
A constraint-based approach for planning unmanned
aerial vehicle activities

CHRISTOPHE GUETTIER1 and FRANÇOIS LUCAS2

1SAFRAN Electronics and Defense, 100 Avenue de Paris, 91344 Massy, France;
e-mail: christophe.guettier@safrangroup.com;
2EPEX SPOT, 5 Boulevard Montmartre, 75002 Paris, France;
e-mail: f.lucas@epexspot.com

Abstract

Unmanned Aerial Vehicles (UAV) represent a major advantage in defense, disaster relief and first
responder applications. UAV may provide valuable information on the environment if their Command
and Control (C2) is shared by different operators. In a C2 networking system, any operator may
request and use the UAV to perform a remote sensing operation. These requests have to be scheduled in
time and a consistent navigation plan must be defined for the UAV. Moreover, maximizing UAV utili-
zation is a key challenge for user acceptance and operational efficiency. The global planning problem is
constrained by the environment, targets to observe, user availability, mission duration and on-board
resources. This problem follows previous research works on automatic mission Planning & Scheduling
for defense applications. The paper presents a full constraint-based approach to simultaneously satisfy
observation requests, and resolve navigation plans.

1 Introduction

Using Unmanned Aerial Vehicles (UAV) has become a major trend in first responder, security and defense
areas. UAV navigation plans are generally defined during mission preparation. However, during mission
preparation or execution, different users can request for additional observations to be performed by the
UAV. It is then necessary to insert these actions in UAV navigation plans. The user must deal with
constraints that will impact the overall plan feasibility, such as observation preconditions, duration of the
UAV mission or resource consumption. For example, a rotorcraft can easily perform an observation using
stationary flight, but has poor endurance. In turn, a fixed wing can perform longer missions but needs to
orbit around a waypoint to acquire and observe a target. This paper addresses vehicle planning issues,
managing constraints composed of mission objectives, execution time and resource requirements. In this
problem, UAVs can communicate with the network to transmit remote videos to ground manned vehicles
on ground.

The optimization problem consists in finding the path that maximizes the overall mission efficiency
while ensuring mission duration and resource consumption. The structure of consumption and observation
constraints make the problem difficult to model and hard to solve. Determining the shortest path may not
lead to the most efficient one, since observation requests may occur for various different places. The paper
proposes a constraint model for UAV activity optimization, before and during mission execution. It is
formulated as a Constraint Satisfaction Problem (CSP), and implemented using the Constraint Logic
Programming (CLP) framework over Finite Domains (FD). The constraint-based model combines
flow constraints over {0,1} variables, with resource constraints and conditional task activation models.
A solving method is also proposed, which tends to be a very generic approach for solving these complex

The Knowledge Engineering Review, Vol. 31:5, 486–497. © Cambridge University Press, 2017
doi:10.1017/S0269888916000291

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

mailto:christophe.guettier@safrangroup.com
mailto:f.lucas@epexspot.com
https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

problems. It is based on Branch and Bound (B&B), constraint propagation and a probing technique.
Probing is a search strategy that manages the state space solver exploration using the solution of a low-
computational relaxed problem evaluation. Results are reported using a SICStus Prolog CLP(FD)
implementation, with performances that suit operational needs.

The first section introduces the problem and the second one describes our constraint-based
approach, compared with the state of the art. Next section presents problem formulation as
a CSP. Search algorithms are then described. We give a few results on realistic benchmarks and a general
conclusion.

2 Unmanned Aerial Vehicles mission planning problem

Intrinsic UAV characteristics (i.e. maximal speed, manoeuvrability, practical altitudes) have a direct
impact on operation efficiency. Figure 1 presents the Patroller, a UAV that has large wingspan to
allow medium altitude flight, which enables performing long-range missions by minimizing energy
consumption. UAV operations are not only constrained by energetic resources, but also mission time and
terrain structure. Figure 2 shows a set of potential waypoints to flyby. They are defined during mission
preparation, by terrain analysis, mission objectives and situation assessment. Navigation constraints
are also defined by available corridors, that are provided either by navigation authorities, in civilian space,
or by the Air Command Order, in military context.

2.1 Informal description

A navigation plan consists in a subset of waypoints, totally ordered, estimated flyby dates and some
observations to perform. Choosing the final mission plan depends on multiple criteria (duration, avail-
able energy, exposure, objectives, initial and recovery points). Maximizing mission objectives, for
instance the number of observations performed during the mission, is the primary cost objective of
planning automation. The overall mission duration, exposure and on-board energy may also be
maintained as low as possible. To decide a mission plan, the user must deal with the following
elements:

∙ Initial UAV conditions: initial positions and remaining energy.
∙ Terrain structure: defined as a set of navigation waypoints, connected by available paths. Each waypoint
has a geographical reference, and a distance metric is defined to compute the value between any couple
of waypoints.

∙ Mission objectives: the final recovery point, and any waypoint to which a sensing observation has been
associated (requested by some user).

∙ On-board resource consumption: resources can be consumed due to UAV mobility (from a waypoint to
another one) and/or observation action.

∙ Exposure: in some defense missions, the UAV exposure to threats shall be mastered.

Figure 1 The patroller unmanned aerial vehicles (UAV) can detect targets at long range. With such UAV, the
operator requests observation at preparation time or during mission execution

A constraint-based approach for planning UAV activities 487

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

In general, the plan is defined at mission preparation time, but it can be redefined online due to the
situation evolution:

∙ Situation changes: new threats might appear.
∙ Mission objective: sensing and observations actions can be updated. The recovery points can be updated
during mission execution.

∙ UAV state: energy consumption is not what was expected (for instance due to wind conditions).

The remote operator receives in real time all the critical data that may require a replanning event. To be
able to keep operational efficiency, it is fundamental to have fast solving algorithms that can address
realistic missions plans and be able to deal with all the mission constraints.

2.2 Example

In Figure 2, the UAV takes off from the initial position (blue circle) and must perform a maximal set of
observations among {O1, O2, O3, O4}. Each observation consumes energy and time, as for navigation
between two points. In case of a defense mission, it also exposes the UAV to opponent visibility. The UAV
is recovered after a last potential observation in O3 (blue circle). To satisfy energy and UAV exposure, the
user decides to only plan for observation actions {O1, O2, O3} and discards observation O4. White circles
are potential flyby navigation points.

2.3 Complexity

Some simplified versions of the problem are equivalent to known hard problems. If the set of observations is
fixed, then the problem can be specialized as a Travelling Salesman Problem with multiple distance con-
straints. Maximizing the set of observation actions can also be relaxed as a knapsack problem by formulating

Figure 2 Navigation plan and observation requests from users. The unmanned aerial vehicles must maximize the
number of requested observations (specified by field of views, represented in red), under time and energetic
constraints

C . G U E T T I E R A N D F . L U C A S488

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

a path weight for each action. In both cases, these problems are known to be non polynomial (NP)-hard, and
solution verification can be performed in polynomial time. Solution can be evaluated by a simple check of the
navigation plan, verifying that each action is correctly scheduled and metrics are correctly instantiated.
Therefore some problem instances are NP-hard on worst cases, although polynomial families may certainly
be exhibited.

3 A constraint programming approach

3.1 State of the art

Several approaches can deal with such problems, ranging from classical planning to very specific algorithms:

∙ Domain-independent planning (Fox & Long, 2000), using Planning Domain Description Language
formalisms (Fox & Long, 2003). This language can model several complex actions.

∙ Dedicated planners have been developed for UAV, unmanned ground vehicle and vehicle planning: Ix-
TeT (Laborie & Ghallab, 1995), Heuristic Scheduling Testbed System (Muscettola, 1993), Reactive
Model-based Programming Language (Abramson et al., 2001).

∙ Planning frameworks like Hierarchical Task Network (Goldman et al., 2002; Meuleau et al., 2009) have
been developed to tackle specific operational domains.

All these framework need to be complemented with CSP formulation in order to tackle resource and
temporal constraints. Linear Programming (LP) techniques can also be envisaged. However, if dealing
with nonlinearity or discrete variables, constraints cannot be easily reformulated into linear ones without a
massive increase of the variable set.

Many heuristic search methods are based on the well-known A* (Hart et al., 1968) and also commonly
used in vehicle planning. Several families have been derived, such as Anytime A* (Hansen & Zhou,
2007), or other variants, adapted to dynamic environments. They can be divided into two categories:
incremental heuristic searches(Koenig et al., 2009) and real-time heuristic searches (Botea et al., 2004).
For example, an experiment has been performed for emergency landing (Meuleau et al., 2011), that uses
A* algorithm, integrated into aircraft avionics. These algorithms can be efficient, but are limited to simple
cost objectives or basic constraint formulations.

Advanced search techniques can also solve vehicle routing problems, using Operation Research
(Gondran & Minoux, 1995) (OR) or local search (Aarts & Lenstra, 1997) techniques. Simulated
Annealing (Cerny, 1985), Genetic Algorithms (Goldberg, 1989), Ant Colony Optimization (Dorigo &
Gambardella, 1997), and more generally metaheuristics are also good candidates. These techniques do not
necessarily provide optimality nor completeness, but scale very well to large problems. However, it may
require strong effort to implement complex mission constraints.

This work follows previous research in vehicle routing using CLP in Prolog and hybrid techniques
(Lucas et al., 2010; Lucas & Guettier, 2010). In the field of logic programming, new paradigms have
emerged such as Answer Set Programming leading to A-Prolog or, more recently, CR-Prolog languages
(with their dedicated solvers). However, their declarative extensions are not significant in the context of
this work.

3.2 Using constraint logic programming

Operational users are not only interested in performance, feasibility or scalability, but at first in mission
efficiency. In this paper, we consider maximizing mission observations while taking into account time,
energetic or exposure constraints. To satisfy user needs, the problem must be addressed globally, which
requires composition of different mathematical constraints. This can be done using a declarative logical
approach, constraint predicates and classical operators (Hentenryck et al., 1998). Due to the introduction
of complex navigation constraints related to actions description, other approaches cannot be used in a
straightforward way. The Figure 3 describes the different constraint-based models that express the
complete problem. Each model describes a piece of the solution space and comprises a set of variables with

A constraint-based approach for planning UAV activities 489

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

basic applicative constraints. Models are related with constraints in order to provide consistent solutions.
Five models represent the problem formulation:

∙ Navigation plan, as a sequence of navigation way points that compose a consistent flight plan.
∙ Actions realization and scheduling, that are defined thanks to post and preconditions, as well as
execution dates.

∙ Operational metric models, which are elaborated for resource consumption, UAV exposure and flight
duration. These constraints result from cumulated variables over the flight path.

The search algorithm described in the sequel, strongly rely on this model-based representation.
Search techniques can be complex to design (in the case of A*) or models difficult to express (in the case of
LP). Furthermore, as shown in previous works, the problem can be extended in several ways by combining
different formulations. Search algorithms and heuristics must be developed or adapted without reconsi-
dering the whole model. This can be achieved using CLP expressiveness, under a model-based develop-
ment approach. CLP is a competitive approach to solve either constrained path or scheduling problems.
In CLP, CSP follows a declarative formulation and is decoupled from search algorithms, so that both of
them can be worked out independently. Designers can perform a late binding between CSP formulation
and search algorithm. This way, different search techniques can be evaluated over multiple problem
formulations. The development method also enables an easier management of tool evolutions by the
designers. CSP formulation and search algorithms are implemented with the CLP(FD) domain of SICStus
Prolog library. It uses the state-of-the-art in discrete constrained optimization techniques: Arc
Consistency-5 (AC-5) for constraint propagation, using CLP(FD) predicates. With AC-5, variable
domains get reduced until a fixed point is reached by constraint propagation.

Most of constraint programming frameworks have different tools to design hybrid search techniques,
by integrating Metaheuristics, OR and LP algorithms (Ajili & Wallace, 2004). An hybrid approach is
proposed to solve the mission planning problem by exploiting Dijkstra algorithm and to elaborate a
meta-metric over search exploration structure. This approach, known as probing, relies on problem
relaxation to deduce the search tree structure. This can be done either statically or dynamically. The CLP
framework also enables concurrent solving over problem variables.

Figure 3 Problem formulation using multiple constraint models

C . G U E T T I E R A N D F . L U C A S490

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

The global search technique under consideration guarantees completeness, solution optimality and
proof of optimality. It relies on three main algorithmic components:

∙ Variable filtering with correct values, using specific labelling predicates to instantiate problem domain
variables. AC being incomplete, value filtering guarantees the search completeness.

∙ Tree search with standard backtracking when variable instantiation fails.
∙ B&B for cost optimization, using minimize predicate.

Designing a good search technique consists in finding the right variables ordering and value filtering,
accelerated by domain or generic heuristics. In general, these search techniques are implemented with a
conjunction of multiple specific labelling predicates.

4 Problem formalization

A navigation plan is represented using a directed graph G(X, U) where

∙ the set U of edges represents possible paths;
∙ the set V of vertices are navigation points. In the remaining of the paper, a vertex is denoted x, while an
edge can be denoted either u or (x, x′).

4.1 Navigation plan

A navigation plan is defined by the set of positive flows over edges. The set of variables φu∈ {0, 1} models
a possible path from start∈X to end∈X, where an edge u belongs to the navigation plan if and only if a
decision variable φu = 1. The resulting navigation plan, can be represented as Φ = {u|u∈U, φu = 1}.

4.2 Consistency constraints

From an initial position to a final one, path consistency is enforced by flow conservation equations, where
ω+(x) ⊂ U and ω−(x) ⊂ U are outgoing and incoming edges from vertex x, respectively:

X

u2ω + startð Þ
φu = 1;

X

u2ω� endð Þ
φu = 1 (1)

X

u2ω + xð Þ
φu =

X

u2ω� xð Þ
φu ⩽ 1 (2)

Since flow variables are {0, 1}, equation (2) ensures path connectivity and uniqueness while equation
(1) imposes limit conditions for starting and ending the path. This constraint provides a linear chain
alternating flyby waypoint and navigation along the graph edges.

4.3 Operational metric formulations with cumulative constraints

Assuming a given date Dx associated with a position (e.g. vertex) x we use a path length formulation (3).
Variable Dx is expressing the time at which the UAV reaches a position x (see example in Figure 4).
Assuming that variable d(x′, x) represents the time taken to perform the manoeuvre from position x′ to x
(at an average edge speed) and perform potential observations on x′. This time cumulates action duration
and navigation between waypoints.

We have

Dx =
X

x0; xð Þ 2ω� xð Þ
φ x0; xð Þ d x0; xð Þ +Dx0

� �
(3)

8 x; x0ð Þ 2 U; d x; x0ð Þ 2 N; l x; x0ð Þ⩽ d x; x0ð Þ⩽ u x; x0ð Þ (4)

A constraint-based approach for planning UAV activities 491

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

Note that upper and lower speed limits (respectively u(x, x′) and l(x, x′)) in (4) are an edge. Other operational
metrics are expressed with similar cumulative constraints. They are used to propagate resource
consumption with variables <Rx, r(x, x′)>, and UAV cumulated exposure with variables <Ex, e(x, x′)> .
These variables and constraints are also associated to vertices and edges as for constraint (4). In practice
Ex and Rx are normalized as a percentage of consumption.

4.4 Action realization and schedule

The set of navigation points belonging to the plan P can also be expressed as follows:

8x; nx =min 1; Dxð Þ; P= x 2 X; nx = 1f g (5)

where nx states whether a position x is part of the navigation plan. If Dx = 0, the UAV does not flyby x.
For simplicity, nx is assimilated to a Boolean variable.

A set of potential observation actions O is represented by ||V|| variables Ox∈ {0, 1} and

∙ an observation duration constant δx.
∙ a resource consumption constant ρx.
∙ a visibility exposure constant ηx.

If there is no action on vertex Ox to be performed, its default value is 0. Action activation model is
defined using the following preconditions (6) and postconditions (7–9):

Ox⇒nx ^ Ex ⩾ vx

8x; 8x0 2 ω + xð Þ ð6Þ
d x; x0ð Þ = δ x;x0ð Þ +Ox:δx (7)

r x; x0ð Þ = ρ x; x0ð Þ +Ox:ρx (8)

e x; x0ð Þ = η x; x0ð Þ +Ox:ηx (9)

and where constant δ(x, x′) is the time to navigate from point x to x′.
In equation (6), the constant vx is an exposure threshold that is tolerated and compared with the

total exposure up to waypoint x. Indeed, to satisfy the action, the UAV must be incoming to the
observation location, which is the role of the term nx. This way, each observation precondition is
constrained by the level of exposure. The observation resulting schedule can be defined by the waypoint
flyby dates Dx.

In this paper, arrival date at the recovery point is enough to constraint the whole CSP. However, the
model can be extended to express preconditions for energy and time on observation activations.

Dend⩽Dmax, where Dmax is the maximal mission duration.
Similarly, there must be remaining energy when arriving at the recovery point.
Eend⩾ 0.

3

2 2
C:5

A:0

B:3 D:7

Figure 4 Illustrating manoeuvres over a graph of navigation waypoints. This graph is a spatial representation of
navigation plan. A solution, representing the unmanned aerial vehicle manoeuvres, corresponds to the set of
positive values (here Φ = {(A, B), (B, C), (C, D)}). Assuming a cumulative time metric (edge values are transit
times), flyby instant is Δ = {(A, 0), (B, 3), (C, 5), (D, 7)}

C . G U E T T I E R A N D F . L U C A S492

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

Other preconditions can be defined, depending on the type of action to perform (including time
windows, communication, target mobility). Using our model, it is easy to overload the conjunction.
However, the problem can become very complex and there is not necessarily a need as long as we consider
a unique UAV. Moreover, we notice that the set of preconditions is predominant compared with
postconditions.

4.5 Optimization problem

The final cost function is the total amount of observations to perform.

Ω Vð Þ=
X

x2V

Ox (10)

The sets of decision variables are Φ and O such that the CSP can then be formulated in Prolog as
follows (1):

Algorithm 1 Optimizing observations

Instantiate variable sets Φ, O
∙ Satisfying navigation constraints (1), (2), (5),
∙ Satisfying metric constraints (3), (4) and
∙ for all actions {O1,…,Ox,…,On}
– satisfying preconditions (6)
– satisfying postconditions (7), (8) and (9)

Maximizing Ω(V)

5 Search algorithms

5.1 Overview

The goal of hybridizing global solving with stochastic approaches is to save the number of backtracks by
quickly focussing the search towards good solutions. It consists in designing the tree search according to
the problem structure, revealed by the probe. The idea is to use the prober to order problem variables, as a
pre-processing. Instead of dynamic probing with tentative values such as in (Sakkout & Wallace, 2000),
this search strategy uses a static prober which orders problem variables to explore according to the relaxed
solution properties. Then, the solving follows a standard CLP search strategy, combining variable filtering,
AC-5 and B&B. As shown in Figure 5, the probing technique proceeds in three steps (the three blocks on
the left). The first one is to establish the solution to the relaxed problem. As a reference, we can, for
example, compute the shortest path between starting and ending vertices, abstracting away mandatory
waypoints. The next step is to establish a minimal distance between any problem variable and the solution
to the relaxed problem. This step can be formally described as follows. Let Xs⊂ X be the set of vertices that
belong to the relaxed solution. The distance is given by the following evaluation:

8x 2 X; δ xð Þ= min
x0 2Xs

x; x0ð Þj jj j (11)

where ||.|| is a specific distance metric (in our case, the number of vertices between x and x′). The last step
uses the resulting partial order to sort problem variables in ascending order. At global solving level the
relaxed solution is useless, but problem variables are explored following this order.

5.2 Properties

Two interesting probe properties can be highlighted:

∙ probe complexity: since computation of minimum distance between a vertex and any node is
polynomial thanks to Dijkstra or Bellman-Ford algorithms, the resulting probe construction complexity

A constraint-based approach for planning UAV activities 493

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

is still polynomial in worst cases. The complexity of quicksort can in practice be neglected (see below for
further details).

∙ probe completeness: since the probe does not remove any value from variable domains and the set of
problem variables remains unchanged, the probe still guarantees global solving completeness.

Complexity analysis: let γ be the cardinality of Vs and n the one of V. The complexity of probe
construction is

∙ in worst case performance: O(n2);
∙ in average case performance: O(γ.n.log(n)).

Sketch of the proof: the probing method first determines the minimal distance between all vertices
X′∈X′ where X′ = X \Xs and any vertex xs∈Xs. A Dijkstra algorithm runs over a vertex xs allows to
compute the distance to any point of X′ with O(n.log(n)) worst case complexity where n is the number of
nodes in X. This has to be run over each vertex of Xs and a comparison with previous computed values
must be done for every vertex x′, to keep the lowest one. Thus, the resulting complexity is O(γ.n.log(n)).
Variables must finally be sorted with a quicksort-like algorithm. The worst case complexity of this sort is
O(n2), but is generally computed in O(n.log(n)) (average case performance). Hence, the worst
case complexity of the probing method is O(n2), but in practice behaves in max{O(γ.n.log(n)),
O(n.log(n))} = O(γ.n.log(n)).

5.3 Pseudocode

Algorithm 2 synthesizes probe construction mechanisms. First, a vector Ld of size n (n being the
number of nodes in X) is created and initialized with infinite values. At the end of the execution, it will
contain a value associated to each vertex, corresponding to the minimal distance between this
vertex and the solution to the relaxed problem. To do so, a Dijkstra algorithm is run over each node of the
solution. During a run, distances are evaluated and replaced in Ld if lower than the existing value
(in the pseudo code, comparison are made at the end of a run for easier explanation). Once minimal
distances are all computed, they are used to rank the set of vertices X in ascending order (to be used by the
complete solver).

Figure 5 Diagram of the complete solver using probing techniques

C . G U E T T I E R A N D F . L U C A S494

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

Algorithm 2 Probe construction

1: Initialize a vector Ld of distances (with infinite values)
2: Get P the best solution of the relaxed problem
3: for each node xi of P do
4: L′d ⇐Run Dijkstra algorithm from xi
5: Ld = min(Ld, L′d) (value by value)
6: end for
7: Sort X using Ld order
8: return the newly-ordered X list

6 Preliminary results

Experiments on four benchmarks are presented. They are representative of modern peace keeping mis-
sions or disaster relief. Missions must be executed in <30 minutes. Areas range from 5× 5 to 20 × 20 km:

1. Recon villages: observing different villages after a water flooding event.
2. Reinforce UN: bring support to a United Nations mission by observing an unsecure town.
3. Sites inspections: observing different parts of a town during inspection of suspect sites.
4. Secure humanitarian area: observing different threats before securing refugees, over a large area.

For each benchmark, four experimentations are run. Two sets of runs are performed, one with the
simple branch and bound, the other one with the probing method. For each set, two different constraints are
preconditions to observation actions cumulated energetic resource and cumulated UAV exposure as
defined by the generic constraint (3). In practice, the exposure threshold is set between 10 and 20% for
each observation action. This overconstrains the problem, allowing us to observe performance differences.

Table 1 reports the time to find the optimal solution, as well as for proving optimality. It also shows the
maximal number of observations that can be executed. Simple problems can be solved fairly quickly, but

Table 1 Results overview on benchmark scenarios, maximizing the number of action to perform

Experiments Results

Problem Algorithm Actions Time (ms) for opt. Proof Best Value (#actions)

1. Recon villages (22 nodes, 74 edges, 702 vars, 2251 constraints)
Energy Probing 3 250 560 1
Exposure Probing 3 234 609 1
Energy Simple 3 274 1092 1
Exposure Simple 3 358 982 1

2. Reinforce UN (23 nodes, 76 edges, 723 vars, 2312 constraints)
Energy Probing 3 93 93 3
Exposure Probing 3 296 702 2
Energy Simple 3 1045 1061 3
Exposure Simple 3 5460 11 139 2

3. Site inspection (22 nodes, 68 edges, 654 vars, 2081 constraints)
Energy Probing 4 109 249 3
Exposure Probing 4 187 312 3
Energy Simple 4 717 1575 3
Exposure Simple 4 1451 2261 3

4. Secure area (33 nodes, 113 edges, 1069 vars, 3447 constraints)
Energy Probing 3 2371 4977 2
Exposure Probing 3 7566 10 234 2
Energy Simple 3 8237 15 944 2
Exposure Simple 3 22 074 29 375 2

A constraint-based approach for planning UAV activities 495

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

the last benchmark is more computation demanding, which is certainly due to a large area to cover. On the
second benchmark, exposure constraints prevent from performing all observations. Again for all the
problem instances, the probing method improves drastically the solver performances, which confirm
former researches (Lucas et al., 2010; Lucas & Guettier, 2012). By comparing with energetic constraints,
exposure preconditions makes the problem really harder to solve.

7 Conclusion

This paper shows the development of the mission planning framework, that can be used either for C2 systems
or for unmanned systems. Introducing actions with complex preconditions and postconditions increases the
practical complexity of problem instances. In particular, with the existing design, the solving approach does
not scale huge numbers of observation or large graph structures. Nevertheless, as expected by previous
results, the probing approach improves drastically solving performances. Using the modeling approach, the
formulation of action preconditions and postconditions can be extended in several ways. Further works will
focus on scalability as well as different forms of probing, relying on action definition in the relaxation process.

Acknowledgement

We acknowledge Pr. Arnaud de la Fortelle and Pr. Patrick Siarry for their constant support.

References

Aarts, E. & Lenstra, J. 1997. Local Search in Combinatorial Optimization. Princeton University Press.
Abramson, M., Kim, P. & Williams, B. 2001. Executing reactive, model-based programs through graph-based

temporal planning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
Ajili, F. & Wallace, M. 2004. Hybrid problem solving in ECLiPSe. In Constraint and Integer Programming Toward

a Unified Methodology, volume 27 of Operations Research/Computer Science Interfaces Series, Chapter 6.
Springer, 2004.

Botea, A., Mller, M. & Schaeffer, J. 2004. Near optimal hierarchical path-finding. Journal of Game Development
1(1), 7–28.

Cerny, V. 1985. A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm.
Journal of Optimization Theory and Applications 45, 41–51.

Dorigo, M. & Gambardella, L. 1997. Ant colony system: a cooperative learning approach to the traveling salesman
problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66.

Fox, M. & Long, D. 2000. Automatic synthesis and use of generic types in planning. In Proceedings of the Artificial
Intelligence Planning System, AAAI Press, 196–205.

Fox, M. & Long, D. 2003. PDDL 2.1: an extension to PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20, 61–124.

Goldberg, D. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley.
Goldman, R., Haigh, K., Musliner, D. & Pelican, M. 2002. MACBeth: a multi-agent constraint-based planner.

In Proceedings of the 21st Digital Avionics Systems Conference, 2, 7E3:1–8.
Gondran, M. & Minoux, M. 1995. Graphes et Algorithmes. Editions Eyrolles.
Hansen, E. & Zhou, R. 2007. Anytime heuristic search. Journal of Artificial Intelligence Research 28, 267–297.
Hart, P., Nilsson, N. & Raphael, B. 1968. A formal basis for the heuristic determination of minimum cost paths.

IEEE Transactions on Systems, Science and Cybernetics 4(2), 100–107.
Hentenryck, P. Van, Saraswat, V. A. & Deville, Y. 1998. Design, implementation, and evaluation of the constraint

language CC(FD). The Journal of Logic Programming 37(1–3), 139–164.
Koenig, S., Sun, X. & Yeoh, W. 2009. Dynamic Fringe-Saving A*. In Proceedings of the 8th International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2, 891–898.
Laborie, P. & Ghallab, M. 1995. Planning with Sharable Resource Constraints. In Proceedings of the International

Joint Conference on Artificial Intelligence (IJCAI).
Lucas, F. & Guettier, C. 2010. Automatic vehicle navigation with bandwidth constraints. In Proceedings of MILCOM

2010, November.
Lucas, F. & Guettier, C. 2012. Hybrid solving technique for vehicle planning. In Proceedings of Military

Communication Conference (MILCOM).
Lucas, F., Guettier, C., Siarry, P., de La Fortelle, A.&Milcent, A.-M. 2010. Constrained navigationwithmandatorywaypoints

in uncertain environment. International Journal of Information Sciences and Computer Engineering (IJISCE) 1, 75–85.

C . G U E T T I E R A N D F . L U C A S496

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

Meuleau, N., Plaunt, C., Smith, D. & Smith, T. 2009. Emergency landing planning for damaged aircraft.
In Proceedings of the 21st Innovative Applications of Artificial Intelligence Conference.

Meuleau, N., Neukom, C., Plaunt, C., Smith, D. E. & Smithy, T. 2011. The emergency landing planner experiment.
In 21st International Conference on Automated Planning and Scheduling.

Muscettola, N. 1993. HSTS: integrating planning and scheduling. In Technical Report CMU-RI-TR-93-05, The
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

Sakkout, H. E. & Wallace, M. 2000. Probe backtrack search for minimal perturbations in dynamic scheduling.
Constraints Journal 5(4), 359–388.

A constraint-based approach for planning UAV activities 497

https://doi.org/10.1017/S0269888916000291
Downloaded from https:/www.cambridge.org/core. IP address: 217.108.170.8, on 27 Feb 2017 at 13:45:33, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms.

https://doi.org/10.1017/S0269888916000291
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms

	A constraint-based approach for planning unmanned aerial vehicle activities
	1Introduction
	2Unmanned Aerial Vehicles mission planning problem
	2.1Informal description

	Figure 1The patroller unmanned aerial vehicles (UAV) can detect targets at long range.
	2.2Example
	2.3Complexity

	Figure 2Navigation plan and observation requests from users.
	3A constraint programming approach
	3.1State of the art
	3.2Using constraint logic programming

	Figure 3Problem formulation using multiple constraint�models
	4Problem formalization
	4.1Navigation plan
	4.2Consistency constraints
	4.3Operational metric formulations with cumulative constraints
	4.4Action realization and schedule

	Figure 4Illustrating manoeuvres over a graph of navigation waypoints.
	4.5Optimization problem

	5Search algorithms
	5.1Overview
	5.2Properties
	5.3Pseudocode

	Figure 5Diagram of the complete solver using probing techniques
	6Preliminary results
	Table 1Results overview on benchmark scenarios, maximizing the number of action to perform
	7Conclusion
	Acknowledgement
	ACKNOWLEDGEMENTS
	References

