generation:

Multi-condition generation can be easily implemented. 2. Model and Sampling Agnosti-

cism: APCtrl maintains agnosticism regarding both the underlying model backbones and

the sampling process. 3. Unified Control Loss: It allows for a unified control loss, facili-

tating the management of various control applications. 4. Efficiency: APCtrl significantly

reduces both training and sampling times. We have conducted a comprehensive evaluation

of our framework, yielding state-of-the-art results.
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A Appendix: Details for Training latent control network

Our implementation, including all training and sampling files as well as the checkpoint,
will be released upon acceptance of our paper. Briefly, our code is adapted from the Hug-

ging Face Diffusers repository, specifically from the train_text_to_image.py script, which

can be found at https://github.com/huggingface/diffusers. In this section, we detail the

key components of the code responsible for constructing and training the latent control

network Aθ(·, ·).

A.1 building Model code

from diffusers import UNet2DConditionModel

# Initialize the A model (UNet) from pretrained models
A_model = UNet2DConditionModel.from_pretrained(

"runwayml/stable-diffusion-v1-5", subfolder="unet"
)

A.2 Training code

from diffusers import AutoencoderKL, UNet2DConditionModel

# Load the VAE model using the default configuration
vae = AutoencoderKL.from_pretrained(

"runwayml/stable-diffusion-v1-5", subfolder="vae"
)

# Set up the optimizer for the A model
optimizer = torch.optim.AdamW(

A_model.parameters(), lr=1e-5
)

for batch in dataloader:

...

# Encode the ground truth image to the latent space
latents = vae.encode(ground_truth_image)

# Add noise to the latents
noisy_latents = noise_scheduler.add_noise(

latents, noise, timesteps)

# Predict the conditionial latents from noisy latents
pred_latents = A_model(

noisy_latents, timesteps)

# Encode the condition image to the latent space
cond_latents = vae.encode(condition_image)

# Calculate the loss
loss = F.mse_loss(pred_latents_pred, cond_latents)

...
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B Appendix: Details for APCtrl Sampling

B.1 Detailed Implementation for Algorithm 1

In this section, we delve into the specifics of APCtrl sampling as encapsulated by Algo-

rithm 1. This algorithm outlines the step-by-step procedure for implementing our novel

approach to conditional diffusion sampling, which leverages the power of latent control

networks and alternative projections to achieve sophisticated image generation. The de-

tails provided here will walk through the algorithm’s operations, explaining how each step

contributes to the final output, ensuring a clear understanding of the methodology and its

advantages over traditional approaches.

Based on the discussion in our paper, we have outlined the steps and principles of our

method.

ProjDt+1
(zt) =

√
αt+1zt +

√
1− αt+1ϵ

ProjDt
(zt+1) =

1
√
αt+1

zt+1 +
(1− αt+1)√

αt+1
Sθ(zt+1, t+ 1) +

√
(1− αt+1)(1− ᾱt)

1− ᾱt+1
ϵ

ProjCt
(zt+1) = argminzt

∥Aθ(zt, t)− E(Ic)∥2 solving with initial point zt = ProjDt
(zt+1)

Note that ProjCt
(zt+1) can solved by gradient decent. Considering these projections, they

enable us to complete Algorithm 1 as follows:

Algorithm 2 APCtrl Sampling

Input: Initial noise zT Diffusion Model Zθ(zt, t) Latent Control Network Aθ(zt, t) En-

coder E Condition Ic step size γ
8 Operator ProjDt+1

(zt):
9 return √αt+1zt +

√
1− αt+1ϵ

10 Operator ProjDt
(zt+1):

11 return 1√
αt+1

zt+1 +
(1−αt+1)√

αt+1
Sθ(zt+1, t+ 1) +

√
(1−αt+1)(1−ᾱt)

1−ᾱt+1
ϵ

12 Operator ProjCt
(zt):

13 for m = 1 to M do
14 zt ← zt − γ ▽x ∥Aθ(zt, t)− E(Ic)∥
15 end
16 return x
17 Operator ProjIt

(zt):
18 zt ← ProjDt+1

(zt)
19 zt ← ProjCt

(zt)
20 zt ← ProjDt+1

(zt)
21 zt ← ProjDt

(zt)
22 return x
23 Operator ProjIt

(zt):
24 for n = 1 to N do
25 zt ← ProjIt

(zt)
26 end
27 return x
28

29 zt ← zT
30 for t = T − 1 to 1 do
31 zt ← ProjDt

(zt+1)

32 if conducting APCtrl Sampling then
33 zt ← ProjIt

(zt)

34 end
35 end

Output: xt
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B.2 Pseudocode for Implementing Algorithm 1

This pseudocode outlines the steps to implement the alternative projection method as

described in Algorithm 1. It starts with an initial point and iteratively applies projections

onto the given sets until the desired number of iterations is reached, resulting in a point

that is close to the intersection of the two sets.

```
def project_to_cond(z_t, A_model, cond_latents):

for n in range(N):
optimizer = torch.optim.RMSProp([z_t], lr=preset_lr)
optimizer.zero_grad()

# Get the predicted conditional latents
pred_latents = A_model(z_t, t)

# Calculate the deviation
# between predicted latents and conditional latents.
loss = F.mse_loss(pred_latents, cond_latents)

# Make the current latents better match the conditions.
loss.backward()
optimizer.step()

return z_t

def alternative_projection_sampling(z_t, A_model, cond_latent):
for m in range(N):

z_t = add_noise(z_t) # up projections
z_t = project_to_cond(z_t, A_model, cond_latent)
z_t = add_noise(z_t) # up projections
z_t = default_denoise(z_t) # original denoising process

return z_t

# Load the trained A_model
A_model = UNet2DConditionModel.from_pretrained(

"trained_checkpoint", subfolder="unet"
)

# Encode the condition image into the latent space
cond_latents = vae.encode(condition_image)

# sampling
for t in timesteps:

z_t = default_denoise(z_t) # original denoising process
if do_APCtrl:

z_t = alternative_projection_sampling(
z_t, A_model, cond_latents

)
```

C Appendix: More Qualitative Evaluation

We present additional visual results, including various single-condition cases. Moreover,

we also demonstrate more results under multiple conditions.
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