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Abstract

Mapping clinical documents to standardised
clinical vocabularies is an important task, as
it provides structured data for information re-
trieval and analysis, which is essential to clin-
ical research, hospital administration and im-
proving patient care. However, manual coding
is both difficult and time-consuming, making
it impractical at scale. Automated coding can
potentially alleviate this burden, improving the
availability and accuracy of structured clini-
cal data. The task is difficult to automate, as
it requires mapping to high-dimensional and
long-tailed target spaces, such as the Interna-
tional Classification of Diseases (ICD). While
external knowledge sources have been readily
utilised to enhance output code representation,
the use of external resources for representing
the input documents has been underexplored.
In this work, we compute a structured represen-
tation of the input documents, making use of
document-level knowledge graphs (KGs) that
provide a comprehensive structured view of a
patient’s condition. The resulting knowledge
graph efficiently represents the patient-centred
input documents with 23% of the original text
while retaining 90% of the information. We
assess the effectiveness of this graph for auto-
mated ICD-9 coding by integrating it into the
state-of-the-art ICD coding architecture PLM-
ICD. Our experiments yield improved Macro-
F1 scores by up to 3.20% on popular bench-
marks, while improving training efficiency. We
attribute this improvement to different types of
entities and relationships in the KG, and demon-
strate the improved explainability potential of
the approach over the text-only baseline.

1 Introduction

Clinical coding is the process of allocating stan-
dardized codes to diagnoses, treatments, proce-
dures, and medical services detailed in patient elec-
tronic records or paper notes. This multi-label
classification task offers advantages across various
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Discharge Summary

Admission Date: [**2191-11-18**]
Date of Birth: [**2155-12-31**]

Discharge Date: [**2191-11-18**]
Sex: M. Service: TRA

CHIEF COMPLAINT: Fall from approximately a third story building.

PRESENT ILLNESS: This is a young male of unknown age, brought by EMS after
having sustained an approximately three story fall

and forwarded to the [**Hospitall **] Emergency Department arriving in
extremis. The patient ... the operating room.

The patient ... cavity. There was seen to be no significant intra-abdominal
pathology. Howe
extending from the pelvis up to the level of the kidneys retroperitoneally. The patient
was packed.

there was seen to be a large retroperitoneal hematoma

The case

was referred to the coroner and an intraoperative death.

[**First Name11 (Name Pattern1) 449**] ...
Job#: [**Job Number 88466**]

E957.1 Suicide and self-inflicted injuries by jumping from other man-made structures.

860.4 Traumatic pneumohemothorax without mention of open wound into thorax.
868.03 Injury to other intra-abdominal organs without mention of open wound into

cavity, peritoneum.
Intracranial injury of other and unspecified nature without mention of open
854.05 intracranial wound, with prolonged [more than 24 hours] loss of consciousness

without return to pre-existing conscious level.

Figure 1: Example of ICD Coding over MIMIC-III. The
discharge summary (HADM ID: 104128) is annotated
with four ICD codes.

domains, including audit procedures, decision sup-
port systems and medical billing (Blundell, 2023).
Various coding systems are designed to encode spe-
cific information within patient records. Our work
focuses on the International Classification of Dis-
eases (ICD-9) (Organization et al., 1978), a widely
recognized coding system that holds a pivotal role
in encoding diagnostic and procedural information.
This process is commonly known as ICD coding.
An example is shown in Figure 1.

Manual code assignment is typically costly,
labor-intensive, and error-prone (Nguyen et al.,
2018). In recent years, automated clinical coding,
powered by cutting-edge deep learning techniques,
has significantly advanced the field, improving ac-
curacy, increasing efficiency, and reducing overall
costs (Ji et al., 2022; Teng et al., 2022).

The main challenge in clinical coding arises
from the extremely imbalanced distribution of the
label space. For instance, in the case of MIMIC-III



(Johnson et al., 2016), there are 8,692 unique ICD-
9 codes, of which 4,115 codes (47.3%) occur fewer
than 6 times (Yang et al., 2022). Considering this
long-tailed distribution of codes, previous work has
explored integrating diverse external knowledge to
enhance the representation of codes and patients.
Among these external knowledge sources, knowl-
edge graphs play an important role in improving
the performance of ICD coding by providing not
only semantic information but also structured infor-
mation. However, most research focuses on repre-
senting ICD codes through various graphs that are
built based on these codes themselves (Rios and
Kavuluru, 2018; Xie et al., 2019; Cao et al., 2020;
Lu et al., 2020; Song et al., 2021; Michalopou-
los et al., 2022). Efforts to construct patient-level
knowledge graphs remain largely underexplored in
both ICD coding and the broader clinical domain.

The patient-level knowledge graph offers an intu-
itive representation and visualization of a patient’s
clinical condition, providing healthcare profession-
als with valuable insights. Meaningful causal re-
lationships between entities, such as symptoms
that support a diagnosis, tests performed, and treat-
ments derived from these findings, enable patient-
level knowledge graphs to facilitate more efficient
decision-making for physicians and medical staff.
However, critical questions remain unanswered:
what elements should constitute a patient’s knowl-
edge graph, including problems, symptoms, tests,
treatments, drugs, dosages, and frequencies? And
how to evaluate the quality of such graphs and
assess their utility and impact on tasks such as
patient-level classification and explainability?

To the best of our knowledge, Yuan et al. (2021)
is the only work which proposes a medical graph
specifically designed for individual patients in ICD
coding task. The graph integrates a disease hierar-
chy based on ICD-10 and a causal graph of diseases.
Entities in the causal graph, including symptoms,
signs, and diseases are identified from documents
using the named-entity recognition (NER) tech-
nique. The model also leverages GCN to represent
the nodes in the graph. It enhances the patient repre-
sentation by integrating it with the raw clinical text
and patient information. However, it does not cover
a wide range of entity categories and capture the
diverse relationships among them, which can pro-
vide a more comprehensive understanding about a
patient’s medical history. Additionally, this work
lacks a systematic evaluation of graph quality and
an analysis of the determination of its constituent

components.

To close these gaps, we construct patient-level
knowledge graphs that provide a wide range of en-
tity types and relationships. This comprehensive
graph offers explicit context to a patient’s situation,
by providing diagnostic, posology, anatomical and
the temporal information of clinical events identi-
fied in the patient records. We integrate this patient-
level knowledge graph into the state-of-the-art ICD
coding architecture, PLM-ICD (Huang et al., 2022),
demonstrating improved coding performance.

The contributions of this work are:

(i) We develop a comprehensive patient-level
knowledge graph encompassing a wide coverage
of 14 distinct entity types connected by five types
of relationships. We evaluate the informativeness
of the graph by measuring the information loss rel-
ative to the patient notes from which the graph is
retrieved. Our results demonstrate that the knowl-
edge graph effectively distills essential informa-
tion from patient notes into a more concise and
structured format, achieving a significant reduction
in size—extracting only 23% of the original con-
tent—while retaining 90% of the information. This
represents a Statistical Perspective for evaluating
the quality of the graph.

(ii) We conducted experiments to assess the ef-
fectiveness of integrating graph representations into
ICD coding. The results demonstrate that the addi-
tional structured information provided by the graph
enhances coding performance, improving the F1-
score by 1.36% compared to the base model. This
improvement is significant for this developed task.
This also serves as an evaluation of the patient-
level knowledge graph from a Representational
Perspective, capturing both semantic and structural
information.

(iii) We address the question of ‘What elements
should constitute a patient’s knowledge graph?’
through an ablation study from two evaluation per-
spectives. We analyse the impact of various types
of entities and relationships on the information re-
taining and coding performance.

(iv) We perform a case study and showcase the
model’s ability to offer high-quality explanations
by providing accurate and concise evidence which
supports the model’s prediction.

2 Related Work

Architecture Over the past decade, the field of
clinical coding has witnessed significant advance-



ments, evolving from traditional rule-based meth-
ods (Pereira et al., 2006; Crammer et al., 2007) to
advanced machine learning and deep learning ap-
proaches. Researchers have recently explored the
application of cutting-edge NLP techniques, includ-
ing attention mechanisms and transformer models.
The architecture of these models has become in-
creasingly sophisticated, with common architec-
ture incorporating CNN-based (Mullenbach et al.,
2018), LSTM-based (Catling et al., 2018), and
transformer-based encoders (Zhang et al., 2020;
Chalkidis et al., 2020; Ji et al., 2021), often paired
with label-wise attention layers (Vu et al., 2020;
Sun et al., 2021; Dong et al., 2021; Liu et al.,
2021; Van Aken et al., 2022). Recent studies
also highlight the challenge of efficiently apply-
ing transformer models to represent the inherently
lengthy clinical documents. These approaches
leverage transformers handling long sequences, no-
tably Longformer (Yang et al., 2022) and BigBird
(Michalopoulos et al., 2022).

External Knowledge Representations A ma-
jor challenge in this field is classifying within a
large target space, where the distribution of codes
is highly uneven, commonly described as a ‘big-
head long-tail’ distribution. This imbalance hinders
the model’s effectiveness in recognising patterns
associated with categories with few samples. To
address this issue, researchers have turned to ex-
ternal knowledge to enhance the representations of
both patients and codes. For patient representation,
this includes data augmentation (Falis et al., 2022;
Song et al., 2021) and knowledge graphs (Yuan
et al., 2021). In terms of code representation, ex-
ternal knowledge is drawn from code descriptions
(Feucht et al., 2021), synonyms (Yuan et al., 2022),
relevant documents (Wang et al., 2022), code hierar-
chy (Falis et al., 2019; Yang et al., 2022), synthetic
data (Falis et al., 2022), and knowledge graphs.

Knowledge Graph in ICD Coding Rios and
Kavuluru (2018) represents ICD codes using their
hierarchical structure, applying two layers of graph
convolutional networks (GCN) to leverage this
structured knowledge. Song et al. (2021) improves
this model by replacing the GCN with graph gated
recurrent neural networks (GRNN) (Li et al., 2015).
Cao et al. (2020) introduces Co-Graph, which mod-
els co-occurrence correlations between codes. This
graph is represented by its adjacency matrix and
GCN. Lu et al. (2020) constructs three types of
graphs: a label hierarchy graph of class taxonomy,

a semantic similarity graph derived from code de-
scriptions, and a code co-occurrence graph similar
to the approach in Cao et al. (2020). Michalopoulos
et al. (2022) establishes connections between codes
using normalized point-wise mutual information
and also employs GCN to capture the representa-
tions of codes from this graph.

3 Methodology

In this section, we detail the construction of patient-
level knowledge graphs and their integration into
the PLM-ICD coding architecture.

Patient-Level Knowledge Graph Construction
We aim to construct patient-level knowledge graphs
that comprehensively represent a patient’s medical
history, encompassing diseases, treatments, tests,
drugs, dosages, frequencies, strengths, and so on,
as well as the relationships between these entities.
We employ named-entity recognition (NER) and
relation extraction (RE) models provided by Health-
care NLP library (John Snow Labs, 2024) to extract
these concepts.

Out of the available RE models in Healthcare
NLP, we select five models based on the quan-
tity of triples extracted and their uniformity across
all documents. The selected RE models are (or-
dered by frequency) ‘Clinical Relationship’ (CR),
“‘Temporal Events’ (TE), ‘Posology Relationship’
(PR), ‘Bodypart-Directions’ (BD) and ‘Bodypart-
Problem’ (BP). These models collectively identify
14 different types of entities. Detailed information
about model selection, selected RE models and
statistics of the extracted entities and relationships
can be found in in Appendix A.1.

The output of these relationship extraction (RE)
models includes two identified entities, their re-
spective types, and the relationship between them.
When constructing a patient’s knowledge graph,
we represent this information as triples in the for-
mat < entityl, relationship, entity2 > (e.g.,
< lisinopril, drug-strength, 40mg >). The re-
sulting patient-level knowledge graphs contain four
types of information (For a visualisation, consult
Appendix A.2):

Diagnostic Information (CR): Revealing the
interrelationships among problems, treatments, and
tests;

Temporal Information (TE): Capturing the se-
quence of clinical events;

Posology Information (PR): Providing details
on drug regimens, including dosage, duration,
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Figure 2: Architecture of the proposed model. The processed discharge summary as input is encoded using a
pre-trained RoBERTa, while its corresponding patient-level knowledge graph inputs a DGCNN module, with final
representations obtained by concatenating node features from all layers. Both representations are fed into separate
label-wise attention layers, after which the weighted outputs are concatenated, using for ICD code prediction.

Split Avg|T| Avg|N| AvgTinN Min/MaxT Min/Max N Dataset Text Entropy Graph Entropy Ratio (%)
Full 15135  183.0 3423 0/1954 0/903
Top-50  1612.0 196.8 366.8 6/1689 3/774 Full 8.33 7.48 89.95
Top-50 8.41 7.61 90.52

Table 1: Statistics of nodes and tokens per processed
document in MIMIC-III datasets. 1" stands for tokens,
N stands for graph nodes. ‘Avg’ represents averages
over all documents.

Table 2: The Information entropy of processed text
and serialised graph. The ‘Ratio’ measures how much
information is retained.

strength, and frequency, as well as their interre- tient, automated coding module aims to assign the
lationships; correct ICD codes which represent the diseases

Anatomical Information (BD and BP): Tllus-  ©OF procedures. Specifically, we define a clinical
trating the connections between problem or direc- ~ document with IV tokens as d = {t1,t2, .., 1N, .
tions and specific body parts. The goal is to predict a distribution of labels

The statistics of the graphs extracted from the P = {P1,P2, .., PN, }, where N, denotes the total
two MIMIC-III datasets, Full and Top-50, are sum- number of codes in the label space. The final set of
marized in Table 1. On average, the graphs contain assigned codes is the ones that exceed a pre-defined
approximately 190 nodes, with each node typically ~ Probability threshold.

comprising around two tokens. The largest graph The proposed framework is shown in Figure 2.
in the dataset includes 903 nodes, while some doc- The subsequent sections will provide a detailed
uments don’t have any extracted graphs. description of each component of the framework.

Furthermore, we evaluate the quality of the con-
structed graphs from a Statistical Perspective by
measuring information loss. Specifically, we calcu-
late the average information entropy of the original
text and the serialized graph. As shown in Table 2,
our analysis indicates that the extracted content ac-
counts for less than 23% of the original size, yet
retains approximately 90% of the information. This
highlights the efficiency of our patient-level knowl-
edge graph in significantly compressing the text
while preserving the majority of its informational
content. (For details of the information entropy
methodology and further results of the ablation
study, conducted by removing each type of entity
and relationship, please refer to Appendix A.3.)

Text Embedding - Pre-trained Language Model
To embed the textual data, we utilize RoBERTa-
PM (Lewis et al., 2020), a transformer model pre-
trained on biomedical abstract and clinical docu-
ments.

The pre-processing of the raw text in MIMIC-III
datasets follows Mullenbach et al. (2018). Fol-
lowing PLM-ICD, we divide each document into
segments of equal length of [ tokens. The number
of segments per document is represented as /N5 and
varies across different samples. Thus, each seg-
ment comprises a sequence of tokens that represent
a portion of the document:

si={t|ll-i<j<l-(i+1)} (1)
Task Definition ICD coding is formulated as a

multi-label classification task. Given a clinical doc-  The document representation Hy is formed by con-
ument (discharge summary in MIMIC-III) of a pa-  catenating the hidden representations of each seg-



ment:
H; = concat(PLM(s1),...,PLM(sn.,)), (2)

where PLM (s;) denotes the representation for seg-
ment s; embedded by RoOBERTa-PM.

Graph Embedding - Deep Graph Convolutional
Neural Network The Deep Graph Convolutional
Neural Network (DGCNN) (Zhang et al., 2018) we
refer to in this work is an end-to-end architecture
designed for graph classification tasks. But we rep-
resent the graph using the hidden state from the
final layer of DGCNN, just before the SortPooling
layer in the original framework, as this configura-
tion is found to yield the best performance based
on initial experimental results.

Given a patient’s knowledge graph G, we can
obtain its adjacency matrix A and diagonal degree
matrix D. The hidden state of the first graph con-
volution layer is as follows:

Hy = f(D'AXW), 3)

where X € RN»*dn denotes the node representa-
tion matrix with dimension d,; IV,, represents the
number of nodes in the graph; W € R >4 is a
trainable parameter matrix, in which d}, defines the
dimension of code representation for the next con-
volution layer; f is a nonlinear activation function.
DGCNN adopts multiple convolution layers, as
it allows for the extraction of multi-scale local sub-
structure features. Therefore, the output of the m!"
graph convolution layer is represented as follows:
Hg'' = f(D"'AHgW™), (4)
where H% = X. The final representation of pa-
tient’s knowledge graph Hg is the concatenation

of the features from all [Hé, vy Hgy], where N,
is the number of graph convolution layers.

Multi-Head Label-Wise Attention To capture
label-specific information and assign varying at-
tention weights to fragments (tokens or nodes) for
each label, we incorporate a label-wise attention
layer following the patient representation. Instead
of just feeding the concatenated representation of
text Hy¢ and graph Hg to a single attention layer, we
utilize a multi-head attention mechanism. This ap-
proach enables the model to focus on information
from different representation sub-spaces. Conse-
quently, H¢ and Hg are processed through separate

label-wise attention layers. The attention score ma-
trices are defined as follows:

at = softmax (V7 tanh(VoHy), ®)
ag = softmax (V3 tanh(V4Hg), 6)

where V1_4 are trainable linear transformation ma-
trices. The weighted label-specific representations
are calculated as follows:

Z¢ = Hof ,Zg = Hgag. (7

Finally we concatenate them to form a representa-
tion for the individual patient Z = [Z¢, Zg|. The
probability of predicting label ¢ is calculated by:

where L; is the representation of the i*" label and
Z; is the label-specific patient representation. The
final predicted soft-maxed probability vector y and
true labels y are used to compute the binary cross-
entropy loss:

ly|

L(y,p) = v > (vilogyi+ (1 —yi)log(1—3:))-

vli=

©)

4 Empirical Evaluation

4.1 Experiment Setup

Datasets and Metrics Like most evaluation
methods for multi-label classification tasks, clinical
coding is typically assessed using three standard
metrics: F1, AUC and Precision@N. In this work,
we utilize these metrics to evaluate the models on
two commonly used datasets: MIMIC-III Full and
MIMIC-III Top-50.

MIMIC-III is a publicly accessible database com-
prising de-identified health data from patients ad-
mitted to critical care units at the Beth Israel Dea-
coness Medical Center in Boston, Massachusetts
between 2001 and 2012. The standard clinical
coding task involves using discharge summaries
from the MIMIC-III dataset to assign ICD-9 codes,
which include discharge diagnoses and procedures.

The MIMIC-III Full dataset includes 52,723 doc-
uments from 41,126 patients, with each document
containing a median of 1,375 words and 14 codes.
The MIMIC-III Top-50 dataset focuses on the top
50 most frequent diagnosis and procedure codes
from the Full dataset. It consists of 11,368 docu-
ments from 10,356 patients, with a median of 1,478
words and 5 codes per document.



MIMIC-III Full

MIMIC-III Top-50

F1 AUC Precision F1 AUC Precision
Model Macro Micro Macro Micro P@8 Macro Micro Macro Micro P@5
MultiResCNN 9.0 55.2 91.0 98.6 73.4 59.29 6624 89.30 92.04 61.56
2Stage 10.5 58.4 94.6 99.0 74.4 6893 71.83 92.58 94.52 66.72
JointLAAT 10.2 57.5 92.1 98.8 73.5 66.95 70.84 9236 94.24 66.36
MSMN 1024 58.70 94.78 99.15 75.45 66.68 71.19 92.12 94.21 66.86
PLM-ICD 9.69 59.06 92.12 98.83 76.72 64.61 7033 91.16 93.63 66.11
Our Model 11.05 59.72 9237 98.75 76.59 67.81 71.63 92.04 9422 67.08

Table 3: Results on the MIMIC-III Full and Top-50 test sets. The best results are highlighted in bold.

Implementation Details We train our model us-
ing four 80GB NVIDIA A100 GPUs within an envi-
ronment configured with CUDA 11.1 and PyTorch
1.12.0. Detailed implementation hyperparameters
for both our model and PLM-ICD are provided in
Appendix A.4.

Baselines To demonstrate the effectiveness of our
model, we compare it with five current SOTA ap-
proaches.

PLM-ICD (Huang et al.,, 2022), leverages
transformer-based models specifically pre-trained
on biomedical and clinical texts. It achieves SOTA
performance on both MIMIC-III and MIMIC-IV
datasets (Edin et al., 2023). We select it as our base
model due to its strong performance as a widely
used baseline and its simple structure, which facili-
tates the integration with the graph representation
module.

MultiResCNN (Li and Yu, 2020) employs a multi-
filter convolutional layer to capture text patterns of
varying lengths and a residual convolutional layer
to expand the receptive field.

2Stage (Nguyen et al., 2023) leverages the hierar-
chical properties of codes to perform predictions in
two sequential steps.

JointLAAT (Vu et al., 2020) introduces a hierar-
chical joint learning mechanism to address label
imbalance.

MSMN (Yuan et al., 2022) utilizes synonyms with
multi-head attention mechanism, achieving another
state-of-the-art performance on MIMIC-III Full.

4.2 Quantitative Results

A. Does integrating graph-based representation
enhance the ICD coding performance? This
experiment aims to verify if integrating the patient-
level knowledge graph benefits the representation
of the patient, consequently enhances the perfor-
mance of ICD coding. The results shown in Ta-
ble 3 indicate that our model outperforms its base
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Figure 3: By-epoch performance comparison of our
model and PLM-ICD by means of Macro-F1 / P@8
on MIMIC-III Full (top row) and Macro-F1 / P@5 on
MIMIC-III Top-50 (bottom row).

Remove uF1 - mF1 pAUC mAUC P@S8
Full 11.05 59.72 9237 9875 76.59
—BP 10.38 59.60 9239 98.86 76.72
—PR 10.33 59.65 9239 9884 76.95
—TE 10.34 5945 9253 9886 76.62
—CR 10.07 5935 92.63 98.89 76.74
—BD 10.61 59.51 9224 9879 76.51
—drug 10.52 59.44 9223 98777 76.61
—problem  9.77 59.26 9235 98.86 76.95
—treatment 10.76 59.66 92.33  98.81 76.76
—test 10.72 59.59 9232 98.81 76.54

Table 4: Results of ablation study on the MIMIC-III
Full dataset. Removing all relationships and entities
of a specified type. p and m denote Macro and Micro
averages, respectively.

model PLM-ICD significantly on the F1-Macro
score by 1.36% and 3.20% on the Full and Top-50
datasets, respectively. F1-Macro score is the pri-
mary metric for this task due to its effectiveness
in balancing precision and recall across classes
and its robustness in classification problems. Our
model exhibits more noticeable performance im-
provements on frequent labels and demonstrates
overall advancements across all metrics. Moreover,
our model remains highly competitive compared to



other state-of-the-art methods, achieving the high-
est F1 scores on full label set.

Additionally, our model achieves higher scores
in the early epochs (see Figure 3), highlighting its
efficiency when computational resources are con-
strained. The most significant improvements occur
within the first three epochs, indicating that the
structured information is efficiently captured early.
These findings further validate the quality of the
constructed graphs, demonstrating their effective-
ness in patient representation (Statistical Perspec-
tive) by providing not only semantic information
but also additional structured information.

B. What elements should constitute a patient’s
knowledge graph?

Relationship We conduct an ablation study to
assess the impact of different types of relationships
in the graph on patient representation. By remov-
ing a single type of relationship from the complete
graph, we observe that the removal of any relation-
ship leads to a noticeable decrease in performance.
Despite this, the performance still remains superior
to the base model PLM-ICD by at least 0.4% on
F1-Macro score. Excluding the ‘Clinical Relation-
ship’ (CR) results in the most substantial drop in
performance, indicating its critical importance in
patient representation. From Table 5 in Appendix
A we can see that the number of ‘Clinical Relation-
ships’ (CR) is similar to ‘Temporal Events’ (TE) in
MIMIC-III Full dataset. But its exclusion causes
a more pronounced decline, suggesting that its sig-
nificance lies not only in its quantity but also in
the quality of information it provides about the pa-
tient. This is intuitive, as ‘Clinical Relationships’
(CR) inherently capture the essential aspects of a
patient’s profile—such as medical problems, treat-
ments, and diagnostic tests—that are directly rele-
vant to predicting diseases and procedures codes.
Conversely, ‘Bodypart-Directions’ (BD) has the
least impact on ICD coding.

Entity We conduct another ablation study by re-
moving entities of the four most occurring types:
‘Problem’, ‘Test’, ‘Treatment’, and ‘Drug’ (ordered
by frequency). The removal of ‘Problem’ has the
most significant impact on the F1-Macro score, in-
dicating that ‘Problem’ plays a crucial role in the
graph representation. This finding also make sense
intuitively, as ‘Problem’ constitutes the largest por-
tion of the graph and is most closely related to the
objective of diagnosing the patient.
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Figure 4: F1 performance comparison on each of the
top-50 codes between our model and PLM-ICD, ranked
by the performance difference between the two models.

4.3 Qualitative Results

C. How does the patient-level knowledge graph
help the classification for specific codes? To
further analyse performance at the label level, we
compute the F1 scores for our model and PLM-ICD
on the MIMIC-III Top-50 dataset for each code (see
Figure 4). The results reveal that our model outper-
forms PLM-ICD on 37 codes out of 50. Notably,
our model achieves scores for codes 285.9 (Ane-
mia, unspecified’) and V15.82 (Personal history
of tobacco use’), which PLM-ICD totally fails.

To better understand how graphs enhance patient
representations, we visualize the label-specific rep-
resentations of all samples in the test set (see Fig-
ure 5). We focus on the codes 412 (Old myocar-
dial infarction’) and 39.95 (Hemodialysis’) (see
Appendix A.5), where both our model and PLM-
ICD demonstrate good performance. This choice
avoids complications from low scores, which may
result in erratic embeddings that are challenging
to visualize, such as the case of 38.91 ‘Arterial
Catheterization’. Samples with the correspond-
ing labels are highlighted in red. Specifically, we
reduce the dimensionality of the original represen-
tations Z; using t-SNE. For code 412, our model
exhibits a noticeably higher density of instances
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Figure 5: Visualisation of label-specific patients repre-
sentation of codes 412 ‘Old myocardial infarction’ and
39.95 ‘Hemodialysis’, without (left) and with (right)
using knowledge graphs as input. Instances with the
corresponding ground-truth label are red.

with the target label (red), with an average distance
of 16.44 between positive points compared to 19.14
for PLM-ICD. For code 39.95, where both mod-
els perform well, our model still shows a denser
cluster of the positive (red) instances, and the clus-
ter is more distinctly separated from other points.
This case study demonstrates that integrating struc-
tured information enhances patient representation,
leading to more accurate classification.

D. Explainability The ability to provide trust-
worthy and interpretable explanations is particu-
larly critical in the clinical domain. To achieve
this, we highlight text spans based on their atten-
tion weights, using darker colors to indicate higher
weights. This suggests that these spans contribute
more significantly to representing the patient. Our
model demonstrates the ability to identify the most
relevant spans more accurately and concisely. To
illustrate this, we present two non-cherry-picked
examples from the test set on label 38.91: ‘Arte-
rial Catheterization’, where our model shows the
most improvement. In Case 1 (Figure 6, above),
our model effectively captures key tokens like ‘hy-
potensive’ and ‘blood pressure’, which are directly
associated with ‘Arterial Catheterization’, whose
role is continuous blood pressure monitoring and
arterial blood gas analysis. In contrast, PLM-ICD
distributes attention more evenly across the text.
In Case 2 (Figure 6, below), our model success-
fully highlights relevant spans across various sec-
tions, such as ‘invasive procedure’ and ‘placing a
femoral line’, they are procedures often involved in

Case 1-HADM ID: 129383

Our Model

Ihospilal course this is a year old male with sudden onset headache st aus post fall who was with decline in
| mental status he was intubated and transferred here on vas opress ors (o is |
upon arrival the patient had no cough corneal or gag reflex he was admitted on to the

his head ct was consistent with diffuse cerebral edema and unc al herniation on exam his pupils

——— e,

PLM-ICD

L first
intubated
resent llness i  Was diffcul o el icit because pt |

Our Model
| eereion discharge date service medicine allergies no drug allergy information B file attending first!

name 3 | f chief int arrived ive and intubated iti surgical or
| pt intubated ri j placed history of present illness h x was difficult to ell icit because pt |
|

| diagnosis of cholangitis and biliary sepsis pt lif Bl decreased since admission and her Bp fEEay |
| eclined pt BEGAME o5 ystolic and resc usc itation pt received multiple FSURAR of epinephrine |
ladenosine h co 3 calcium gluc onate a was but i by ptabg |
I ph p o2 po 2 h co 3 k lactate pt regained a 8 BISE lev op hed s BEEEBA and a right i j was |
| pliicéd pt became as ystolic shortly after ¢ pr was resumed multiple rounds of epinephrine h co 3 calcium |

e e e

Figure 6: Highlights related to label 38.91 ‘Arterial
Catheterization’, without (above) and with (below) us-
ing knowledge graphs as input.

‘Arterial Catheterization’. Additionally, phrases
like ‘intubated rij placed’ and ‘a right 1J was
placed’ are highlighted as they pertain to ‘central
venous catheterization’, which is another type of
catheterization. The model also succinctly high-
lights ‘rhythm and pulse’, which is related to blood
pressure monitoring. These two cases strongly
demonstrate that our model excels in providing
high-quality explanations compared to PLM-ICD.

5 Conclusion

In this work, we construct a patient-level knowl-
edge graph comprising wide range of entities and
relationships. We integrate it into a state-of-the-
art ICD coding architecture, PLM-ICD, which sig-
nificantly enhances the patient representation and
improve the coding performance. Additionally,
we verify the impact of different types of enti-
ties and relationships in representing the patient.
Furthermore, we showcase how integrating graph
improves the patient representation through visual-
isation and demonstrate the high-quality explain-
ability of our model in case studies.

Our patient-level knowledge graph dataset holds
significant potential to provide healthcare providers
with more precise, data-driven insights, ultimately
improving patient outcomes, such as optimizing
treatment plans and enabling early diagnosis.



6 Limitations

While our model demonstrates the effectiveness
of integrating graph-based information, more ad-
vanced models have been developed in parallel
(e.g., Nguyen et al., 2023)). Our results confirm
the benefits of structured knowledge integration by
comparing our model to its baseline, highlighting
the quality of our patient KG. However, we ac-
knowledge that integrating structured information
into these more advanced models could further en-
hance their performance, which remains an avenue
for future exploration.

This work serves as the evaluation of the con-
structed patient-level KG from two perspectives:
statistical and representational. However, it lacks
a comprehensive comparison with other types of
patient KGs (except for Yuan et al. (2021)) due to
the challenges and time constraints associated with
constructing them based on MIMIC-III.

In future work, we will also aim to enrich the
patient-level knowledge graph by integrating other
knowledge sources, such as hierarchical informa-
tion from ontology systems like SNOMED-CT and
UMLS. In the current study, we did not account for
the semantic meaning of edges within graph repre-
sentation, as some links merely signify connections
between entities (e.g., ‘1’ or ‘TREATMENT-TEST’).
Moving forward, we plan to model the meaning
of these relationships more explicitly by combin-
ing their semantic representations with confidence
measurements.

Additionally, we have not explored other ad-
vanced graph representation models, such as
Relational Graph Convolutional Networks (R-
GCN) (Schlichtkrull et al., 2018) and Graph At-
tention Networks (GAT) (Velickovié et al., 2017).
The application of GAT, in particular, offers poten-
tial for further enhancing explainability by identify-
ing and highlighting the sub-graphs that contribute
most to final predictions, which we aim to evaluate
more rigorously in domain expert-centred experi-
ments.

Finally, due to resource constraints, we have not
experimented with adapting other baseline models
to use the document-level structured representation
graphs. It is unlikely, but not impossible, that other
architectures would not benefit from this kind of
information, and further experiments should be
conducted to establish this fact empirically.

References

James Blundell. 2023. Health information and the im-
portance of clinical coding. Anaesthesia & Intensive
Care Medicine.

Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Sheng-
ping Liu, and Weifeng Chong. 2020. Hypercore: Hy-
perbolic and co-graph representation for automatic
icd coding. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3105-3114.

Finneas Catling, Georgios P Spithourakis, and Sebastian
Riedel. 2018. Towards automated clinical coding.
International journal of medical informatics, 120:50—
61.

Ilias Chalkidis, Manos Fergadiotis, Sotiris Kotitsas, Pro-
dromos Malakasiotis, Nikolaos Aletras, and Ion An-
droutsopoulos. 2020. An empirical study on large-
scale multi-label text classification including few and
zero-shot labels. arXiv preprint arXiv:2010.01653.

Koby Crammer, Mark Dredze, Kuzman Ganchev, Partha
Talukdar, and Steven Carroll. 2007. Automatic code
assignment to medical text. In Biological, transla-
tional, and clinical language processing, pages 129—
136.

Hang Dong, Victor Sudrez-Paniagua, William White-
ley, and Honghan Wu. 2021. Explainable automated
coding of clinical notes using hierarchical label-wise
attention networks and label embedding initialisation.
Journal of biomedical informatics, 116:103728.

Joakim Edin, Alexander Junge, Jakob D Havtorn, Lasse
Borgholt, Maria Maistro, Tuukka Ruotsalo, and Lars
Maalge. 2023. Automated medical coding on mimic-
iii and mimic-iv: a critical review and replicability
study. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 2572-2582.

Matus Falis, Hang Dong, Alexandra Birch, and Beat-
rice Alex. 2022. Horses to zebras: ontology-guided
data augmentation and synthesis for icd-9 coding.
In Proceedings of the 21st Workshop on Biomedical
Language Processing. Association for Computational
Linguistics.

Matus Falis, Maciej Pajak, Aneta Lisowska, Patrick
Schrempf, Lucas Deckers, Shadia Mikhael, Sotirios
Tsaftaris, and Alison O’Neil. 2019. Ontological at-
tention ensembles for capturing semantic concepts
in icd code prediction from clinical text. In Proceed-
ings of the Tenth International Workshop on Health
Text Mining and Information Analysis (LOUHI 2019),
pages 168-177.

Malte Feucht, Zhiliang Wu, Sophia Althammer, and
Volker Tresp. 2021. Description-based label attention
classifier for explainable icd-9 classification. arXiv
preprint arXiv:2109.12026.



Chao-Wei Huang, Shang-Chi Tsai, and Yun-Nung Chen.
2022. Plm-icd: automatic icd coding with pretrained
language models. arXiv preprint arXiv:2207.05289.

Shaoxiong Ji, Matti Holttd, and Pekka Marttinen. 2021.
Does the magic of bert apply to medical code assign-

ment? a quantitative study. Computers in biology
and medicine, 139:104998.

Shaoxiong Ji, Xiaobo Li, Wei Sun, Hang Dong, Ara
Taalas, Yijia Zhang, Honghan Wu, Esa Pitkédnen, and
Pekka Marttinen. 2022. A unified review of deep
learning for automated medical coding. ACM Com-
puting Surveys.

John Snow Labs. 2024. Healthcare NLP. https://
www. johnsnowlabs.com/healthcare-nlp/.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H
Lehman, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi,
and Roger G Mark. 2016. Mimic-iii, a freely accessi-
ble critical care database. Scientific data, 3(1):1-9.

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy-
anov. 2020. Pretrained language models for biomedi-
cal and clinical tasks: understanding and extending
the state-of-the-art. In Proceedings of the 3rd clin-
ical natural language processing workshop, pages
146-157.

Fei Li and Hong Yu. 2020. Icd coding from clinical
text using multi-filter residual convolutional neural
network. In proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 8180-8187.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. 2015. Gated graph sequence neu-
ral networks. arXiv preprint arXiv:1511.05493.

Yang Liu, Hua Cheng, Russell Klopfer, Matthew R
Gormley, and Thomas Schaaf. 2021. Effective con-
volutional attention network for multi-label clinical
document classification. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5941-5953.

Jueqing Lu, Lan Du, Ming Liu, and Joanna Dipnall.
2020. Multi-label few/zero-shot learning with knowl-
edge aggregated from multiple label graphs. arXiv
preprint arXiv:2010.07459.

George Michalopoulos, Michal Malyska, Nicola Sahar,
Alexander Wong, and Helen Chen. 2022. Icdbigbird:
a contextual embedding model for icd code classifi-
cation. arXiv preprint arXiv:2204.10408.

James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng
Sun, and Jacob Eisenstein. 2018. Explainable pre-
diction of medical codes from clinical text. arXiv
preprint arXiv:1802.05695.

Anthony N Nguyen, Donna Truran, Madonna Kemp,
Bevan Koopman, David Conlan, John O’Dwyer,
Ming Zhang, Sarvnaz Karimi, Hamed Hassanzadeh,
Michael J Lawley, et al. 2018. Computer-assisted

10

diagnostic coding: effectiveness of an nlp-based ap-
proach using snomed ct to icd-10 mappings. In AMIA
Annual Symposium Proceedings, volume 2018, page
807. American Medical Informatics Association.

Thanh-Tung Nguyen, Viktor Schlegel, Abhinav
Kashyap, and Stefan Winkler. 2023. A two-stage
decoder for efficient icd coding. arXiv preprint
arXiv:2306.00005.

World Health Organization et al. 1978. International
classification of diseases:[9th] ninth revision, basic
tabulation list with alphabetic index. World Health
Organization.

Suzanne Pereira, Aurélie Névéol, Philippe Massari,
Michel Joubert, and Stefan Darmoni. 2006. Con-
struction of a semi-automated icd-10 coding help
system to optimize medical and economic coding. In
MIE, pages 845-850. Citeseer.

Anthony Rios and Ramakanth Kavuluru. 2018. Few-
shot and zero-shot multi-label learning for structured
label spaces. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing.
Conference on Empirical Methods in Natural Lan-
guage Processing, volume 2018, page 3132. NIH
Public Access.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In The semantic web: 15th inter-
national conference, ESWC 2018, Heraklion, Crete,
Greece, June 3-7, 2018, proceedings 15, pages 593—
607. Springer.

Congzheng Song, Shanghang Zhang, Najmeh Sadoughi,
Pengtao Xie, and Eric Xing. 2021. Generalized zero-
shot text classification for icd coding. In Proceed-
ings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intel-
ligence, pages 4018-4024.

Wei Sun, Shaoxiong Ji, Erik Cambria, and Pekka Mart-
tinen. 2021. Multitask recalibrated aggregation net-
work for medical code prediction. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases, pages 367-383. Springer.

Fei Teng, Yiming Liu, Tianrui Li, Yi Zhang, Shuangqing
Li, and Yue Zhao. 2022. A review on deep neu-
ral networks for icd coding. IEEE Transactions on
Knowledge and Data Engineering, 35(5):4357-4375.

Betty Van Aken, Jens-Michalis Papaioannou, Marcel G
Naik, Georgios Eleftheriadis, Wolfgang Nejdl, Fe-
lix A Gers, and Alexander Loser. 2022. This patient
looks like that patient: Prototypical networks for in-
terpretable diagnosis prediction from clinical text.
arXiv preprint arXiv:2210.08500.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.


https://www.johnsnowlabs.com/healthcare-nlp/
https://www.johnsnowlabs.com/healthcare-nlp/
https://www.johnsnowlabs.com/healthcare-nlp/

Thanh Vu, Dat Quoc Nguyen, and Anthony Nguyen.
2020. A label attention model for icd coding from
clinical text. arXiv preprint arXiv:2007.06351.

Tao Wang, Linhai Zhang, Chenchen Ye, Junxi Liu, and
Deyu Zhou. 2022. A novel framework based on med-
ical concept driven attention for explainable medical
code prediction via external knowledge. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, pages 1407-1416.

Xiancheng Xie, Yun Xiong, Philip S Yu, and Yangyong
Zhu. 2019. Ehr coding with multi-scale feature at-
tention and structured knowledge graph propagation.
In Proceedings of the 28th ACM international con-
ference on information and knowledge management,

pages 649-658.

Zhichao Yang, Shufan Wang, Bhanu Pratap Singh
Rawat, Avijit Mitra, and Hong Yu. 2022. Knowledge
injected prompt based fine-tuning for multi-label few-
shot icd coding. In Proceedings of the conference
on empirical methods in natural language process-
ing. Conference on empirical methods in natural lan-
guage processing, volume 2022, page 1767. NIH
Public Access.

Quan Yuan, Jun Chen, Chao Lu, and Haifeng Huang.
2021. The graph-based mutual attentive network
for automatic diagnosis. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 3393-3399.

Zheng Yuan, Chuangi Tan, and Songfang Huang. 2022.
Code synonyms do matter: Multiple synonyms
matching network for automatic icd coding. arXiv
preprint arXiv:2203.01515.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and
Yixin Chen. 2018. An end-to-end deep learning ar-
chitecture for graph classification. In AAAL

Zachariah Zhang, Jingshu Liu, and Narges Raza-
vian. 2020. Bert-xml: Large scale automated
icd coding using bert pretraining. arXiv preprint
arXiv:2006.03685.

A Appendix

A.1 Patient-Level Knowledge Graph
Construction

Model Selection The Healthcare NLP library in-
cludes 44 RE models, each integrating both NER
and RE functionalities. These models are trained
on various language models across multiple lan-
guages to extract a wide range of clinical informa-
tion. We utilize 14 of these models, which cover all
available relationship types except for ‘drug-drug
interaction’ and share a consistent architecture. De-
tails and statistics of these RE models are provided
in Table 5.
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The top five relationships include ade conversa-
tional’, which links drugs to their adverse reactions.
However, we do not select it due to its uneven dis-
tribution across samples, as only a limited number
contain this type of triple. Instead, we chose the
‘bodypart-problem’ relationship, which ranks sixth.

Selected S RE Models Table 8 details the entities
and relationships that each RE model can extract.
The entities recognized from the MIMIC-III notes
include a subset of those listed in this table.

Statistics of Entities Extracted The complete
patient-level knowledge graph, which encompasses
all five relationships, identifies 14 types of entities.
The statistics of them can be found in Table 6. In
the ablation study, we study the impact of top four
types of entities, as they have the highest magnitude
compared to others.

A.2 Patient-Level Knowledge Graph
Visualisation

Figure 8 presents a visualization of a patient-level
knowledge graph (HADM ID: 196292). To make it
clear, we include type information for the entities,
linking each entity to its respective type. Nodes
representing types are colored light green, while
different types of entities assigned unique colors.

A.3 Methodology of Information Entropy and
Results of Ablation Study

Information Entropy Information entropy, in-
troduced by Shannon in 1948, is a fundamental
concept in information theory that measures infor-
mation loss by quantifying the difference between
the expected information and the reduced informa-
tion. The entropy H of a discrete source X is given
by:

H(X)=- > P(x)logy P(x).
rzeX

(10)

The entropy of text and serialised graph are calcu-
lated as follows:

Htezt = - Z Ptecct(x) 10g2 Pte:ct(x)a (1 1)
IGXtezt
ngaph = - Z Pgraph (l‘) 10g2 PgTaph (SU)
xeXg'raph
(12)
The ratio of information loss L is defined as:
Hiert — Hg’/‘aph
L= (13)
Htemt



RE Model |Tr| |S]
clinical relatioship 6878467 52721
temporal events 6504349 52720
posology relationship 3939341 51879
ade conversational relationship 2443125 12464
bodypart-directions 355260 42487
bodypart-problem 337041 38719
ade relationship 86062 24259
test-problem-finding 76262 29007
drugprot relationship 42071 16859
bodypart-proceduretest 14739 8861
generic relationship 7004 2897
date relationship 2979 1713
test-result-date 2174 2174
phenotype gene relationship 0 0

Table 5: Statistics of RE model outputs in the MIMIC-III Full dataset. |T'r| refers to the number of triples recognized
by the RE model. |\S] indicates the number of samples in the full dataset that contain these triples.

Entity Type |En|

problem 3422556
treatment 1665523
test 1371889
drug 1039115

strength 636491
frequency 338332

form 229420

dosage 217178

internal organ or component 192503
route 166454

direction 135903
symptom 106114

external body part or region 86367

duration 41727

Table 6: Statistics of entities identified in the MIMIC-III Full dataset. | En| represents the number of entities.

Ablation Study Table 7 displays the information
entropy results for different graphs after remov-
ing one type of relationship or entity. The ‘Text
Entropy’ is 8.33 across all experiments. Notably,
the removing ‘posology relationship’ and ‘prob-
lem’ have the most significant impact on the results.
This analysis emphasizes the loss of textual infor-
mation, whereas the ablation study in the main
content examines the impact on ICD coding.

A.4 Implementation Details and Results of
Various DGCNN Configurations

Table 9 outlines the hyperparameter settings for
both the PLM-ICD baseline and our model. Our
model requires a batch size of 1 per process, as
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we do not adjust the graph representation using
padding, unlike typical text inputs. Due to compu-
tational resource constraints, we do not use the op-
timal hyperparameters for PLM-ICD. However, we
maintain consistent hyperparameters within their
shared architecture to ensure a fair comparison.
The value of DGCNN indicates the size of the node
representation for each convolution layer. A sin-
gle DGCNN layer with a size of 768 achieves the
best performance on the full dataset, while two
DGCNN layers, each with a size of 384, performs
best on the Top-50 dataset. Additionally, we initial-
ize the node representation in the first layer using
RoBERTa-base.

Tables 10 and 11 present additional experimental



Remove Graph Entropy Ratio (%)

Full 7.48 89.95

clinical relationship 7.42 89.07
temporal events 7.33 88.07
posology relationship 7.15 85.80
bodypart-directions 7.47 89.68
bodypart-problem 7.48 89.80
problem 6.80 81.62
treatment 7.27 87.25

test 7.27 87.30

drug 7.36 88.40

Table 7: Results of the ablation study on information entropy: impact of removing each type of relationship or entity
(MIMIC-I Full).

s
. o 300 o s
110 o
e Y N
™

Figure 7: Visualisation of label-specific patients rep-
resentation of code 38.91 ‘Arterial Catheterization’,
without (left) and with (right) using knowledge graphs
as input. Instances with the corresponding ground-truth
label are red.

results for different configurations of the DGCNN
architecture. The experiments utilize a complete
graph with five types of relationships. In our initial
experiment, we fix the final node size at 768 and
compare the performance of DGCNN with differ-
ent numbers of layers. The results indicate minimal
performance differences between multi-layer and
single-layer DGCNN models. However, models
with evenly distributed layer sizes show slightly
better performance. We also conduct experiments
by varying the final node size and incrementally
adding layers, each with an embedding size of 384.
The results reveal an initial increase in performance,
which subsequently decreases, with the optimal per-
formance observed using two layers. Additionally,
a similar trend is evident in a third experiment,
which investigates varying sizes for each layer.

A.5 Patient visualisation - Code 38.91

We present a negative example of patient visualiza-
tion for code 38.91 ‘Arterial Catheterization’ in
Figure 7, where both models exhibit poor perfor-
mance. Our model achieves an F1-score of 38.14%,
compared to 18.89% for PLM-ICD.
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Figure 8: Visualisation of a Patient-Level Knowledge Graph.
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RE Model

Entity

Relationship

clinical relationship

PROBLEM, TREATMENT, TEST

TrAP: TREATMENT-PROBLEM
TeRP: TEST-PROBLEM

TrIP: TREATMENT-PROBLEM
TrCP: TREATMENT-PROBLEM
TeCP: TEST-PROBLEM

TrWP: TREATMENT-PROBLEM
PIP: PROBLEM-PROBLEM

O: No Relationship

temporal events

EVIDENTIAL, OCCURRENCE , DATE,
TREATMENT, TIME, ADMISSION,
TEST, FREQUENCY, CLINICAL_DEPT,
DURATION, PROBLEM, DISCHARGE

BEFORE, AFTER, OVERLAP

posology relationship

drug, dosage, duration, strength, frequency

DOSAGE-DRUG
DRUG-DURATION
DRUG-STRENGTH
DRUG-FREQUENCY

bodypart-directions

direction-external_body_part_or_region,
external_body_part_or_region-direction,
direction-internal_organ_or_component,
internal_organ_or_component-direction

1,0

bodypart-problem

link between external_body_part_or_region

or internal_organ_or_component

and diseases entities (cerebrovascular_disease
, communicable_disease, diabetes...)

Table 8: Entities and relationships that RE models can extract.

Input

Parameter

Value

Common

number of processes
train/evaluation batch size
gradient accumulation steps
train epochs
warmup steps
random seed

4
1
1

20 (Full) / 10 (Top-50)
2000
42

Text

max length
chunk size
model mode
pretrained model (text)

5120
512
LAAT
RoBERTa-base-PM

Graph

DGCNN
pretrained model (node)

768 (Full) / 384-384 (Top-50)
RoBERTa-base

Table 9: Parameter settings for PLM-ICD (Common + Text) and our model (Common + Text + Graph) on the
MIMIC-III Full and Top-50 datasets.
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F1 AUC Precision Recall
3-4 6-7 Model Embedding Size Macro Micro Macro Micro P@8 R@8

1 layer 768 11.05 59.72 92.37 98.75 76.59 40.52

256-512 10.69 59.52 92.42  98.78 76.79 40.56

2 layers 384-384 10.98 59.64 92.65 98.83 76.63 40.53
128-256-384 10.42  59.51 92.55 98.79 76.47 40.39

3 layers 256-256-256 10.53  59.70 92.47 98.84 76.81 40.56

128-128-256-256  10.46  59.47 9223  98.78 76.58 40.37
4 layers 192-192-192-192  10.58 59.21 92.14 98.78 76.47 40.37

1 layer 384 10.77  59.77 9230 98.77 7688  40.62
2 layers 384-384 10.82  59.43 9254 9878  76.63  40.53
3 layers 384-384-384 1049  59.37 9235 9875 7611  40.15
4 layers 384-384-384-384 1046  59.58 9223 9874 7679  40.55
1 layer 128 1023 59.06 9222 98.82 7665 4046
2 layers 128-256 10.60  59.69 9247 9883 7685  40.57
3 layers 128-256-384 1042 59.51 9255 98.79 7647  40.39

4 layers 128-256-384-512 1047 59.31 9221 98.76 76.30 40.27

Table 10: Performance of Various DGCNN Architecture Configurations (MIMIC-III Full).

F1 AUC Precision Recall

3-4 6-7 Model Embedding Size Macro Micro Macro Micro P@5 R@5
1 layer 768 66.64  71.37 91.77 94.16 66.52 64.33
256-512 67.64 71.72 92.12  94.30 66.82 64.74

2 layers 384-384 67.81 71.63 92.04 94.22 67.08 65.11
128-256-384 66.30  70.94 91.71 9398 66.58 64.39

3 layers 256-256-256 67.54 71.83 92.19 94.37 67.04 65.14

128-128-256-256  66.79  71.39 9228 94.31 66.87 64.92
4 layers 192-192-192-192  67.67 72.03 9230 94.44 66.79 65.07

1 layer 384 6691 71.12 92.04 9419 6647  64.63
2 layers 384-384 67.81 71.63 92.04 9422  67.08  65.11
3 layers 384-384-384 66.89 71.41 9226 9432  67.09  65.20
4 layers 384-384-384-384  66.55 71.24 92.15 9437 6686  64.85
1 layer 128 66.62  70.79 91.89 9410 6650  64.45
2 layers 128-256 67.63 71.72 92.00 9425 6671  64.63
3 layers 128-256-384 66.30  70.94 91.71 9398 6658  64.39

4 layers 128-256-384-512  65.80 71.34 92.05 94.32 66.14 64.22

Table 11: Performance of Various DGCNN Architecture Configurations (MIMIC-III Top-50).
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