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ABSTRACT

Enhancing the versatility of pretrained diffusion models through advanced
conditioning techniques is crucial for improving their applicability. We
present APCtrl, a novel conditional image generation approach that formu-
lates the latent z, at timestep ¢ as the projection z; = Proj4, (2:+1) onto the
denosing set ®;. For conditional control, APCtrl integrates the condition
set €;, defined by a latent control network Ag(-, -). Our method simplifies
conditional sampling to recursive projections z; = Proj,, o Projg, (z:+1),
where each projection step integrates both the diffusion and condition
priors. By employing Alternative Projection, our approach offers several
key advantages: 1. Multi-Condition Generation: easily expandable with
additional conditional sets; 2. Model and Sampling Agnosticism: works
with any model or sampling method; 3. Unified Control Loss: simplifies
the management of diverse control applications; 4. Efficiency: delivers
comparable control with reduced training and sampling times. Extensive
experiments demonstrate the superior performance of our method.

1 INTRODUCTION

Unconditional diffusion models, first introduced by Ho et al. (2020), laid the foundation for
generative image modeling. Characterized by the latent sequence zg, z1, . . ., z7, they have
significantly advanced the generation of high-fidelity images (Yang et al., 2023a). In this
sequence, z; represents progressively noisier data samples for ¢ € (0, 7] and z, corresponds
to the true data samples. The forward process introduces noise gradually, transitioning
from z;_; to z; according to the distribution ¢(z¢|z;—1) = N (2 | \/az2:—1, (1 — ) I), where
oy is a constant hyperparameter. The objective of diffusion models is to generate a sample
zo from the data distribution p(z¢), which can be formulated as an optimization problem:
argmax, log p(zo), seeking the optimal z, that maximizes p(z).

The distribution p(zo) is not directly accessible. In the reverse process, the diffusion models
offer an approximation through the marginal distribution pg(z). The model parameters 6
are optimized using the Evidence Lower Bound (ELBO), which serves as a lower bound

for log pe(zo). Specifically, we have: log pe(zo) > Eq(z,.1|20) [log M} . The right ELBO

q(z1:7[20)
term can be further expanded as follows: Ey(, |2, [log pe(2o|21)]— Dx1.(q(z7|20) || pe(zr))—
> o1 Eq(zelzo) [PxL(q(2-1]2¢, 20) || po(zi—1]z¢))]. Thus, the goal of the diffusion model be-
comes to maximize the reverse transition distribution pg (2|21 ), which in turn maximizes
log pe(zo). Consequently, sampling from the reverse transition distribution pe(z;|z;+1) can
then be expressed as Equation (1), where € ~ N(0, I) and Sg(z,t) is the neural network
designed to predict the score function V,, log p(z;) (Song et al., 2020b).

1 (1—ay1) (1—op1)(1—ay)
Z; = Z + So(zii1,t+ 1)+ = € 1
t o ! o o(Zt41 ) T~ s ¢y

Unconditional diffusion models was further extended by text-conditional models (Rombach
et al.,, 2022; Yang et al,, 2024b). However, these models faced the inherent challenge of
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Table 1: A Feature-Rich Approach for Conditional Image Generation. APCtrl boasts an
array of beneficial features, surpassing the capabilities of previous methods.

Latent Controlled by Backbones Sampling Unified Control

Methods Control Multi-Condition ~Agnosticism Agnosticism Control Loss on Sampling

Control-on-Training

ControlNet (Zhang et al., 2023) v v X v x X
ControlNet++ (Li et al., 2024b) v v x v X X
T2I-Adapter (Mou et al., 2024) v v X v X X
UniCtrllNet (Zhao et al., 2024) v v X v X X
UniControl (Qin et al., 2023) v 4 X v X X
GLIGEN (Li et al., 2023) v X X v X X
Control-on-Sampling

UniGuid (Bansal et al., 2024) X X v X X (4
DSG (Yang et al., 2024c) X X v X X v
FreeDoM (Yu et al., 2023) X X v X X v
APCtrl (Ours) v 4 v v v v

accurately capturing all image details from text descriptions alone. To address this, diffusion
models have incorporated additional conditioning signals, such as bounding boxes (Lietal.,
2023; Yang et al., 2023b; Zhao et al., 2024), reference images (Li et al., 2024a; Ruiz et al., 2023),
and segmentation maps (Zhang et al., 2023; Bansal et al., 2024; Zhao et al., 2024; Qin et al.,
2023), offering more granular control over the generated images.

Conditional image generation falls into two camps: methods that integrate control net-
works, and those that adjust the inference process for direct control. Control-on-Training
approaches like ControlNets (Zhang et al., 2023) train networks to refine latent spaces and
match images to attributes, incurring retraining costs due to feature space inconsistencies.
On the other hand, Control-on-Sampling techniques, such as Universal Guidance (Bansal
et al., 2024), use pre-trained models to guide sampling, offering flexibility without re-
training. However, this comes with potential downsides, such as suboptimal gradient
estimations that may degrade sampling quality and prolong sampling times.

APCtrl solves these challenges. Let ®( denote the set of natural images, and ©; represent
the noisy versions, generated by adding noise to D, such that ©; := {z, | z, = auz0 +
V1—aue, zg € Do} with a; = H§:1 a;. The denoising projection z; = Projgr(ztﬂ), as
defined by Equation (1), maps a noisy point z;11 € ®;4; to a less noisy point z, € ©;. The
diffusion generation process is thus a sequence of such projections. To enhance control, we
introduce a condition set €,, which defines points that satisfy specific constraints at each
step t. The intersection J; = ®; N &, identifies points that conform to both ®, and €,.
By defining the intersection projection Proj; (-), conditional generation is redefined as a
recursive sequence of projections z; = Proj; o Projg (2:11), as shown in Algorithm 1.

Our method lies in the condition projection Proj, (-), implemented through a latent con-
trol network that imposes constraints and calculates projections onto the conditional sets.
This approach offers several key advantages: enhanced adaptability to diverse backbones,
more precise and efficient synthesis via latent control, and a unified MSE latent control loss
applicable to numerous conditions. By applying Alternative Projection with the denoising
projection Projg (-) and the condition projection Proj, (-), we compose the intersection
projection Proj; (-). This method outperforms other sampling techniques. A key feature is
the straightforward implementation of multi-condition control via projections onto inter-
sections of condition sets. Table 1 presents a detailed comparison, highlighting how APCtrl
surpasses previous methods with its array of beneficial features.

2 RerLatep WoRks

Alternative Projection is a technique with a long-standing history. It aims to find a
point within the intersection of multiple sets through a sequence of successive projec-
tions onto each set, and was seminally studied by Von Neumann (1951), and has since
been applied in a myriad of contexts (Deutsch, 1992). Numerous variants, such as re-
laxed projections (Agmon, 1954; Motzkin & Schoenberg, 1954; Gubin et al., 1967; Bregman,
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Figure 1: APCtrl Sampling: APCtrl trans-
forms traditional diffusion sampling into a

Algorithm 1 APCtrl Sampling

Input: Initial noise zy, denoising and condition set ®; and
<.
fort=T—1to1do
Zy = PrOth (zH»l)
if conducting APCtrl Sampling then
jf, = Qt n Q:t
z; = Proj; (z), which be recursively computed by

for n=1 to N do
z; = Proj, (z:) in Equation (9)

end
recursive projection, as illustrated in blue in
the figure. It integrates easily, needing justs | end
one extra line of code, highlighted in red- end
Output: z,

and noted as line 5 in Algorithm 1.

1965), inexact projections (Kruger & Thao, 2016), Dykstra’s algorithm (Boyle & Dykstra,
1986), Douglas—Rachford splitting (Douglas & Rachford, 1956; Lions & Mercier, 1979),
ADMM (Boyd, 2010), and generalized alternating projections (Filt & Giselsson, 2024), have
been proposed.

Diffusion Models (Croitoru et al., 2023; Yang et al., 2023a) constitute a class of models that
incrementally introduce noise to data in a controlled manner, with the goal of learning to
reverse this process for generating samples. The current research landscape is primarily
dominated by three formulations: Denoising Diffusion Probabilistic Models (Ho et al., 2020;
Nichol & Dhariwal, 2021; Sohl-Dickstein et al., 2015), Score-Based Generative Model (Song
& Ermon, 2019; 2020), and Stochastic Differential Equations (Song et al., 2021; 2020b). The
interconnections between them are elucidated by Luo (2022) and Chan (2024).

Control-on-Training takes supplementary networks to modify the latent representations of
diffusion models according to particular image conditions. Researchers (Bansal et al., 2023;
Nichol etal., 2022; Rombach et al., 2022) have expanded S¢(z;, ) in Equation (1) to include
both text and image conditions. A notable example of this approach is ControlNet (Zhang
et al., 2023), which has become a significant focus within the field. The broader community
has contributed to this area by sharing a variety of ControlNets trained across diverse
input conditions. Other prominent examples include ControlNet++ (Li et al., 2024b), T2I-
Adapter (Mou et al., 2024), UniControlNet (Zhao et al., 2024), UniControl (Qin et al., 2023),
GLIGEN (Li et al., 2023), and Ctrl-Adapter (Lin et al., 2024).

Control-on-Sampling utilizes frozen pre-trained models, with modifications to the sam-
pling method to reconstruct an image from a given guidance. Prior work has approached
this task with various constraints (Dhariwal & Nichol, 2021; Kawar et al., 2022; Wang et al.,
2022; Chung et al., 2023; Lugmayr et al., 2022; Chung et al., 2022; Graikos et al., 2022). For
instance, Dhariwal & Nichol (2021) trained a classifier on images of different noise scales to
serve as the guidance and incorporated the classifier’s gradients into the sampling process.
However, classifiers for noisy images are often domain-specific and not generally available.
To address the challenge, several state-of-the-art sampling methods have been introduced,
including DSG (Yang et al., 2024c), UniGuidance (Bansal et al., 2024), FreeDoM (Yu et al.,
2023), MultiDiffusion (Bar-Tal et al., 2023), and ReSample (Song et al., 2023).

3 APCTRL SAMPLING

Diffusion generation involves the successive application of the projection z; = Projs, (z41),
as outlined in Equation (1). To ensure that the denoised point from ®; also satisfies the
constraint from €, i.e. to maintain z, within the intersection 3, = ©, N €;, we apply
the intersection projection Proj; (-) to Projg, (2:+1). This results in the iterative formula

z; = Proj; oProjg (z:41), detailed in Algorithm 1 and depicted in Figure 1. Building upon
the definition of Proj4, (z:+1) from Equation 1, this section is dedicated to explaining the
use of Alternative Projection to implement the intersection projection Proj, (-).
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Figure 2: Image Generation with Single Control: APCtrl facilitates the integration of various
conditions into diffusion models. Each subfigure is structured with the prompt text in the
first row, the conditional image control in the second row, and the resulting controlled
generation in the third row.

3.1 ALTERNATIVE PROJECTION

The alternative projection method is an iterative process used to identify a point that belongs
to the intersection of two sets, &; and &,. Although projecting onto each set separately is
easy, projecting directly onto their intersection &; N &, is challenging. Let the projection
operators onto &; and & be denoted by Projg  and Projg , respectively. The alternative
projection method is straightforward: beginning with any point, the vector « is iteratively
updated by applying the composition of projections, such that z = Proj o Projg, (2).

3.2 From LatenTt CoNTROL TO LATENT CONTROL

Pixel Control, used in previous Control-on-Sampling methods, computes the controlled
intermediate latent code z; = argmin_L(I.,B(D(z))) with the initial point Z(z,41) =
Vai: (zeg1 4+ (1 — a@i1)8e(ze41,t + 1)). In this formulation, Z(z,,) acts as a denoiser
at time step ¢ + 1 for the latent variable at time step 0, I, represents the control image, such
as segmentation, depth map, or HED. D(-) is the decoder of the diffusion model, and B(-)
is the pre-trained condition network, such as networks for segmentation, depth estimation,
or HED edge. The metric L£(-,-) can be any loss function, such as MSE for depth or HED
images similarity, or Cross-Entropy for segmentation similarity.

Latent Control offers a paradigm shift pixel-level manipulation to operations within the
latent space. This shift to a lower-dimensional and more compact latent space, allows for
more precise control over image generation. Additionally, it simplifies the optimization
process by eliminating the need for a decoder D(-), thus enhancing efficiency. The method
specifically utilizes an encoder £(-) in conjunction with a latent control network Ag(-, -), to
determine the controlled intermediate latent representation z,.

z, = argmin_ ||E(I,) — Ag(z,t)|* solving with the initial point Projg, (ze41).  (2)
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For a well-trained model Ag(-, -), the approximation should hold: ||E(I.) — Ag(z,t)|]* =
L(I.,B(D(zo))), which allows us to use the latent control z; = argmin, ||E(I.)—.Ag(z,t)|?
as a substitute for the pixel-level control z, = argmin, £(I.,B(D(z))). This applies to
various types of control, across different control types such as segmentation guidance,
depth map guidance and HED edge guidance.

Training the Latent Control Network focuses on refining the operator Ag(-, -). This oper-
ator is built upon the U-Net architecture of the stable diffusion model, with initialization
from the SDv1.5 checkpoint. The training process is conducted as Equation (3). During
optimization, two primary objectives are achieved: image denoising and feature transla-
tion. Denoising improves the latent representation z; by reducing noise, thereby enhancing
data clarity and adherence to constraints. Meanwhile, feature translation converts denoised
image features into control-relevant features, which are essential for specific improvements.
The efficacy of diffusion models in image translation has been demonstrated in previous
work (Parmar et al., 2024). For further details, please refer to Appendix A.

min [|€(I.) — Ap(z,1)[* ®)

Feasible Sets encompass all points fulfilling specific criteria. APCtrl involves two kinds of
feasible sets: the denosing set ®, and the condition set €;. Let ® denote the set of natural
images, the denosing set at time step ¢ can be expressed as

Dy = {2z | 2 = Vauzo + V1 — que, 2o € Do} 4)

with the inclusion relation ®,; C ®;y;. Upon the successful training of Ag(z,t), for any
point z within the feasible set, the loss ||.Ag(z,t) — E(I.)||? is expected to be minimal. Thus,
with ¢ as a predefined threshold, the condition set at time step ¢ can be formulated as

¢ ={z||E(L) — As(z,1)||” < 6} ®)
3.3 INTERSECTION PROJECTION IMPLEMENTATION

In this section, we reveal that the intersection projection Proj, (z:) can be effectively com-

puted through the iterative application of the joint up/down projection P/rgjjt (z4).

Up/Down Projections are integral to our method. We will introduce two down projections
and one up projection here. Specifically, the denoising projection Proj, (-) is defined as

. 1 1l -« 11—« 1—a
Projg (z:41) = \/mzﬂl + (a\/%:ll)se(zwhwr 1)+ \/( 1tj10)[f+1 : e (6

in accordance Equation (1). This operator serves to map elements from the set ®;; to the
set ®;. According to Equation (2), we define the condition projection as

Proje, (z:11) = argminz; || E(I.) — Ag (2, 1) || solving with initial point z;11.  (7)

This projection is also considered as a mapping from ®,,; to ®;. Collectively, these two
projections are termed ‘Down Projections’ due to their index decreasing from ¢+ 1 to t.
Conversely, we introduce an ‘Up Projection’, which maps a point z; from ®; into ®:

Pr0j©t+l (z¢) = Vouyize + Me (8)

Joint Up/Down Projection P/rgjjt (z¢) is devised to calculate Proj, (). For the computation

of Proj, (z:), we define the projection P/rgjjt (z) as:
P/rgjjt (z:) = Projg, o Projg, , o Projg, o Projg, | (zt) )

This equation recursively projects onto the intersection of sets by leveraging the subset
relationship ®; C ®,4,, facilitating convergence towards J;, = ®; N €;. The result is a
point that lies within both €; and ®;. Thus, employing Alternative Projection, we iteratively
obtain the value of Proj, (z;) through the repeated application of z; = Proj, (z:) over N
iterations, as illustrated in Algorithm 1. For more details, please refer to Appendix B.
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Figure 3: Image Generation with Multiple Controls: APCtrl incorporates multiple con-
ditions into diffusion models. To showcase its capabilities, we present two illustrative
examples, each detailed in dedicated sections of the figure. The left example demonstrates
the fusion of two conditional sets. The right example leverages ControlNet to project onto
the feasible space. Each subfigure includes the prompt text at the top, followed by rows for
conditional image controls, concluding with the controlled generation results at the bottom.

4 EXPERIMENTS

In this section, we provide a comprehensive evaluation of our method through both quanti-
tative and qualitative analyses, demonstrating its effectiveness. Additionally, we highlight
its versatility by showcasing compatibility with a range of diffusion backbones and sam-
plers. Finally, we underscore the efficiency of our approach.

4.1 EXPERIMENTAL SETUP

We utilize SDv1.5, a prevalent checkpoint, as the backbone for constructing latent control
networks. This section details the latent control networks’ training and elucidates the
nuances of APCtrl sampling.

Latent Control Networks Training: Our model utilizes the identical U-Net architecture
found in SDv1.5 and was initialized using the SDv1.5 checkpoint. The training process
was conducted for fewer than 24 GPU hours on a single NVIDIA 3090 GPU. We employed
approximately 118,000 images from the COCO2017 dataset (Lin et al., 2014) across various
tasks. For human pose estimation, we specifically selected a subset of around 6,500 images
from the COCO2017 dataset, concentrating on the “people” category. Additionally, for
Style Guidance, we incorporated approximately 81,000 images from the Wiki-Art dataset.

APCtrl Sampling: A multitude of sampling strategies, including DDPM (Ho et al., 2020),
DDIM (Song et al., 2020a), and LCM (Luo et al.,, 2023), can be applied to stable diffusion
models. These strategies can be unified by the concept of recursive projection, expressed as
z; = Projg, (z+1). Consequently, Proj; (-) is able to integrate with all of these approaches

to form our APCtrl sampling based on Algorithm 1.

4.2 ConpiTioNAL GENERATION REsuLTs

APCtrl is adept at integrating a diverse set of conditions directly into the image generation
process of diffusion models, offering a framework for sophisticated control over the gen-
eration outcomes. To showcase this capability, we demonstrate ten single-condition cases
in Figure 2, spanning a spectrum of techniques from Canny edge (Canny, 1986), M-LSD
line (Gu et al., 2022), HED edge (Xie & Tu, 2015), Skeleton (Cao et al., 2017), Object Loca-
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Figure 4: Compatibility Demonstration for Different Diffusion Backbones and Samplers.
In left part, APCtrl introduces Condition 1, while the conditional diffusion backbone of
the other model introduces Condition 2. The right part shows the generation results using
DDPM (Ho et al., 2020), DDIM (Song et al., 2020a), and LCM (Luo et al., 2023).

Table 2: Quantitative Comparison for Controllable Generation on Single Conditions. The
best results are in bold. “-” indicates that the method does not provide a public model.

Method Depth Canny HED  M-LSD Segmentation Normal Skeleton Location Sketch

ControlNet ~ 19.3801 16.5297 19.9832 19.7612 20.7019 27.8210  57.4144 - -
ControlNet++ 17.4087 20.1109 15.8372 - 24.3453 - - - -
T2I-Adapter ~ 23.8945 17.0756 - - 21.7609 - 34.3569 - 28.8883
FID| UniCtrINet 249604 17.9107 17.4471 27.7329 22.7066 - 66.5560 - 24.0166
UniControl ~ 242885 18.9211 19.2913 - 29.8068 29.5817  40.7635  29.6951 -
GLIGEN 23.2859 24.8351 26.3622 - 27.3867 27.6916  53.2974  23.1426 -
APCtrl 25.0148 25.3836 24.7542 26.9950 25.1360 27.4390 43.5083  33.8875 26.6784
ControlNet 0.2840  0.2897  0.2870  0.2843 0.2838 0.2730 0.2610 - N
ControlNet++ 0.3061  0.3085  0.3008 - 0.2997 - - - -
T2I-Adapter ~ 0.2990  0.3045 - - 0.2956 - 0.3111 - 0.2708
CLIP-scorest UniCtrlNet 0.3017  0.3044  0.3039  0.2873 0.3052 - 0.2795 - 0.2927
UniControl 0.3063  0.3032  0.2997 - 0.3069 0.2967 0.3089 0.2974 -
GLIGEN 0.2979  0.2966  0.2806 - 0.2854 0.2718 0.2615 0.2762 -
APCtrl 0.2952 03029  0.3035  0.2951 0.2989 0.2943 0.2920 0.2868 0.3006
ControlNet 51861 52112 5.2536  5.3072 5.2954 5.0815 5.2418 -
ControlNet++ 52945 51216  5.1125 - 4.9270 - - - -
T2I-Adapter ~ 5.0973  5.1213 - - 4.9737 - 5.2956 - 4.8516
CLIP-acs 1 UniCtrINet 5.0129  5.0010 5.0048  4.9704 5.0557 - 4.9568 - 5.0048
UniControl 53498 51650  5.1683 - 5.3920 5.1061 5.4802 5.2630 -
GLIGEN 51342  5.0485  4.9547 - 4.9362 4.7384 4.8970 5.3708 -
APCtrl 54225 54264 54575 5.4341 5.3905 5.4284 5.4794 5.3977 5.4730
MSE|  SSIMt  SSIMt  SSIMt mloU?t MSE| mAP? mAP?T SSIM T
ControlNet ~ 88.9629 04376  0.5845  0.7552 0.4223 86.8804 0.4413 -
ControlNet++ 86.7270  0.5386  0.6907 - 0.5481 - - - -
T2I-Adapter ~ 94.5548  0.3984 - - 0.2339 - 0.4979 - 0.3756
Controllability ~ UniCtrINet ~ 99.3874 04679  0.6159  0.7250 0.3037 - 0.2046 - 0.6704
UniControl ~ 88.8402 05340  0.3614 - 0.3273 104.1840  0.2463 0.2731 -
GLIGEN 81.1289  0.3917  0.4094 - 0.2481 90.3527 0.1817 0.2418 -
APCtrl 86.6756 0.4412 04752  0.7793 0.3916 70.3443 0.4043 0.2563 0.6118

tion (Redmon et al., 2016), Depth Map (Yang et al., 2024a), Normal Map (Vasiljevic et al,,
2019), Segmentation (Cheng et al., 2022), Style Guidance (Radford et al., 2021). These cases
serve to illustrate the versatility of APCtrl in handling different conditional inputs.

Additionally, APCtrl can be applied to multiple condition generation, which typically in-
volve two strategies. The first strategy, as shown in the left part of Figure 3, involves
augmenting the condition set and computing the projection function, denoted as Proj, (-),
where J; is defined as the intersection of ©; and €,, with €; being redefined as the in-

tersection of multiple condition sets, expressed as €; = ﬂf\il eﬁ”. We can then extend
Equation (9) to calculate the updated projection Proj, (). The alternative method, as de-
picted in the right part of Figure 3, involves utilizing ControlNet to define the projection onto
®;. Given that ControlNet includes a control mechanism, it can be effectively integrated
with other constraints defining the condition set.
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Condition ControlNet  ControlNet++ T2I-Adapter UniCtrlNet UniControl GLIGEN Ctrl-Adapter APCtrl

Figure 5: Visual Comparison of Single Condition for Control-on-Training Methods. The
prompt for each row is “a book shelf”, “a groot toy”, and “brown wooden dock near
lake”. Although our method is a Control-on-Sampling approach that doesn’t necessitate
retraining the control network, the conditional results of Segmentation, Canny Edge, and
Depth Map, are competitive with other methods.

4.3 ComprATiBILITY FOR DIFFERENT DIFFUSION BACKBONES AND SAMPLERS

APCtrl is compatible with any
diffusion model that utilizes the
same encoder £(-) as adopted in
Equation 3. This compatibility
is exemplified in the left side of
Figure 4, where APCtrl is inte-
grated with models such as Con-
trolNet (Zhang et al., 2023), Con-
trolNet++ (Li et al.,, 2024b), and
T2I-Adapter (Mou et al., 2024). ——
In these integrations, APCtrl sup-  condition FreeDoM DSG UniGuid APCHl

plies Condition 1, complemented
by Condition 2 from the respective Figure 6: Visual Comparison of Single Condition for

diffusion backbones. Control-on-Sampling Methods. The current Control-
) . on-Sampling methods do not provide the same vari-
As per A1g01j1thm 1, APCtrl in- ety of conditions as Control-on-Training methods, as
tegrates an intersection Pprojec- shown in Figure 5. In this comparison, we focus on two
tion Proj; () into the diffusion prevalent scenarios, Segmentation and Style Guidance.
model’s reverse process, enhanc-
ing it without altering the original
computations. This integration thus is sampling agnosticism, allowing APCtrl to be ver-
satile with various sampling techniques. The right side of Figure 4 illustrates APCtrl’s
application and effectiveness with different sampling methods, including DDPM (Ho et al,,
2020), DDIM (Song et al., 2020a), and LCM (Luo et al., 2023). These examples underscore
APCtrl’s adaptability across a range of diffusion model sampling approaches.

4.4 QUANTITATIVE AND QUALITATIVE COMPARISON

Quantitative Evaluation: Our quantitative assessment is conducted on the COC0O2017 (Lin
et al., 2014) validation set at a 512 x 512 resolution. This dataset comprises 5000 images,
each with multiple captions. For our evaluation, we randomly select one caption per
image, yielding 5000 generated images. Specifically, for the skeleton, we focused on the
"people” category and selected2900 images. All methods employ 20 DDIM steps for fast
evaluation. We evaluate generation quality using FID (Heusel et al., 2017), CLIP text-
image score (Radford et al., 2021), CLIP aesthetic score (Schuhmann et al., 2022). We also
evaluate controllability using SSIM(Structural Similarity), mAP(mean Average Precision),
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Figure 7: Comparison for Controllable Generation on Multiple Conditions. Control-
Net (Zhang et al,, 2023), T2I-Adapter (Mou et al., 2024), UniControl (Qin et al., 2023),
UniControlNet (Zhao et al., 2024), and APCtr]l combine two conditions to generate the final
image. These methods initially lack style guidance capabilities, but integrating APCtrl
provides this functionality to both. The results are demonstrated in the bottom row

MSE(Mean Squared Error), mloU(Mean Intersection over Union). We take these metrics to
compare the conditions extracted with the natural images (ground truth) with the generated
images and report statistical data in Table 2.

Table 2 enumerates six Control-on-Training methods: ControlNet (Zhang et al., 2023), Con-
trolNet++ (Li et al., 2024b), T2I-Adapter (Mou et al., 2024), UniControlNet (Zhao et al,,
2024), UniControl (Qin et al., 2023), and GLIGEN (Li et al., 2023). The exclusion of Control-
on-Sampling methods is due to their inability to uniformly address all presented conditions
and the impracticality of their long inference times for 5,000 images. Notably, APCtrl stands
as the pioneering Control-on-Sampling method capable of handling the full spectrum of
conditional generation cases associated with Control-on-Training methods. The quantita-
tive analysis in the table demonstrates our model’s superiority over existing approaches in
performance metrics—FID, CLIP-score, and CLIP-acs—and controllability, as evidenced in
the respective rows and the Controllability column, across the majority of conditions.

Qualitative Evaluation: We enrich our analysis with qualitative comparisons of single and
multi-condition controls, as depicted in Figures 5, 6, and 7. In Figure 5, seven Control-
on-Training methods—ControlNet++ (Li et al., 2024b), T2I-Adapter (Mou et al., 2024), Uni-
ControlNet (Zhao et al., 2024), UniControl (Qin et al., 2023), GLIGEN (Li et al., 2023),
and Ctrl-Adapter (Lin et al., 2024)—exhibit strong performance in Segmentation, Canny
Edge, and Depth Map conditions. Our method also shows competitive alignment with the
input conditions. To the best of our knowledge, APCtrl is a groundbreaking Control-on-
Sampling method, capable of delivering the full range of condition controls associated with
Control-on-Training methods. For more visual results, please refer to the Appendix B.

For Control-on-Sampling methods, only UniGuidance (Bansal et al., 2024) and FreeDoM (Yu
etal.,2023) results are featured due to MultiDiffusion’s specialization in image merging (Bar-
Taletal., 2023) and ReSample’s (Songetal., 2023) focuses on solving linear inverse problems.
Figure 6 documents the generation results for Segmentation and Style Guidance conditions
from UniGuidance, FreeDoM, and our APCtrl.

Given the limitations of GLIGEN and Uni-Guidance in multi-condition scenarios and the
restricted conditions of ControlNet++, our multi-condition comparison is narrowed down
to ControlNet, T2I-Adapter, UniControlNet, and UniControl, as shown in Figure 7. APCtrl’s
performance in multi-condition tasks is comparable to these Control-on-Training methods.

Originally lacking in style guidance for the four methods, the integration with APCtrl has
unlocked this capability, as evidenced in the figure’s bottom row, highlighting APCtrl’s
seamless integration and multi-condition generation capabilities when paired with these
methods. For more visual results, please refer to the Appendix C.
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Table 3: Efficiency Comparison. APCtrl achieves a balance between training efficiency
and sampling speed. Compared to Control-on-Training methods, it requires minimal
training investment. When compared to Control-on-Sampling methods, APCtrl provides
accelerated sampling.

Method Control-on-Training Control-on-Sampling
ControlNet ControlNet++ T2I-Adapter UniCtrINet UniControl GLIGEN | FreeDom DSG UniGuid APCtrl
Training (GPU Hours) 500 60 192 6900 5000 1000 - - - 20
Sampling (Seconds) 3 2 2 4 5 7 115 122 4510 13

4.5 ErriciEncy COMPARISON

This section is devoted to compare the efficiency of training and sampling. The latent
control network in APCtrl projects the image space onto the conditional space, aligning it
with the encoded constraints £(I.). This method is significantly different from Control-
on-Training, as we believe that working with constraint spaces is less complex than the
refinement processes in Control-on-Training. This suggests that APCtrl should require less
training time, as indicated in Table 3. We observe that ControlNet++ requires only 60 hours
because it fine-tunes from a ControlNet checkpoint. The control function of APCtrl is also
applied during the sampling phase. It is essential to compare APCtrl’s sampling efficiency
with that of Control-on-Sampling methods. Thanks to the use of Alternative Projection,
APCtrl notably decreases sampling time, as demonstrated in the last line of Table 3. This
makes APCtrl a promising alternative, offering a favorable compromise for both training
and sampling phases.

4.6 Impract oF ITERATION COUNT ON UP/DoOwWN ALTERNATIVE PROJECTIONS

In Algorithm 1, we carry out V iterations of
the Joint Up/Down Projection Proj, (-), fol-
lowing the definition given in Equation 9.
When N is small, the resulting images may
not align with the desired conditions, as
evidenced in Figure 8b. Conversely, a large
N can lead to images that meet the condi-
tions but display pronounced color discrep-
ancies, diminishing their aesthetic quality,
as shown in Figure 8d. Striking the optimal

balance with N ensures both conditional fi- (@ Conda (MB)N=1 (N=3 (d)N=30
delity and visual appeal, as demonstrated
in Figure 8c. Figure 8: Visualization For iteration Count N

5 ConcLusions

Achieving controllable generation remains one of the significant challenges in diffusion
models. We propose a novel direction to address this challenge. Our approach begins with
reinterpreting the diffusion sampling process as a series of recursive projections onto the
denosing set, denoted as ®;. Consequently, a conditional control diffusion model can be
viewed as a sequence of recursive projections onto the intersection of feasible sets, ©; N &,
where €; represents the condition set. We employ an alternative projection technique to
effectively implement these projections onto the intersection set ;N €,. This methodology
offers several distinct advantages over previous efforts: 1. Multi-Condition Generation:
Multi-condition generation can be easily implemented. 2. Model and Sampling Agnosti-
cism: APCtrl maintains agnosticism regarding both the underlying model backbones and
the sampling process. 3. Unified Control Loss: It allows for a unified control loss, facili-
tating the management of various control applications. 4. Efficiency: APCtrl significantly
reduces both training and sampling times. We have conducted a comprehensive evaluation
of our framework, yielding state-of-the-art results.

10
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A AprpPENDIX: DETAILS FOR TRAINING LATENT CONTROL NETWORK

Our implementation, including all training and sampling files as well as the checkpoint,
will be released upon acceptance of our paper. Briefly, our code is adapted from the Hug-
ging Face Diffusers repository, specifically from the train_text_to_image.py script, which
can be found at https://github.com/huggingface/diffusers. In this section, we detail the
key components of the code responsible for constructing and training the latent control
network Ag(-, ).

A.1 BUILDING MODEL CODE

from diffusers import UNet2DConditionModel

# Initialize the A model (UNet) from pretrained models
A_model = UNet2DConditionModel.from_pretrained/(
"runwayml/stable-diffusion-v1-5", subfolder="unet"

)

A.2 TRAINING CODE

from diffusers import AutoencoderKL, UNet2DConditionModel

# Load the VAE model using the default configuration
vae = AutoencoderKL.from_ pretrained (
"runwayml/stable-diffusion-v1-5", subfolder="vae"

)

# Set up the optimizer for the A model
optimizer = torch.optim.AdamW (
A_model .parameters (), lr=le-5

)

for batch in dataloader:

# Encode the ground truth image to the latent space
latents = vae.encode (ground_truth_image)

# Add noise to the latents
noisy_latents = noise_scheduler.add_noise(
latents, noise, timesteps)

# Predict the conditionial latents from noisy latents
pred_latents = A_model (

noisy_latents, timesteps)

# Encode the condition image to the latent space
cond_latents = vae.encode (condition_image)

# Calculate the loss
loss = F.mse_loss (pred_latents_pred, cond_latents)
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B AprpprenNDIX: DETAILS FOR APCTRL SAMPLING

B.1 DeTAILED IMPLEMENTATION FOR ALGORITHM 1

In this section, we delve into the specifics of APCtrl sampling as encapsulated by Algo-
rithm 1. This algorithm outlines the step-by-step procedure for implementing our novel
approach to conditional diffusion sampling, which leverages the power of latent control
networks and alternative projections to achieve sophisticated image generation. The de-
tails provided here will walk through the algorithm’s operations, explaining how each step
contributes to the final output, ensuring a clear understanding of the methodology and its
advantages over traditional approaches.

Based on the discussion in our paper, we have outlined the steps and principles of our
method.

Proj‘Dt+1 (Zt) = \/QTHZt + me

. ]. (1 — at+1) (1 — Ctt+1)(1 — O_ét)
P = S t+1
ro]:gt(ztﬂ) at+1Zt+1 + G 0(Zir1,t+1)+ 1 —an €

Proje, (z¢41) = argmin, | Ae(z:,1) — E(L)|* solving with initial point z; = Projg, (ze+1)

Note that Proj (z:+1) can solved by gradient decent. Considering these projections, they
enable us to complete Algorithm 1 as follows:

Algorithm 2 APCtrl Sampling

Input: Initial noise zy Diffusion Model Z¢(z;,t) Latent Control Network Ag(z;,t) En-
coder £ Condition I step size
Operator Projp,,  (z:):
‘ return \/T_Hzt —+ \/1 — Q441€

Operator Projyg, (Z¢41):

return \/altjztﬂ + (1\;%)89(%“,1? +1)+ \/%e

Operator Proje, (2¢):
form =1to M do

‘ Zt < 2t — Y V2 ||A9(Zt7t) - S(IC)”
en
return =
Operator Projy, (z;):
zt < Projp,,, (2t)
Zy < Proje, (2¢)
zt < Projp,,, (%)
Zy < Projyp, (2¢)
return =
Operator Projz, (z;):
forn=1to N do

| 2, < Projsy, (z)
end
return z

Zy < ZT
fort=T—-1to1do
Zi <— Projgt (Zt+1)
if conducting APCtrl Sampling then
‘ Zy < Projjt (Zt)
end
end
Output: z;
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B.2 Pseubpocopk FOR IMPLEMENTING ALGORITHM 1

This pseudocode outlines the steps to implement the alternative projection method as
described in Algorithm 1. It starts with an initial point and iteratively applies projections
onto the given sets until the desired number of iterations is reached, resulting in a point
that is close to the intersection of the two sets.

def project_to_cond(z_t, A_model, cond_latents):
for n in range (N) :
optimizer = torch.optim.RMSProp([z_t], lr=preset_1r)
optimizer.zero_grad()

# Get the predicted conditional latents
pred_latents = A_model(z_t, t)

# Calculate the deviation
# between predicted latents and conditional latents.
loss = F.mse_loss (pred_latents, cond_latents)

# Make the current latents better match the conditions.
loss.backward()
optimizer.step ()

return z_t

def alternative_projection_sampling(z_t, A_model, cond_latent):
for m in range (N) :

z_t = add_noise(z_t) # up projections

z_t = project_to_cond(z_t, A_model, cond_latent)

z_t = add_noise(z_t) # up projections

z_t = default_denoise(z_t) # original denoising process

return z_t

# Load the trained A_model
A_model = UNet2DConditionModel.from_pretrained
"trained_checkpoint", subfolder="unet"

)

# Encode the condition image into the latent space
cond_latents = vae.encode (condition_image)

# sampling
for t in timesteps:
z_t = default_denoise(z_t) # original denoising process
if do_APCtrl:
z_t = alternative_projection_sampling (

z_t, A_model, cond_latents
)
C ArprenDIx: More QuALITATIVE EVALUATION

We present additional visual results, including various single-condition cases. Moreover,
we also demonstrate more results under multiple conditions.
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