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ABSTRACT

Monte Carlo Tree Search (MCTS)-based algorithms, such as MuZero and its
derivatives, have achieved widespread success in various decision-making do-
mains. These algorithms employ the reanalyze process to enhance sample effi-
ciency from stale data, albeit at the expense of significant wall-clock time con-
sumption. To address this issue, we propose a general approach named ReZero
to boost tree search operations for MCTS-based algorithms. Specifically, draw-
ing inspiration from the one-armed bandit model, we reanalyze training samples
through a backward-view reuse technique which uses the value estimation of a cer-
tain child node to save the corresponding sub-tree search time. To further adapt
to this design, we periodically reanalyze the entire buffer instead of frequently
reanalyzing the mini-batch. The synergy of these two designs can significantly
reduce the search cost and meanwhile guarantee or even improve performance,
simplifying both data collecting and reanalyzing. Experiments conducted on Atari
environments, DMControl suites and board games demonstrate that ReZero sub-
stantially improves training speed while maintaining high sample efficiency.

1 INTRODUCTION

As a pivotal subset of artificial intelligence, Reinforcement Learning (RL) (Sutton & Barto, 1988)
has acquired achievements and applications across diverse fields, including interactive gaming
(Vinyals et al., 2019), autonomous vehicles (Li et al., 2022), and natural language processing
(Rafailov et al., 2023). Despite its successes, a fundamental challenge plaguing traditional model-
free RL algorithms is their low sample efficiency. These algorithms typically require a large amount
of data to learn effectively, making them often infeasible in the real-world scenarios. In response
to this problem, numerous model-based RL methods (Janner et al., 2019; Hafner et al., 2020) have
emerged. These methods involve learning an additional model of the environment from data and
utilizing the model to assist the agent’s learning, thereby improving sample efficiency significantly.

Within this field, Monte Carlo Tree Search (MCTS) (Świechowski et al., 2023) has been proven to be
a efficient method for utilizing models for planning. It incorporates the UCB1 algorithm (Auer et al.,
2002) into the tree search process and has achieved promising results in a wide range of scenarios.
Specifically, AlphaZero (Silver et al., 2017) plays a big role in combining deep reinforcement learn-
ing with MCTS, achieving notable accomplishments that can beat top-level human players. While
it can only be applied to environments with perfect simulators, MuZero (Schrittwieser et al., 2019)
extended the algorithm to cases without known environment models, resulting in good performances
in a wider range of tasks. Following MuZero, many successor algorithms have emerged, enabling
MuZero to be applied in continuous action spaces (Hubert et al., 2021), offline RL training scenarios
(Schrittwieser et al., 2021), and etc. All these MCTS-based algorithms made valuable contributions
to the universal applicability of the MCTS+RL paradigm.

However, the extensive tree search computations incur additional time overhead for these algorithms:
During the data collection phase, the agent needs to execute MCTS to select an action every time
it receives a new state. Furthermore, due to the characteristics of tree search, it is challenging to
parallelize it using commonly used vectorized environments (Weng et al., 2022), further amplifying
the speed disadvantage. On the other hand, during the reanalyze (Schrittwieser et al., 2021) process,
in order to obtain higher-quality update targets, the latest models are used to re-run MCTS on the
training mini-batch. The wall-clock time thus increases as a trade-off for high sample efficiency.
The excessive cost has become a bottleneck hindering the further promotion of these algorithms.
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Recently, a segment of research endeavors are directed toward mitigating the above wall-clock time
overhead. On the one hand, SpeedyZero (Mei et al., 2023) diminishes algorithms’ time overheads
by deploying a parallel execution training pipeline; however, it demands additional computational
resources. On the other hand, it remains imperative to identify methodologies that accelerate these
algorithms without imposing extra demands. PTSAZero (Fu et al., 2023), for instance, compresses
the search space via state abstraction, decreasing the time cost per search. In contrast, we aim to
adopt a method that is orthogonal to both of the previous approaches. It does not require state space
compression but directly reduces the search space through value estimation, and it does not introduce
additional hardware overhead.

In this paper, we introduce ReZero, a new approach/framework designed to boost the MCTS-based
algorithms. Firstly, inspired by the one-armed bandit model (Lattimore & Szepesvári, 2020), we
propose a backward-view reanalyze technique that proceeds in the reverse direction of the trajec-
tories, utilizing previously searched root values to bypass the exploration of specific child nodes,
thereby saving time. Additionally, we have proven the convergence of our search mechanism based
on the non-stationary bandit model, i.e., the distribution of child node visits will concentrate on the
optimal node. Secondly, to better adapt to our proposed backward-view reanalyze technique, we
have devised a novel pipeline that concentrates MCTS calls within the reanalyze process and peri-
odically reanalyzes the entire buffer after a fixed number of training iterations. This entire-buffer
reanalyze not only reduces the number of MCTS calls but also better leverages the speed advantages
of parallelization. Skipping the search of specific child nodes can be seen as a pruning operation,
which is common in different tree search settings. Reanalyze is also a common module in MCTS-
based algorithms. Therefore, our algorithm design is universal and can be easily applied to the
MCTS-based algorithm family. In addition, it will not bring about any overhead in computation
resources. Empirical experiments (Section 5) show that our approach yields good results in both
single-agent discrete-action environment (Atari (Bellemare et al., 2013)), two-player board games
(Silver et al., 2016), and continuous control suites (Tunyasuvunakool et al., 2020), greatly improv-
ing the training speed while maintaining or even improving sample efficiency. Ablation experiments
explore the impact of different reanalyze frequencies and the acceleration effect of backward-view
reuse on a single search. The main contributions of this paper can be summarized as follows:

• We design a method to speed up a single tree search by the backward-view reanalyze technique.
Theoretical support for the convergence of our proposed method is also provided.

• We propose an efficient framework with the entire-buffer reanalyze mechanism that further re-
duces the number of MCTS calls and enhance its parallelization, thus boosting MCTS-based al-
gorithms.

• We conduct experiments on diverse environments and investigate ReZero through ablations.

2 RELATED WORK

2.1 MCTS-BASED ALGORITHMS

AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2017) combined MCTS with deep RL,
achieving significant results in board games, defeating world-champion players, and revealing their
remarkable capabilities. Following these achievements, MuZero (Schrittwieser et al., 2019) com-
bines tree search with a learned value equivalent model (Grimm et al., 2020b), successfully promot-
ing the algorithm’s application to scenarios without known models, such as Atari. Subsequent to
MuZero’s development, several new works based on the MuZero framework emerged. EfficientZero
(Ye et al., 2021) further improved MuZero’s sample efficiency, using very little data for training and
still achieving outstanding performance. Another works (Hubert et al., 2021; Antonoglou et al.,
2021) extended the MuZero agent to environments with large action spaces and stochastic environ-
ments, further broadening the algorithm’s usage scenario. MuZero Unplugged (Schrittwieser et al.,
2021) applied MuZero’s reanalyze operation as a policy enhancement operator and extended it to
offline settings. Despite the aforementioned excellent improvement techniques, the time overhead
of MCTS-based RL remains significant, which is the main problem this paper aims to address.

2.2 MCTS ACCELERATION

Recent research has focused on accelerating MCTS-based algorithms. Mei et al. (2023) reduces the
algorithm’s time overhead by designing a parallel system; however, this method requires more com-
putational resources and involves some adjustments for large batch training. Fu et al. (2023) narrows
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the search space through state abstraction, which amalgamates redundant information, thereby re-
ducing the time cost per search. KataGo (Wu, 2019) use a naive information reuse trick. They save
sub-trees of the search tree and serve as initialization for the next search. However, our proposed
backward-view reanalyze technique is fundamentally different from this naive forward-view reuse
and can enhance search results while saving time. To our knowledge, we are the first to enhance
MCTS by reusing information in a backward-view. Our proposed approach can seamlessly integrate
with various MCTS-based algorithms, many of which (Mei et al., 2023; Fu et al., 2023; Danihelka
et al., 2022; Leurent & Maillard, 2020) are orthogonal to our contributions.

3 PRELIMINARIES

3.1 MUZERO

MuZero (Schrittwieser et al., 2019) is a fundamental model-based RL algorithm that incorporates
a value-equivalent model (Grimm et al., 2020a) and leverages MCTS for planning within a learned
latent space. The model consists of three core components: a representation model hθ, a dynamics
model gθ, and a prediction model fθ:

Representation: st = hθ(ot−l:t)
Dynamics: st+1, rt = gθ(st, at)
Prediction: vt, pt = fθ(st)

(1)

The representation model transforms last observation sequences ot−l:t into a corresponding latent
state st. The dynamics model processes this latent state alongside an action at, yielding the next
latent state st+1 and an estimated reward rt. Finally, the prediction model accepts a latent state and
produces both the predicted policy pt and the state’s value vt. These outputs are instrumental in
guiding the agent’s action selection throughout its MCTS. Lastly the agent samples the best action
at following the searched visit count distribution. MuZero Reanalyze is an advanced version of
the original MuZero. This variant enhances the model’s accuracy by conducting a fresh MCTS on
sampled states with the latest model, subsequently utilizing the refined policy from this search to
update the policy targets. Such reanalysis yields targets of superior quality compared to those ob-
tained during the initial data collection. Traditional uses of the algorithm have intertwined reanalysis
with training, while we suggest a novel paradigm, advocating for the decoupling of the reanalyze
process from training iterations, thus providing a more flexible and efficient methodology. Refer to
the Appendix B for more details on MuZero during the training and inference phases.

3.2 BANDIT-VIEW TREE SEARCH

A stochastic bandit has K arms, and playing each arm means sampling a reward from the corre-
sponding distribution. For a search tree in MCTS, the root node can be seen as a bandit, with each
child node as an arm. The left side of Figure 1 illustrates this idea. However, as the policy is con-
tinuously improved during the search process, the reward distribution for the arms should change
over time. Therefore, UCT (Kocsis & Szepesvári, 2006) modeled the root node as a non-stationary
stochastic bandit with a drift condition:

P(µ̂is − µi ≥ ε) ≤ exp(−ε2s

C2
) and P(µ̂is − µi ≤ −ε) ≤ exp(−ε2s

C2
) (2)

Where µ̂is is the average reward of the first s samples of arm i. µi is the limit of E[µ̂is] as s
approaches infinity, which indicates that the expectation of the node value converges. C is an appro-
priate constant characterizes the rate of concentration.

Based on this modeling, UCT uses the bandit algorithm UCB1 (Auer et al., 2002) to select child
nodes. AlphaZero inherits this concept and employs a variant formula:

UCBscore(s, a) = Q(s, a) + cP (s, a)

√∑
bN(s, b)

1 +N(s, a)
(3)

where s is the state corresponding to the current node, a is the action corresponding to a child node.
Q(s, a) is the mean return of choosing action a, P (s, a) is the prior score of action a, N(s, a) is the
total time that a has been chosen,

∑
bN(s, b) is the total time that s has been visited. Viewing tree

search from the bandit-view inspired us to use techniques from the field of bandits to improve the
tree search. In next section, We use the idea of the one-armed bandit model to design our algorithm
and prove the convergence of our algorithm based on the non-stationary bandit model.
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root

Arm BArm A

root

Arm BArm A

value backpropagation score update reward of the arm

bandit-view tree search one-armed bandit case

Figure 1: The connection between MCTS and bandits. Left shows tree search in a bandit-view.
When the action A is selected, a return rA will be returned, where rA =

∑3
t=1 γ

t−1rat + γ3va. For
the root node, the traversal, evaluation and back-propagation occurring in the sub-tree can be ap-
proximated as sampling from an non-stationary distribution. Thus it can be seen as a non-stationary
bandit. Right shows the one-armed bandit case. Once the true value µA is known, we can evaluate
arm A using µA, thereby eliminating the need to rely on subsequent tree search processes.

4 METHOD

In this section, we introduce the specific design of ReZero. Section 4.1 describes the inspiration
and specific operations of backward-view reanalyze. It performs a reverse search on the trajectory
and uses the value estimation of a certain child node to save the corresponding sub-tree search time.
Section 4.2 analyzes the node selection method introduced in Section 4.1 and ultimately proves the
convergence of the method. Section 4.3 introduced the overall framework of ReZero, which adopts
the buffer reanalyze setting to better integrate with the method described in Section 4.1.

4.1 BACKWARD-VIEW REANALYZE

Our algorithm design stems from a simple inspiration: if we could know the true state-value (e.g.,
expected long-term return) of a child node in advance, we could save the search for it, thus con-
serving search time. As shown on the right side of Figure 1, we directly use the true expectation
µA to evaluate the quality of Arm A, thereby eliminating the need for the back-propagated value to
calculate the score in Eq. 3. This results in the process occurring within the gray box in Figure 1
being omitted. Indeed, this situation can be well modeled as an one-armed bandit (Lattimore &
Szepesvári, 2020), which also facilitates our subsequent theoretical analysis.

Driven by the aforementioned motivation, we aspire to obtain the expected return of a child node
in advance. However, the true value is always unknown. Consequently, we resort to using the root
value obtained from MCTS as an approximate substitute. Specifically, for two adjacent time steps
S1
0 and S0

0
1 in Figure 2, when searching for state S1

0 , the root node corresponds to a child node of
S0
0 . Therefore, the root value obtained can be utilized to assist the search for S0

0 . However, there is
a temporal contradiction. S1

0 is the successor state of S0
0 , yet we need to complete the search for S1

0
first. Fortunately, this is possible during the reanalyze process.

During reanalyze, since the trajectories were already collected in the replay buffer, we can perform
tree search in a backward-view, which searches the trajectory in a reverse order. Figure 2 illustrates a
batch containing n+1 trajectories, each of length k+1, and St

l is the t-th state in the l-th trajectory.
We first conduct a search for all Sks, followed by a search for all Sk−1s, and so on. After we search

1The subscript denotes the trajectory, the superscript denotes the time step in the trajectory.
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Search •••

Batch ViewNode View

Trajectory

•••

•••

••• ••• ••••••

Figure 2: An illustration about the backward-view reanalyze in node and batch view. We sample
n + 1 trajectories of length k + 1 to form a batch and conduct the search in the reverse direction
of trajectories. From the node view, we would first search S1

0 and then pass root value m1
0 to S0

0 to
evaluate the value of a child node. T 1

0 and T 0
0 are the corresponding search trees. From the batch

view, we would group all S1s into a sub batch to search together and pass the root values to the S0s.

on state St+1
l

2, the root value mt+1
l is obtained. When engaging in search on St

l , we assign the
value of St+1

l to the fixed value mt+1
l . During traverse in the tree, we select the action aroot for root

node St
l with the following equation:

aroot = argmax
a

Itl (a) (4)

Itl (a) =

{
UCBscore(S

t
l , a), a ̸= atl

rtl + γmt+1
l , a = atl

(5)

where a refers to the action associated with a child node, atl is the action corresponding to St+1
l ,

and rtl signifies the reward predicted by the dynamic model. If an action distinct from atl is selected,
the simulation continues its traversal with the original setting as in MuZero. If action atl is selected,
this simulation is terminated immediately. Since the time used to search for node St+1

l is saved, this
enhanced search process is faster than the original version. Algorithm 1 shows the specific design
with Python-like code.3

Algorithm 1 Python-like code for information reuse

# trajectory_segment: a segment with length K
def search_backwards(trajectory_segment):

# prepare search context from the segment
roots, actions = prepare(trajectory_segment)
policy_targets = []
# search the roots backwards
for i in range(K, 1, -1):

if i == K:
# origin MCTS for Kth root
policy, value = origin_MCTS(roots[i])

else:
# reuse information from previous search
policy, value = reuse_MCTS(

roots[i], actions[i], value
)

policy_targets.append(policy)

# N: simulation numbers during one search
def reuse_MCTS(root, action, values)

for i in range(N):
# select an action for root node
a = select_root_child(root, action, value):
# early stop the simulation
if a == action:

backpropagate()
break

# traverse to the leaf node
else:

traverse()
backpropagate()

2To facilitate the explanation, we have omitted details such as the latent space and do not make a deliberate
distinction between states and nodes.

3Our enhanced search process is implemented through reuse MCTS(), where select root child() per-
forms the action selection method of Equation 5. The traverse() and backpropagate() represent the forward
search and backward propagation processes in standard MCTS.
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4.2 THEORETICAL ANALYSIS

AlphaZero selects child nodes using Equation 3 and takes the final action based on the visit counts.
In the previous section, we replace Equation 3 with Equation 5, which undoubtedly impacts the
visit distribution of child nodes. Additionally, since we use the root value as an approximation to
true expectation, the error between the two may also affect the search results. To demonstrate the
reliability of our algorithm, in this section, we model the root node as an non-stationary bandit and
prove that, as the number of total visit increases, the visit distribution gradually concentrates on the
optimal arm. Specifically, we have the following theorem:

Theorem 1 For a non-stationary bandit that conforms to the assumptions of Equation 2, denote
the total number of rounds as n, the prior score for arm i as Pi, and the number of times a sub-
optimal arm i is selected in n rounds as Ti(n), then use a sampled estimation instead of UCB value
to evaluate a specific arm(like we do in Equation 5) can ensure that E[Ti(n)]

n → 0 as n → ∞.
Specifically, if we know the n times sample mean µ̂∗ of the optimal arm in advance, then E[Ti(n)]
for all sub-optimal arm i satisfies

E[Ti(n)] ≤ 2 +
2Pi

√
n− 1

∆i − ε
+

C2

(∆i − ε)2
+ n exp (−nε2

C2
) (6)

Otherwise, if we have the n times sample mean µ̂l of a sub-optimal arm l, then for arm l,

E[Tl(n)] ≤ 1 +
2C6

ε4P 2
1

+ n exp (−n(∆l − ε)2

C2
) (7)

and for other sub-optimal arms,

E[Ti(n)] ≤ 3 +
2Pi

√
n− 1

∆i − ε
+

C2

(∆i − ε)2
+

2C6

ε4P 2
1

(8)

where ∆i is the optimal gap for arm i, ε is a constant in (0,∆i), and C is the constant in Eq. 2.

We provide the complete proof and draw similar conclusions for AlphaZero in Appendix A. Ad-
ditionally, our method has a lower upper bound for E[Ti(n)]. This implies that our algorithm may
yield visit distribution more concentrated on the optimal arm. This is a potential worth exploring in
future work, especially in offline scenarios (Schrittwieser et al., 2021) where reanalyze becomes the
sole method for policy improvement.

4.3 THE REZERO FRAMEWORK

The technique introduced in Section 4.1 will bring a new problem in practice. The experiments in
the Appendix D.3 demonstrate that batching MCTS allows for parallel model inference and data
processing, thereby accelerating the average search speed. However, as shown in the Figure 2, to
conduct the backward-view reanalyze, we need to divide the batch into 1

k+1 of its original size. This
diminishes the benefits of parallelized search and, on the contrary, makes the algorithm slower.

We propose a new pipeline that is more compatible with the method introduced in Section 4.1.
In particular, during the collect phase, we have transitioned from using MCTS to select actions to
directly sampling actions based on the policy network’s output. This shift can be interpreted as an
alternative method to augment exploration in the collect phase, akin to the noise injection at the
root node in MCTS-based algorithms. Figure 11 in Appendix D.3 indicates that this modification
does not significantly compromise performance during evaluation. For the reanalyze process, we
introduce the periodical entire-buffer reanalyze. As shown in Figure 3, we reanalyze the whole
buffer after a fixed number of training iterations. For each iteration, we do not need to run MCTS to
reanalyze the mini-batch, only need to sample the mini-batch and execute the gradient descent.

Overall, this design offers two significant advantages: 1 The entire buffer reanalyze is akin to
the fixed target net mechanism in DQN (Mnih et al., 2013), maintaining a constant policy target
for a certain number of training iterations. Reducing the frequency of policy target updates corre-
spondingly decreases the number of MCTS calls. Concurrently, this does not result in a decrease
in performance. 2 Since we no longer invoke MCTS during the collect phase, all MCTS calls

6
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num : Reanalyze the Mini-batch

num : Reanalyze the Whole Buffer

: Collect Game Episodes

num : Update the Model

Figure 3: Execution workflow and runtime cycle graph about MuZero and ReZero in both single and
multiple worker cases. The number inside the modules represent the number of iterations, and the
number under the modules represent the time required for module execution. The model is updated
n iterations between two collections. MuZero reanalyzes the mini-batch before each model update.
ReZero reanalyzes the entire buffer after certain iterations(n3 for example), which not only reduces
the total number of MCTS calls, but also takes advantage of the processing speed of large batches.

are concentrated in the reanalyze process. And during the entire-buffer reanalyze, we are no longer
constrained by the size of the mini-batch, allowing us to freely adjust the batch size to leverage the
advantages of large batches. Figure 12 shows both excessively large and excessively small batch
sizes can lead to a decrease in search speed. We choose the batch size of 2000 according to the
experiment in Appendix D.3.

Experiments show that our algorithm maintains high sample efficiency and greatly save the running
time of the algorithm. Our pipeline also has the following potential improvement directions:

• When directly using policy for data collection, action selection is no longer bound by tree search.
Thus, previous vectorized environments like Weng et al. (2022) can be seamlessly integrated. Be-
sides, this design makes MCTS-based algorithms compatible with existing RL exploration meth-
ods like Badia et al. (2020).

• Our method no longer needs to reanalyze the mini-batch for each iteration, thus decoupling the
process of reanalyze and training. This provides greater scope for parallelization. In the case of
multiple workers, we can design efficient parallelization paradigms as shown in Figure 3.

• We can use a more reasonable way, such as weighted sampling to preferentially reanalyze a part
of the samples in the buffer, instead of simply reanalyzing all samples in the entire buffer. This is
helpful to further reduce the computational overhead.

5 EXPERIMENT

Efficiency in RL usually refers to two aspects: sample efficiency, the agent’s ability to learn effec-
tively from a limited number of environmental interactions, gauged by the samples needed to reach a
successful policy using equal compute resources; time efficiency, which is how swiftly an algorithm
learns to make optimal decisions, indicated by the wall-clock time taken to achieve a successful pol-
icy. Our primary goal is to improve time efficiency without compromising sample efficiency.
Here we first give a toy example case in Section 5.1 to intuitively demonstrate the acceleration effect
of our design, and the corresponding code example is placed in the Appendix D.4 for readers to
quickly understand the algorithm design.

And then, to validate the efficiency of our introduced two boosting techniques for MCTS-based algo-
rithms, we have incorporated the ReZero with two prominent algorithms detailed in Niu et al. (2023):
MuZero with a Self-Supervised Learning loss (SSL) and EfficientZero, yielding the enhanced vari-
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Figure 4: Acceleration effect on the toy case. Left is a simple maze environment where the agent
starts at point A and receives a reward of size 1 upon reaching the end point G. Middle shows the
search time corresponding to each position when set as the root node. Meanwhile, the root node
values obtained during the search are preserved. Right shows the corresponding search time when
these root node values are used to assist the search. The comparison shows that the search duration
is generally reduced. For specific experimental settings and code, please refer to the Appendix D.4.

ants ReZero-M and ReZero-E respectively. For brevity, when the context is unambiguous, we simply
refer to them as ReZero, omitting the symbol representing the baseline. It is important to highlight
that ReZero can be seamlessly integrated with various algorithm variants of MuZero. In this context,
we have chosen to exemplify this integration using the above two instances. In order to validate the
applicability of our method across various decision-making environments, we opt for 26 representa-
tive Atari environments characterized by classic image-input observation and discrete action spaces,
in addition to the strategic board games Connect4 and Gomoku with special state spaces, and two
continuous control tasks in DMControl (Tunyasuvunakool et al., 2020). For a baseline compari-
son, we employed the original implementations of MuZero and EfficientZero as delineated in the
LightZero benchmark (Niu et al., 2023). The full implementation details available in Appendix C.
Besides, we emphasize that to ensure a fair comparison of wall-clock time, all experimental trials
were executed on a fixed single worker hardware settings. In Section 5.2, Section 5.3 and Section
5.4, we sequentially explore and try to answer the following three questions:

• How much can ReZero-M/ReZero-E improve time efficiency compared to MuZero/EfficientZero,
while maintaining equivalent levels of high sample efficiency?

• What is the effect and hyper-parameter sensitivity of the Entire-buffer Reanalyze technique?

• How much search budgets can be saved in practice by the Backward-view Reanalyze technique?

5.1 TOY CASE

Intuitively, it is evident that our proposed method can achieve a speed gain because we eliminate the
search of a certain subtree, especially when this subtree corresponds to the optimal action (which
often implies that the subtree has a larger number of nodes). We conduct an experiment on a toy
example case and include the experimental code in the Appendix D.4. This helps to visually illustrate
the speed gain achieved by skipping subtree search and allows readers to quickly understand the
algorithm design through simple code. As shown in Figure 4 (Left), we implement a simple 7 × 7
maze environment where the agent starts at point A and receives a reward of 1 upon reaching point
G. We perform an MCTS with each position in the maze as the root node and recorded the search
time in Figure 4 (Middle). It can be seen that regions farther from the end point require more time
to search (this is related to our simulation settings, see the appendix for details). For comparision,
we also performed searches with each position as the root node, but during the search, we used
the root node values obtained from the search in Figure 4 (Middle) to evaluate specific actions. The
experimental time was recorded in Figure 4 (Right). It can be seen that after eliminating the search of
specific subtrees, the search time was generally reduced. This simple result validates the rationality
of our algorithm design. In the next section, we will specifically validate the time efficiency of the
ReZero framework in diverse decision-making tasks in Section 5.2.
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Figure 5: Time-efficiency of ReZero-M vs. MuZero on four representative Atari games, two con-
tinuous control tasks of DMControl (ball in cup-catch, walker-stand), and two board games (Con-
nect4, Gomoku). The horizontal axis represents Wall-clock Time (hours), while the vertical axis
indicates the Episode Return over 5 evaluation episodes. ReZero-M demonstrates superior time-
efficiency compared to the baseline across a diverse set of games, encompassing both image and
state observations, discrete and continuous actions, and scenarios involving sparse rewards. These
figures compute mean of 5 runs, and shaded areas are 95% confidence intervals.

Atari DMControl Board Games
avg. wall time (h) to 100k env. steps ↓ Pong Breakout MsPacman Seaquest ball in cup-catch walker-stand Connet4 Gomoku

ReZero-M (ours) 1.0±0.1 3.0±0.8 1.4±0.2 1.9±0.4 2.1±0.2 4.3±0.3 5.5±0.6 4.5±0.5

MuZero (Schrittwieser et al., 2019) 4.0±0.5 4.9±1.8 6.9±0.3 10.1±0.5 5.6±0.4 9.5±0.6 9.1±0.8 15.3±1.5

Table 1: Average wall-time of ReZero-M vs. MuZero on various tasks. (left) Four Atari games,
(middle) two control tasks, (right) two board games. The time represents the average total wall-time
to 100k environment steps for each algorithm. Mean and standard deviation over 5 runs.

5.2 TIME EFFICIENCY

Setup: We aim to evaluate the performance of ReZero against classical MCTS-based algorithms
MuZero and EfficientZero, focusing on the wall-clock time reduction required to achieve the com-
parable performance level. In order to facilitate a fair comparison in terms of wall-time, we not
only utilize identical computational resources but also maintain consistent hyper-parameter settings
across the algorithms (unless specified cases). Key parameters are aligned with those from original
papers. After each data collection phase, the model is trained for multiple iterations according to
the replay ratio, which is denoted as one training epoch. Specifically, we set the replay ratio (the
ratio between environment steps and training steps) (D’Oro et al., 2022) to 0.25, and the reanalyze
ratio (the ratio between targets computed from the environment and by reanalysing existing data)
(Schrittwieser et al., 2021) is set to 1. For detailed hyper-paramater configurations, please refer to
the Appendix C.

Results: Our experiments shown in Figure 5 illustrates the training curves and performance com-
parisons in terms of wall-clock time between ReZero-M and the MuZero across various decision-
making environments. Note that on continuous control tasks we use the sampled version of ReZero-
M and MuZero Hubert et al. (2021). The data clearly indicates that ReZero-M achieves a signif-
icant improvement in time efficiency, attaining a near-optimal policy in significantly less time for
these eight diverse decision-making tasks. To provide an alternative perspective on the time cost
of training on the same number of environment steps, we also provide an in-depth comparison of
the wall-clock training time up to 100k environment steps for ReZero-M against MuZero in Table
1. For a more comprehensive understanding of our findings, we offer the complete table of the 26
Atari games usually used for sample-efficient RL in Appendix D.1. It reveals that, on most games,
ReZero require between 2-4 times less wall-clock time per 100k steps compared to the baselines,
while maintaining comparable or even superior performance in terms of episode return. Additional
results about another algorithm comparison instance ReZero-E and EfficientZero are detailed in Ap-
pendix D.2, specifically in Figure 8 and 9. This setting also supports the time efficiency of our
proposed ReZero framework.
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Figure 6: The ablation ex-
periment of Reanalyze Fre-
quency in ReZero-M on the
Atari MsPacman game. The
proper reanalyze frequency
can improve time and sam-
ple efficiency while obtaining
the comparable return with
MuZero (reanalyze ratio=1).

5.3 EFFECT OF REANALYZE FREQUENCY

In next two sub-sectons, we will delve into details to explain how ReZero works. Firstly, we will
analyze how the entire-buffer reanalyze technique manages to simplify the original iterative mini-
batch reanalyze scheme to the periodical updated version while maintaining high sample efficiency.

Here, we adjust the periodic reanalyze frequency—which determines how often the buffer is rean-
alyzed during a training epoch—in ReZero for the MsPacman environment. Specifically, we set
reanalyze frequency to {0, 1

3 , 1, 2}. The original MuZero variants with the reanalyze ratio of 1 is
also included in this ablation experiment as a baseline. Figure 6 shows entire training curves in
terms of Wall-time or Env Steps and validates that appropriate reanalyze frequency can save the time
overhead without causing any obvious performance loss.

5.4 EFFECT OF BACKWARD-VIEW REANALYZE

Indicators Avg.time
(ms)

tree search
(num calls)

dynamics
(num calls)

data process
(num calls)

ReZero-M 0.69 ± 0.02 6089 122 277
MuZero 1.08± 0.09 13284 256 455

Table 2: Comparisons
about the detailed time
cost indicators between
MuZero and ReZero-M
inside the tree search.

To further validate and understand the advantages and significance of the backward-view reanalyze
technique proposed in ReZero, we meticulously document a suite of statistical indicators of the tree
search process in Table 2. The number of function calls is the cumulative value of 100 training
iterations on Pong. Avg. time is the average time of a MCTS across all calls. Comparative analysis
between ReZero-M and MuZero reveals that the backward-view reanalyze technique reduces the
invocation frequency of the dynamics model, the search tree, and other operations like data process
transformations. Consequently, this advanced technique in leveraging subsequent time step data
contributes to save the tree search time in various MCTS-based algorithms, further leading to over-
all wall-clock time gains. The complexity and implementation of the tree search process directly
influences the efficiency gains achieved through the backward-view reanalyze technique. As the
tree search becomes more intricate and sophisticated, e.g. Sampled MuZero (Hubert et al., 2021),
the time savings realized through this method are correspondingly amplified. Additionally, The-
orem 1 demonstrates that the backward-view reanalyze can reduce the regret upper bound, which
indicates a better search result. Besides, Figure 10 in Appendix D.3 shows a comparison of sample
efficiency between using backward-view reanalyze and origin reanalyze process in MsPacman. The
experimental results reveal that our method not only enhances the speed of individual searches but
also improves sample efficiency. This aligns with the theoretical analysis.

6 CONCLUSION AND LIMITATION

In this paper, we have delved into the efficiency and scalability of MCTS-based algorithms. Unlike
most existing works, we incorporate information reuse and periodic reanalyze techniques to reduces
wall-clock time costs while preserving sample efficiency. Our theoretical analysis and experimental
results confirm that ReZero efficiently reduces the time cost and maintains or even improves per-
formance across different decision-making domains. However, our current experiments are mainly
conducted on the single worker setting, there exists considerable optimization scope to apply our
approach into distributed RL training, and our design harbors the potential of better parallel accel-
eration and more stable convergence in large-scale training tasks. Also, the combination between
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ReZero and frameworks akin to AlphaZero, or its integration with some recent offline datasets such
as RT-X (Padalkar et al., 2023), constitutes a fertile avenue for future research. These explorations
could broaden the application horizons of MCTS-based algorithms. Additionally, since in offline
training scenarios, reanalyze becomes the only means of policy improvement, this makes the accel-
eration of the reanalyze phase in ReZero even more critical. Moreover, the potential improvement
in search results by ReZero may further improve the training result, rather than merely accelerating
the training. Therefore, combining ReZero with MuZero Unplugged (Schrittwieser et al., 2021) is a
direction worth exploring for building foundation models for decision-making.

REFERENCES

Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K Hubert, and David Silver. Plan-
ning in stochastic environments with a learned model. In International Conference on Learning
Representations, 2021.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.
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A PROOF MATERIALS

In this section, we will present the complete supplementary proofs.

Lemma A: Let wt be a random variable that satisfies the concentration condition in Equation 2 with
zero expectation, ε > 0, a > 0 and

κ =

n∑
t=1

I{wt +

√
a

t2
≥ ε} (9)

then it holds that E[κ] ≤ 1 + 2
√
a

ε + C2

ε2 .

Proof. Take u as 2
√
a

ε , then

E[κ] ≤ u+

n∑
t=⌈u⌉

P(wt +

√
a

t2
≥ ε) (10)

≤ u+

n∑
t=⌈u⌉

exp(−
t(ε−

√
a
t2 )

2

C2
) (11)

≤ 1 + u+

∫ ∞

u

exp(−
t(ε−

√
a
t2 )

2

C2
)dt (12)

≤ 1 + u+ e2
√

aε

C2

∫ ∞

u

e−
tε2

C2 dt (13)

= 1 + u+
C2

ε2
= 1 +

2
√
a

ε
+

C2

ε2
(14)

Proof for Theorem 1:

Proof. We first present the upper bound of E[Ti(n)] for using the Equation 3 in AlphaZero. A slight
adjustment to this proof yields the conclusion of Theorem 1. Denote Ti(k) as the number of times
that arm i has been chosen until time k, At as the arm selected at time t, µ̂is as the average of the
first s samples of arm i, µi as the limit of E[µ̂is], which satisfies the concentration assumption in
Equation 2, and µ̂i(k) = µ̂iTi(k). Without loss of generality, we assume that arm 1 is the optimal
arm. Then we have:

Ti(n) =

n∑
t=1

I{At = i} (15)

≤
n∑

t=1

I{µ̂1(t− 1) + P1

√
t− 1

1 + T1(t− 1)
≤ µ1 − ε} (16)

+

n∑
t=1

I{µ̂i(t− 1) + Pi

√
t− 1

1 + Ti(t− 1)
≥ µ1 − ε and At = i} (17)
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for Equation 16, we have

E[
n∑

t=1

I{µ̂1(t− 1) + P1

√
t− 1

1 + T1(t− 1)
≤ µ1 − ε}] (18)

≤ 1 +

n∑
t=2

t−1∑
s=0

P(µ̂1s + P1

√
t− 1

1 + s
≤ µ1 − ε) (19)

= 1 +

n∑
t=2

t−1∑
s=1

P(µ̂1s + P1

√
t− 1

1 + s
≤ µ1 − ε) (20)

≤ 1 +

n∑
t=2

t−1∑
s=1

exp(−
s(ε+ P1

√
t−1

1+s )2

C2
) (21)

≤ 1 +

n∑
t=2

exp(− 1

C2
εP1

√
t− 1)

t−1∑
s=1

exp(−sε2

C2
) (22)

≤ 1 +

n∑
t=2

exp(− 1

C2
εP1

√
t− 1)

C2

ε2
(23)

≤ 1 +
2C6

ε4P 2
1

(24)

Notes: In Equation 19, since we assume P1 ≥ µ1, the probability of the term s = 0 would be 0.
Thus, we can discard it. If this assumption doesn’t hold, we can choose to accumulate t starting from
a larger t0(which satisfies P1

√
t0 − 1 > µ1 as mentioned in the article). Starting the summation

from such a t0 ensures all terms of s = 0 can still be discarded, and all add terms that t ≤ t0 can
be bounded to 1. This only changes the constant term and won’t affect the growth rate of regret.
From Equation 21 to Equation 22, we just need to expand the quadratic term and do some simple
inequality scaling. From Equation 22 to Equation 23, we need to notice that

∑t−1
s=1 exp(−

sε2

C2 ) is
a geometric sequence and scale it to C2

ε2 . From Equation 23 to Equation 24, we use the inequality∑n
t=2

1
ea

√
t−1 ≤

∫∞
1

1
ea

√
t−1 .

And for Equation 17, we have

E[
n∑

t=1

I{µ̂i(t− 1) + Pi

√
t− 1

1 + Ti(t− 1)
≥ µ1 − ε and At = i}] (25)

≤ E[
n∑

t=1

I{µ̂i(t− 1) + Pi

√
n− 1

(1 + Ti(t− 1))2
≥ µ1 − ε and At = i}] (26)

≤ 1 + E[
n−1∑
s=1

I{µ̂is + Pi

√
n− 1

(1 + s)2
≥ µ1 − ε}] (27)

≤ 1 + E[
n∑

s=1

I{µ̂is − µi + Pi

√
n− 1

s2
≥ ∆i − ε}] (28)

with Lemma A, we can have

28 ≤ 2 +
2Pi

√
n− 1

∆i − ε
+

C2

(∆i − ε)2
(29)

so we have

E[Ti(n)] ≤ 3 +
2Pi

√
n− 1

∆i − ε
+

C2

(∆i − ε)2
+

2C6

ε4P 2
1

(30)

The proof of theorem 1 can be obtained by making slight modifications. In case we have drawn n
samples from the same non-stationary distribution as arm 1, and the average of these first n samples
is µ̂1,
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E[Ti(n)] = E[
n∑

t=1

I{At = i}] (31)

≤ E[
n∑

t=1

I{µ̂1 ≤ µ1 − ε}] (32)

+ E[
n∑

t=1

I{µ̂i(t− 1) + Pi

√
t− 1

1 + Ti(t− 1)
≥ µ1 − ε and At = i}] (33)

≤ n exp (−nε2

C2
) + E[

n∑
t=1

I{µ̂i(t− 1) + Pi

√
t− 1

1 + Ti(t− 1)
≥ µ1 − ε and At = i}] (34)

≤ 2 +
2Pi

√
n− 1

∆i − ε
+

C2

(∆i − ε)2
+ n exp (−nε2

C2
) (35)

In case we have drawn n samples from the same non-stationary distribution as arm l, and the average
of these first n samples is µ̂l,

E[Tl(n)] = E[
n∑

t=1

I{At = l}] (36)

≤ E[
n∑

t=1

I{µ̂1(t− 1) + P1

√
t− 1

1 + T1(t− 1)
≤ µ1 − ε}] (37)

+ E[
n∑

t=1

I{µ̂l ≥ µ1 − ε and At = l}] (38)

≤ E[
n∑

t=1

I{µ̂1(t− 1) + P1

√
t− 1

1 + T1(t− 1)
≤ µ1 − ε}] + n exp (−n(∆l − ε)2

C2
) (39)

≤ 1 +
2C6

ε4P 2
1

+ n exp (−n(∆l − ε)2

C2
) (40)

and the bound of E[Ti(n)] for i ̸= l keeps unchanged.

B MUZERO

During the inference phase, the representation model transforms a sequence of the last l obser-
vations ot−l:t into a corresponding latent state representation st. The dynamics model processes
this latent state alongside an action at, yielding the subsequent latent state st+1 and an estimated
reward rt. Finally, the prediction model accepts a latent state and produces both the predicted
policy pt and the state’s value estimate vt. These outputs are instrumental in guiding the agent’s
action selection process throughout its MCTS. Lastly the agent selects or samples the best action
at following the searched visit count distribution. During the training phase, given a training
sequence {ot−l:t+K , at+1:t+K , ut+1:t+K , πt+1:t+K , zt+1:t+K} at time t sampled from the replay
buffer, where ut+k denotes the actual reward obtained from the environment, πt+k represents the
target policy obtained through MCTS during the agent-environment interaction, and zt+k is the
value target computed using n-step bootstrapping Hessel et al. (2018). The representation model
initially converts the sequence of observations ot−l:t into the latent state s0t . Subsequently, the dy-
namic model executes K latent space rollouts based on the sequence of actions at+1:t+K . The latent
state derived after the k-th rollout is denoted as skt , with the corresponding predicted reward indi-
cated as rkt . Upon receiving skt , the prediction model generates a predicted policy pkt and a estimated
value vkt . The final training loss encompasses three components: the policy loss (lp), the value loss
(lv), and the reward loss (lr):

LMuZero =

K∑
k=0

lp(πt+k, p
k
t ) +

K∑
k=0

lv(zt+k, v
k
t ) +

K∑
k=1

lr(ut+k, r
k
t ) (41)
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MuZero Reanalyze, as introduced in Schrittwieser et al. (2021), is an advanced iteration of the orig-
inal MuZero algorithm. This variant enhances the model’s accuracy by conducting a fresh Monte
Carlo Tree Search on sampled states with the most recent version of the model, subsequently uti-
lizing the refined policy from this search to update the policy targets. Such reanalysis yields targets
of superior quality compared to those obtained during the initial data collection phase. The Schrit-
twieser et al. (2021) expands upon this approach, formalizing it as a standalone method for policy
refinement. This innovation opens avenues for its application in offline settings, where interactions
with the environment are not possible.

C IMPLEMENTATION DETAILS

C.1 ENVIRONMENTS

In this section, we first introduce various types of reinforcement learning environments evaluated
in the main paper and their respective characteristics, including different observation/action/reward
space and transition functions.

Atari: This category includes sub-environments like Pong, Qbert, Ms.Pacman, Breakout, UpN-
Down, and Seaquest. In these environments, agents control game characters and perform tasks
based on pixel input, such as hitting bricks in Breakout. With their high-dimensional visual input
and discrete action space features, Atari environments are widely used to evaluate the capability of
reinforcement learning algorithms in handling visual inputs and discrete control problems.

DMControl: This continuous control suite comprises 39 continuous control tasks. Our focus here
is to validate the effectiveness of ReZero in the continuous action space. Consequently, we have
utilized two representative tasks (ball in cup-catch and walker-stand) for illustrative purposes. A
comprehensive benchmark for this domain will be included in future versions.

Board Games: This types of environment includes Connect4, Gomoku, where uniquely marked
boards and explicitly defined rules for placement, movement, positioning, and attacking are em-
ployed to achieve the game’s ultimate objective. These environments feature a variable discrete
action space, allowing only one player’s piece per board position. In practice, algorithms utilize
action mask to indicate reasonable actions.

C.2 ALGORITHM IMPLEMENTATION DETAILS

Our algorithm’s implementation is based on the open-source code of LightZero (Niu et al., 2023).
Given that our proposed theoretical improvements are applicable to any MCTS-based RL method,
we have chosen MuZero and EfficientZero as case studies to investigate the practical improvements
in time efficiency achieved by integrating the ReZero boosting techniques: just-in-time reanalyze
and speedy reanalyze (temporal information reuse).

To ensure an equitable comparison of wall-clock time, all experimental trials were executed on a
fixed single worker hardware setting consisting of a single NVIDIA A100 GPU with 30 CPU cores
and 120 GiB memory. Besides, we emphasize that to ensure a fair comparison of time efficiency and
sample efficiency, the model architecture and hyper-parameters used in the experiments of Section
5 are essentially consistent with the settings in LightZero. For specific hyper-parameters of ReZero-
M and MuZero on Atari, please refer to the Table 3. The main different hyper-parameters in the
DMControl task are set out in Tables 4. The main different hyper-parameters for the ReZero-M
algorithm in the Connect4 and Gomoku environment are set out in Tables 5. In addition to employing
an LSTM network with a hidden state dimension of 512 to predict the value prefix (Ye et al., 2021),
all hyperparameters of ReZero-E are essentially identical to those of ReZero-M in Table 3.

Wall-time statistics Note that all our current tests are conducted in the single-worker case. There-
fore, the wall-time reported in Table 1 and Table 7 for reaching 100k env steps includes:

• collect time: The total time spent by an agent interacting with the environment to gather experience
data.Weng et al. (2022) can be integrated to speed up. Besides, this design also makes MCTS-
based algorithms compatible to existing RL exploration methods like Burda et al. (2018).
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Figure 7: Sample-efficiency of ReZero-M vs. MuZero on six representative Atari games and
two board games. The horizontal axis represents Env Steps, while the vertical axis indicates the
Episode Return over 5 assessed episodes. ReZero achieves similar sample-efficiency than the base-
line method. Mean of 5 runs; shaded areas are 95% confidence intervals.

• reanalyze time: The time used to reanalyze collected data with the current policy or value function
for more accurate learning targets (Schrittwieser et al., 2021).

• train time: The duration for performing updates to the agent’s policy, value functions and model
based on collected data.

• evaluation time: The period during which the agent’s policy is tested against the environment,
separate from training, to assess performance.

Currently, we have set collect max episode steps to 10,000 and eval max episode steps to 20,000
to mitigate the impact of anomalously long evaluation episodes on time. In the future, we will con-
sider conducting offline evaluations to avoid the influence of evaluation time on our measurement of
time efficiency. Furthermore, the ReZero methodology represents a pure algorithmic enhancement,
eliminating the need for supplementary computational resources or additional overhead. This ap-
proach is versatile, enabling seamless integration with single-worker serial execution environments
as well as multi-worker asynchronous frameworks. The exploration of ReZero’s extensions and its
evaluations in a multi-worker (Mei et al., 2023) paradigm are earmarked for future investigation.

Board games settings Given that our primary objective is to test the proposed techniques for im-
provements in time efficiency, we consider a simplified version of single-player mode in all the
board games. This involves setting up a fixed but powerful expert bot and treating this opponent
as an integral part of the environment. Exploration of our proposed techniques in the context of
learning through self-play training pipeline is reserved for our future work.

D ADDITIONAL EXPERIMENTS

D.1 REZERO-M

In this section, we provide additional experimental results for ReZero-M. As a supplement to Table
1, Table 6 presents the complete experimental results on the 26 Atari environments. Figure 7 displays
the performance over environment interaction steps of the ReZero-M algorithm compared with the
original MuZero algorithm across six representative Atari environments and two board games. We
can find that ReZero-M obtained similar sample efficiency than MuZero on the most tasks.

D.2 REZERO-E

The enhancements of ReZero we have proposed are universally applicable to any MCTS-based re-
inforcement learning approach theoretically. In this section, we integrate ReZero with EfficientZero
to obtain the enhanced ReZero-E algorithm. We present the empirical results comparing ReZero-E
with the standard EfficientZero across four Atari environments.
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Hyperparameter Value
Replay Ratio (Schwarzer et al., 2023) 0.25
Reanalyze frequency 1
Num of frames stacked 4
Num of frames skip 4
Reward clipping (Mnih et al., 2013) True
Optimizer type Adam
Learning rate 3× 10−3

Discount factor 0.997
Weight of policy loss 1
Weight of value loss 0.25
Weight of reward loss 1
Weight of policy entropy loss 0
Weight of SSL (self-supervised learning) loss (Ye et al., 2021) 2
Batch size 256
Model update ratio 0.25
Frequency of target network update 100
Weight decay 10−4

Max gradient norm 10
Length of game segment 400
Replay buffer size (in transitions) 1e6
TD steps 5
Number of unroll steps 5
Use augmentation True
Discrete action encoding type One Hot
Normalization type Layer Normalization
Priority exponent coefficient (Schaul et al., 2015) 0.6
Priority correction coefficient 0.4
Dirichlet noise alpha 0.3
Dirichlet noise weight 0.25
Number of simulations in MCTS (sim) 50
Categorical distribution in value and reward modeling True
The scale of supports used in categorical distribution (Pohlen et al., 2018) 300

Table 3: Key hyperparameters of ReZero-M on Atari environments.

Hyperparameter Value
Replay ratio (Schwarzer et al., 2023) 0.25
Reanalyze frequency 1
Batch size 64
Num of frames stacked 1
Num of frames skip 2
Discount factor 0.997
Length of game segment 8
Use augmentation False
Number of simulations in MCTS (sim) 50
Number of sampled actions (Hubert et al., 2021) 20

Table 4: Key hyperparameters of ReZero-M on two DMControl tasks (ball in cup-catch and
walker-stand). More experiments about this hyper-parameter will be explored in the future ver-
sion. Other unmentioned parameters are the same as that in Atari settings.

Figure 8 shows that ReZero-E is better than EfficientZero in terms of time efficiency. Figure 9
indicates that ReZero-E matches EfficientZero’s sample efficiency across most tasks. Additionally,
Table 7 details training times to 100k environment steps, revealing that ReZero-E is significantly
faster than baseline methods on most games.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Hyperparameter Value
Replay ratio (Schwarzer et al., 2023) 0.25
Reanalyze frequency 1
Board size 6x7; 6x6
Num of frames stacked 1
Discount factor 1
Weight of SSL (self-supervised learning) loss 0
Length of game segment 18
TD steps 21; 18
Use augmentation False
Number of simulations in MCTS (sim) 50
The scale of supports used in categorical distribution 10

Table 5: Key hyperparameters of ReZero-M on Connect4 and Gomoku environments. If the param-
eter settings of these two environments are different, they are separated by a semicolon.

Env. Name ReZero-M MuZero

Alien 1.6±0.2 8.6±0.4

Amidar 1.5±0.2 8.1±0.3

Assault 1.5±0.1 7.5±0.1

Asterix 1.3±0.1 7.2±0.2

BankHeist 2.9±0.3 8.9±0.6

BattleZone 2.2±0.3 9.6±0.6

ChopperCommand 3.4±0.4 9.0±0.7

CrazyClimber 2.7±0.1 9.1±0.4

DemonAttack 1.1±0.1 6.8±0.8

Freeway 1.0±0.0 6.1±0.2

Frostbite 2.2±0.4 10.9±0.8

Gopher 3.2±0.6 8.1±0.8

Hero 2.5±0.4 9.9±0.6

Jamesbond 2.2±0.3 9.1±0.5

Kangaroo 2.0±0.2 8.6±0.8

Krull 1.8±0.1 7.7±0.3

KungFuMaster 1.3±0.1 7.6±0.7

PrivateEye 1.0±0.1 5.8±0.5

RoadRunner 1.5±0.2 9.0±0.3

UpNDown 1.4±0.1 7.2±0.4

Pong 1.0±0.1 4.0±0.5

MsPacman 1.4±0.2 6.9±0.3

Qbert 1.3±0.1 7.0±0.3

Seaquest 1.9±0.4 10.1±0.5

Boxing 1.1±0.0 6.6±0.1

Breakout 3.0±0.8 4.9±1.8

Table 6: Average wall-time(hours) of ReZero-M vs. MuZero on 26 Atari game environments. The
time represents the average total wall-clock time to 100k environment steps. Mean and standard
deviation over 5 runs.

D.3 MORE ABLATIONS

This section presents the results of three supplementary ablation experiments. Figure 10 illustrates
the impact of using backward-view reanalyze within the ReZero framework on sample efficiency.
The results indicate that backward-view reanalyze, by introducing root value as auxiliary informa-
tion, achieves higher sample efficiency, aligning with the theoretical analysis regarding regret upper
bound. Figure 11 demonstrates the effects of different action selection methods during the collect
phase. The findings reveal that sampling actions directly from the distribution output by the policy
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Figure 8: Time-efficiency of ReZero-E vs. EfficientZero on four representative Atari games. The
horizontal axis represents Wall-time (hours), while the vertical axis indicates the Episode Return over
5 assessed episodes. ReZero-E achieves higher time-efficiency than the baseline method. Mean of
5 runs; shaded areas are 95% confidence intervals.
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Figure 9: Sample-efficiency of ReZero-E vs. EfficientZero on four representative Atari games. The
horizontal axis represents Env Steps, while the vertical axis indicates the Episode Return over 5
assessed episodes. ReZero-E achieves similar sample-efficiency than the baseline method. Mean of
5 runs; shaded areas are 95% confidence intervals.

avg. wall time (h) to 100k env. steps ↓ Pong MsPacman Seaquest UpNDown

ReZero-E (ours) 2.3±1.4 3±0.3 3.1±0.1 3.6±0.2

EfficientZero (Ye et al., 2021) 10±0.2 12±1.3 15±2.3 15±0.7

Table 7: Average wall-time of ReZero-E vs. EfficientZero on four Atari games.The time represents
the average total wall-time to 100k environment steps for each algorithm. Mean and standard devi-
ation over 5 runs.
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Figure 10: The results of the ablation study comparing the use of backward-view reanalyze versus
its absence. Mean of 3 runs; shaded areas are 95% confidence intervals.

network does not significantly degrade the experimental results compared to using MCTS for action
selection. Figure 12 depicts the relationship between the average MCTS search duration and the
batch size. We set a baseline batch size of 256 and experimented with search sizes ranging from 1
to 20 times the baseline, calculating the average time required to search 256 samples by dividing the
total search time by the multiplier. The results suggest that larger batch sizes can better leverage the
advantages of parallelized model inference and data processing. However, when the batch size be-
comes excessively large, constrained by the limits of hardware resources (memory, CPU), the search
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Figure 11: The comparison of the outcomes of sampling actions based on the policy network’s
output against selecting actions using MCTS. Mean of 3 runs; shaded areas are 95% confidence
intervals.
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Figure 12: The depiction of the variation in the average search speed of MCTS as the batch size
increases. Mean of 3 runs; shaded areas are 95% confidence intervals.

speed cannot increase further and may even slightly decrease. We ultimately set the batch size to
2000, which yields the fastest average search speed on our device.
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D.4 TOY CASE

We offer the complete code for the toy case. Readers can compare the core functions search() and
reuse search() of the MCTS class to understand how root node values are utilized and compare
select() and reuse select() to understand how the search process is prematurely halted.
import random
import math
import time
import numpy as np
import matplotlib.pyplot as plt

class Node:
def __init__(self, state, parent=None):

self.state = state
self.parent = parent
self.children = []
self.visits = 0
self.value = 0

def is_fully_expanded(self):
return len(self.children) == len(self.state.get_possible_actions())

def add_child(self, child_state):
child = Node(child_state, self)
self.children.append(child)
return child

class MCTS:
def __init__(self, exploration_weight=1.0):

self.exploration_weight = exploration_weight
self.gamma = 0.9

# the search process in origin MCTS
def search(self, initial_state, max_iter=100):

root = Node(initial_state)

for _ in range(max_iter):
node = self.select(root)
reward = self.simulate(node.state)
self.backpropagate(node, reward)

best_child = self.get_best_child(root, 0)
return best_child.state.current_pos, root.value

# the search process in our accelerated MCTS by reuse the root value
def reuse_search(self, initial_state, value, action, max_iter=100):

root = Node(initial_state)

for _ in range(max_iter):
node = self.reuse_select(root,action)
if node.state.current_pos == action:

reward = value
else: reward = self.simulate(node.state)
self.backpropagate(node, reward)

best_child = self.get_best_child(root, 0)
return best_child.state.current_pos, root.value

# select nodes in origin MCTS
def select(self, node):

while not node.state.is_terminal():
if not node.is_fully_expanded():

return self.expand(node)
else:

node = self.get_best_child(node, self.exploration_weight)
return node

# select nodes in our accelerated MCTS by reuse the root value
def reuse_select(self, node,actionpos):

while not (node.state.is_terminal() or node.state.current_pos == actionpos):
if not node.is_fully_expanded():

return self.expand(node)
else:

node = self.get_best_child(node, self.exploration_weight)
return node

def expand(self, node):
actions = node.state.get_possible_actions()
for action in actions:

if not any(child.state.current_pos == node.state.copy().step(action)[0] for child in node.children):
new_state = node.state.copy()
new_state.step(action)
return node.add_child(new_state)

return None

def simulate(self, state):
sim_state = state.copy()
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count = 1
while not sim_state.is_terminal():

action = random.choice(sim_state.get_possible_actions())
sim_state.step(action)
count += 1

return sim_state.get_reward()/count

def backpropagate(self, node, reward):
gamma = self.gamma
while node is not None:

node.visits += 1
node.value += reward * gamma
node = node.parent
gamma *= self.gamma

def get_best_child(self, node, exploration_weight):
best_value = -float(’inf’)
best_children = []
for child in node.children:

exploit = child.value / child.visits
explore = math.sqrt(2.0 * math.log(node.visits) / child.visits)
value = exploit + exploration_weight * explore
if value > best_value:

best_value = value
best_children = [child]

elif value == best_value:
best_children.append(child)

return random.choice(best_children)

class GridWorld:
def __init__(self):

self.grid = [[0 for _ in range(4)] for _ in range(4)]
self.start_pos = (0, 0)
self.goal_pos = (0, 3)
self.current_pos = self.start_pos
self.actions = [’down’, ’up’, ’left’, ’right’]

def reset(self):
self.current_pos = self.start_pos
return self.current_pos

def step(self, action):
if action not in self.actions:

raise ValueError("Invalid action")

x, y = self.current_pos

if action == ’up’:
x = max(0, x - 1)

elif action == ’down’:
x = min(3, x + 1)

elif action == ’left’:
y = max(0, y - 1)

elif action == ’right’:
y = min(3, y + 1)

self.current_pos = (x, y)
reward = 1 if self.current_pos == self.goal_pos else 0
done = self.current_pos == self.goal_pos

return self.current_pos, reward, done

def is_terminal(self):
return self.current_pos == self.goal_pos

def get_reward(self):
return 1 if self.current_pos == self.goal_pos else 0

def get_possible_actions(self):
x, y = self.current_pos
possible_actions = []

if x > 0:
possible_actions.append(’up’)

if x < 3:
possible_actions.append(’down’)

if y > 0:
possible_actions.append(’left’)

if y < 3:
possible_actions.append(’right’)

return possible_actions

def copy(self):
new_grid = GridWorld()
new_grid.current_pos = self.current_pos
return new_grid

def render(self):
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for i in range(4):
for j in range(4):

if (i, j) == self.current_pos:
print("A", end=" ")

elif (i, j) == self.goal_pos:
print("G", end=" ")

else:
print(".", end=" ")

print()
print()

class GridWorldWithWalls:
def __init__(self):

self.grid = [[0 for _ in range(7)] for _ in range(7)]
self.start_pos = (0, 0)
self.goal_pos = (6, 6)
self.current_pos = self.start_pos
self.actions = [’down’, ’up’, ’left’, ’right’]
self.walls = [(2, 2), (2, 3), (1,1), (3, 2), (3, 4), (3,2), (0,5), (4, 4), (6,3), (5,3)]

for wall in self.walls:
self.grid[wall[0]][wall[1]] = 1

def reset(self):
self.current_pos = self.start_pos
return self.current_pos

def step(self, action):
if action not in self.actions:

raise ValueError("Invalid action")

x, y = self.current_pos

if action == ’up’:
x = max(0, x - 1)

elif action == ’down’:
x = min(6, x + 1)

elif action == ’left’:
y = max(0, y - 1)

elif action == ’right’:
y = min(6, y + 1)

if (x, y) not in self.walls:
self.current_pos = (x, y)

reward = 1 if self.current_pos == self.goal_pos else 0
done = self.current_pos == self.goal_pos

return self.current_pos, reward, done

def is_terminal(self):
return self.current_pos == self.goal_pos

def get_reward(self):
return 1 if self.current_pos == self.goal_pos else 0

def get_possible_actions(self):
x, y = self.current_pos
possible_actions = []

if x > 0 and (x - 1, y) not in self.walls:
possible_actions.append(’up’)

if x < 6 and (x + 1, y) not in self.walls:
possible_actions.append(’down’)

if y > 0 and (x, y - 1) not in self.walls:
possible_actions.append(’left’)

if y < 6 and (x, y + 1) not in self.walls:
possible_actions.append(’right’)

return possible_actions

def copy(self):
new_grid = GridWorldWithWalls()
new_grid.current_pos = self.current_pos
return new_grid

def render(self):
for i in range(7):

for j in range(7):
if (i, j) == self.current_pos:

print("A", end=" ")
elif (i, j) == self.goal_pos:

print("G", end=" ")
elif (i, j) in self.walls:

print("#", end=" ")
else:

print(".", end=" ")
print()

print()
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env = GridWorldWithWalls()
mcts = MCTS()

# plot the grid
plt.figure(figsize=(6, 6))
plt.matshow(env.grid, cmap=’binary’, fignum=0, vmin=0, vmax=1)

for i in range(7):
for j in range(7):

if (i, j) == env.start_pos:
plt.text(j, i, ’A’, ha=’center’, va=’center’, color=’black’, fontsize=12)

elif (i, j) == env.goal_pos:
plt.text(j, i, ’G’, ha=’center’, va=’center’, color=’black’, fontsize=12)

elif (i, j) in env.walls:
plt.text(j, i, ’’, ha=’center’, va=’center’, color=’black’, fontsize=12)

else:
plt.text(j, i, ’’, ha=’center’, va=’center’, color=’black’, fontsize=12)

for wall in env.walls:
plt.gca().add_patch(plt.Rectangle((wall[1] - 0.5, wall[0] - 0.5), 1, 1, color=’black’))

for i in range(7):
for j in range(7):

plt.gca().add_patch(plt.Rectangle((j - 0.5, i - 0.5), 1, 1, fill=False, edgecolor=’black’, linewidth=2))

plt.title(’GridWorld Environment’, fontsize=24)
plt.xticks(np.arange(7), [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’])
plt.yticks(np.arange(7), [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’])
plt.xlabel(’Column’, fontsize=24)
plt.ylabel(’Row’, fontsize=24)
plt.show()

# record the search time
search_times = np.zeros((7, 7))
reuse_times = np.zeros((7, 7))
for i in range(7):

for j in range(7):
if (i, j) == env.goal_pos or (i,j) in env.walls:

continue

env.current_pos = (i, j)
print(f"Starting MCTS from position: {env.current_pos}")

start_time = time.time()
reuse_action, root_value = mcts.search(env)
end_time = time.time()
search_time = end_time - start_time
search_times[i, j] = search_time

env.current_pos = reuse_action
if reuse_action == env.goal_pos:

reuse_value = 1
else: _, reuse_value = mcts.search(env)

env.current_pos = (i, j)
start_time = time.time()
best_action, root_value = mcts.reuse_search(env, reuse_value, reuse_action)
end_time = time.time()
reuse_time = end_time - start_time
reuse_times[i, j] = reuse_time

print(f"Best action leads to position: {reuse_action}")
print(f"Reuse search best action leads to position: {best_action}")
print(f"Search time: {search_time:.4f} seconds")
print(f"reuseSearch time: {reuse_time:.4f} seconds\n")

# plot the time heatmap
plt.figure(figsize=(6, 6))
plt.imshow(search_times, cmap=’viridis’, vmin=0, vmax=0.2, interpolation=’nearest’)
plt.colorbar(label=’Search Time (seconds)’)
plt.title(’Origin Search Time’, fontsize=20)
plt.xticks(np.arange(7), [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’])
plt.yticks(np.arange(7), [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’])
plt.xlabel(’Column’, fontsize=20)
plt.ylabel(’Row’, fontsize=20)
plt.figure(figsize=(6, 6))
plt.imshow(reuse_times, cmap=’viridis’, vmin=0, vmax=0.2, interpolation=’nearest’)
plt.colorbar(label=’Search Time (seconds)’)
plt.title(’Accelerated Search Time’, fontsize=20)
plt.xticks(np.arange(7), [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’])
plt.yticks(np.arange(7), [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’])
plt.xlabel(’Column’, fontsize=20)
plt.ylabel(’Row’, fontsize=20)
plt.show()
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