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Abstract

Mapping clinical documents to standardised001
clinical vocabularies is an important task, as002
it provides structured data for information re-003
trieval and analysis, which is essential to clin-004
ical research, hospital administration and im-005
proving patient care. However, manual coding006
is both difficult and time-consuming, making007
it impractical at scale. Automated coding can008
potentially alleviate this burden, improving the009
availability and accuracy of structured clini-010
cal data. The task is difficult to automate, as011
it requires mapping to high-dimensional and012
long-tailed target spaces, such as the Interna-013
tional Classification of Diseases (ICD). While014
external knowledge sources have been readily015
utilised to enhance output code representation,016
the use of external resources for representing017
the input documents has been underexplored.018
In this work, we compute a structured represen-019
tation of the input documents, making use of020
document-level knowledge graphs (KGs) that021
provide a comprehensive structured view of a022
patient’s condition. The resulting knowledge023
graph efficiently represents the patient-centred024
input documents with 23% of the original text025
while retaining 90% of the information. We026
assess the effectiveness of this graph for auto-027
mated ICD-9 coding by integrating it into the028
state-of-the-art ICD coding architecture PLM-029
ICD. Our experiments yield improved Macro-030
F1 scores by up to 3.20% on popular bench-031
marks, while improving training efficiency. We032
attribute this improvement to different types of033
entities and relationships in the KG, and demon-034
strate the improved explainability potential of035
the approach over the text-only baseline.036

1 Introduction037

Clinical coding is the process of allocating stan-038

dardized codes to diagnoses, treatments, proce-039

dures, and medical services detailed in patient elec-040

tronic records or paper notes. This multi-label041

classification task offers advantages across various042

Discharge Summary
Admission Date: [**2191-11-18**]        Discharge Date: [**2191-11-18**]
Date of Birth:  [**2155-12-31**]              Sex:  M.              Service:  TRA

CHIEF COMPLAINT: Fall from approximately a third story building.

PRESENT ILLNESS: This is a young male of unknown age, brought by EMS after
having sustained an approximately three story fall. The patient was intubated in the
field and forwarded to the [**Hospital1 **] Emergency Department arriving in
extremis. The patient … the operating room. The patient had a right chest tube
placed and there was seen to be a moderate amount of bleeding out of the right
chest. The patient … cavity. There was seen to be no significant intra-abdominal
pathology. However, there was seen to be a large retroperitoneal hematoma
extending from the pelvis up to the level of the kidneys retroperitoneally. The patient
was packed. However, because of the patient's initial arterial pH of 6.94, all
resuscitation efforts were in vain and the patient expired intraoperatively. The case
was referred to the coroner and an intraoperative death.

[**First Name11 (Name Pattern1) 449**] …
Job#:  [**Job Number 88466**]

Suicide and self-inflicted injuries by jumping from other man-made structures.E957.1

Traumatic pneumohemothorax without mention of open wound into thorax.860.4

Injury to other intra-abdominal organs without mention of open wound into
cavity, peritoneum.

868.03

Intracranial injury of other and unspecified nature without mention of open
intracranial wound, with prolonged [more than 24 hours] loss of consciousness
without return to pre-existing conscious level.

854.05

Figure 1: Example of ICD Coding over MIMIC-III. The
discharge summary (HADM ID: 104128) is annotated
with four ICD codes.

domains, including audit procedures, decision sup- 043

port systems and medical billing (Blundell, 2023). 044

Various coding systems are designed to encode spe- 045

cific information within patient records. Our work 046

focuses on the International Classification of Dis- 047

eases (ICD-9) (Organization et al., 1978), a widely 048

recognized coding system that holds a pivotal role 049

in encoding diagnostic and procedural information. 050

This process is commonly known as ICD coding. 051

An example is shown in Figure 1. 052

Manual code assignment is typically costly, 053

labor-intensive, and error-prone (Nguyen et al., 054

2018). In recent years, automated clinical coding, 055

powered by cutting-edge deep learning techniques, 056

has significantly advanced the field, improving ac- 057

curacy, increasing efficiency, and reducing overall 058

costs (Ji et al., 2022; Teng et al., 2022). 059

The main challenge in clinical coding arises 060

from the extremely imbalanced distribution of the 061

label space. For instance, in the case of MIMIC-III 062
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(Johnson et al., 2016), there are 8,692 unique ICD-063

9 codes, of which 4,115 codes (47.3%) occur fewer064

than 6 times (Yang et al., 2022). Considering this065

long-tailed distribution of codes, previous work has066

explored integrating diverse external knowledge to067

enhance the representation of codes and patients.068

Among these external knowledge sources, knowl-069

edge graphs play an important role in improving070

the performance of ICD coding by providing not071

only semantic information but also structured infor-072

mation. However, most research focuses on repre-073

senting ICD codes through various graphs that are074

built based on these codes themselves (Rios and075

Kavuluru, 2018; Xie et al., 2019; Cao et al., 2020;076

Lu et al., 2020; Song et al., 2021; Michalopou-077

los et al., 2022). Efforts to construct patient-level078

knowledge graphs remain largely underexplored in079

both ICD coding and the broader clinical domain.080

The patient-level knowledge graph offers an intu-081

itive representation and visualization of a patient’s082

clinical condition, providing healthcare profession-083

als with valuable insights. Meaningful causal re-084

lationships between entities, such as symptoms085

that support a diagnosis, tests performed, and treat-086

ments derived from these findings, enable patient-087

level knowledge graphs to facilitate more efficient088

decision-making for physicians and medical staff.089

However, critical questions remain unanswered:090

what elements should constitute a patient’s knowl-091

edge graph, including problems, symptoms, tests,092

treatments, drugs, dosages, and frequencies? And093

how to evaluate the quality of such graphs and094

assess their utility and impact on tasks such as095

patient-level classification and explainability?096

To the best of our knowledge, Yuan et al. (2021)097

is the only work which proposes a medical graph098

specifically designed for individual patients in ICD099

coding task. The graph integrates a disease hierar-100

chy based on ICD-10 and a causal graph of diseases.101

Entities in the causal graph, including symptoms,102

signs, and diseases are identified from documents103

using the named-entity recognition (NER) tech-104

nique. The model also leverages GCN to represent105

the nodes in the graph. It enhances the patient repre-106

sentation by integrating it with the raw clinical text107

and patient information. However, it does not cover108

a wide range of entity categories and capture the109

diverse relationships among them, which can pro-110

vide a more comprehensive understanding about a111

patient’s medical history. Additionally, this work112

lacks a systematic evaluation of graph quality and113

an analysis of the determination of its constituent114

components. 115

To close these gaps, we construct patient-level 116

knowledge graphs that provide a wide range of en- 117

tity types and relationships. This comprehensive 118

graph offers explicit context to a patient’s situation, 119

by providing diagnostic, posology, anatomical and 120

the temporal information of clinical events identi- 121

fied in the patient records. We integrate this patient- 122

level knowledge graph into the state-of-the-art ICD 123

coding architecture, PLM-ICD (Huang et al., 2022), 124

demonstrating improved coding performance. 125

The contributions of this work are: 126

(i) We develop a comprehensive patient-level 127

knowledge graph encompassing a wide coverage 128

of 14 distinct entity types connected by five types 129

of relationships. We evaluate the informativeness 130

of the graph by measuring the information loss rel- 131

ative to the patient notes from which the graph is 132

retrieved. Our results demonstrate that the knowl- 133

edge graph effectively distills essential informa- 134

tion from patient notes into a more concise and 135

structured format, achieving a significant reduction 136

in size—extracting only 23% of the original con- 137

tent—while retaining 90% of the information. This 138

represents a Statistical Perspective for evaluating 139

the quality of the graph. 140

(ii) We conducted experiments to assess the ef- 141

fectiveness of integrating graph representations into 142

ICD coding. The results demonstrate that the addi- 143

tional structured information provided by the graph 144

enhances coding performance, improving the F1- 145

score by 1.36% compared to the base model. This 146

improvement is significant for this developed task. 147

This also serves as an evaluation of the patient- 148

level knowledge graph from a Representational 149

Perspective, capturing both semantic and structural 150

information. 151

(iii) We address the question of ‘What elements 152

should constitute a patient’s knowledge graph?’ 153

through an ablation study from two evaluation per- 154

spectives. We analyse the impact of various types 155

of entities and relationships on the information re- 156

taining and coding performance. 157

(iv) We perform a case study and showcase the 158

model’s ability to offer high-quality explanations 159

by providing accurate and concise evidence which 160

supports the model’s prediction. 161

2 Related Work 162

Architecture Over the past decade, the field of 163

clinical coding has witnessed significant advance- 164
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ments, evolving from traditional rule-based meth-165

ods (Pereira et al., 2006; Crammer et al., 2007) to166

advanced machine learning and deep learning ap-167

proaches. Researchers have recently explored the168

application of cutting-edge NLP techniques, includ-169

ing attention mechanisms and transformer models.170

The architecture of these models has become in-171

creasingly sophisticated, with common architec-172

ture incorporating CNN-based (Mullenbach et al.,173

2018), LSTM-based (Catling et al., 2018), and174

transformer-based encoders (Zhang et al., 2020;175

Chalkidis et al., 2020; Ji et al., 2021), often paired176

with label-wise attention layers (Vu et al., 2020;177

Sun et al., 2021; Dong et al., 2021; Liu et al.,178

2021; Van Aken et al., 2022). Recent studies179

also highlight the challenge of efficiently apply-180

ing transformer models to represent the inherently181

lengthy clinical documents. These approaches182

leverage transformers handling long sequences, no-183

tably Longformer (Yang et al., 2022) and BigBird184

(Michalopoulos et al., 2022).185

External Knowledge Representations A ma-186

jor challenge in this field is classifying within a187

large target space, where the distribution of codes188

is highly uneven, commonly described as a ‘big-189

head long-tail’ distribution. This imbalance hinders190

the model’s effectiveness in recognising patterns191

associated with categories with few samples. To192

address this issue, researchers have turned to ex-193

ternal knowledge to enhance the representations of194

both patients and codes. For patient representation,195

this includes data augmentation (Falis et al., 2022;196

Song et al., 2021) and knowledge graphs (Yuan197

et al., 2021). In terms of code representation, ex-198

ternal knowledge is drawn from code descriptions199

(Feucht et al., 2021), synonyms (Yuan et al., 2022),200

relevant documents (Wang et al., 2022), code hierar-201

chy (Falis et al., 2019; Yang et al., 2022), synthetic202

data (Falis et al., 2022), and knowledge graphs.203

Knowledge Graph in ICD Coding Rios and204

Kavuluru (2018) represents ICD codes using their205

hierarchical structure, applying two layers of graph206

convolutional networks (GCN) to leverage this207

structured knowledge. Song et al. (2021) improves208

this model by replacing the GCN with graph gated209

recurrent neural networks (GRNN) (Li et al., 2015).210

Cao et al. (2020) introduces Co-Graph, which mod-211

els co-occurrence correlations between codes. This212

graph is represented by its adjacency matrix and213

GCN. Lu et al. (2020) constructs three types of214

graphs: a label hierarchy graph of class taxonomy,215

a semantic similarity graph derived from code de- 216

scriptions, and a code co-occurrence graph similar 217

to the approach in Cao et al. (2020). Michalopoulos 218

et al. (2022) establishes connections between codes 219

using normalized point-wise mutual information 220

and also employs GCN to capture the representa- 221

tions of codes from this graph. 222

3 Methodology 223

In this section, we detail the construction of patient- 224

level knowledge graphs and their integration into 225

the PLM-ICD coding architecture. 226

Patient-Level Knowledge Graph Construction 227

We aim to construct patient-level knowledge graphs 228

that comprehensively represent a patient’s medical 229

history, encompassing diseases, treatments, tests, 230

drugs, dosages, frequencies, strengths, and so on, 231

as well as the relationships between these entities. 232

We employ named-entity recognition (NER) and 233

relation extraction (RE) models provided by Health- 234

care NLP library (John Snow Labs, 2024) to extract 235

these concepts. 236

Out of the available RE models in Healthcare 237

NLP, we select five models based on the quan- 238

tity of triples extracted and their uniformity across 239

all documents. The selected RE models are (or- 240

dered by frequency) ‘Clinical Relationship’ (CR), 241

‘Temporal Events’ (TE), ‘Posology Relationship’ 242

(PR), ‘Bodypart-Directions’ (BD) and ‘Bodypart- 243

Problem’ (BP). These models collectively identify 244

14 different types of entities. Detailed information 245

about model selection, selected RE models and 246

statistics of the extracted entities and relationships 247

can be found in in Appendix A.1. 248

The output of these relationship extraction (RE) 249

models includes two identified entities, their re- 250

spective types, and the relationship between them. 251

When constructing a patient’s knowledge graph, 252

we represent this information as triples in the for- 253

mat < entity1, relationship, entity2 > (e.g., 254

< lisinopril, drug-strength, 40mg >). The re- 255

sulting patient-level knowledge graphs contain four 256

types of information (For a visualisation, consult 257

Appendix A.2): 258

Diagnostic Information (CR): Revealing the 259

interrelationships among problems, treatments, and 260

tests; 261

Temporal Information (TE): Capturing the se- 262

quence of clinical events; 263

Posology Information (PR): Providing details 264

on drug regimens, including dosage, duration, 265
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admission date discharge date date of birth sex m
service tra chief complaint fall from approximately a
third story building present illness this is a young

…
pattern1 initial namepattern1 last name
namepattern1 m dmd number dictated by last name
namepattern1 medquist36 d t job job number

Processed Text

Patient-Level Knowledge Graph DGCNN

Layer 1 Layer 2 Layer N

…

⋮

admission

date

discharge

number

once a day

81 mg

ABPM

Aspirin

Hypertension

		+

⋮
Prediction

Explainability

Pre-trained RoBERTa Attention
Layer

Attention
Layer

Figure 2: Architecture of the proposed model. The processed discharge summary as input is encoded using a
pre-trained RoBERTa, while its corresponding patient-level knowledge graph inputs a DGCNN module, with final
representations obtained by concatenating node features from all layers. Both representations are fed into separate
label-wise attention layers, after which the weighted outputs are concatenated, using for ICD code prediction.

Split Avg |T | Avg |N | Avg T in N Min/Max T Min/Max N

Full 1513.5 183.0 342.3 0/1954 0/903
Top-50 1612.0 196.8 366.8 6/1689 3/774

Table 1: Statistics of nodes and tokens per processed
document in MIMIC-III datasets. T stands for tokens,
N stands for graph nodes. ‘Avg’ represents averages
over all documents.

strength, and frequency, as well as their interre-266

lationships;267

Anatomical Information (BD and BP): Illus-268

trating the connections between problem or direc-269

tions and specific body parts.270

The statistics of the graphs extracted from the271

two MIMIC-III datasets, Full and Top-50, are sum-272

marized in Table 1. On average, the graphs contain273

approximately 190 nodes, with each node typically274

comprising around two tokens. The largest graph275

in the dataset includes 903 nodes, while some doc-276

uments don’t have any extracted graphs.277

Furthermore, we evaluate the quality of the con-278

structed graphs from a Statistical Perspective by279

measuring information loss. Specifically, we calcu-280

late the average information entropy of the original281

text and the serialized graph. As shown in Table 2,282

our analysis indicates that the extracted content ac-283

counts for less than 23% of the original size, yet284

retains approximately 90% of the information. This285

highlights the efficiency of our patient-level knowl-286

edge graph in significantly compressing the text287

while preserving the majority of its informational288

content. (For details of the information entropy289

methodology and further results of the ablation290

study, conducted by removing each type of entity291

and relationship, please refer to Appendix A.3.)292

Task Definition ICD coding is formulated as a293

multi-label classification task. Given a clinical doc-294

ument (discharge summary in MIMIC-III) of a pa-295

Dataset Text Entropy Graph Entropy Ratio (%)
Full 8.33 7.48 89.95

Top-50 8.41 7.61 90.52

Table 2: The Information entropy of processed text
and serialised graph. The ‘Ratio’ measures how much
information is retained.

tient, automated coding module aims to assign the 296

correct ICD codes which represent the diseases 297

or procedures. Specifically, we define a clinical 298

document with Nt tokens as d = {t1, t2, ..., tNt}. 299

The goal is to predict a distribution of labels 300

p = {p1, p2, ..., pNc}, where Nc denotes the total 301

number of codes in the label space. The final set of 302

assigned codes is the ones that exceed a pre-defined 303

probability threshold. 304

The proposed framework is shown in Figure 2. 305

The subsequent sections will provide a detailed 306

description of each component of the framework. 307

Text Embedding - Pre-trained Language Model 308

To embed the textual data, we utilize RoBERTa- 309

PM (Lewis et al., 2020), a transformer model pre- 310

trained on biomedical abstract and clinical docu- 311

ments. 312

The pre-processing of the raw text in MIMIC-III 313

datasets follows Mullenbach et al. (2018). Fol- 314

lowing PLM-ICD, we divide each document into 315

segments of equal length of l tokens. The number 316

of segments per document is represented as Ns and 317

varies across different samples. Thus, each seg- 318

ment comprises a sequence of tokens that represent 319

a portion of the document: 320

si = {tj |l · i ≤ j < l · (i+ 1)}. (1) 321

The document representation Ht is formed by con- 322

catenating the hidden representations of each seg- 323

4



ment:324

Ht = concat(PLM(s1), ..., PLM(sNs)), (2)325

where PLM(si) denotes the representation for seg-326

ment si embedded by RoBERTa-PM.327

Graph Embedding - Deep Graph Convolutional328

Neural Network The Deep Graph Convolutional329

Neural Network (DGCNN) (Zhang et al., 2018) we330

refer to in this work is an end-to-end architecture331

designed for graph classification tasks. But we rep-332

resent the graph using the hidden state from the333

final layer of DGCNN, just before the SortPooling334

layer in the original framework, as this configura-335

tion is found to yield the best performance based336

on initial experimental results.337

Given a patient’s knowledge graph G, we can338

obtain its adjacency matrix A and diagonal degree339

matrix D. The hidden state of the first graph con-340

volution layer is as follows:341

H1
g = f(D−1AXW), (3)342

where X ∈ RNn×dn denotes the node representa-343

tion matrix with dimension dn; Nn represents the344

number of nodes in the graph; W ∈ Rdn×d′n is a345

trainable parameter matrix, in which d′n defines the346

dimension of code representation for the next con-347

volution layer; f is a nonlinear activation function.348

DGCNN adopts multiple convolution layers, as349

it allows for the extraction of multi-scale local sub-350

structure features. Therefore, the output of the mth351

graph convolution layer is represented as follows:352

Hm+1
g = f(D−1AHm

g Wm), (4)353

where H0
g = X. The final representation of pa-354

tient’s knowledge graph Hg is the concatenation355

of the features from all [H1
g, ...,H

Ny

g ], where Ny356

is the number of graph convolution layers.357

Multi-Head Label-Wise Attention To capture358

label-specific information and assign varying at-359

tention weights to fragments (tokens or nodes) for360

each label, we incorporate a label-wise attention361

layer following the patient representation. Instead362

of just feeding the concatenated representation of363

text Ht and graph Hg to a single attention layer, we364

utilize a multi-head attention mechanism. This ap-365

proach enables the model to focus on information366

from different representation sub-spaces. Conse-367

quently, Ht and Hg are processed through separate368

label-wise attention layers. The attention score ma- 369

trices are defined as follows: 370

αt = softmax(V1 tanh(V2Ht), (5) 371
372

αg = softmax(V3 tanh(V4Hg), (6) 373

where V1−4 are trainable linear transformation ma- 374

trices. The weighted label-specific representations 375

are calculated as follows: 376

Zt = Htα
T
t ,Zg = HgαT

g . (7) 377

Finally we concatenate them to form a representa- 378

tion for the individual patient Z = [Zt,Zg]. The 379

probability of predicting label i is calculated by: 380

pi = σ(Li · Zi), (8) 381

where Li is the representation of the ith label and 382

Zi is the label-specific patient representation. The 383

final predicted soft-maxed probability vector ŷ and 384

true labels y are used to compute the binary cross- 385

entropy loss: 386

L(y,p) = − 1

|y|

|y|∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) .

(9) 387

388

4 Empirical Evaluation 389

4.1 Experiment Setup 390

Datasets and Metrics Like most evaluation 391

methods for multi-label classification tasks, clinical 392

coding is typically assessed using three standard 393

metrics: F1, AUC and Precision@N. In this work, 394

we utilize these metrics to evaluate the models on 395

two commonly used datasets: MIMIC-III Full and 396

MIMIC-III Top-50. 397

MIMIC-III is a publicly accessible database com- 398

prising de-identified health data from patients ad- 399

mitted to critical care units at the Beth Israel Dea- 400

coness Medical Center in Boston, Massachusetts 401

between 2001 and 2012. The standard clinical 402

coding task involves using discharge summaries 403

from the MIMIC-III dataset to assign ICD-9 codes, 404

which include discharge diagnoses and procedures. 405

The MIMIC-III Full dataset includes 52,723 doc- 406

uments from 41,126 patients, with each document 407

containing a median of 1,375 words and 14 codes. 408

The MIMIC-III Top-50 dataset focuses on the top 409

50 most frequent diagnosis and procedure codes 410

from the Full dataset. It consists of 11,368 docu- 411

ments from 10,356 patients, with a median of 1,478 412

words and 5 codes per document. 413
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MIMIC-III Full MIMIC-III Top-50
F1 AUC Precision F1 AUC Precision

Model Macro Micro Macro Micro P@8 Macro Micro Macro Micro P@5
MultiResCNN 9.0 55.2 91.0 98.6 73.4 59.29 66.24 89.30 92.04 61.56
2Stage 10.5 58.4 94.6 99.0 74.4 68.93 71.83 92.58 94.52 66.72
JointLAAT 10.2 57.5 92.1 98.8 73.5 66.95 70.84 92.36 94.24 66.36
MSMN 10.24 58.70 94.78 99.15 75.45 66.68 71.19 92.12 94.21 66.86
PLM-ICD 9.69 59.06 92.12 98.83 76.72 64.61 70.33 91.16 93.63 66.11
Our Model 11.05 59.72 92.37 98.75 76.59 67.81 71.63 92.04 94.22 67.08

Table 3: Results on the MIMIC-III Full and Top-50 test sets. The best results are highlighted in bold.

Implementation Details We train our model us-414

ing four 80GB NVIDIA A100 GPUs within an envi-415

ronment configured with CUDA 11.1 and PyTorch416

1.12.0. Detailed implementation hyperparameters417

for both our model and PLM-ICD are provided in418

Appendix A.4.419

Baselines To demonstrate the effectiveness of our420

model, we compare it with five current SOTA ap-421

proaches.422

PLM-ICD (Huang et al., 2022), leverages423

transformer-based models specifically pre-trained424

on biomedical and clinical texts. It achieves SOTA425

performance on both MIMIC-III and MIMIC-IV426

datasets (Edin et al., 2023). We select it as our base427

model due to its strong performance as a widely428

used baseline and its simple structure, which facili-429

tates the integration with the graph representation430

module.431

MultiResCNN (Li and Yu, 2020) employs a multi-432

filter convolutional layer to capture text patterns of433

varying lengths and a residual convolutional layer434

to expand the receptive field.435

2Stage (Nguyen et al., 2023) leverages the hierar-436

chical properties of codes to perform predictions in437

two sequential steps.438

JointLAAT (Vu et al., 2020) introduces a hierar-439

chical joint learning mechanism to address label440

imbalance.441

MSMN (Yuan et al., 2022) utilizes synonyms with442

multi-head attention mechanism, achieving another443

state-of-the-art performance on MIMIC-III Full.444

4.2 Quantitative Results445

A. Does integrating graph-based representation446

enhance the ICD coding performance? This447

experiment aims to verify if integrating the patient-448

level knowledge graph benefits the representation449

of the patient, consequently enhances the perfor-450

mance of ICD coding. The results shown in Ta-451

ble 3 indicate that our model outperforms its base452

Figure 3: By-epoch performance comparison of our
model and PLM-ICD by means of Macro-F1 / P@8
on MIMIC-III Full (top row) and Macro-F1 / P@5 on
MIMIC-III Top-50 (bottom row).

Remove µF1 mF1 µAUC mAUC P@8
Full 11.05 59.72 92.37 98.75 76.59
−BP 10.38 59.60 92.39 98.86 76.72
−PR 10.33 59.65 92.39 98.84 76.95
−TE 10.34 59.45 92.53 98.86 76.62
−CR 10.07 59.35 92.63 98.89 76.74
−BD 10.61 59.51 92.24 98.79 76.51
−drug 10.52 59.44 92.23 98.77 76.61
−problem 9.77 59.26 92.35 98.86 76.95
−treatment 10.76 59.66 92.33 98.81 76.76
−test 10.72 59.59 92.32 98.81 76.54

Table 4: Results of ablation study on the MIMIC-III
Full dataset. Removing all relationships and entities
of a specified type. µ and m denote Macro and Micro
averages, respectively.

model PLM-ICD significantly on the F1-Macro 453

score by 1.36% and 3.20% on the Full and Top-50 454

datasets, respectively. F1-Macro score is the pri- 455

mary metric for this task due to its effectiveness 456

in balancing precision and recall across classes 457

and its robustness in classification problems. Our 458

model exhibits more noticeable performance im- 459

provements on frequent labels and demonstrates 460

overall advancements across all metrics. Moreover, 461

our model remains highly competitive compared to 462
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other state-of-the-art methods, achieving the high-463

est F1 scores on full label set.464

Additionally, our model achieves higher scores465

in the early epochs (see Figure 3), highlighting its466

efficiency when computational resources are con-467

strained. The most significant improvements occur468

within the first three epochs, indicating that the469

structured information is efficiently captured early.470

These findings further validate the quality of the471

constructed graphs, demonstrating their effective-472

ness in patient representation (Statistical Perspec-473

tive) by providing not only semantic information474

but also additional structured information.475

B. What elements should constitute a patient’s476

knowledge graph?477

Relationship We conduct an ablation study to478

assess the impact of different types of relationships479

in the graph on patient representation. By remov-480

ing a single type of relationship from the complete481

graph, we observe that the removal of any relation-482

ship leads to a noticeable decrease in performance.483

Despite this, the performance still remains superior484

to the base model PLM-ICD by at least 0.4% on485

F1-Macro score. Excluding the ‘Clinical Relation-486

ship’ (CR) results in the most substantial drop in487

performance, indicating its critical importance in488

patient representation. From Table 5 in Appendix489

A we can see that the number of ‘Clinical Relation-490

ships’ (CR) is similar to ‘Temporal Events’ (TE) in491

MIMIC-III Full dataset. But its exclusion causes492

a more pronounced decline, suggesting that its sig-493

nificance lies not only in its quantity but also in494

the quality of information it provides about the pa-495

tient. This is intuitive, as ‘Clinical Relationships’496

(CR) inherently capture the essential aspects of a497

patient’s profile—such as medical problems, treat-498

ments, and diagnostic tests—that are directly rele-499

vant to predicting diseases and procedures codes.500

Conversely, ‘Bodypart-Directions’ (BD) has the501

least impact on ICD coding.502

Entity We conduct another ablation study by re-503

moving entities of the four most occurring types:504

‘Problem’, ‘Test’, ‘Treatment’, and ‘Drug’ (ordered505

by frequency). The removal of ‘Problem’ has the506

most significant impact on the F1-Macro score, in-507

dicating that ‘Problem’ plays a crucial role in the508

graph representation. This finding also make sense509

intuitively, as ‘Problem’ constitutes the largest por-510

tion of the graph and is most closely related to the511

objective of diagnosing the patient.512

equal

Figure 4: F1 performance comparison on each of the
top-50 codes between our model and PLM-ICD, ranked
by the performance difference between the two models.

4.3 Qualitative Results 513

C. How does the patient-level knowledge graph 514

help the classification for specific codes? To 515

further analyse performance at the label level, we 516

compute the F1 scores for our model and PLM-ICD 517

on the MIMIC-III Top-50 dataset for each code (see 518

Figure 4). The results reveal that our model outper- 519

forms PLM-ICD on 37 codes out of 50. Notably, 520

our model achieves scores for codes 285.9 (Ane- 521

mia, unspecified’) and V15.82 (Personal history 522

of tobacco use’), which PLM-ICD totally fails. 523

To better understand how graphs enhance patient 524

representations, we visualize the label-specific rep- 525

resentations of all samples in the test set (see Fig- 526

ure 5). We focus on the codes 412 (Old myocar- 527

dial infarction’) and 39.95 (Hemodialysis’) (see 528

Appendix A.5), where both our model and PLM- 529

ICD demonstrate good performance. This choice 530

avoids complications from low scores, which may 531

result in erratic embeddings that are challenging 532

to visualize, such as the case of 38.91 ‘Arterial 533

Catheterization’. Samples with the correspond- 534

ing labels are highlighted in red. Specifically, we 535

reduce the dimensionality of the original represen- 536

tations Zi using t-SNE. For code 412, our model 537

exhibits a noticeably higher density of instances 538
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Figure 5: Visualisation of label-specific patients repre-
sentation of codes 412 ‘Old myocardial infarction’ and
39.95 ‘Hemodialysis’, without (left) and with (right)
using knowledge graphs as input. Instances with the
corresponding ground-truth label are red.

with the target label (red), with an average distance539

of 16.44 between positive points compared to 19.14540

for PLM-ICD. For code 39.95, where both mod-541

els perform well, our model still shows a denser542

cluster of the positive (red) instances, and the clus-543

ter is more distinctly separated from other points.544

This case study demonstrates that integrating struc-545

tured information enhances patient representation,546

leading to more accurate classification.547

D. Explainability The ability to provide trust-548

worthy and interpretable explanations is particu-549

larly critical in the clinical domain. To achieve550

this, we highlight text spans based on their atten-551

tion weights, using darker colors to indicate higher552

weights. This suggests that these spans contribute553

more significantly to representing the patient. Our554

model demonstrates the ability to identify the most555

relevant spans more accurately and concisely. To556

illustrate this, we present two non-cherry-picked557

examples from the test set on label 38.91: ‘Arte-558

rial Catheterization’, where our model shows the559

most improvement. In Case 1 (Figure 6, above),560

our model effectively captures key tokens like ‘hy-561

potensive’ and ‘blood pressure’, which are directly562

associated with ‘Arterial Catheterization’, whose563

role is continuous blood pressure monitoring and564

arterial blood gas analysis. In contrast, PLM-ICD565

distributes attention more evenly across the text.566

In Case 2 (Figure 6, below), our model success-567

fully highlights relevant spans across various sec-568

tions, such as ‘invasive procedure’ and ‘placing a569

femoral line’, they are procedures often involved in570
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admission date discharge date date of birth sex m service neurosurgery allergies patient recorded as
having no known allergies to drugs attending first name 3 l f chief complaint headache major surgical or
invasive procedure none history of present illness year old male from state on vac ation with wife was at
din ner when at pm last evening when he complained of a headache shortly after attempted to stand and
fell to the ground the patient was amn estic to fall but was responsive and oriented when questioned by his
wife who is name 8 m d r n the patient was taken to an outside facility via ambulance mental status
declined in the ambulance but em t was unable to int ub ate him given his body habit us he was intubated
at the outside facility and a head ct showed a large cerebellar hemorrhage with intraventricular extent ion
and herniation shortly after the ct the patients systolic blood pressure dropped to non responsive to fluid
bolus and the pt was started first on dopamine and then neo sy ne phrine for support past medical history
gout obstructive sleep apnea social history married lives with wife here on vac ation from name ni family
history non contributory physical exam on admission physical exam t bp supported on neo sy ne phrine
and dopamine hr r on cm v o 2 s ats gen intubated not sedated he ent pupils right 5 mm nr left 6 mm non
reactive neck sup ple extrem warm and well perfused neuro cranial nerves i not tested ii pupils as above
no cough gag corne als motor flick er toe movement to deep noxious likely reflex ive toes down going
bilaterally upon discharge deceased pertinent results radiology report ct head w o contrast study date of
am impression diffuse subarachnoid hemorrhage with intraventricular extension as described above a
probable focus of left cerebellar intrap arenchymal hemorrhage bilateral subdural hematoma lay ering
along the tent or ium left more than right and blood in the the cal sac in the upper cervical spine lower
extent not included significant mass effect and diffuse cerebral edema with bilateral unc al herniation brief
hospital course this is a year old male with sudden onset headache st aus post fall who was with decline in
mental status he was intubated and hypotensive transferred here on vas opress ors to sustain his blood
pressure upon arrival the patient had no cough corneal or gag reflex he was admitted on to the intensive
care unit his head ct was consistent with diffuse cerebral edema and unc al herniation on exam his pupils
were fixed and dilated the wife made name 2 ni decision to awaiting family before making the patient cm
o the patient was left intubated but the v ential tor was turned off per the w if es request at am the pt
stopped breathing and was as ystolic and expired at am on with the family att he bedside organ bank was
called and the patient will be a tissue donor medications on admission unknown discharge medications
none discharge disposition expired discharge diagnosis expired discharge condition expired discharge
instructions none followup instructions none completed by
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admission date discharge date service medicine allergies no drug allergy information on file attending first
name 3 l f chief complaint arrived unresponsive and intubated suspected cholangitis major surgical or
invasive procedure pt intubated ri j placed history of present illness h x was difficult to ell icit because pt
was non responsive on admission and notes from outside hospital were scant pt is an y o of polym yl ag ia
rheumatic a on 5 mg of prednisone had n v and ab d pain for a 2 days with fevers chills and vomiting was
found down in the supine position em s was called and found patient to have no radial pulses bp hr t 101 f
pt was brought to hospital 3 where she was thought to have been stabilized and transferred to hospital 1
for emergent erc p en route she was emerg ently intubated as she became unstable and in respiratory
distress past medical history polym yalgia rheumatic a social history pt had a daughter who was at
hospital 3 and tra iled behind the ambulance en route to hospital 1 family history unknown physical exam
gen pt unresponsive on admission already intubated he ent pupils 2 mm in diameter unresponsive to light
lungs bil teral equal breath sounds cardiac r r r s 1 s 2 no s 3 s 4 ab d an b ormal protrusion of the inferior
abdomen soft non dist ended ext pulses carotid and femoral difficult to palp ate distal pulses pertinent
results 03 pm blood w bc rbc hg b h ct m cv m ch m ch c rd w pl t ct 03 pm blood neut s bands lymph s
monos e os bas o 03 pm blood pl t sm r low pl t ct 03 pm blood glucose ure an creat na k cl h co 3 ang ap
03 pm blood al t ast l d l dh alk phos tot b ili 03 pm blood calcium ph os mg 36 pm blood type art po 2 p
co 2 ph cal t co 2 base x s 36 pm blood glucose lactate na k cl 36 pm blood hg b cal ch ct 36 pm blood fre
eca brief hospital course pt was admitted to the floor unresponsive and intubated with questionable
diagnosis of cholangitis and biliary sepsis pt hr steadily decreased since admission and her bp steadily
declined pt became as ystolic and resc usc itation began pt received multiple rounds of epinephrine
adenosine h co 3 calcium gluc onate a femoral line was attempted but complicated by hematoma pt ab g
ph p co 2 po 2 h co 3 k lactate pt regained a rhythm and pulse lev op hed was started and a right i j was
placed pt became as ystolic shortly after c pr was resumed multiple rounds of epinephrine h co 3 calcium
given pt was not resc usc itated and the code was called at family arrived during the code and was updated
throughout the event medications on admission prednisone discharge medications pt expired discharge
disposition expired discharge diagnosis pt passed away shor l ty after admission discharge condition pt
passed away shor l ty after admission discharge instructions pt passed away shor l ty after admission
followup instructions pt passed away shor l ty after admission
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Case 1 – HADM ID: 129383

Case 2 – HADM ID: 165048

Figure 6: Highlights related to label 38.91 ‘Arterial
Catheterization’, without (above) and with (below) us-
ing knowledge graphs as input.

‘Arterial Catheterization’. Additionally, phrases 571

like ‘intubated rij placed’ and ‘a right IJ was 572

placed’ are highlighted as they pertain to ‘central 573

venous catheterization’, which is another type of 574

catheterization. The model also succinctly high- 575

lights ‘rhythm and pulse’, which is related to blood 576

pressure monitoring. These two cases strongly 577

demonstrate that our model excels in providing 578

high-quality explanations compared to PLM-ICD. 579

5 Conclusion 580

In this work, we construct a patient-level knowl- 581

edge graph comprising wide range of entities and 582

relationships. We integrate it into a state-of-the- 583

art ICD coding architecture, PLM-ICD, which sig- 584

nificantly enhances the patient representation and 585

improve the coding performance. Additionally, 586

we verify the impact of different types of enti- 587

ties and relationships in representing the patient. 588

Furthermore, we showcase how integrating graph 589

improves the patient representation through visual- 590

isation and demonstrate the high-quality explain- 591

ability of our model in case studies. 592

Our patient-level knowledge graph dataset holds 593

significant potential to provide healthcare providers 594

with more precise, data-driven insights, ultimately 595

improving patient outcomes, such as optimizing 596

treatment plans and enabling early diagnosis. 597
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6 Limitations598

While our model demonstrates the effectiveness599

of integrating graph-based information, more ad-600

vanced models have been developed in parallel601

(e.g., (Nguyen et al., 2023)). Our results confirm602

the benefits of structured knowledge integration by603

comparing our model to its baseline, highlighting604

the quality of our patient KG. However, we ac-605

knowledge that integrating structured information606

into these more advanced models could further en-607

hance their performance, which remains an avenue608

for future exploration.609

This work serves as the evaluation of the con-610

structed patient-level KG from two perspectives:611

statistical and representational. However, it lacks612

a comprehensive comparison with other types of613

patient KGs (except for Yuan et al. (2021)) due to614

the challenges and time constraints associated with615

constructing them based on MIMIC-III.616

In future work, we will also aim to enrich the617

patient-level knowledge graph by integrating other618

knowledge sources, such as hierarchical informa-619

tion from ontology systems like SNOMED-CT and620

UMLS. In the current study, we did not account for621

the semantic meaning of edges within graph repre-622

sentation, as some links merely signify connections623

between entities (e.g., ‘1’ or ‘TREATMENT-TEST’).624

Moving forward, we plan to model the meaning625

of these relationships more explicitly by combin-626

ing their semantic representations with confidence627

measurements.628

Additionally, we have not explored other ad-629

vanced graph representation models, such as630

Relational Graph Convolutional Networks (R-631

GCN) (Schlichtkrull et al., 2018) and Graph At-632

tention Networks (GAT) (Veličković et al., 2017).633

The application of GAT, in particular, offers poten-634

tial for further enhancing explainability by identify-635

ing and highlighting the sub-graphs that contribute636

most to final predictions, which we aim to evaluate637

more rigorously in domain expert-centred experi-638

ments.639

Finally, due to resource constraints, we have not640

experimented with adapting other baseline models641

to use the document-level structured representation642

graphs. It is unlikely, but not impossible, that other643

architectures would not benefit from this kind of644

information, and further experiments should be645

conducted to establish this fact empirically.646
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A Appendix851

A.1 Patient-Level Knowledge Graph852

Construction853

Model Selection The Healthcare NLP library in-854

cludes 44 RE models, each integrating both NER855

and RE functionalities. These models are trained856

on various language models across multiple lan-857

guages to extract a wide range of clinical informa-858

tion. We utilize 14 of these models, which cover all859

available relationship types except for ‘drug-drug860

interaction’ and share a consistent architecture. De-861

tails and statistics of these RE models are provided862

in Table 5.863

The top five relationships include ade conversa- 864

tional’, which links drugs to their adverse reactions. 865

However, we do not select it due to its uneven dis- 866

tribution across samples, as only a limited number 867

contain this type of triple. Instead, we chose the 868

‘bodypart-problem’ relationship, which ranks sixth. 869

Selected 5 RE Models Table 8 details the entities 870

and relationships that each RE model can extract. 871

The entities recognized from the MIMIC-III notes 872

include a subset of those listed in this table. 873

Statistics of Entities Extracted The complete 874

patient-level knowledge graph, which encompasses 875

all five relationships, identifies 14 types of entities. 876

The statistics of them can be found in Table 6. In 877

the ablation study, we study the impact of top four 878

types of entities, as they have the highest magnitude 879

compared to others. 880

A.2 Patient-Level Knowledge Graph 881

Visualisation 882

Figure 8 presents a visualization of a patient-level 883

knowledge graph (HADM ID: 196292). To make it 884

clear, we include type information for the entities, 885

linking each entity to its respective type. Nodes 886

representing types are colored light green, while 887

different types of entities assigned unique colors. 888

A.3 Methodology of Information Entropy and 889

Results of Ablation Study 890

Information Entropy Information entropy, in- 891

troduced by Shannon in 1948, is a fundamental 892

concept in information theory that measures infor- 893

mation loss by quantifying the difference between 894

the expected information and the reduced informa- 895

tion. The entropy H of a discrete source X is given 896

by: 897

H(X) = −
∑
x∈X

P (x) log2 P (x). (10) 898

The entropy of text and serialised graph are calcu- 899

lated as follows: 900

Htext = −
∑

x∈Xtext

Ptext(x) log2 Ptext(x), (11) 901

902

Hgraph = −
∑

x∈Xgraph

Pgraph(x) log2 Pgraph(x).

(12) 903

The ratio of information loss L is defined as: 904

L =
Htext −Hgraph

Htext
. (13) 905
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RE Model |Tr| |S|
clinical relatioship 6878467 52721

temporal events 6504349 52720
posology relationship 3939341 51879

ade conversational relationship 2443125 12464
bodypart-directions 355260 42487
bodypart-problem 337041 38719
ade relationship 86062 24259

test-problem-finding 76262 29007
drugprot relationship 42071 16859

bodypart-proceduretest 14739 8861
generic relationship 7004 2897

date relationship 2979 1713
test-result-date 2174 2174

phenotype gene relationship 0 0

Table 5: Statistics of RE model outputs in the MIMIC-III Full dataset. |Tr| refers to the number of triples recognized
by the RE model. |S| indicates the number of samples in the full dataset that contain these triples.

Entity Type |En|
problem 3422556
treatment 1665523

test 1371889
drug 1039115

strength 636491
frequency 338332

form 229420
dosage 217178

internal organ or component 192503
route 166454

direction 135903
symptom 106114

external body part or region 86367
duration 41727

Table 6: Statistics of entities identified in the MIMIC-III Full dataset. |En| represents the number of entities.

Ablation Study Table 7 displays the information906

entropy results for different graphs after remov-907

ing one type of relationship or entity. The ‘Text908

Entropy’ is 8.33 across all experiments. Notably,909

the removing ‘posology relationship’ and ‘prob-910

lem’ have the most significant impact on the results.911

This analysis emphasizes the loss of textual infor-912

mation, whereas the ablation study in the main913

content examines the impact on ICD coding.914

A.4 Implementation Details and Results of915

Various DGCNN Configurations916

Table 9 outlines the hyperparameter settings for917

both the PLM-ICD baseline and our model. Our918

model requires a batch size of 1 per process, as919

we do not adjust the graph representation using 920

padding, unlike typical text inputs. Due to compu- 921

tational resource constraints, we do not use the op- 922

timal hyperparameters for PLM-ICD. However, we 923

maintain consistent hyperparameters within their 924

shared architecture to ensure a fair comparison. 925

The value of DGCNN indicates the size of the node 926

representation for each convolution layer. A sin- 927

gle DGCNN layer with a size of 768 achieves the 928

best performance on the full dataset, while two 929

DGCNN layers, each with a size of 384, performs 930

best on the Top-50 dataset. Additionally, we initial- 931

ize the node representation in the first layer using 932

RoBERTa-base. 933

Tables 10 and 11 present additional experimental 934
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Remove Graph Entropy Ratio (%)
Full 7.48 89.95

clinical relationship 7.42 89.07
temporal events 7.33 88.07

posology relationship 7.15 85.80
bodypart-directions 7.47 89.68
bodypart-problem 7.48 89.80

problem 6.80 81.62
treatment 7.27 87.25

test 7.27 87.30
drug 7.36 88.40

Table 7: Results of the ablation study on information entropy: impact of removing each type of relationship or entity
(MIMIC-III Full).

Figure 7: Visualisation of label-specific patients rep-
resentation of code 38.91 ‘Arterial Catheterization’,
without (left) and with (right) using knowledge graphs
as input. Instances with the corresponding ground-truth
label are red.

results for different configurations of the DGCNN935

architecture. The experiments utilize a complete936

graph with five types of relationships. In our initial937

experiment, we fix the final node size at 768 and938

compare the performance of DGCNN with differ-939

ent numbers of layers. The results indicate minimal940

performance differences between multi-layer and941

single-layer DGCNN models. However, models942

with evenly distributed layer sizes show slightly943

better performance. We also conduct experiments944

by varying the final node size and incrementally945

adding layers, each with an embedding size of 384.946

The results reveal an initial increase in performance,947

which subsequently decreases, with the optimal per-948

formance observed using two layers. Additionally,949

a similar trend is evident in a third experiment,950

which investigates varying sizes for each layer.951

A.5 Patient visualisation - Code 38.91952

We present a negative example of patient visualiza-953

tion for code 38.91 ‘Arterial Catheterization’ in954

Figure 7, where both models exhibit poor perfor-955

mance. Our model achieves an F1-score of 38.14%,956

compared to 18.89% for PLM-ICD.957
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Figure 8: Visualisation of a Patient-Level Knowledge Graph.
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RE Model Entity Relationship
clinical relationship PROBLEM, TREATMENT, TEST TrAP: TREATMENT-PROBLEM

TeRP: TEST-PROBLEM
TrIP: TREATMENT-PROBLEM
TrCP: TREATMENT-PROBLEM
TeCP: TEST-PROBLEM
TrWP: TREATMENT-PROBLEM
PIP: PROBLEM-PROBLEM
O: No Relationship

temporal events EVIDENTIAL, OCCURRENCE , DATE, BEFORE, AFTER, OVERLAP
TREATMENT, TIME, ADMISSION,
TEST, FREQUENCY, CLINICAL_DEPT,
DURATION, PROBLEM, DISCHARGE

posology relationship drug, dosage, duration, strength, frequency DOSAGE-DRUG
DRUG-DURATION
DRUG-STRENGTH
DRUG-FREQUENCY

bodypart-directions direction-external_body_part_or_region, 1,0
external_body_part_or_region-direction,
direction-internal_organ_or_component,
internal_organ_or_component-direction

bodypart-problem link between external_body_part_or_region 1,0
or internal_organ_or_component
and diseases entities (cerebrovascular_disease
, communicable_disease, diabetes...)

Table 8: Entities and relationships that RE models can extract.

Input Parameter Value
number of processes 4

train/evaluation batch size 1
Common gradient accumulation steps 1

train epochs 20 (Full) / 10 (Top-50)
warmup steps 2000
random seed 42
max length 5120

Text chunk size 512
model mode LAAT

pretrained model (text) RoBERTa-base-PM
DGCNN 768 (Full) / 384-384 (Top-50)

Graph pretrained model (node) RoBERTa-base

Table 9: Parameter settings for PLM-ICD (Common + Text) and our model (Common + Text + Graph) on the
MIMIC-III Full and Top-50 datasets.
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F1 AUC Precision Recall
3-4 6-7 Model Embedding Size Macro Micro Macro Micro P@8 R@8

1 layer 768 11.05 59.72 92.37 98.75 76.59 40.52
256-512 10.69 59.52 92.42 98.78 76.79 40.56

2 layers 384-384 10.98 59.64 92.65 98.83 76.63 40.53
128-256-384 10.42 59.51 92.55 98.79 76.47 40.39

3 layers 256-256-256 10.53 59.70 92.47 98.84 76.81 40.56
128-128-256-256 10.46 59.47 92.23 98.78 76.58 40.37

4 layers 192-192-192-192 10.58 59.21 92.14 98.78 76.47 40.37
1 layer 384 10.77 59.77 92.30 98.77 76.88 40.62
2 layers 384-384 10.82 59.43 92.54 98.78 76.63 40.53
3 layers 384-384-384 10.49 59.37 92.35 98.75 76.11 40.15
4 layers 384-384-384-384 10.46 59.58 92.23 98.74 76.79 40.55
1 layer 128 10.23 59.06 92.22 98.82 76.65 40.46
2 layers 128-256 10.60 59.69 92.47 98.83 76.85 40.57
3 layers 128-256-384 10.42 59.51 92.55 98.79 76.47 40.39
4 layers 128-256-384-512 10.47 59.31 92.21 98.76 76.30 40.27

Table 10: Performance of Various DGCNN Architecture Configurations (MIMIC-III Full).

F1 AUC Precision Recall
3-4 6-7 Model Embedding Size Macro Micro Macro Micro P@5 R@5

1 layer 768 66.64 71.37 91.77 94.16 66.52 64.33
256-512 67.64 71.72 92.12 94.30 66.82 64.74

2 layers 384-384 67.81 71.63 92.04 94.22 67.08 65.11
128-256-384 66.30 70.94 91.71 93.98 66.58 64.39

3 layers 256-256-256 67.54 71.83 92.19 94.37 67.04 65.14
128-128-256-256 66.79 71.39 92.28 94.31 66.87 64.92

4 layers 192-192-192-192 67.67 72.03 92.30 94.44 66.79 65.07
1 layer 384 66.91 71.12 92.04 94.19 66.47 64.63
2 layers 384-384 67.81 71.63 92.04 94.22 67.08 65.11
3 layers 384-384-384 66.89 71.41 92.26 94.32 67.09 65.20
4 layers 384-384-384-384 66.55 71.24 92.15 94.37 66.86 64.85
1 layer 128 66.62 70.79 91.89 94.10 66.50 64.45
2 layers 128-256 67.63 71.72 92.00 94.25 66.71 64.63
3 layers 128-256-384 66.30 70.94 91.71 93.98 66.58 64.39
4 layers 128-256-384-512 65.80 71.34 92.05 94.32 66.14 64.22

Table 11: Performance of Various DGCNN Architecture Configurations (MIMIC-III Top-50).
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