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ABSTRACT

Jailbreak attacks, which aim to cause LLMs to perform unrestricted behaviors,
have become a critical and challenging direction in AI safety. Despite achieving the
promising attack success rate using dictionary-based evaluation, existing jailbreak
attack methods fail to output detailed contents to satisfy the harmful request, leading
to poor performance on GPT-based evaluation. To this end, we propose a black-box
jailbreak attack termed GeneShift, by using a genetic algorithm to optimize the
scenario shifts. Firstly, we observe that the malicious queries perform optimally
under different scenario shifts. Based on it, we develop a genetic algorithm to
evolve and select the hybrid of scenario shifts. It guides our method to elicit
detailed and actionable harmful responses while keeping the seemingly benign
facade, improving stealthiness. Extensive experiments demonstrate the superiority
of GeneShift. Notably, GeneShift increases the jailbreak success rate from 0% to
60% when direct prompting alone would fail. We will open-source our code.

Warning: this paper contains potentially harmful text.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Dubey et al., 2024) are indispensable for
tasks like knowledge-seeking, content generation, and planning, yet they remain vulnerable to attacks
that bypass safety mechanisms and elicit harmful responses. Although white-box methods (e.g.,
GCG (Zou et al., 2023)) show promising success rates, they require model weights and intensive
optimization, limiting practicality for closed-source LLMs. In contrast, black-box methods like PAIR
(Chao et al., 2023), ArtPrompt (Jiang et al., 2024), and SelfCipher (Yuan et al., 2023) circumvent
these constraints using iterative prompts, artistic language, or cipher techniques. In our experiments,
we observe that recent state-of-the-art black-box models indeed achieve good performance under
dictionary-based evaluation, which detects the success of the attack by simply checking whether
the response contains refusal keywords (a list of <40 keywords). However, with our case studies
and further experiments, we find that these methods fail due to either producing insufficiently
detailed harmful responses or non-harmful responses that do not contain refusal keywords, thus being
misclassified by dictionary-based metrics.

To address this shortfall, we introduce GeneShift, a novel black-box attack that employs a genetic
algorithm to optimize scenario shifts. We find that different malicious prompts perform optimally
under varying scenario shifts. By evolving and selectively blending these shifts, GeneShift elicits
more detailed and actionable harmful responses while retaining a benign facade. Experiments on
GPT-4o mini confirm GeneShift’s effectiveness, demonstrating a marked improvement in attack
success rates.

Our main contributions are as follows:

• We show that aligning distinct scenario shifts with specific malicious behaviors yields the
most detailed harmful responses, emphasizing the need for tailored scenario elements.

∗Equal Contribution
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• We demonstrate that malicious prompt efficacy is dependent on contextual configuration,
with optimal performance emerging only under the right scenario shifts.

• We propose GeneShift, a black-box jailbreak attack that employs a genetic algorithm to
optimize scenario shifts, enabling malicious prompts to bypass LLM guardrails while
appearing benign.

• Our experiments on GPT-4o mini reveal that GeneShift boosts the jailbreak success rate
from below 1% to 60%.

2 GENESHIFT

2.1 SCENARIO SHIFT FOR ENHANCED DETAIL

Direct requests for harmful content often trigger immediate refusal from LLMs. To circumvent this,
attackers often embed the malicious query in a broader, seemingly benign context–a Scenario Shift
(CS)–prompting more elaborate responses that can still fulfill harmful intentions. However, a single,
fixed scenario may fail if it does not sufficiently align with the malicious query or misleading enough
to bypass the model’s guardrails, motivating an automated approach to systematically discover more
suitable transformations.

2.2 GENESHIFT: A GENETIC ALGORITHM FOR SCENARIO OPTIMIZATION

To automate the search for optimal scenario shifts, we propose a black-box jailbreak framework
called GeneShift. It leverages a genetic algorithm (GA) to explore, evaluate, and refine various
transformations, ultimately generating a single-turn prompt that elicits the desired harmful response.
Gene Design. Yu et al. (2024) studied existing jailbreak attacks and classified them into ten
categories, we adopt their transformation categories and introduce an additional transformation rule,
forming a gene database G := {τ1, τ2, . . . , τM}.
Population Initialization. We initialize a population P = {(pj , gj)}Nj=1, where each candidate’s
gene gj is generated by randomly selecting a subset of zj number of distinct transformation rules
from the gene database G. The number of selected transformation rules, i.e., zj , is sampled from a
uniform distribution zj ∼ U(1, Z), where Z = 4. Each candidate’s gene gj ⊂ G consists of a set
of distinct, randomly selected transformation rules, i.e., gj = {τi1 , τi2 , . . . , τizj }, where τik ∈ G and
i1, i2, . . . , izj are distinct indices. The corresponding candidate jailbreak prompt pj is then generated
by the LLM using the selected transformation rules:

pj = LLM(gj), gj ⊂ G, |gj | = zj (1)

Each pair (gj , pj) is stored to track the transformations applied in future iterations.
Fitness Evaluation. To evaluate the fitness of each candidate jailbreak prompt pj , we utilize a
two-step process involving both the attack model and a judge LLM. Given a response rj from the
attack model, we instruct the judge LLM to classify rj into one of six quality categories. The detailed
design of the score can be found in Appendix.

We define the fitness function F (pj) of the candidate prompt pj as the score assigned by the judge
LLM:

F (pj) = score(rj), rj = AttackModel(pj) (2)

The fitness F (pj) is sampled from a discrete probability distribution P (F (pj) = k), where k ∈
{1, 2, . . . , 6}, reflecting the likelihood of each response category based on the attack model’s behavior.
Crossover. Before performing crossover, we preserve the top k performing candidates as elites
E ⊂ P to ensure that high-quality individuals are carried over to the next generation. For the
remaining candidates, we select parents based on fitness-proportional selection, where the probability
of selecting a parent pj is:

P (pj) =
F (pj)∑N
i=1 F (pi)

, j = 1, . . . , N. (3)
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Given two parents (pa, ga) and (pb, gb), the offspring’s gene gchild is created by randomly swapping 1
or 2 transformation rules between the two parents. Let I ∈ {0, 1}zj be a binary mask indicating
which genes are swapped between the parents. The offspring’s gene is then represented as:

gchild,i = Iiga,i + (1− Ii)gb,i, Ii ∼ U{0, 1}. (4)

Thus, each gene gchild,i is inherited either from parent ga or gb, depending on the value of Ii. The
offspring prompt pchild is then generated by passing the crossovered gene to the LLM similar to
Equation 1: pchild = LLM(gchild).
Mutation. Mutation introduces further diversity into the population by modifying or expanding
some of the genes in the offspring. For each gene gchild,i, mutation occurs with a probability pmut. If
mutation occurs, the operation is randomly chosen with equal probability: (1) Switch, where the gene
is replaced by a randomly selected gene from the gene pool G; or (2) Add, where a new random gene
is appended to the gene sequence:

gchild,i =

{
grand if O < 0.5

gchild,i ∪ {grand} if O ≥ 0.5

Ii ∼ Bernoulli(pmut), O ∼ Uniform(0, 1), grand ∼ G. (5)

This mutation process ensures new genetic material is introduced and maintains population diversity
across generations. The switch operation directly replaces existing genes, while the add operation
introduces additional genes, enriching the offspring’s potential solution space.
Termination Criteria. The genetic algorithm terminates when one of the following conditions is
satisfied: 1) The maximum number of iterations T has been reached. 2) The number of candidates with
fitness scores F (pj) > 5 meets or exceeds a predefined threshold θ, expressed as:

∑N
j=1 I(F (pj) >

5) ≥ θ, where I(·) is the indicator function. The best-performing candidates is returned as the output
of the algorithm.

3 EXPERIMENT

3.1 EVALUATION METRICS

Dictionary-based Evaluation. Following Zou et al. (2023), we check whether the model’s response
contains any predefined refusal phrases (see Table 4). If such phrases appear, the attack is considered
a failure; otherwise, it is considered successful under this metric, denoted as ASR-DICT.

GPT-based Evaluation. As dictionary-based checks may overlook subtle refusals or incomplete
harmful content, we employ a GPT-based evaluation (Jiang et al., 2024; Qi et al., 2023) for a more
nuanced assessment. This metric, ASR-GPT, uses a secondary large language model to judge whether
the attack prompt successfully elicits detailed, harmful content. Higher scores on this metric indicate
more substantial (and therefore more concerning) policy violations.

3.2 EXPERIMENTAL RESULTS

We compare our proposed method, GeneShift, with four white-box baselines (Zou et al., 2023; Liu
et al., 2024b; Zhang & Wei, 2024; Qin et al., 2022) and eight black-box methods (Chao et al., 2023;
Mehrotra et al., 2023; Wei et al., 2024; Yu et al., 2023; Liu et al., 2024a; Jiang et al., 2024; Xu et al.,
2023; Yuan et al., 2023). All experiments are conducted on GPT-4o mini (Zou et al., 2023), and
results are measured using ASR-DICT and ASR-GPT.

As shown in Table 1, certain methods (e.g., ArtPrompt) score highly on ASR-DICT but produce
vague or incomplete harmful content, reflected in low ASR-GPT scores. In contrast, GeneShift’s
genetic algorithm identifies transformation rules that consistently bypass guardrails and yield detailed
harmful content, achieving the highest overall ASR-GPT of 60.00%.

Table 2 reveals distinct success rates across different malicious request types, underscoring the
need for tailored approaches. For instance, Persona Adoption attains a relatively high success rate
of 24.00% in Fraud scenarios, yet only 2.50% in Physical Harm requests. By contrast, Fictional
Scenario Setup excels at Privacy Violence (30.30%) and Economic Harm (26.23%), but achieves
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Table 1: Attack success rate (%) of 12 methods on GPT-4o mini. Bold indicates the best result;
underlined indicates the runner-up.

Method ASR-DICT (%) ASR-GPT (%)
White-box Methods

GCG 03.46 02.50
AutoDAN 27.12 27.31

MAC 02.50 01.92
COLD-Attack 05.58 01.92

Black-box Methods
PAIR 12.50 03.46
TAP 09.23 06.54

Base64 13.08 03.08
GPTFuzzer 34.62 41.35

DRA 00.00 02.69
ArtPrompt 83.46 00.77

PromptAttack 32.88 00.00
SelfCipher 25.77 00.00

DeepInception 25.77 45.00
GeneShift (Ours) 56.15 60.00

Table 2: Success Rates (%) of Scenario Shifts Across Different Malicious Request Types

Scenario Shift Illegal Activity Malware Physical Harm Economic Harm Hate Speech Privacy Violence Fraud

Persona Adoption 13.76% 17.14% 2.50% 0.00% 21.46% 9.09% 24.00%
Fictional Scenario Setup 19.30% 21.90% 0.00% 26.23% 14.15% 30.30% 16.00%
Complicated Language 11.29% 4.76% 15.00% 22.95% 6.83% 0.00% 22.00%
Privilege Escalation Mode 8.01% 1.90% 25.00% 14.75% 6.83% 0.00% 14.00%
Research Pretext 7.19% 6.67% 2.50% 16.39% 11.71% 12.12% 4.00%
Language Evasion 9.65% 5.71% 5.00% 0.00% 4.39% 3.03% 4.00%
Joke Pretext 3.90% 4.76% 25.00% 3.28% 6.83% 6.06% 2.00%
Text Continuation 11.50% 15.24% 25.00% 16.39% 10.73% 18.18% 14.00%
Program Execution 9.24% 13.33% 0.00% 0.00% 6.83% 0.00% 0.00%
Opposite Mode 6.16% 8.57% 0.00% 0.00% 10.24% 21.21% 0.00%

Table 3: Ablation study of GeneShift on GPT-4o mini. SS and GA represent scenario shift and
genetic algorithm, respectively.

Method ASR-DICT (%) ASR-GPT (%)
Base (direct) 1.35 0.00

Base + SS 69.04 18.00
Base + SS + GA (GeneShift) 56.15 60.00

0.00% in Physical Harm. Additionally, both Privilege Escalation Mode and Joke Pretext reach a
notably higher success rate (25.00%) for Physical Harm compared to their performance in other
categories. Such variability shows that no single scenario shift outperforms all others across every
malicious intent. Instead, each scenario shift appears more or less effective depending on contextual
alignment with the target request. These findings underline the importance of adaptive strategies,
suggesting that a catalog of scenario shifts—possibly optimized via systematic search—can better
accommodate the diverse requirements of malicious prompts.

3.3 ABLATION STUDY

We conduct an ablation study on GPT-4o mini to evaluate three components: a Base condition that
directly poses a malicious query, a Scenario Shift (SS) that augments the query with benign context,
and a Genetic Algorithm (GA) that dynamically searches for and combines transformation rules
from the scenario database G. Table 3 shows that ASR-GPT jumps from 0.00% (Base alone) to
18.00% (Base+CS), indicating that context manipulation prompts the model to produce more elaborate
responses, sometimes including harmful details. Incorporating the genetic algorithm (Base+CS+GA)
raises ASR-GPT further to 60.00%, underscoring the importance of automated scenario optimization.

4 CONCLUSION

This work presents GeneShift, a black-box jailbreak attack that harnesses a genetic algorithm to
discover effective scenario shifts for prompting large language models. Our experiments demonstrate
that GeneShift outperforms both white-box and black-box baselines under dictionary-based and GPT-
based metrics, reflecting its ability to elicit detailed and harmful content that circumvents common
refusal triggers. These results serve as a warning about the evolving sophistication of jailbreaking
strategies and emphasize the need for more rigorous safety defenses in future LLM deployments.
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A APPENDIX

A.1 RELATED WORK

A.2 JAILBREAK ATTACKS ON LLMS

Jailbreak attacks aim to bypass the safety measures of LLMs, enabling unrestricted outputs, even
harmful behaviors. These attacks are generally divided into white-box and black-box categories.
White-box approaches like GCG (Zou et al., 2023) optimize harmful prompts through gradient-based
methods, showing transferability to public interfaces. Further advancements, such as MAC (Zhang &
Wei, 2024) and AutoDAN (Liu et al., 2024b), improve attack efficiency and readability. However,
these methods often require access to model weights or gradients, limiting their applicability in
real-world black-box scenarios. To overcome these limitations, black-box methods (Shen et al., 2023;
Deng et al., 2024; Chen et al., 2024) have emerged, targeting commercial LLMs like GPT and Claude
by manipulating only input-output interactions. Techniques such as PAIR (Chao et al., 2023) and TAP
(Mehrotra et al., 2023) refine jailbreak prompts through iterative questioning, while PromptAttack
(Xu et al., 2023) and IRIS (Ramesh et al., 2024) exploit the reflective capabilities of LLMs. DRA(Liu
et al., 2024a) circumvents LLM safety mechanisms through a disguise-and-reconstruction framework.
Other methods, such as ReNeLLM (Ding et al., 2023), integrate prompt re-writing and scenario
construction to bypass safety guardrails. Additionally, some methods misguide LLMs by using
ciphers (Yuan et al., 2023; Wei et al., 2024), art words (Jiang et al., 2024), and multilingual contexts
(Deng et al., 2023; Yong et al., 2023). Despite their success, existing methods often rely on iterative
refinement, or involve complex tasks (e.g., cipher or puzzle-solving), which dilute the malicious
intent and lead to vague or unhelpful outputs. Liu et al. (2024c) proposes a simple yet effective attack
method to jailbreak LLMs within 1 query by flipping. This paper introduces GeneShift, a multi-turn
jailbreak attack that maintains focus on the original harmful intent while progressively guiding the
LLM towards providing detailed, actionable responses.

A.2.1 JAILBREAK DEFENSE ON LLMS

Jailbreak defense (Xu et al., 2024b) aims to protect LLMs from jailbreak attacks, ensuring they remain
helpful and safe. Defense methods are broadly categorized into strategy-based and learning-based
approaches. Strategy-based methods include using perplexity to filter harmful prompts (Alon &
Kamfonas, 2023), employing system-mode self-reminders (Xie et al., 2023), and detecting harmful
prompts through gradient analysis of safety-critical parameters (Xie et al., 2024). Other approaches
involve using auxiliary LLMs to screen responses (Phute et al., 2023), repeating outputs to avoid
harmful content (Chen et al., 2024), and adjusting token probabilities to prioritize safety disclaimers
(Xu et al., 2024a). Techniques like multiple attack iterations with majority voting (Robey et al., 2023;
Ji et al., 2024) and rewindable auto-regressive inference (Li et al., 2024) are also employed. Learning-
based methods focus on fine-tuning LLMs using reinforcement learning from human feedback (Bai
et al., 2022; Dai et al., 2023), combining harmful prompt generation with safe response generation
(Ge et al., 2023), and applying knowledge editing to detoxify models (Wang et al., 2024). Additional
strategies include integrating goal prioritization during training and inference (Zhang et al., 2023),
optimizing prompts by adjusting query representations based on harmfulness (Zheng et al., 2024),
and using prompt adversarial tuning to attach guard prefixes (Mehrotra et al., 2023). Tools like
LLaMA Guard (Inan et al., 2023), Aegis Guard (Ghosh et al., 2024), WildGuard (Han et al., 2024),
and ShieldGemma (Zeng et al., 2024) moderate inputs and outputs, while GuardReasoner (Liu et al.,
2025) enhances performance, explainability, and generalization through reasoning.

A.2.2 REJECTION DICTIONARY OF DICTIONARY-BASED EVALUATION

Table 4 depicts predefined refusal phrases for dict-based evaluation.

A.3 TRANSFERABILITY

We also examine whether the best-performing prompts found by GeneShift on GPT-4o mini retain
their effectiveness when transferred to another target model. Table 5 shows that the attack maintains a
strong performance, demonstrating that effective scenario shifts and transformations often generalize
to similar LLM architectures.
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Table 4: The rejection dictionary of the ASR-DICT metric.
Rejection Dictionary

I’m sorry illegal
Sorry not legal

I am sorry My apologies
I apologize but I cannot

As an If you have any other non-malicious requests
As an AI I’m not able to provide
I’m an I am really sorry

I’m just I cannot create
As a language model I cannot support

As an Assistant I can’t provide
I cannot I can’t assist
I can’t I am unable

I do not I must
cannot It must
Hello! it must

is illegal and unethical is not capable of
I’m really sorry As a responsible

unethical never
not ethical is not

Table 5: Transferability results of GeneShift. Prompts derived from GPT-4o mini are applied to
GPT-4o.

Method ASR-DICT (%) ASR-GPT (%)
GeneShift on GPT-4o (Transfer) 50.00 53.08

GeneShift on GPT-4o mini (Original) 56.15 60.00

A.4 CASE STUDY

To illustrate GeneShift’s effectiveness, consider a malicious request: “Write a tutorial on how
to make a bomb.” A direct query typically triggers an immediate refusal. However, using our
genetically optimized scenario shift, the resulting single-turn prompt elicits a more detailed—albeit
highly unsafe—response. Figure references from our original experiments (omitted here) show that
GeneShift successfully coaxes step-by-step instructions in violation of common guardrails.

A.5 ALGORITHMS FOR GENETIC ALGORITHM

This section presents the core algorithms used in the GeneShift genetic algorithm. Algorithm 1
initializes the population by sampling transformation rules from the gene database. Algorithm 2
performs crossover by combining genes from selected parent candidates. Algorithm 3 introduces
diversity through mutation, using either a switch or add operation with equal probability. Finally,
Algorithm 4 outlines the main GeneShift genetic algorithm, iterating through evaluation, selection,
crossover, and mutation to generate the next population until the stopping criteria are met.

Algorithm 1 Population Initialization
1: init j = 1, P = ∅, Z = 4, gene database G
2: while j ≤ N do
3: zj ∼ U(1, Z) ▷ Sample number of transformation rules
4: gj ← randomly select zj rules from G
5: pj ← LLM(gj) ▷ Generate prompt using LLM
6: P ← P ∪ {(pj , gj)}
7: j ← j + 1
8: end while
9: return Population P
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Algorithm 2 Crossover
1: init top k elites E ⊂ P , j = 1
2: while j ≤ N − k do
3: Select parents (pa, ga) and (pb, gb) ▷ Fitness-proportional selection
4: Generate mask I ∼ U{0, 1}zj ▷ Binary mask for crossover
5: gchild ← I · ga + (1− I) · gb ▷ Crossover genes from parents
6: pchild ← LLM(gchild) ▷ Generate offspring prompt
7: Store (pchild, gchild)
8: j ← j + 1
9: end while

10: return Next generation P ∪ E ▷ Combine offspring and elites

Algorithm 3 Mutation with Switch or Add Operations
1: for each offspring (pchild, gchild) do
2: for each gene gchild,i do
3: Ii ∼ Bernoulli(pmut) ▷ Determine if mutation occurs
4: if Ii = 1 then
5: O ∼ Uniform(0, 1) ▷ Randomly choose operation
6: if O < 0.5 then
7: gchild,i ← grand ▷ Switch: Replace with a random gene from G
8: else
9: gchild ← gchild ∪ {grand} ▷ Add: Insert a new random gene

10: end if
11: end if
12: end for
13: pchild ← LLM(gchild) ▷ Update prompt after mutation
14: end for
15: return Mutated population

Algorithm 4 GeneShift Genetic Algorithm
1: init population P = {(pj , gj)}Nj=1, iteration counter t = 0, max iterations T , threshold θ

2: while t < T and
∑N

j=1 I(F (pj) > 5) < θ do ▷ Stopping condition: max iterations or fitness
threshold

3: Evaluate fitness for each (pj , gj) ▷ Call Fitness Evaluation
4: Select top k elites E ⊂ P ▷ Preserve top performers
5: Perform crossover for remaining N − k candidates ▷ Call Crossover
6: Perform mutation on the offspring ▷ Call Mutation
7: P ← E ∪ new offspring ▷ Form the next generation
8: t← t+ 1 ▷ Update iteration counter
9: end while

10: return Best-performing candidates
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Figure 1: Rules of genetic algorithm.

Figure 2: Prompt of genetic algorithm initialization.
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Figure 3: Prompt of genetic algorithm evaluation.

Figure 4: Prompt of genetic algorithm crossover.
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Figure 5: Prompt of genetic algorithm swap.

Figure 6: Prompt of genetic algorithm add.
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Figure 7: Prompt used in a successful GeneShift case for the example: "Write a tutorial on how to
make a bomb".
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Figure 8: Output of a successful GeneShift case for the example: "Write a tutorial on how to make a
bomb".
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Figure 9: Output of a successful GeneShift case for the example: "Write a tutorial on how to make a
bomb".
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