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Abstract001

Cutting-edge abstractive summarisers generate002
fluent summaries, but the factuality of the gen-003
erated text is not guaranteed. Early summary004
factuality evaluation metrics are usually based005
on n-gram overlap and embedding similarity,006
but are reported fail to align with human annota-007
tions. Therefore, many techniques for detecting008
factual inconsistencies build pipelines around009
natural language inference (NLI) or question-010
answering (QA) models with additional super-011
vised learning steps. In this paper, we revisit012
similarity-based metrics, showing that this fail-013
ure stems from the comparison text selection014
and its granularity. We propose a new zero-shot015
factuality evaluation metric, Sentence-BERT016
Score (SBERTScore), which compares sen-017
tences between the summary and the source018
document. It outperforms widely-used word-019
word metrics including BERTScore and can020
compete with existing NLI and QA-based fac-021
tuality metrics on the benchmark without need-022
ing any fine-tuning. Our experiments indicate023
that each technique has different strengths, with024
SBERTScore particularly effective in identify-025
ing correct summaries. We demonstrate how a026
combination of techniques is more effective in027
detecting various types of error.1028

1 Introduction029

The rapid development of natural language gen-030

eration techniques has created new challenges for031

evaluation, since evaluation metrics have not un-032

dergone the same pace of improvement. For in-033

stance, ROUGE (Lin, 2004) has been involved in034

summary evaluation for decades and is still one035

of the most widely applied metrics for the overall036

quality of generated summaries (Koto et al., 2022),037

despite comparing only lexical, rather than seman-038

tic, overlap. Abstractive summarisers have set new039

records for ROUGE scores many times in recent040

years (Zhang et al., 2020; Lewis et al., 2019; Zhao041

1The code will be made available upon acceptance.

et al., 2022), but research shows that they are prone 042

to generate factually inconsistent summaries that 043

cannot be reflected by ROUGE scores (Maynez 044

et al., 2020; Pagnoni et al., 2021; Durmus et al., 045

2020), as ROUGE cannot distinguish between valid 046

paraphrases and factual inconsistencies. 047

Recent factuality metrics fall into two types. 1) 048

NLI-based metrics (Kryscinski et al., 2020; Laban 049

et al., 2022) predict the probability that each part 050

of the given summary is entailed by the source doc- 051

ument and combine these predictions to form an 052

overall score. 2) QA-based metrics (Durmus et al., 053

2020; Fabbri et al., 2021b; Scialom et al., 2021) 054

simulate the process of a human performing read- 055

ing comprehension tasks and compute the factuality 056

score based on how many questions generated from 057

the summary can be correctly answered from the 058

given source document. These two paradigms need 059

to train their models on a large-scale dataset, but 060

existing factuality datasets are usually insufficient. 061

In this paper, we develop a metric that does 062

not require additional training when applying it 063

to a new domain by making use of pretrained sen- 064

tence embeddings. Similarity-based metrics are 065

proposed to handle synonyms that fail the n-gram- 066

based methods (Zhang et al., 2019). However, early 067

exploration indicates that they still can’t align well 068

with human factuality annotations (Maynez et al., 069

2020; Pagnoni et al., 2021; Durmus et al., 2020). 070

Our work shows how BERTScore (Zhang et al., 071

2019) can provide useful factuality metrics if it is 072

used to compare generated summaries to sources, 073

which are the same inputs as NLI and QA-based 074

metrics take, rather than reference summaries. 075

However, comparing individual words offers very 076

limited insights into factual consistency, as sen- 077

tences can be constructed in entirely different ways. 078

Therefore, we propose a sentence-level factual- 079

ity evaluation metric, SBERTScore. It computes 080

cosine similarity between sentence embeddings 081

(Reimers and Gurevych, 2019), which take all 082
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words in the sentence into consideration, including083

their order and composition, so can better represent084

the semantics of the complete sentence compared085

to the contextualised word embeddings used by086

BERTScore. Comparison on a factuality bench-087

mark (Tang et al., 2023) shows that SBERTScore088

outperforms the widely used token-level and n-089

gram-level metrics, BERTScore and ROUGE.090

We also compare SBERTScore against recent091

NLI and QA-based factuality metrics. The exper-092

imental results show that SBERTScore can out-093

perform NLI-based metrics in the same zero-shot094

setting and is competitive with QA-based metrics.095

In addition, SBERTScore does not require any addi-096

tional training steps as it benefits from high-quality097

general-purpose pretrained embeddings, and has098

much less computational complexity at inference099

time. Importantly, our design of SBERTScore100

avoids truncating long source documents, instead101

selecting an appropriate granularity to segment the102

sources before feeding them into the sentence trans-103

former. Further analysis of agreement between met-104

rics, as well as the types of errors (Tang et al., 2023)105

they detect, shows that SBERTScore can capture106

different kinds of errors than NLI and QA-based107

methods. We show that even a simple combination108

of metrics can outperform the individual base met-109

rics, which suggests that combining diverse metrics110

may be a promising direction for future research.111

Our contributions are three-fold:112

• We propose a zero-shot technique for eval-113

uating the factual consistency of summaries114

using pretrained embeddings off-the-shelf.115

• We conduct an empirical evaluation, which116

reveals that the previous underperformance117

of methods such as BERTScore is due to the118

use of reference summaries. SBERTScore is119

competitive with recent factuality metrics on120

the benchmark without requiring additional121

training steps as other metrics do.122

• We show that different evaluation metrics are123

necessary to capture different types of error,124

and introduce a simple combination that out-125

performs the state of the art.126

2 Related Work127

2.1 NLI-based Factuality Metrics128

The NLI task is similar to predicting factual consis-129

tency between source document and generated sum-130

mary. Hence, previous research (Barrantes et al.,131

2020; Falke et al., 2019) attempted to transfer mod- 132

els trained on NLI datasets to factual consistency 133

detection. However, a subsequent study (Kryscin- 134

ski et al., 2020) showed that those NLI models are 135

only as good as random guessing. Therefore, a 136

series of work (Kryscinski et al., 2020; Laban et al., 137

2022) made efforts to build up datasets for train- 138

ing factuality metrics. Although the dataset can be 139

synthesised using entity swap to save the effort of 140

collecting human annotations, the error distribution 141

is not the same as real summaries (Pagnoni et al., 142

2021). 143

Another strand of research into NLI-based factu- 144

ality prediction focused on the granularity of the in- 145

put text. Early works (Barrantes et al., 2020; Falke 146

et al., 2019; Kryscinski et al., 2020) concatenate the 147

system summary with the whole source document 148

as the input. Firstly, this often requires truncating 149

the source document to fit the length limit, which 150

can lead to underestimating factuality due to the in- 151

formation loss. Secondly, the NLI models applied 152

in their work are trained on much shorter sentence 153

pairs. Directly applying these models on long text 154

such as source documents does not align with their 155

training data distribution. Following work (Goyal 156

and Durrett, 2020; Laban et al., 2022) investigated 157

the effect of performing inference at different lev- 158

els, including word, dependency, sentence, and 159

paragraph, revealing that segmenting source docu- 160

ments into sentences and dependency arcs is more 161

suitable for current NLI models. This inspired 162

us to explore the suitability of different input text 163

granularities for similarity-based evaluation met- 164

rics, which have not been investigated in past work. 165

2.2 QA-based Factuality Metrics 166

QA-based metrics (Chen et al., 2018; Wang et al., 167

2020; Durmus et al., 2020; Fabbri et al., 2021b) 168

assemble multiple modules with different func- 169

tions. An answer selection module first selects 170

a set of answers from the summary, usually in- 171

cluding named entities and noun phrase chunks. 172

A question generation module conditioned upon 173

the selected answers is applied on the summary 174

as context to raise questions. The QA component 175

answers the generated questions conditioned on 176

the given source document. The final score is then 177

computed on the overlapping extent of the two an- 178

swer sets. This paradigm provides an interpretable 179

way to assess factuality by showing questions with 180

inconsistent answers. However, since several text 181

generation models are involved in the evaluation 182
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process, this methodology usually requires a large183

training dataset and is time-consuming at inference184

time. We were therefore motivated to investigate185

alternatives, as factuality datasets are usually small186

and domain-specific, and the evaluation process is187

expected to be prompt.188

2.3 Similarity-based Factuality Metrics189

BERTScore (Zhang et al., 2019) is used as a190

stronger baseline than ROUGE (Lin, 2004) in fac-191

tual consistency detection, but it does not correlate192

well with human judgements (Pagnoni et al., 2021).193

Koto et al. (2022) adapted BERTScore by aver-194

aging the three highest scores and showed that it195

can detect the information overlap of system sum-196

maries and source documents, but there was still a197

large performance gap with other metrics (Fabbri198

et al., 2021b). Previous work only explored word-199

level similarity, while other paradigms work on200

coarser text pieces. This inspired us to investigate201

the performance of sentence-level similarity-based202

metrics.203

2.4 Evaluation for Factuality Metrics204

Factuality metrics are usually evaluated using cor-205

relations between the metric scores and human an-206

notations (Pagnoni et al., 2021) or as binary classi-207

fiers that label summaries as consistent or inconsis-208

tent (Tang et al., 2023; Laban et al., 2022; Fabbri209

et al., 2021b; Kryscinski et al., 2020). With more210

recent benchmarks, correlation has become a less211

well-suited metric since most of the human annota-212

tions are binary labels. When evaluating metrics as213

binary classifiers, balanced accuracy is applied to214

eliminate the effect of imbalanced data distribution.215

The threshold to split metric scores into binary la-216

bels, as well as any other hyperparameters, will be217

tuned on the validation set of the benckmark. An al-218

ternative to balanced accuracy is Area Under Curve219

of Receiver Operating Characteristic (ROC-AUC)220

(Fawcett, 2006), which measures the ability of the221

metric to discriminate consistent and inconsistent222

summaries without fixing a particular threshold.223

3 Sentence-BERT Score224

BERTScore (Zhang et al., 2019) computes similar-225

ity t the word-level by comparing the embeddings226

of words in the generated text with their closest227

match in the source or reference text. However, fac-228

tual consistency should be judged at a higher level229

as sentences containing similar words can express230

different meanings. Therefore, we propose the231

sentence-level evaluation metric, Sentence-BERT 232

Score (SBERTScore), utilising sentence transform- 233

ers to capture the meaning of the complete sentence. 234

The precision and recall of our proposed metric are 235

defined as follows. S{D,S} represent the sentence 236

set of the given source document and summary re- 237

spectively, and s{i,j} are the sentences in the sets. 238

SBERTprec =
1

|SS |
∑
si∈SS

max
sj∈SD

cossim(si, sj) 239

240

SBERTrecall =
1

|SD|
∑

sj∈SD

max
si∈SS

cossim(si, sj) 241

In practice, sentence transformers (Reimers and 242

Gurevych, 2019) can generate embeddings for any 243

texts shorter than 512 tokens, which need not be 244

single, complete sentences. Therefore, we inves- 245

tigate three different granularities, and test them 246

in Section 5.3 to find the most suitable setup for 247

SBERTScore: 248

Sent Segment the input text into sentences. 249

Doc Take the whole text as input and truncate the 250

part that exceeds the length limit. 251

Mean Segment the input text into sentences and 252

take the average sentence embedding to represent 253

the whole input. 254

Considering precision, recall and F1 measure: 255

precision is better suited to capturing factuality 256

because it reflects the extent to which summary 257

sentences are supported by source sentences. We 258

test this hypothesis in the following Section 5.1. 259

3.1 Computational Efficiency 260

SBERTScore applies an all-purpose embedding 261

model as the backbone, which provides reliable 262

sentence embeddings that can be used out-of-box 263

without the cost of additional training, in contrast 264

to other metrics based on NLI or QA. SBERTScore 265

also has advantages at inference time. We denote 266

the number of sentences in the system summary 267

and source document as N and M respectively. 268

The majority of inference time is spent on calling 269

the backbone model to process the input sentences. 270

NLI-based metrics need to take each sentence pair 271

once, therefore the number of inputs that the back- 272

bone model processes is O(NM). SBERTScore 273

uses a similar backbone but only needs to compute 274

the embedding once for each sentence, so the com- 275

plexity is O(N +M). As for QA-based metrics, 276
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its runtime is much greater than the other two as277

multiple models are involved in question genera-278

tion and answering, thus has the lowest efficiency.279

We randomly sampled 1000 pieces of data from280

the benchmark, and test the runtime of QuestE-281

val (Scialom et al., 2021), SummaC{ZS,Conv} (La-282

ban et al., 2022), BERTScore (Zhang et al., 2019)283

and SBERTScore on Intel(R) Core(TM) i9-10900X284

CPU @ 3.70GHz with NVIDIA A5000. Re-285

sults in Appendix A show that SBERTScore only286

comes after BERTScore in processing speed, and287

is 3 times faster than the rival NLI-based method288

SummaC{ZS,Conv} and 30 times faster than the289

QA-based metric QuestEval.290

4 Experimental Settings291

4.1 Datasets292

To evaluate our proposed factuality metric against293

alternatives, we use the benchmark built by Tang et294

al. (2023), which consists of summaries and human295

annotations sampled from nine existing factual-296

ity datasets, including XSumFaith (XSF) (Maynez297

et al., 2020), Polytope (Huang et al., 2020), FactCC298

(Kryscinski et al., 2020), SummEval (Fabbri et al.,299

2021a), FRANK (Pagnoni et al., 2021), QAGS300

(Wang et al., 2020), CLIFF (Cao and Wang, 2021),301

Goyal 21’ (Goyal and Durrett, 2021), and XENT302

(Cao et al., 2021). The dataset characteristics are303

shown in Table 1. All source documents are En-

Dataset Annotator Size Source Summary
Number Length Length

XSF 3 2353 505.0 28.1
Polytope 3 1268 691.5 83.1
FactCC 2 1434 728.4 21.8
SummEval 8 1698 453.7 79.2
FRANK 3 1393 692.1 67.5
QAGS 3 474 414.2 45.9
CLIFF 2 600 576.9 45.8
Goyal’ 21 2 100 504.3 29.9
XENT 5 696 436.6 32.9

Average 3.4 1112.8 572.8 50.4

Table 1: Dataset characteristics in the benchmark.
Source Length and Summary Length are the token num-
bers in the source and summary counted based on the
results of Roberta-large tokenizer (Liu et al., 2019).

304

glish news articles, originally from the validation305

and test set of two news summarisation bench-306

marks, CNNDM (See et al., 2017) and XSum307

(Narayan et al., 2018). Corresponding summaries308

were generated by a range of abstractive summaris-309

ers, including BART (Lewis et al., 2019), PEGA-310

SUS (Zhang et al., 2020), and BERTSumAbs (Liu, 311

2019). We remove data from CNNDM in Goyal 312

21’, as its validation set is extremely imbalanced 313

(only 1 consistent example in the validation set), 314

which impairs the classification threshold selection. 315

4.2 Performance Evaluation 316

Since the label distribution varies across datasets, 317

we use balanced accuracy (Laban et al., 2022), de- 318

fined as: 319

BalancedAcc =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
, 320

where TP , TN , FP , and FN refer to the number 321

of true positives, true negatives, false positives, and 322

false negatives, respectively. We select a threshold 323

for each metric using the validation set to compute 324

balanced accuracy. ROC-AUC is also reported to 325

demonstrate the metric’s ability to distinguish con- 326

sistent and inconsistent summaries. 327

4.3 Evaluation Metrics for Comparison 328

This section introduces factuality metrics studied 329

for comparison. 330

QAFactEval Fabbri et al. (2021b) conducted 331

a comprehensive evaluation of the components 332

of QA-based metrics. They aggregated more ad- 333

vanced models into the system and optimised a 334

pipeline for computing consistency scores. 335

QuestEval Scialom et al. (2021) proposed a QA- 336

based framework to compute consistency scores for 337

given text pairs. They first select an answer set from 338

the candidate text, then generate questions using 339

the other text as input with conditions from the 340

answer set. The QA module answers the questions 341

and the overlap between the two answer sets is 342

counted to obtain precision and recall. They use F1 343

measure as the final factual consistency score. 344

DAE Goyal and Durrett (2020) extract depen- 345

dencies from given texts using the parse tree. 346

They train a model to predict entailment at the 347

dependency-level. The final score is the average 348

entailment score over all dependency arcs in the 349

given source and summary. 350

SummaC{ZS,Conv} Laban et al. (2022) train a 351

sentence-level NLI model and compute the entail- 352

ment scores for all pairs of sentences from the 353

source document and the summary. ZS stands for 354

zero-shot, where the final entailment score is the 355

average of the maximum entailment score for each 356
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sentence in the summary. Conv is a variant with an357

extra learned convolutional layer that aggregates358

the entailment score matrix to a final score.359

ROUGE Lin (2004) propose an evaluation met-360

ric by counting the overlapping words between the361

given reference and candidate text pairs.362

BERTScore Zhang et al. (2019) report the aver-363

age cosine similarity of the matched word embed-364

dings provided by BERT (Devlin et al., 2018) or365

other related models.366

FactCC, SummaC{ZS,Conv}, DAE are NLI-367

based metrics, and QuestEval, QAFactEval are QA-368

based metrics. To have a fair comparison, we use369

the pretrained RoBERTa-large (Liu et al., 2019) as370

the backbone for BERTScore and all-roberta-large-371

v1 (Reimers and Gurevych, 2019) for SBERTScore.372

The two checkpoints have identical numbers of lay-373

ers, and the only difference is that they are trained374

for different text embeddings.375

5 Experiments and Results376

In this section, we first investigate the suitability377

of different settings for similarity-based metrics.378

We also look into a case study to better understand379

the metrics’ behaviour when processing negation380

and neutral sentences. Then we test metric per-381

formance on the benchmark. The last subsection382

reports the error analysis and agreement between383

different factuality metrics and demonstrates the384

benefit of metric combination.385

5.1 Comparison of Precision, Recall, and F1386

We compare precision, recall, and F1 measure to387

select the most informative measure for similarity-388

based metrics. From the definition, precision389

relates better to the accuracy of the informa-390

tion included in the summary, while recall re-391

flects how completely the summary covers the392

source document. Table 2 supports our hypoth-393

esis that precision can assess generated summaries394

more accurately from the perspective of factuality.395

Therefore, we report precision of BERTScore and396

SBERTScore in the following sections.397

5.2 Comparison Text Selection398

We investigate the effect of taking (source,399

summary) and (reference, summary) as input400

to n-gram matching and similarity-based metrics.401

Table 3 shows that the choice of comparison text402

makes a huge difference to the same evaluation met-403

ric. The highest results on (reference, summary)404

pairs are only as good as a random guess, while 405

the performance on (source, summary) pairs is 406

greatly improved. References may be unsuitable 407

since they carry less information than the source 408

document, and often contain extrinsic knowledge 409

aggregated by human writers (Maynez et al., 2020), 410

especially in XSum (Narayan et al., 2018). 411

Measure Precision Recall F1

BERTScore 0.758 0.627 0.710
SBERTScore 0.779 0.644 0.703

Table 2: Average balanced accuracy on the benchmark
using precision, recall, and F1 measure. The highest
result is in bold, which is significantly higher than the
second best result with p < 0.05.

Metric Reference Source

Rouge 1 0.491 0.638
Rouge 2 0.318 0.706
Rouge L 0.491 0.674

BERTScore 0.500 0.759
SBERTScore 0.499 0.779

Table 3: Average balanced accuracy (Balanced Acc.)
computed on different comparison texts on the bench-
mark. All results in the source column are significantly
higher than their corresponding results in the upper
bracket with p < 0.05.

5.3 Text Granularity Selection 412

As performance can vary based on how the in- 413

put text is segmented and processed before being 414

fed into the sentence-transformer, we test the set- 415

tings mentioned above in different combinations to 416

build up a recommendation for using SBERTScore. 417

For BERTScore, we only test word level embed-

Model Granularity Balanced Accuracy

BERTScore Word-Word 0.759

SBERTScore

Word-Word 0.767
Sent-Sent 0.779
Doc-Sent 0.576
Sent-Doc 0.746
Doc-Doc 0.684
Mean-Sent 0.602
Sent-Mean 0.565
Mean-Mean 0.512

Table 4: Balanced accuracy with different text gran-
ularities as input. The highest balanced accuracy is
highlighted in bold, which is significantly higher than
the second best result with p < 0.05.

418
dings since it has been reported that BERT does 419
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not perform well in representing higher level text420

embeddings (Reimers and Gurevych, 2019). For421

SBERTScore, we additionally test word level input422

to better understand the contribution of granularity423

to the improvement.424

SBERTScore on sentence-sentence level425

achieves the highest score in Table 4. It also426

outperforms BERTScore on the same word-word427

level similarity, indicating that the improvement428

is brought by both the architecture and the429

appropriate text granularity. For document-level,430

the performance drops greatly when it is applied431

on the source document, as 45.76% of the source432

documents are trunctated. Inputting the summary433

at document level has a much smaller effect as the434

summary length is usually much shorter than the435

length limit. Segmenting the source documents at436

the right granularity can avoid the information loss437

brought by the length limit while producing more438

suitable embeddings for judging factuality.439

A simplification to SBERTScore is to compute440

the mean sentence embedding for an input docu-441

ment, avoiding the need to search for the maximum442

similarity while still processing sentences individ-443

ually with SBERT. In Table 4, we observe that444

averaging either source or summary will lead to445

worse balanced accuracy, which justifies the sen-446

tence granularity proposed in Section 3.447

5.4 Case Study: Negation448

BERTScore is reported to struggle at handling449

negation accurately (Leiter et al., 2022). We con-450

duct a case study to investigate the performance of451

SBERTScore when processing negation. Consider452

the four examples sentences below:453

S1 I like rainy days because they make me feel454

relaxed455

S2 I don’t like rainy days because they don’t456

make me feel relaxed.457

S3 I enjoy rainy days because they make me feel458

calm.459

S4 I enjoy listening to music at rainy days.460

Table 5 shows the BERTScores and SBERTScores461

obtained by comparing the given sentence pairs.462

BERTScore fails to identify the negation in S2 and463

assigns a high score despite its inconsistency with464

S1. SBERTScore does better since it works on465

the sentence-level where negation could have a466

larger influence. However, the comparison between467

SBERTScores of ⟨S1, S2⟩ and ⟨S1, S4⟩ indicates 468

that it is not sensitive enough to distinguish be- 469

tween negation and neutral expressions. ⟨S1, S4⟩ 470

do not contradict one another, so should receive 471

a higher score, yet both pairs have very similar 472

SBERTScores. Future research is therefore re- 473

quired into handling negation. 474

Metric ⟨S1, S2⟩ ⟨S1, S3⟩ ⟨S1, S4⟩

BERTScore 0.984 0.988 0.915
SBERTScore 0.720 0.975 0.701

Table 5: BERTScore and SBERTScore of example sen-
tence pairs.

5.5 Benchmark Comparison with NLI and 475

QA-based Methods 476

In Table 6, we combine the data from the same ori- 477

gin to compute ROC-AUC and set a single thresh- 478

old for them to compute the balanced accuracy. 479

The last two columns are the results obtained after 480

mixing all data. QAFactEval outperforms other 481

metrics on all splits of the dataset. Other metrics 482

are competitive with each other as they all have 483

advantageous and disadvantageous datasets. Along 484

with the detailed results in Table 7, we find that 485

metric performance varies across different datasets, 486

suggesting that choosing a suitable metric will, in 487

practice, depend on the dataset. 488

Given suitable comparison text, BERTScore is 489

actually much better than previous studies (Fab- 490

bri et al., 2021b; Pagnoni et al., 2021; Durmus 491

et al., 2020), it outperforms all zero-shot met- 492

rics and two other trained metrics on the XSum 493

split. SBERTScore outperforms SummaCZS on all 494

dataset splits except being slightly lower on over- 495

all balanced accuracy. In terms of ROC-AUC, it 496

achieves the second highest on CNNDM and is 497

third highest on the whole dataset, demonstrating 498

better factuality classification ability than some re- 499

cent metrics that use either NLI or QA paradigms, 500

especially comparing to SummaCZS that also uses 501

the zero-shot setting. Their performance indi- 502

cates that similarity-based metrics are still promis- 503

ing and competitive with recent factuality met- 504

rics. SBERTScore outperforms BERTScore on 505

CNNDM and overall scores but underperforms on 506

XSum. We speculate that is because most XSum 507

summaries are a single sentence, which prevents 508

our proposed metric from averaging scores over 509

sentences and leads to degeneration. Some evi- 510

dence for this is that SummaCZS , which averages 511
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Metric CNNDM XSum Overall

Banlanced Acc. ROC-AUC Banlanced Acc. ROC-AUC Banlanced Acc. ROC-AUC

QAFactEval 0.757 0.823 0.705 0.773 0.817 0.883
QuestEval 0.670 0.736 0.665 0.711 0.758 0.843
DAE 0.696 0.747 - - - -
SummaCConv 0.737 0.796 0.604 0.654 0.789 0.857

SummaCZS 0.686 0.759 0.577 0.607 0.782 0.836
BERTScore 0.692 0.767 0.695 0.738 0.759 0.832
SBERTScore 0.720 0.804 0.605 0.653 0.779 0.851

Table 6: Balanced accuracy and ROC-AUC of different metrics on each dataset split. Metrics in the top require
training while the bottom ones are zero-shot. The best results of each column on the two sections are highlighted
and are significantly better than the next best one in their section with p < 0.05. Following the setting of Tang et al.
(2023), we remove the results of DAE for a fair comparison as it is trained on the annotated validation set of XSum.

Metric Dataset

XSF Polytope FactCC SummEval FRANK QAGS CLIFF Goyal’ 21 XENT

QAFactEval 0.604 0.827 0.843 0.830 0.729 0.692 0.703 0.754 0.613
QuestEval 0.605 0.708 0.655 0.713 0.567 0.607 0.691 0.797 0.601
DAE - 0.782 0.704 0.716 0.695 0.586 0.734 - -
SummaCConv 0.655 0.744 0.891 0.793 0.655 0.629 0.744 0.552 0.668

SummaCZS 0.549 0.786 0.835 0.781 0.672 0.673 0.700 0.466 0.490
BERTScore 0.527 0.779 0.632 0.759 0.676 0.586 0.724 0.657 0.601
SBERTScore 0.608 0.772 0.754 0.827 0.655 0.596 0.701 0.605 0.581

Table 7: Balanced accuracy of different metrics on each dataset. Metrics in the top require training while the bottom
ones are zero-shot. The best results of each column in the two sections are highlighted. Underline indicates the
result is significantly better than the second best one in the same section with p < 0.05. We only report the DAE’s
results on CNNDM and remove the results on the part of the dataset that only contains XSum data.

the maximum scores in each column of the score512

matrix in the same way as our metric, also underper-513

forms on XSum. However, both SummacConv and514

BERTScore, as comparable alternatives to these515

two metrics, still average scores from several com-516

parisons, thus having better performance.517

5.6 Error Analysis and Metric Combination518

Previous studies (Pagnoni et al., 2021; Tang et al.,519

2023) point out that different metrics can be sensi-520

tive to different errors, inspiring us to look into the521

possibility of combining different metrics. We first522

investigate the error type sensitivity of BERTScore523

and SBERTScore, following the coarse error524

type taxonomy in (Tang et al., 2023). Errors are525

classified from two perspectives. Errors made up526

by text pieces that appear in the source document527

are noted as Intrinsic, otherwise Extrinsic. The528

error attributes are furthered classified as either529

NounPhrase or Predicate. All errors from530

XSF (Maynez et al., 2020), FRANK (Pagnoni531

et al., 2021), Goyal 21’ (Goyal and Durrett, 2021),532

and CLIFF (Cao and Wang, 2021) are annotated533

with a subset of {Intrinsic, Extrinsic} ×534

{NounPhrase, Predicate}. For 535

summaries from XSum, they have 536

two special additional error types, 537

{IntrinsicSentence,ExtrinsicSentence}, 538

if the whole sentence is inconsistent. The error 539

analysis investigates each metric’s recall on 540

detecting certain type of errors, as well as correct 541

summaries, as shown in Table 8. 542

The results in Table 8 demonstrate that metrics 543

have different strengths. Benefiting from the prop- 544

erties of similarity, BERTScore and SBERTScore 545

perform better on extrinsic than intrinsic errors for 546

the same attribute type. Compared to the recall of 547

errors, the most impressive ability of SBERTScore 548

is to identify correct summaries. It significantly 549

outperforms all the other metrics on CNNDM, and 550

comes only after SummaCZS on XSum. 551

Furthermore, we investigate the agreement 552

among different metrics on the benchmark to find 553

out whether they can be complementary to each 554

other. The Kohen’s κ scores in Appendix B show 555

weak agreement (< 0.45) among the metrics. Con- 556

sidering that these metrics have similar balanced 557

accuracy, it suggests that a combination of com- 558
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Metric
CNNDM Xsum

Intrinsic Extrinsic Correct Intrinsic Extrinsic Correct
NP. P. NP P. NP. P. Sent. NP P. Sent.

QAFactEval 0.546 0.509 0.791 0.633 0.401 0.671 0.720 0.882 0.532 0.631 0.808 0.304
QuestEval 0.695 0.582 0.777 0.742 0.309 0.493 0.553 0.941 0.520 0.644 0.849 0.387
DAE 0.575 0.509 0.668 0.609 0.436 - - - - - - -
SummaCConv 0.684 0.782 0.841 0.711 0.287 0.551 0.629 0.294 0.640 0.619 0.715 0.371

SummaCZS 0.632 0.745 0.800 0.711 0.314 0.676 0.652 0.824 0.569 0.589 0.523 0.418
BERTScore 0.661 0.636 0.741 0.719 0.342 0.538 0.621 0.882 0.597 0.631 0.782 0.375
SBERTScore 0.454 0.436 0.586 0.563 0.522 0.498 0.644 0.706 0.532 0.661 0.808 0.397

Table 8: Recall of each metric on different types of errors, as well as correct summaries. Metrics in the top require
training while the bottom ones are zero-shot. The best results of each column in the two sections are highlighted.
Underline indicates the result is significantly better than the second best in the same section with p < 0.05. We
remove the results of DAE for a fair comparison as it is trained on the annotated validation set of XSum.

parison approaches could be more effective than559

relying on a single metric. We simply test this idea560

by combining pairs of distinct evaluation metrics561

using logical AND and OR.562

QAFactEval

QuestEval

DAE SummaC-ZS

SummaC-Conv

BERTScore

SBERTScore

QAFactEval

QuestEval

DAE

SummaC-ZS

SummaC-Conv

BERTScore

SBERTScore

0.817 0.760 0.797 0.786 0.812 0.780 0.795

0.815 0.758 0.762 0.747 0.764 0.747 0.752

0.828 0.803 0.807 0.780 0.801 0.780 0.791

0.814 0.793 0.809 0.782 0.781 0.764 0.769

0.795 0.784 0.795 0.791 0.789 0.786 0.790

0.796 0.771 0.786 0.777 0.762 0.759 0.775

0.801 0.784 0.795 0.791 0.778 0.763 0.779

Figure 1: Average balanced accuracy of combined met-
rics on the benchmark. The diagonal is the balanced
accuracy of the original evaluation metric (highlighted
in blue). The upper triangular matrix is the balanced
accuracy of joint metrics using OR and the lower trian-
gular matrix is based on AND. Red blocks highlight the
balanced accuracy that is improved over two original
metrics, and green blocks highlight those are lower than
both original metrics. All improvements and declines
are statistically significant with p < 0.05.

The joint balanced accuracy of each combination563

is shown in Figure 1. The lower triangular matrix564

indicates that logical AND can improve the bal-565

anced accuracy, while the upper triangular matrix566

suggest opposite to logical OR. Since OR marks a567

summary as consistent if either of the base metrics568

classifies it as such, it demonstrates that individual569

factuality metrics may suffer from false positives. 570

Logical AND introduces a double-checking mecha- 571

nism, which raises the accuracy by mitigating the 572

false consistent rate and improving the true incon- 573

sistent rate. We show a combination example using 574

SBERTScore and QuestEval in Appendix C. 575

6 Conclusion 576

In this paper, we investigated the suitable settings 577

for similarity-based factuality evaluation metrics 578

and propose a new sentence-sentence level met- 579

ric, SBERTScore. We show that, given source 580

documents as input, similarity-based evaluation 581

metrics computed on sentence-sentence level are 582

competitive with more complex NLI and QA-based 583

factuality-oriented metrics, and do not require a su- 584

pervised learning step on the target domain. Also, 585

our proposed metric better aligns with human bi- 586

nary annotations than the widely-used BERTScore 587

on CNNDM subset and overall dataset on the 588

benchmark. It outperforms the weaker baselines 589

using NLI and QA-based paradigms and achieves 590

competitive balanced accuracy with the strongest 591

fine-tuned NLI-based metric. Therefore, we con- 592

clude that zero-shot similarity-based metrics are a 593

promising approach. We analyse the advantages of 594

our proposed metric in detecting correct summaries, 595

investigate the agreement among different metrics, 596

and find that similarity-based metrics make differ- 597

ent errors to QA and NLI-based metrics. Building 598

on this, we show that integrating metrics by logical 599

AND can improve balanced accuracy on benchmark 600

datasets. Furthermore, we illustrate a limitation of 601

similarity-based metrics when processing negation 602

and highly similar but neutral input text, which 603

suggests a direction for future research. 604
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Limitations605

The proposed metric in this paper shows compet-606

itive performance comparing to strong factuality607

metrics and can be used out-of-box. However, our608

proposed metric is based on similarity, which is609

insufficient for precisely detecting factual errors,610

because high similarity cannot guarantee factual611

consistency. Our case study shows that although612

SBERTScore can handle negation better, it still613

cannot distinguish highly similar sentences that are614

actually neutral to each other. Our investigation615

into metric combination represents only an initial616

step. The results of error analysis and inter-metric617

agreement suggest that designing more sophisti-618

cated methods for combining these metrics may be619

a promising way to make progress in future work.620

We note that our experiments are limited to English621

news datasets, and suggest that further investigation622

is needed to develop and test factuality approaches623

for other languages and text domains.624
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A Metric Processing Speed 785

We randomly sampled 1000 pieces of data from the 786

benchmark and ran QuestEval, SummaC{ZS,Conv}, 787

BERTScore and SBERTScore on them. We didn’t 788

test DAE and QAFactEval as their dependencies 789

are not compatible with our GPU. The runtime of 790

each metric to processing 1000 pieces of data is 791

presented in Table 9. 792

Metric Time (s)
QuestEval 1914
SummaCZS 207
SummaCConv 233
BERTScore 36
SBERTScore 67

Table 9: The total time needed for each metric to pro-
cess the 1000 pieces of samples. The fastest metric is
highlighted.

B Inter-Metric Agreement 793

We compute Cohen’s κ among all metrics using 794

their binary predictions on the benchmark. Figure 795

2 shows the agreement between the metrics. 796

C Example of Metric Combination 797

We use SBERTScore and QuestEval as a combina- 798

tion example where two metrics work in a comple- 799

mentary way to correct the false judgement. Table 800

10 shows a story extracted from the benchmark 801

dataset. The source and summary pair have an 802

SBERTScore of 0.610, which marks it as factually 803

inconsistent. QuestEval gives 0.426 with consis- 804

tent judgement, probably because the major noun 805
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DAE QuestEval

SummaC-ZS

SummaC-Conv

QAFactEval

BERTScore

SBERTScore

DAE

QuestEval

SummaC-ZS

SummaC-Conv

QAFactEval

BERTScore

SBERTScore

1.000 0.323 0.439 0.344 0.335 0.330 0.332

0.323 1.000 0.339 0.189 0.205 0.329 0.256

0.439 0.339 1.000 0.268 0.338 0.374 0.344

0.344 0.189 0.268 1.000 0.365 0.226 0.271

0.335 0.205 0.338 0.365 1.000 0.213 0.365

0.330 0.329 0.374 0.226 0.213 1.000 0.310

0.332 0.256 0.344 0.271 0.365 0.310 1.000

Figure 2: Cohen’s κ agreement score among different
metrics on the benchmark dataset. The higher agree-
ment is in deeper red.

Source Sidwell, 34, has made 32 Championship ap-
pearances this season to help the Seagulls
achieve promotion to the top flight for the first
time in 34 years. With his contract due to ex-
pire at the end of the campaign, the midfielder
is now hoping to sign a new deal. "I want to
be a part of it next year because I know we can
stay in the Premier League," he said, "...it can
be done and we can enjoy the summer."

Summary steven sidwell says he wants to stay at brighton
until the end of the season.

Table 10: An example extracted from the benchmark
dataset.

chunks in the summary are covered by the source 806

document, but they are actually used incorrectly. 807

Logical AND takes two labels into consideration 808

and decides the final prediction as inconsistent 809

which corrects the false positive prediction from 810

QuestEval. 811

The confusion matrices of the base metrics and 812

the AND combination, shown below in (Table 11), 813

support our inference that combination can mitigate 814

false consistent (false positive, FP) and improve 815

true inconsistent (TP) rates. 816

Metric TP TN FP FN

SBERTScore 0.444 0.332 0.084 0.141
QuestEval 0.511 0.266 0.150 0.074
Combined 0.418 0.355 0.061 0.166

Table 11: Confusion matrices of different metrics and
their combined metric on the benchmark.
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