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Abstract
Several downstream applications of pre-trained
generative models require task-specific adapta-
tions based on reward feedback. In this work,
we examine strategies to fine-tune a pre-trained
model given non-differentiable rewards on gener-
ations. We establish connections between Rejec-
tion Sampling based fine-tuning and Proximal Pol-
icy Optimization (PPO) - we use this formalism
to establish PPO with marginal KL constraints
for diffusion models. A framework for interme-
diate denoising step fine-tuning is then proposed
for more sample-efficient fine-tuning of diffusion
models. Experimental results are presented on the
tasks of layout generation and molecule genera-
tion to validate the claims.

1. Background
Recently, several works have demonstrated that rejection
sampling based finetuning strategies perform on par with/
better than RL-based methods for both autoregressive lan-
guage generation (Dong et al., 2023; Xiong et al., 2025)
as well as diffusion-based image generation (Zhang et al.,
2025). Further, it is also known that for diffusion mod-
els, where the marginal distribution is intractable, exact
implementation of PPO (which would require computing
marginal KL divergence) is not feasible (Fan et al., 2023)
- rather, an approximation is done by using trajectory KL
divergence instead.

In this work, we establish conceptual connections between
Rejection Sampling based fine tuning and Proximal Policy
Optimization (PPO) based reward maximization. Specifi-
cally, we make the following contributions:

1. For binary and continuous preference rewards, we es-
tablish that performing rejection sampling based fine
tuning is equivalent to PPO with a reshaped reward and
a fixed weight for KL regularization. In particular, this
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equivalence enables PPO with marginal KL constraint
for diffusion models.

2. We then propose a sampling strategy to allow for finer
KL control instead of a fixed KL penalty. We also pro-
pose a more general sampler which allows us to extend
the formulation to general relative reward functions
instead of just preference rewards.

3. We extend this framework by assigning the rewards
of complete generations to partial generations. Spe-
cializing to the case of diffusion models, we propose a
strategy which fine-tunes only until an intermediate de-
noising step - we examine how this affects the marginal
distribution and discuss where this could be useful.

4. Experiments are reported on the tasks of layout genera-
tion and molecule generation. We empirically validate
the benefit of marginal KL constraint for diffusion
models and effectiveness of intermediate step rejection
sampling based fine tuning.

Notation We use regular lower case letters (like x) to
denote scalars, bold lower case letters (like x) to denote
vectors. We use regular upper case letters (like X) to denote
random variables and bold upper case letters (like X) to
denote random vectors. The pre-trained/reference model
(the model on which fine-tuning is to be done) will be de-
noted as pr(x). Note that in general, the model may be
sampling from a joint distribution of discrete and contin-
uous variables - however, for the rest of the discussion,
we assume x ∈ Rd to be a continuous variable and pr(x)
to be a probability density function (the results extend to
discrete/discrete-continuous cases as well).

2. Rejection Sampling - PPO Equivalence for
Preference Rewards

Given a sample x sampled from the pre-trained model pr(x),
assume we have access to a scalar reward function r : Rd →
R. Then, the following holds:

Lemma 2.1. Consider drawing two IID samples X1 and
X2 according to the density pr(x) with corresponding re-
wards r(X1) and r(X2). Further, assume that r(x) has a
continuous probability density with CDF F (r(x)). Then,
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the probability density of the higher reward samples:

pX2

(
X2 = x

∣∣r(X2) ≥ r(X1)
)

is exactly the solution to the following optimization problem
(KL(·∥·) denotes the KL divergence):

argmax
p̂

[
Ex∼p̂(·)r̂(x)− αKL (p̂(·)∥pr(·))

]
(1)

with r̂(x)
α = logF (r(x)).

Note that (1) is exactly the PPO optimization objective with
r̂(·) as the reward function, α as the KL regularization
weight and pr(·) as the reference policy. Hence, sampling
from the distribution learned by training on the higher re-
ward samples is equivalent to sampling from the optimal
policy of (reward-shaped) PPO objective.

In practice, the training algorithm is relatively straightfor-
ward: obtain sample pairs from the pre-trained model, filter
them to retain only higher reward samples and finetune the
model on these samples. The algorithm is described in
Algorithm 1. Note that Algorithm 1 describes a sampling
strategy which implicitly computes KL constraint always
with the reference model pr(·). It is also possible to do mul-
tiple rounds of Algorithm 1 where the reference model is
replaced by the current fine-tuned model after each round.
This could result in better rewards, but would also cause the
model to move farther away from the reference model.

Algorithm 1 Rejection Sampling Fine-Tuning

Input: Trainable sampler pθ(·), Reference sampler pr(·),
Reward function r(·)

1: Sample N pairs:
X = {(X(1)

1 , X
(2)
1 ), . . . , (X

(1)
N , X

(2)
N )} using pr(·).

2: Obtain rewards:
R =

{(
r(X

(1)
1 ), r(X

(2)
1 )

)
, . . . ,

(
r(X

(1)
N ), r(X

(2)
N )

)}
3: Filter the pairs in X using R and retain only the higher

reward samples to obtain X̃.
4: Form a dataset D using the samples from X̃.
5: Train pθ on Dk.

2.1. Formulation for Binary Rewards

Lemma 2.1 has been stated with the assumption of a con-
tinuous density for the rewards - however, it is possible to
extend it to the case of binary rewards, i.e., r : Rd → {0, 1}
since the CDF F (r(x)) is well-defined even for discrete
rewards. For binary rewards, r(X2) ≥ r(X1) would imply
selecting the higher reward sample when the rewards are
different ({0, 1} or {1, 0}) and one sample randomly when
the rewards are equal ({0, 0} or {1, 1}). Hence, the sam-
pler would still sample 0 reward samples with a non-zero

probability. It is possible to train only on samples with
reward 1 by using the sampler: pX2

(
X2 = x

∣∣r(X2) = 1
)
.

This would tilt the reference distribution more since sam-
ples with reward 0 are no longer sampled - the exact tilted
distribution is given in Appendix A.1.1. Training algorithm
is even simpler in this case - obtain multiple samples from
the pre-trained model, retain only samples with a reward of
1 and finetune the model on these samples.

2.2. Implications for Diffusion Models

While the discussion so far is generic, there are certain
advantages of the rejection sampling formalism specific to
diffusion models.

Recall that in diffusion models, we start from pure noise
(xT ) and use the learned diffusion model pr(xt|xt+1) to
obtain the sample x0 (Ho et al., 2020). Note that there is
no closed form expression for pr(x0) - we can only ob-
tain samples by following the reverse process. Due to this,
it is not possible to compute the KL divergence between
marginals as is required for PPO (see (1)), as noted in (Fan
et al., 2023).

Existing works (Fan et al., 2023; Wallace et al.,
2024) overcome this issue by optimizing a trajectory
KL constraint instead of the marginal KL constraint,
i.e., KL (p̂(xt|xt+1)∥pr(xt|xt+1)) (for all t) instead of
KL (p̂(x0)∥pr(x0)). While it can be shown that that tra-
jectory KL constraint is an upper bound of the marginal
KL constraint, note that this also means that optimization is
done over a more restrictive space.

Intuitively, it is possible that multiple trajectories could lead
to the same final sample x0 - by imposing a trajectory KL
constraint, the fine-tuning is limited to trajectories close
to the reference trajectory. However, by relaxing this to a
marginal KL constraint, it is possible to learn far away tra-
jectories, provided the marginal distribution remains close.

While PPO with marginal constraints cannot be imple-
mented for diffusion models explicitly, the equivalence in
Lemma 1 can be used to cast this as a rejection sampling
problem. Hence, by using the rejection sampling equiva-
lence, PPO with marginal constraints can be implemented
implicitly using Algorithm 1, despite not having explicit
access to the marginal distributions.

3. Rejection Sampling Strategy for Finer KL
Control

Lemma 2.1 establishes equivalence with PPO, but there is
no explicit KL control like PPO since the ratio r̂(x)

α is fixed.
We now provide a sampler capable of providing finer control
on the KL regularization:

Lemma 3.1. Consider drawing two IID samples X1 and
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X2 according to the density pr(x) with corresponding re-
wards r(X1) and r(X2). Further, assume that r(x) has a
continuous probability density with CDF F (r(x)). Draw a
sample U from the uniform distribution Unif[0, 1]. Let E1

denote the event r(X2) ≥ r(X1) and E2 denote the event
(U ≤ β) ∩ (r(X2) < r(X1)) (β ∈ [0, 1]). If E = E1 ∪E2,
the probability density:

pX2

(
X2 = x

∣∣E)
is exactly the solution to the following optimization problem
(KL(·∥·) denotes the KL divergence):

argmax
p̂

[
Ex∼p̂(·)r̂(x)− αKL (p̂(·)∥pr(·))

]
(2)

with r̂(x)
α = log

[
2
β (β + (1− β)F (r(x)))

]
.

Lemma 3.1 allows us to control the tilt of the distribution
more finely by varying the control parameter β. β = 0
recovers the result in Lemma 2.1, while β = 1 results in no
tilt at all. From an algorithmic perspective, to implement
this strategy, the only change required in Algorithm 1 is in
step 3: with a probability β, the lower reward sample is also
included during the filtration.

4. Rejection Sampling - PPO Equivalence for
General Reward Functions

While Section 2 provides a rejection sampling based fine-
tuning strategy for a preference-based reward comparison,
in general, it might be necessary to use more general reward
comparisons. For instance, it might be important to consider
how better one sample is with respect to the other, i.e.,
|r(X1)− r(X2)|, rather than just the ordering. Towards
this, we present rejection sampling - PPO equivalence in
scenarios with more general relative reward functions.

Given a sample x sampled from the pre-trained model pr(x),
assume we have access to a continuous scalar reward func-
tion r : Rd → R.Suppose we are also given an arbitrary
relative reward function d(r(x1), r(x2)) given two rewards.
Without loss of generality, we assume d(·, ·) to be normal-
ized to the range [0, 1]. Then the following holds:

Lemma 4.1. Consider drawing two IID samples X1 and
X2 according to the density pr(x) with corresponding re-
wards r(X1) and r(X2). Without loss of generality, as-
sume r(X2) ≥ r(X1) and let the relative reward be
d(r(X1), r(X2)). Sample U ∼ Unif[0, 1]. Then:

pX2

(
X2 = x

∣∣d(r(X2), r(X1)) > U
)

is exactly the solution to the following optimization problem
(KL(·∥·) denotes the KL divergence):

argmax
p̂

[
Ex∼p̂(·) (r̂(x))− αKL (p̂(·)∥pr(·))

]
(3)

with r̂(x)
α = logEy∼pr(·)d(r(x), r(y)).

Intuitively, the reshaped reward function for PPO, r̂(X),
looks at how better sample X is on average with respect to
the other samples according to the relative reward function
d(·, ·). The better the sample, the higher the reward assigned
to that sample and consequently, higher the probability den-
sity assigned to that sample.

5. Intermediate Step Rejection Sampling for
Diffusion Models

We now examine if it is possible to make the rejection sam-
pling strategy more efficient, in particular for diffusion mod-
els. Fine-tuning on the higher rewards samples requires
fine-tuning the pre-trained diffusion model across all diffu-
sion time steps. This could be sample inefficient, especially
considering the fact that score estimation is harder closer to
the data distribution (Chen et al., 2023). As an attempt to
mitigate this potential issue, we consider the possibility of
fine-tuning the pre-trained model only until an intermediate
denoising step instead of fine-tuning across all time steps.

Consider a pre-trained diffusion model with the (intractable)
marginal density pr(x0). Assume that the model has T
denoising steps: T −1, T −2, . . . , 0. For some intermediate
denoising time step t, let us denote the marginal density
of xt as p̃r(xt). Note that p̃r(·) is also intractable. We
denote the conditional density at intermediate timestep t
given a sample at intermediate timestep t + k (k > 0) as
pr(xt|xt+k). Note that this quantity is tractable. Again,
assume a scalar reward function, r : Rd → R. Note that
reward is assigned only at timestep 0. Then:

Lemma 5.1. Consider drawing two IID samples X̃1 and X̃2

from the density p̃r(xt). Further, samples X1 and X2 are
drawn from pr(x0|xt = X̃1) and pr(x0|xt = X̃2) respec-
tively. Denote by p̃(x) the density pX̃2

(X̃2 = x|r(X2) ≥
r(X1)). If xt is sampled according to p̃(x), the new tilted
marginal density for x0, denoted as p(·) is given by:

p(x) =

∫
x̃

pr(x|x̃)p̃(x̃)dx̃ (4)

Further p(·) has the following properties (I(·; ·) denotes
mutual information and H(·) denotes entropy):

• If I(r(X2); X̃2) = 0, p(x) = pr(x).

• If I(r(X2); X̃2) = H(r(X2)), p(x) is the optimal
solution to (1).

From Lemma 5.1, it is clear that the mutual information
I(R; X̃)- between random variables R and X̃ sampled from
densities pr(r(x0)) and p̃r(xt) respectively - determines the
final tilt of the probability distribution.
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Intuitively, fine-tuning until an intermediate state is effec-
tive only if there is sufficient distinguishability between
intermediate states which lead to high reward samples and
intermediate states which lead to low reward samples. If
this distinguishability exists, the model can be fine-tuned
to assign more weight to intermediate states which lead to
high reward samples.

The fine-tuning algorithm is given in Appendix B. Note that
the fine-tuned model is used for denoising only until the
intermediate denoising timestep - the pre-trained model is
used for further denoising.

6. Experiments
6.1. Tasks and Pre-trained Models

All experiments are done on pre-trained models trained
using the IGD framework (Anil et al., 2025). IGD is a
diffusion framework capable of handling both discrete and
continuous data. The rejection sampling strategy is well-
suited to the discrete-continuous setting, since apart from
benefits stated already, implementing PPO would also re-
quire careful balancing of losses corresponding to discrete
and continuous variables, as well as their corresponding reg-
ularizers for stable training. More details regarding the IGD
framework can be found in (Anil et al., 2025) - however, for
the rest of the discussion, it suffices to think of IGD as being
similar to the standard DDPM setting (Ho et al., 2020).

We conduct experiments for two tasks: (i) layout genera-
tion, and (ii) molecule generation. Both these tasks involve
generation with elements having discrete and continuous
variables. The task of layout generation is to compose N
elements {ei}Ni=1, where each element ei corresponds to a
category type ti ∈ N along with a spatial position encoded
through a bounding box vector pi ∈ R4. The other task is
that of molecule generation, where a molecule is represented
by a sequence of (atom, spatial location) pairs (zi,pi)

n
i=1,

where zi ∈ N is the atomic number of the i-th element
and pi ∈ R3 is its corresponding spatial position. We use
PubLayNet (Zhong et al., 2019) for layout generation, and
QM9 (Ramakrishnan et al., 2014) for molecule generation.

6.2. Marginal KL v/s Trajectory KL

To examine the effect of optimizing the marginal KL (as per
Lemma 2.1) as opposed to trajectory KL, we first fine-tune
the pre-trained model on high reward samples without any
explicit KL constraint and then repeat this experiment but
with an explicit trajectory KL constraint. We consider the
task of layout generation with ’overlap’ as the reward metric.
We assign a reward of 1 to generations with 0 overlap and
a reward of 0 otherwise. Further, we consider the tasks
of category conditioning and category + size conditioning,
where the categories and categories + sizes of the elements

Table 1. Layout Generation: Fine-tuning results for category-
conditioned (C) and category+size-conditioned (CS)

C C+S

Model Overlap FID Overlap FID

Baseline 0.013 4.07 0.027 0.886
Marginal KL 0.006 5.04 0.017 1.287
Trajectory KL 0.010 4.08 0.025 0.909

respectively are fixed. The results are given in Table 1.

For the same number of training steps, it can be seen that
training with marginal KL constraint allows the model to
improve much faster on the overlap metric as opposed to
trajectory KL. Further, the FID score remains close to the
baseline model. This implies that the model is able to still
produce fairly diverse samples, confirming that the model
does not collapse to only a few samples.

6.3. Effectiveness of Intermediate Time Step Rejection
Sampling

We implement the intermediate step rejection sampling strat-
egy as described in Section 5 in the task of Molecule Gen-
eration. Given a pre-trained model, we assign a reward
of 1 to generated molecules which are stable and 0 to the
rest. If the pre-trained model is trained for T timesteps, we
examine the effect of fine-tuning the first T/4, T/2, 3T/4
and T (complete fine-tuning) timesteps. We again compare
with the complete fine-tuning with explicit trajectory KL as
a baseline. The results are reported in Table 2.

The best performance is obtained by doing fine-tuning for
the first 3 rounds. For less number of rounds, as discussed
in Section 5, the distinguishability is less. Complete fine-
tuning on the other hand is very sample inefficient since the
denoiser has to be moved for all denoising steps - this is evi-
dent from the high sampling cost for complete fine tuning.
Trajectory KL forces the model to stay close to baseline
despite being trained for more number of steps. Hence, in-
termediate time step learning strategy is effective, provided
we select a time step with sufficient distinguishability.

Table 2. Molecule Generation: Fine-tuning (FT) results for differ-
ent timesteps. (Relative) number of sampling steps required are
also reported.

Model Mol: Stability Uniqueness Sampling Steps

Baseline 84.00 90.89 -
Trajectory KL 86.06 90.63 7x
T/4 steps FT 83.94 90.80 1x
T/2 steps FT 84.57 90.81 1x
3T/4 steps FT 88.36 88.45 1x
T steps FT 87.13 91.27 9x
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A. Proofs
A.1. Lemma 2.1

Consider drawing two IID samples X1 and X2 according to the density pr(x) with corresponding rewards r(X1) and r(X2).
Further, assume that r(x) has a continuous probability density with CDF F (r(x)). Then, the probability density of the
higher reward samples:

pX2

(
X2 = x

∣∣r(X2) ≥ r(X1)
)

is exactly the solution to the following optimization problem (KL(·∥·) denotes the KL divergence):

argmax
p̂

[
Ex∼p̂(·)r̂(x)− αKL (p̂(·)∥pr(·))

]
(5)

with r̂(x)
α = logF (r(x)).

Proof. Consider the following probability measure(where A is any measurable set):

P(X2 ∈ A|r(X2) ≥ r(X1)) (6)

Since X1 and X2 are IID samples, using Bayes’ theorem, we have:

P(X2 ∈ A|r(X2) ≥ r(X1)) =
P(X2 ∈ A, r(X2) ≥ r(X1))

P(r(X2) ≥ r(X1))

= 2P(X2 ∈ A, r(X2) ≥ r(X1))

Therefore, we have (1 denotes the indicator function):

P(X2 ∈ A|r(X2) ≥ r(X1)) = 2

∫
x∈A

(∫
y

1r(x)≥r(y)p
r(y)dy

)
pr(x)dx

=

∫
x∈A

2Fp(r(x))p
r(x)dx

where F (r(x)) denotes the CDF of r(x). Hence, from the Radon-Nikodym theorem, we can claim that sampling according
to the probability distribution P(X2 ∈ A|r(X2) ≥ r(X1)) is equivalent to sampling from the probability density p̃(x) =
2F (r(x))pr(x). Note that we can rewrite this as:

p̃(x) = exp{[log(2F (r(x)))]}pr(x)

=⇒ p̃(x) = 2 exp{[log(F (r(x)))]}pr(x) (7)

Now consider the Proximal Policy Optimization (PPO) optimization objective (where r̂(·) is some reward function):

p(α)(·) = argmax
p̂

[Ex∼p̂ [r̂(x)]− α (KL (p̂(·)||pr(·)))]

The optimal solution is clearly:

p(α)(x) = C exp(r̂(x)/α)pr(x) (8)

where C is a normalizing constant independent of x. Comparing (7) and (8), we have (with C = 2):

r̂(x)/α = log(F (r(x)))
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A.1.1. BINARY REWARDS

Assume P(r(x) = 1) is a (where x is sampled from pr(·)). Then, since we have binary rewards, P(r(x) = 0) = 1 − a.
Therefore:

P(X2 ∈ A|r(X2) ≥ r(X1)) =
P(X2 ∈ A, r(X2) ≥ r(X1))

P(r(X2) ≥ r(X1))

=
P(X2 ∈ A, r(X2) ≥ r(X1))

a2 + a(1− a) + (1− a)2

and hence C = 1
a2+a(1−a)+(1−a)2 . Further the CDF is now:

F (r(x) = 0) = 1− a

F (r(x) = 0) = 1

The proof for continuous rewards directly carries over for the case P(X2 ∈ A|r(X2) ≥ r(X1)) with the above-mentioned
C and F (r(x)). Now consider:

P(X2 ∈ A|r(X2) = 1)

Using Bayes’ theorem, we have:

P(X2 ∈ A|r(X2) = 1) =
P(X2 ∈ A, r(X2) = 1)

P(r(X2) = 1)

=
P(X2 ∈ A, r(X2) = 1)

a

Hence, we have the following shift:

pα(x) =

{
pr(x)
a , if r(x) = 1

0, otherwise

Compared to the case of P(X2 ∈ A|r(X2) ≥ r(X1)), P(X2 ∈ A|r(X2) = 1) tilts more since all the 0 reward samples are
now assigned a probability of 0.

A.2. Lemma 3.1

Consider drawing two IID samples X1 and X2 according to the density pr(x) with corresponding rewards r(X1) and r(X2).
Further, assume that r(x) has a continuous probability density with CDF F (r(x)). Draw a sample U from the uniform
distribution Unif[0, 1]. Let E1 denote the event r(X2) ≥ r(X1) and E2 denote the event (U ≤ β) ∩ (r(X2) < r(X1))
(β ∈ [0, 1]). If E = E1 ∪ E2, the probability density:

pX2

(
X2 = x

∣∣E)
is exactly the solution to the following optimization problem (KL(·∥·) denotes the KL divergence):

argmax
p̂

[
Ex∼p̂(·)r̂(x)− αKL (p̂(·)∥pr(·))

]
(9)

with r̂(x)
α = log

[
2
β (β + (1− β)F (r(x)))

]
.

Proof. From Bayes’ theorem:

P(X2 ∈ A|E) =
P(X2 ∈ A,E)

P(E)

=
P(X2 ∈ A,E)

P(E1) + P(E2)

=
2

1 + β
P(X2 ∈ A,E)

7
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Therefore, we have (1 denotes the indicator function):

P(X2 ∈ A|E) =
2

1 + β

∫
x∈A

(∫
y

(
1r(x)≥r(y) + β1r(x)<r(y)

)
pr(y)dy

)
pr(x)dx

=

∫
x∈A

2

1 + β
[β + (1− β)F (r(x))] pr(x)dx

Hence, we have:

p̂(x) =
2

1 + β
[β + (1− β)F (r(x))] pr(x)

For β = 0, we recover the density in Lemma 2.1, while for β = 1, we have p̂ = pr. Hence, β can be used as a slider to
control the KL constraint.

A.3. Lemma 4.1

Consider drawing two IID samples X1 and X2 according to the density pr(x) with corresponding rewards r(X1) and r(X2).
Without loss of generality, assume r(X2) ≥ r(X1) and let the relative reward be d(r(X1), r(X2)). Sample U ∼ Unif[0, 1].
Then, the density:

pX2

(
X2 = x

∣∣d(r(X2), r(X1)) > U
)

is exactly the solution to the following optimization problem (KL(·∥·) denotes the KL divergence):

argmax
p̂

[
Ex∼p̂(·) (r̂(x))− αKL (p̂(·)∥pr(·))

]
(10)

with r̂(x)
α = logEy∼pr(·)d(r(x), r(y)).

Proof. Consider the following probability measure(where A is any measurable set):

P(X2 ∈ A|d(r(X2), r(X1)) > U) (11)

where d(r(X2), r(X1)) is some distance computed between rewards r(X2) and r(X1) and U ∼ Unif[0, 1]. For ease of
notation, we denote d(r(X2), r(X1)) as d(X2,X1) for further discussion. Further, assume d(X2,X1) ∈ [0, 1] (this can be
achieved by normalizing the rewards). Now, from Bayes’ theorem, we have:

P(X2 ∈ A|d(X2,X1) > U) =
P(X2 ∈ A, d(X2,X1))

P(d(X2,X1) > U)

= ZP(X2 ∈ A, d(X2,X1) > U)

for some normalizing constant Z = Ex1,x2∼pr(·)[d(x2,x1)] since U ∼ Uni[0, 1]. Now, we have:

P(X2 ∈ A, d(X2,X1) > U) =

∫
x∈A

(∫
y

(∫ 1

0

1d(x,y)>udu

)
pr(y)dy

)
pr(x)dx

(a)
=

∫
x∈A

(∫
y

d(x,y)pr(y)dy

)
pr(x)dx

=

∫
x∈A

Ey∼pr(·)[d(x,y)]p
r(x)dx

where (a) follows from that fact that u ∼ Unif[0, 1]. Now, again from the Radon-Nikodym Theorem, sampling from
P(X2 ∈ A|d(X2,X1) > U) is equivalent to sampling according to the density p̃(·):

p̃(x) = Z exp
{[

log
(
Ey∼p(·)[d(x,y)]

)]}
pr(x)

Hence, this is equivalent to PPO with:
r̂(x)/α = log

(
Ey∼pr(·)[d(x,y)]

)

8
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A.4. Lemma 5.1

Consider drawing two IID samples X̃1 and X̃2 from the density p̃r(xt). Further, samples X1 and X2 are drawn from
pr(x0|xt = X̃1) and pr(x0|xt = X̃2) respectively. Denote by p̃(x) the density:

pX̃2
(X̃2 = x|r(X2) ≥ r(X1))

If xt is sampled according to p̃(x), the new tilted marginal density for x0, denoted as p(·) is given by:

p(x) =

∫
x̃

pr(x|x̃)p̃(x̃)dx̃ (12)

Further p(·) has the following properties (I(·; ·) denotes mutual information and H(·) denotes entropy):

• If I(r(X2); X̃2) = 0, p(x) = pr(x).

• If I(r(X2); X̃2) = H(r(X2)), p(x) is the optimal solution to (1).

Proof. We use Bayes’ theorem:

P(X̃2 = x|r(X2) ≥ r(X1)) =
P(X̃2 = x, r(X2) ≥ r(X1))

P(r(X2) ≥ r(X1))

=
P(r(X2) ≥ r(X1)|X̃2 = x)P(X̃2 = x)

P(r(X2) ≥ r(X1))

= 2P(r(X2) ≥ r(X1)|X̃2 = x)P(X̃2 = x)

since if X̃1 and X̃2 are IID, X1 and X2 are also IID. Hence, the new tilted distribution can now be written as:

p(x) = 2

∫
x̃

pr(x|x̃)P(r(X2 = x) ≥ r(X1)|X̃2 = x̃)P(X̃2 = x̃)dx̃

Case 1: I(r(X2); X̃2) = 0
Clearly r(X2)r(X2) is independent of X̃2. Hence:

p(x) = 2

∫
x̃

pr(x|x̃)P(r(X2) ≥ r(X1)|X̃2 = x̃)P(X̃2 = x̃)dx̃

= 2

∫
x̃

pr(x|x̃)P(r(X2) ≥ r(X1))P(X̃2 = x̃)dx̃

= pr(x)

Case 2: I(r(X2); X̃2) = H(r(X2))
r(X2) is a deterministic function of X̃2, i.e., r(X2) = r̃(X̃2) and P(r(X2)|X̃2) = 1r(X2)=r̃(X̃2)

. Therefore, P(r(X2) ≥
r(X1)|X̃2 = x̃) = Fr(r̃(x̃)), where Fr(·) denotes the CDF of r(X1), with X1 ∼ pr(·). Note that since r(X) is a
deterministic function of X̃, Fr(r̃(x̃)) = Fr(r(x)), where x is the final sample obtained by denoising from x̃. Hence, we
have:

p(x) = 2

∫
x̃

pr(x|x̃)Fr(r(x))P(X̃2 = x̃)dx̃

= 2F (r(x))pr(x)

From the proof of Lemma 2.1, it can be seen that this is equivalent to the optimum of fine-tuning across all timesteps.

9
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B. Intermediate Timestep Rejection Sampling
B.1. Algorithm

Algorithm 2 Intermediate Step Rejection Sampling FT

Input: Trainable diffusion model pθ(·), Pre-trained diffusion model pr(·), Reward function r(·), Total denoising timesteps
T, Intermediate denoising timestep T-K.

1: Sample N pairs by complete denoising using pr(·) (x0):
X = {(X(1)

1 , X
(2)
1 ), . . . , (X

(1)
N , X

(2)
N )}

and also collect the corresponding denoised states at timestep T −K (xT−K):
X̃ = {(X̃(1)

1 , X̃
(2)
1 ), . . . , (X̃

(1)
N , X̃

(2)
N )}.

2: Obtain rewards:
R =

{(
r(X

(1)
1 ), r(X

(2)
1 )

)
, . . . ,

(
r(X

(1)
N ), r(X

(2)
N )

)}
3: Filter the pairs in X̃ using R and retain only the higher reward samples to obtain ˆ̃X.
4: Form a dataset D using the samples from ˆ̃X.
5: Train pθ on Dk for the denoising timesteps {T − 1, T − 2, . . . , T −K}.

B.2. Intuition

The intuition behind the intermediate denoising step rejection sampling strategy can be seen clearly from the plots presented
in Figure 1. The three plots demonstrate the distinguishability of intermediate states based on final rewards across different
denoising timesteps for molecule generation. Note that for molecule generation, a reward of 1 corresponds to a stable
molecule and a reward of 0 corresponds to an unstable molecule. X-axis represents the average reward obtained assuming a
fixed intermediate denoising timestep across 100 samples. Y-axis represents the fraction of total intermediate timesteps
which lead to a particular average reward - the fraction is computed over 1000 possible values of intermediate states.
Essentially, we roll out until an intermediate state, and calculate the average reward corresponding to this intermediate state
across 100 generations. We repeat this process 1000 times and plot the values. The experiment done after T/4 denoising
timesteps, T/2 denoising timesteps and 3T/4 denoising timesteps are represented in (a), (b) and (c) respectively of Figure
1. In each case, we also plot corresponding values for a Bernoulli random variable with probability of success equal to
average molecule stability across all intermediate states - essentially this indicates how the distribution would look like if the
intermediate state had no information at all regarding the final rewards. As can be seen from Figure 1, at T/4 timesteps,
the two distributions are pretty much indistinguishable, indicating that the intermediate state is not informative of the final
rewards at all. The distinguishability improves for T/2 timesteps and at 3T/4 timesteps, it can be seem that with high
probability, the intermediate state determines the final reward.

Figure 1. Distinguishability of intermediate states based on final rewards for molecule generation.
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C. Experimental Details
For both layout generation and molecule generation, we use the same data pre-processing, architecture and hyperparameters
as used in (Anil et al., 2025) to obtain the pre-trained models - further, the same architecture and hyperparameters are used
for fine-tuning as well. Molecule generation results are reported on 32768 samples and without the inference-time refinement
strategy ReDeNoise implemented in (Anil et al., 2025) - hence the reported value for the baseline model are lower (effect of
ReDeNoise is discussed in Appendix D). For both tasks, we generate 32768 samples in every sampling step - the models
are fine-tuned on these samples for 10000 steps using a training batch size of 4096. For layout generation, training is done
for 20 sampling steps for both marginal KL and trajectory KL versions. For molecule generation, intermediate denoising
step training requires 100 sampling steps, the trajectory KL version requires 700 steps and fine-tuning across all timesteps
requires 900 sampling steps. For both tasks, fine-tuning is done only on high reward samples, samples corresponding to
reward 0 are discarded. For trajectory KL, the KL weight α is set to 1 for both tasks.

D. Additional Experiments
D.1. Intermediate Time Step Fine-Tuning for Layout Generation

The intermediate time step rejection sampling fine-tuning was also tested out for layout generation - the results are given in
Table 3.

C

Model Overlap FID

Baseline 0.013 4.07
Trajectory KL 0.010 4.08
T steps FT 0.006 5.04

3T/4 steps FT 0.008 4.12

Table 3. Additional Fine-tuning results for layout generation

It can be seen that fine-tuning until an intermediate step is more effective than imposing trajectory KL but not as effective as
fine-tuning across all timesteps. This points to a bias-variance tradeoff: while full fine-tuning can be more effective it could
be sample inefficient as was seen in Table 2. Further, it can be noted that the FID score remains closer to the baseline for
intermediate step fine-tuning since the pre-trained model itself is used for final few denoising steps.

D.2. Fine-Tuning with ReDeNoise

ReDeNoise is an inference-time refinement strategy for the IGD framework proposed in (Anil et al., 2025). The key idea is
to further noise and denoise for a set number of timesteps after generating samples - this was theoretically demonstrated to
correct for errors in the later denoising steps. Note that ReDeNoise can be applied on top of fine-tuned models as well. We
implement this and report results for 10000 generations in Table 4. It can be seen that again fine-tuning for 3T/4 timesteps
is the most beneficial. Further, note that applying ReDeNoise for the last T/4 timesteps further adds improvements for
3T/4 step fine-tuning since the fine-tuned model is used only for the first 3T/4 denoising steps. Hence, ReDeNoise is
complementary to intermediate time step rejection sampling fine-tuning.

Model Mol: Stability Uniqueness

Baseline 89.21 96.05
3T/4 steps FT 92.15 95.46
T steps FT 90.78 96.84

Table 4. Additional Fine-tuning (FT) results for Molecule Generation
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