
Under review as a conference paper at ICLR 2022

ADVERSARIAL TRAINING WITH RECTIFIED REJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial training (AT) is one of the most effective strategies for promoting model
robustness, whereas even the state-of-the-art adversarially trained models struggle
to exceed 65% robust test accuracy on CIFAR-10 without additional data, which
is far from practical. A natural way to improve beyond this accuracy bottleneck
is to introduce a rejection option, where confidence is a commonly used certainty
proxy. However, the vanilla confidence can overestimate the model certainty if
the input is wrongly classified. To this end, we propose to use true confidence
(T-Con) (i.e., predicted probability of the true class) as a certainty oracle, and learn
to predict T-Con by rectifying confidence. Intriguingly, we prove that under mild
conditions, a rectified confidence (R-Con) rejector and a confidence rejector can be
coupled to distinguish any wrongly classified input from correctly classified ones.
We also quantify that training R-Con to be aligned with T-Con could be an easier
task than learning robust classifiers. In our experiments, we evaluate our rectified
rejection (RR) module on CIFAR-10, CIFAR-10-C, and CIFAR-100 under several
attacks, and demonstrate that the RR module is well compatible with different AT
frameworks on improving robustness, with little extra computation.

1 INTRODUCTION

The adversarial vulnerability of machine learning models has been widely studied because of its
counter-intuitive behavior and the potential effect on safety-critical tasks (Biggio et al., 2013; Good-
fellow et al., 2015; Szegedy et al., 2014). Towards this end, many defenses have been proposed, but
most of them can be evaded by adaptive attacks (Athalye et al., 2018; Tramer et al., 2020). Among the
previous defenses, adversarial training (AT) is recognized as an effective defending approach (Madry
et al., 2018; Zhang et al., 2019b). Nonetheless, as reported in RobustBench (Croce et al., 2020), the
state-of-the-art AT methods still struggle to exceed 65% robust test accuracy on CIFAR-10 without
extra data, even after exploiting large model architectures (Gowal et al., 2020; Rebuffi et al., 2021;
Sehwag et al., 2021; Wu et al., 2020), which is far from practical requirements.

An improvement can be naturally achieved by incorporating a rejection or detection module along
with the adversarially trained classifier, which enables the model to refuse to make predictions for
abnormal inputs (Kato et al., 2020; Laidlaw and Feizi, 2019; Stutz et al., 2020). However, although
previous rejectors trained via margin-based objectives or confidence calibration can capture some
aspects of prediction certainty, they may overestimate the certainty, especially on wrongly classified
samples (discussed in Section 5). Furthermore, Tramer (2021) argues that learning a robust rejector
could suffer from a similar accuracy bottleneck as learning robust classifiers, which may be caused
by data insufficiency (Schmidt et al., 2018) or poor generalization (Yang et al., 2020c).

To solve these problems, we first observe that the true cross-entropy loss − log fθ(x)[y] reflects how
well the classifier fθ(x) is generalized on the input x (Goodfellow et al., 2016), assuming that we
can access its true label y. Thus, we propose to treat true confidence (T-Con) fθ(x)[y], i.e., the
predicted probability on the true label as a certainty oracle. Note that T-Con is different from the
commonly used confidence, which is obtained by taking the maximum as maxl fθ(x)[l].

As we shall see in Table 1, executing the rejection based on T-Con can largely increase the test
accuracy under a given true positive rate for both standardly and adversarially trained models. Another
intriguing fact about T-Con is that if we first threshold confidence by 1

2 , then T-Con can perfectly
distinguish any wrongly classified input from correctly classified ones (formally stated in Lemma 1).
This inspires us that instead of employing a single metric, we can couple two connected metrics like
confidence and T-Con to execute certified rejection options.

1

Under review as a conference paper at ICLR 2022

The property of T-Con is compelling, but its computation is unfortunately not realizable during
inference since the absence of the true label y. This motivates us to construct the rectified confidence
(R-Con) to learn to predict T-Con, by rectifying confidence via an auxiliary function. We prove that
if R-Con is trained to be aligned with T-Con within ξ-error, then a ξ-error R-Con rejector and a
1

2−ξ confidence rejector can be coupled to distinguish any wrongly classified input from correctly
classified ones, as formally described in Section 4.2.

Main Body
(e.g., ResNet)

feature mapping
from 𝑥 to 𝑧

Softm
ax

M
LP

FC
Sigm

oid 𝐴#(𝑥)

𝑓$ 𝑥 [𝑦]

𝑓$ 𝑥 [𝑦%]
Stop gradient

(if 𝒚𝒎 = 𝒚)

⨂

Stop gradient
T-Con

R-Con

BCE loss

Figure 1: Construction of the objectiveLRR in Eq. (4)
for training the RR module, which is the binary cross-
entropy (BCE) loss between T-Con and R-Con.

Technically, as illustrated in Fig. 1, we adopt
a two-head structure to model the classifier
and our rectified rejection (RR) module, while
adversarially training them in an end-to-end
manner. In particular, our rejection module
is learned by minimizing an extra BCE loss
between T-Con and R-Con. The design of
a shared main body saves computation and
memory costs. Stopping gradients on the con-
fidence fθ(x)[ym] when ym = y can avoid
focusing on easy examples and keep the opti-
mal solution of classifier unbiased.

Empirically, we evaluate the performance of our RR module on CIFAR-10, CIFAR-10-C, and CIFAR-
100 (Hendrycks and Dietterich, 2019; Krizhevsky and Hinton, 2009) with extensive experiments. In
Section 4, we verify the certified rejection options obtained by coupling confidence and R-Con. To
fairly compare with previous baselines, we also use R-Con alone as the rejector, and report both the
accuracy for a given true positive rate and the ROC-AUC scores in Section 6. We perform ablation
studies on the construction of R-Con, and design adaptive attacks to evade our RR module. Our
results demonstrate that the RR module is well compatible with different AT frameworks, and can
consistently facilitate the returned predictions to achieve higher robust accuracy under several attacks
and threat models, with little computational burden, and is easy to implement.

2 RELATED WORK

In the literature of standard training, Cortes et al. (2016) first propose to jointly learn the classifier
and rejection module, which is later extended to deep networks (Geifman and El-Yaniv, 2017;
2019). Recently, Laidlaw and Feizi (2019) and Kato et al. (2020) jointly learn the rejection option
during adversarial training (AT) via margin-based objectives, whereas they abandon the ready-made
information from confidence that is shown to be a simple but good solution of rejection for PGD-
AT (Wu et al., 2018). On the other hand, Stutz et al. (2020) propose confidence-calibrated AT (CCAT)
by adaptive label smoothing, leading to preciser rejection on unseen attacks. However, this calibration
acts on the true classes in training, while the confidences obtained by the maximal operation during
inference may not follow the calibrated property, especially on the misclassified inputs. In contrast,
we exploit true confidence (T-Con) as a certainty oracle (detailed in Section 3.1), and propose to learn
T-Con by rectifying confidence, in an adversarially end-to-end manner. As seen in our experiments
(e.g., Table 2 and Table 3), our RR module is compatible with CCAT, where R-Con is trained to be
aligned with the calibrated T-Con. In Appendix B, we introduce more backgrounds on adversarial
training and detection methods, where several representative methods are involved as our baselines.

3 CLASSIFICATION WITH A REJECTION OPTION

Consider a data pair (x, y), with x ∈ Rd as the input and y as the true label. We refer to fθ(x) :

Rd → ∆L as a classifier parameterized by θ, where ∆L is the probability simplex of L classes.
Following Geifman and El-Yaniv (2019), a classifier with a rejection moduleM can be formulated as

(fθ,M)(x) ,

{
fθ(x), ifM(x) ≥ t;
don’t know, ifM(x) < t,

(1)

where t is a threshold, andM(x) is a certainty proxy computed by auxiliary models or statistics.

What to reject? The design ofM is principally decided by what kinds of inputs we intend to reject.
In the adversarial setting, most of the previous detection methods aim to reject adversarial examples,

2

Under review as a conference paper at ICLR 2022

which are usually misclassified by standardly trained models (STMs) (Carlini and Wagner, 2017a).
In this case, the misclassified and adversarial characters are considered as associated by default.
However, for adversarially trained models (ATMs) on CIFAR-10, more than 50% adversarial inputs
are correctly classified (Croce and Hein, 2020). Hence, it is more reasonable to execute rejection
depending on whether the input will be misclassified rather than adversarial.

3.1 TRUE CONFIDENCE (T-CON) AS A CERTAINTY ORACLE

To reject misclassified inputs, there are many ready-made choices for computingM(x). We use
fθ(x)[l] to represent the returned probability on the l-th class, and denote the predicted label as

ym = arg max
l

fθ(x)[l], (2)

where fθ(x)[ym] is usually termed as confidence (Goodfellow et al., 2016). In the standard setting,
confidence is shown to be one of the best certainty proxies for a trained network (Geifman and
El-Yaniv, 2017), which is often used by practitioners. However, the confidence returned by STMs
can be adversarially fooled (Moosavi-Dezfooli et al., 2016).

Different from confidence which is obtained by taking the maximum as maxl fθ(x)[l], we introduce
true confidence (T-Con) defined as fθ(x)[y], i.e., the returned probability on the true label y. When
classifiers are trained by minimizing cross-entropy loss E[− log fθ(x)[y]], the value of− log fθ(x)[y]
can better reflect how well the model is generalized on a new input x during inference, compared to
its empirical approximation − log fθ(x)[ym], especially when x is misclassified (i.e., ym 6= y).

Table 1: Test accuracy (%) of ResNet-18.

Inputs All TPR-95
Con. T-Con

Stan. Clean 95.36 98.40 100.0
PGD-10 0.22 0.18 100.0

Adv. Clean 82.67 87.39 96.55
PGD-10 53.58 57.23 88.75

Availability 3 7

Empirically in Table 1, we adversarially train a clas-
sifier on CIFAR-10, and evaluate the effects of con-
fidence and T-Con as the rejection metric M, re-
spectively. We report the accuracy without rejection
(’All’), and the accuracy when fixing the rejection
threshold at 95% true positive rate (’TPR-95’) w.r.t.
confidence or T-Con1, i.e., at most 5% correctly clas-
sified examples are rejected. As seen, thresholding
on T-Con can largely improve the accuracy.

To explain the results, note that STMs tend to return high confidences, e.g., 0.95 on both clean
and adversarial inputs (Nguyen et al., 2015), then if an input x is correctly classified, there is
T-Con(x) = 0.95; otherwise T-Con(x) < 1 − 0.95 = 0.05. Thus it is reasonable to see that
thresholding on T-Con for STMs can lead to TPR-95 accuracy of 100% as in Table 1. As a result, we
treat T-Con as a certainty oracle, and confidence is actually a proxy of T-Con in inference when we
cannot access the true label y. In Section 4, we propose a better proxy R-Con to approximate T-Con.

3.2 CERTIFIED SEPARABILITY BY COUPLING CONFIDENCE AND T-CON

Instead of using a single metric, we find an intriguing fact that properly coupling confidence and
T-Con can certifiably separate wrongly and correctly classified inputs, as stated below:

Lemma 1. (Certified separability) Given the classifier fθ, ∀x1, x2 with confidences larger than 1
2 ,

i.e., fθ(x1)[ym1] > 1
2 and fθ(x2)[ym2] > 1

2 . If x1 is correctly classified as ym1 = y1, while x2 is
wrongly classified as ym2 6= y2, then there is T-Con(x1) > 1

2 > T-Con(x2).

Proof. Since x1 is correctly classified, i.e., ym1 = y1, we have fθ(x1)[y1] = fθ(x1)[ym1] > 1
2 . On the

other hand, since x2 is wrongly classified, i.e., ym1 6= y1, we have fθ(x1)[y1] ≤ 1− fθ(x1)[ym1] < 1
2 .

Thus we have T-Con(x1) > 1
2 > T-Con(x2).

Intuitively, Lemma 1 indicates that if we first threshold confidence to be larger than 1
2 , then for

any x that pass the confidence rejector, there is T-Con(x) < 1
2 if x is misclassified; otherwise

T-Con(x) > 1
2 . Note that there is no constraint on how the misclassification is caused, i.e., wrongly

classified inputs can be adversarial examples, generally corrupted ones, or just the clean samples.
1Here we assume that the true labels are known when computing T-Con.

3

Under review as a conference paper at ICLR 2022

4 LEARNING T-CON VIA RECTIFYING CONFIDENCE

In this section, we describe learning T-Con via rectifying confidence, and formally present the certified
separability and the learning difficulty of rectified confidence. Proofs are provided in Appendix A.

4.1 CONSTRUCTION OF RECTIFIED CONFIDENCE (R-CON)

When the input x is correctly classified by fθ, i.e., ym = y, the values of confidence and T-Con
become aligned. This inspires us to learn T-Con by rectifying confidence, instead of modeling
T-Con from scratch, which facilitates optimization and is conducive to preventing the classifier
and the rejector from competing for model capacity. Namely, we introduce an auxiliary function
Aφ(x) ∈ [0, 1], parameterized by φ, and construct the rectified confidence (R-Con) as2

R-Con(x) = fθ(x)[ym] ·Aφ(x). (3)

In training, we encourage R-Con to be aligned with T-Con. This can be achieved by minimizing the
binary cross-entropy (BCE) loss (detailed implementation seen in Appendix C.1). Other alternatives
like margin-based objectives (Kato et al., 2020) or mean square error can also be applied. The training
objective of our rectified rejection (RR) module can be written as

LRR(x, y; θ, φ) = BCE (fθ(x)[ym] ·Aφ(x) ‖ fθ(x)[y]) , (4)

where the optimal solution of minimizing LRR with respect to φ is A∗φ(x) = fθ(x)[y]
fθ(x)[ym] . The auxiliary

function Aφ(x) can be jointly learned with the classifier fθ(x) during AT by optimizing

min
θ,φ

Ep(x,y)
[
LT(x∗, y; θ)︸ ︷︷ ︸

classification

+λ · LRR(x∗, y; θ, φ)︸ ︷︷ ︸
rectified rejection

]
, where x∗ = arg max

x′∈B(x)

LA(x′, y; θ). (5)

Here λ is a hyperparameter, B(x) is a set of allowed points around x (e.g., a ball of ‖x′ − x‖p ≤ ε),
LT and LA are the training and adversarial objectives for a certain AT method, respectively, where LT
and LA can be either the same or chosen differently (Pang et al., 2020). Note that we can generalize
Eq. (5) to involve clean inputs x in the outer minimization objective, which is compatible with the AT
methods like TRADES. The inner maximization problem can also include φ.

Architecture of Aφ. We consider the classifier with a softmax layer as fθ(x) = S(Wz + b), where
z is the mapped feature, W and b are the weight matrix and bias vector, respectively. We apply an
extra shallow network to construct Aφ(x) = MLPφ(z), as illustrated in Fig. 1 and Appendix D.1.
This two-head structure incurs little computational burden. Other more flexible architectures for
Aφ can also be used, e.g., RBF networks (Sotgiu et al., 2020; Zadeh et al., 2018) or concatenating
multi-block features that taking path information into account, and we do not further explore in this
paper. Note that we stop gradients on the flows of fθ(x)[y]→ BCE loss, and fθ(x)[ym]→ R-Con
when ym = y. These operations prevent the models from concentrating on correctly classified inputs,
while facilitating fθ(x)[y] to be aligned with pdata(y|x), as detailed in Appendix C.1.

How well is Aφ learned? In practice, the auxiliary function Aφ(x) is usually trained to achieve the
optimal solution A∗φ(x) within a certain error. We introduce a definition on the point-wise error be-
tweenAφ(x) andA∗φ(x), which admits two ways of measuring, either geometric or arithmetic:

Definition 1. (point-wisely ξ-error) If at least one of the bounds holds at a point x:

Bound (i):

∣∣∣∣∣log

(
Aφ(x)

A∗φ(x)

)∣∣∣∣∣ ≤ log

(
2

2− ξ

)
; Bound (ii):

∣∣Aφ(x)−A∗φ(x)
∣∣ ≤ ξ

2
. (6)

where ξ ∈ [0, 1), then Aφ(x) is called ξ-error at input x.

We can show that given any Aφ that is better than a random guess at x, we can always find ξ ∈ [0, 1)
satisfying Definition 1. Specifically, assuming that Aφ simply performs random guess on x, i.e.,

Aφ(x) = 1
2 . Since A∗φ(x) ∈ [0, 1], there is

∣∣∣Aφ(x)−A∗φ(x)
∣∣∣ =

∣∣∣ 12 −A∗φ(x)
∣∣∣ ≤ 1

2 , which means
even a random-guess Aφ can satisfy Bound (ii) in Definition 1 with ξ = 1.

2It is also feasible to use an additive formula as R-Con(x) = fθ(x)[y
m]−Aφ(x).

4

Under review as a conference paper at ICLR 2022

4.2 CERTIFIED SEPARABILITY BY COUPLING CONFIDENCE AND R-CON

Recall that in Lemma 1 we present how to certifiably distinguish wrongly and correctly classified
inputs, via referring to the values of confidence and T-Con. However, in practice we cannot compute
T-Con without knowing the true label y. To this end, we substitute T-Con with R-Con during inference,
and demonstrate that a 1

2−ξ confidence rejector and a R-Con rejector with ξ-error Aφ can be coupled
to achieve certified separability, similar as the property of T-Con shown in Lemma 1.

Theorem 1. (Certified separability) Given the classifier fθ, for any pair of inputs x1 and x2 with
confidences larger than 1

2−ξ , i.e.,

fθ(x1)[ym1] >
1

2− ξ , and fθ(x2)[ym2] >
1

2− ξ , (7)

where ξ ∈ [0, 1). If x1 is correctly classified as ym1 = y1, while x2 is wrongly classified as ym2 6= y2,
and Aφ is ξ-error at x1, x2, then there must be R-Con(x1) > 1

2 > R-Con(x2).

0 0.1 0.2 0.3 0.4 0.5 0.6
-error

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
-C

on
Correctly classified
Wrongly classified

Figure 2: PGD-10 examples filtered by confi-
dence value of 1

2−ξ for each ξ. R-Con can sepa-
rate correctly and wrongly classified examples.

Namely, after we first thresholding confidence by
1

2−ξ , any misclassified input will obtain a R-Con
value lower than any correctly classified one, as
long as Aφ is trained to be ξ-error at these points.
This property prevents adversaries from simulta-
neously fooling the predicted labels and R-Con
values. As argued in Section 4.3, training Aφ to
ξ-error could be easier than learning a robust clas-
sifier, which justifies the existence of wrongly clas-
sified but ξ-error points like x2. In Fig. 2, we
empirically verify Theorem 1 on a ResNet-18 (He
et al., 2016) trained with the RR module on CIFAR-
10. The test examples are perturbed by PGD-10
and filtered by a 1

2−ξ confidence rejector for each
ξ. The remaining correctly and wrongly classified samples are separable w.r.t. the R-Con metric,
even if we cannot compute ξ-error in practice without knowing true label y.

The effects of temperature tuning. It is known that for a softmax layer fθ(x) = S(Wz+b
τ) with

a temperature scalar τ > 0, the true label y and the predicted label ym are invariant to τ , but the
values of confidence and T-Con are not guaranteed to be order-preserving with respect to τ among
different inputs. For instance, if there is fθ(x1)[y1] < fθ(x2)[y2] under τ = 1, it is possible that for
other values of τ the inequality is reversed (detailed in Appendix C.2). As seen in Fig. 3, after we
lower down the temperature τ during inference, more PGD-10 examples can satisfy the conditions in
Theorem 1, on which R-Con can provably distinguish correctly and wrongly classified inputs.

4.3 THE DIFFICULTY OF LEARNING Aφ(x)

Tramer (2021) advocates that learning a rejector is nearly as hard as learning a classifier against
adversarial examples. So it would be informative to quantify the difficulty of training a ξ-error R-Con
rejector. As learning Aφ(x) is a regression task with Aφ(x) bounded in [0, 1] by model design, we
can convert the task of learning ξ-error Aφ(x) to a substituted classification task as:

Theorem 2. (Substituted learning task of Aφ(x)) The task of learning a ξ-error Aφ(x) can be
reconstructed into a classification task with number of classes as Nsub, where

N1 =
log ρ−1

log
(

2
2−ξ

) + 1, N2 =
2

ξ
, and Nsub = dmin(N1, N2)e. (8)

Here d·e is the ceil rounding function, and ρ is a preset rounding error for small values of A∗φ(x).

Intuitively, Theorem 2 provides a way to approximate how many test samples are expected to satisfy
ξ-error conditions. Under the similar data distribution, the classification problems with a larger
number of classes are usually (not necessarily) more difficult to learn, i.e., achieve lower accuracy.

5

Under review as a conference paper at ICLR 2022

0 0.2 0.4 0.6 0.8 1
-error

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
-C

on

 Correctly classified
 Wrongly classified

0 0.2 0.4 0.6 0.8 1
-error

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

R
-C
on

0 0.2 0.4 0.6 0.8 1
-error

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

R
-C
on

0 0.2 0.4 0.6 0.8 1
-error

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

R
-C
on

0 0.2 0.4 0.6 0.8 1
-error

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

R
-C
on

×𝟑𝟏𝟒𝟐 ×𝟏𝟖𝟐 ×𝟑𝟒𝟗𝟎 ×𝟑𝟐𝟒 ×𝟑𝟕𝟕𝟗 ×𝟕𝟒𝟓 ×𝟐𝟕𝟕𝟕 ×𝟐𝟑𝟒𝟔×𝟐𝟕𝟏𝟓 ×𝟒𝟐

𝐥𝐨𝐠𝟐 𝝉 = 𝟎 𝐥𝐨𝐠𝟐 𝝉 = −𝟏 𝐥𝐨𝐠𝟐 𝝉 = −𝟐 𝐥𝐨𝐠𝟐 𝝉 = −𝟑 𝐥𝐨𝐠𝟐 𝝉 = −𝟒

Figure 3: The PGD-10 examples crafted on 10, 000 test samples on CIFAR-10, and filtered by 1
2−ξ

confidence threshold for each ξ. Here log2 τ = 0 (i.e., τ = 1) is the case shown in Fig. 2. Simply
lower down the temperature τ can involve more samples into the area of certified separability.

For example, the same model that achieves 90% test accuracy on CIFAR-10 may only achieve 70%
test accuracy on CIFAR-100. According to Theorem 2, if we want to obtain a 0.1-error Aφ on the
CIFAR datasets, then this task can be regarded as a 20-classes classification problem, whose learning
difficulty is expected to be between 10-classes one (e.g., CIFAR-10 task) and 100-classes one (e.g.,
CIFAR-100 task). Thus, the test accuracy of the 20-classes task is expected to be between 90% and
70%, which means about 70%∼90% test samples will satisfy ξ-error conditions with ξ = 0.1.

Similarly, Theorem 2 can also approximate the difficulty of learning a robust ξ-error Aφ, e.g., for any
point x′ in the `∞ ball around x, we have x′ satisfy ξ-error conditions. This task can be converted
into training a certified classifier (Wong and Kolter, 2018), and the ratio of test samples that achieve
robust ξ-error Aφ can be approximated by the performance of existing certified defenses.

5 FURTHER DISCUSSION

Rectified rejection vs. binary rejection. In the limiting case of τ → 0, the returned probability
vector will tend to one-hot, i.e., fθ(x)[ym] always equals to one, and the optimal solution A∗φ
becomes binary as A∗φ(x) = 1 if x is correctly classified; otherwise A∗φ(x) = 0. In this case,
learning Aφ degenerates to a binary classification task, which has been widely studied and applied in
previous work (Geifman and El-Yaniv, 2017; 2019; Gong et al., 2017; Kato et al., 2020). However,
directly learning a binary rejector abandons the returned confidence that can be informative about
the prediction certainty (Geifman and El-Yaniv, 2017; Wu et al., 2018). Besides, since a trained
binary rejectorM usually outputs continuous values in [0, 1], e.g., after a sigmoid activation, its
returned values will be overwhelmed by the optimization procedure under binary supervision. For
example, two wrongly classified inputs x1, x2 may haveM(x1) <M(x2) only becauseM is easier
to optimize on x1 during training. This trend deviatesM from properly reflecting the prediction
certainty of fθ(x), and induces suboptimal reject decisions during inference. In contrast, our RR
module learns T-Con by rectifying confidence, where T-Con provides more distinctive supervised
signals, and the rectified formula takes advantage of model sharing. It is easy to show that R-Con
with a ξ-error Aφ is approximately order-preserving with respect to the T-Con values. This enables
R-Con to stick to the certainty measure induced by T-Con, and make reasonable reject decisions.

Rectified confidence vs. calibrated confidence. Another concept related with T-Con and R-Con is
confidence calibration (Guo et al., 2017). Typically, a classifier fθ with calibrated confidence satisfies
that ∀c ∈ [0, 1], there is p

(
ym = y

∣∣fθ(x)[ym] = c
)

= c, where the probability is taken over the
data distribution. For notation compactness, we let qθ(c) , p (fθ(x)[ym] = c) be the probability
that the returned confidence equals to c. Then if we execute rejection option based on the calibrated
confidence, the accuracy on returned predictions can be calculated by

∫ 1

t
c · qθ(c)dc

/∫ 1

t
qθ(c)dc,

where t is the preset threshold. On the positive side, calibrated confidence certifies that the accuracy
after rejection is no worse than t. However, since there is no explicit supervision on the distribution
qθ(c), the final accuracy still relies on the difficulty of learning task. In contrast, rejecting via T-Con
with a 0.5 threshold will always lead to 100% accuracy, whatever the learning difficulty, which makes
T-Con a more ideal supervisor when we aim to learn a generally well-behaved rejection module.

6 EXPERIMENTS

Our experiments are done on the datasets CIFAR-10, CIFAR-100, and CIFAR-10-C (Hendrycks and
Dietterich, 2019). We choose two commonly used model architectures: ResNet-18 (He et al., 2016)
and WRN-34-10 (Zagoruyko and Komodakis, 2016). Following the suggestions in Pang et al. (2021),

6

Under review as a conference paper at ICLR 2022

Table 2: TPR-95 accuracy (%) and ROC-AUC scores of the ResNet-18 models trained on CIFAR-10,
evaluated by PGD-10 attacks. Here GDA∗ indicates using class-conditional covariance matrices.

AT Rejector Clean `∞, 8/255 `∞, 16/255 `2, 128/255
TPR-95 AUC TPR-95 AUC TPR-95 AUC TPR-95 AUC

PGD-AT

KD 82.59 0.618 53.44 0.587 32.23 0.537 64.91 0.599
LID 84.02 0.712 55.12 0.661 33.09 0.622 66.32 0.666
GDA 82.35 0.453 52.96 0.461 31.94 0.452 64.44 0.458
GDA∗ 84.51 0.664 54.16 0.589 32.20 0.525 65.99 0.606
GMM 85.44 0.703 54.55 0.606 32.22 0.530 66.74 0.634

CARL Margin 85.54 0.682 51.93 0.539 30.69 0.517 66.20 0.647
ATRO Margin 73.42 0.669 36.48 0.655 21.50 0.644 41.77 0.657
CCAT Con. 92.44 0.806 51.88 0.637 45.30 0.683 67.34 0.770
TRADES Con. 86.07 0.837 57.88 0.773 37.80 0.737 68.08 0.781
PGD-AT SNet 84.19 0.796 56.63 0.729 35.65 0.692 67.83 0.740
PGD-AT EBD 85.34 0.832 57.38 0.763 35.18 0.689 68.05 0.774

TRADES RR 86.47 0.849 58.71 0.786 38.13 0.746 69.19 0.793
CCAT RR 94.12 0.909 54.14 0.662 48.14 0.690 68.20 0.785
PGD-AT RR 86.91 0.861 58.39 0.776 35.57 0.704 70.36 0.794

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

Discriminative gap

Pros:
more discriminative T-Con.

lower temperature

Cons:
less supervised information, and requiring smaller
error 𝜉 to make R-Con order-preserving w.r.t. T-Con.

Figure 4: We quantify the effects of temperature τ . The model is adversarially trained on CIFAR-10
(no RR module used) and evaded by PGD-10. Left: TPR-95 accuracy with respect to confidence and
T-Con. Right: Averaged confidence / T-Con value on correct / misclassified PGD-10 inputs.

for all the defenses, the default training settings include batch size 128; SGD momentum optimizer
with the initial learning rate of 0.1; weight decay 5× 10−4. The training runs for 110 epochs with
the learning rate decaying by a factor of 0.1 at 100 and 105 epochs. We report the results on the
checkpoint with the best 10-steps PGD attack (PGD-10) accuracy (Rice et al., 2020).

AT frameworks used in our methods. We mainly apply three popular AT frameworks to combine
with our RR module, involving PGD-AT (Madry et al., 2018), TRADES (Zhang et al., 2019b), and
CCAT (Stutz et al., 2020). For PGD-AT and TRADES, we use PGD-10 during training, under
`∞-constraint of 8/255 with step size 2/255. The trade-off parameter for TRADES is 6 (Zhang et al.,
2019b), and the implementation of CCAT follows its official code. In the reported results, ‘RR’ refers
to the model adversarially trained by Eq. (5) with different AT frameworks, and using R-Con as the
rejection metric; We set λ = 1 in Eq. (5) without tuning.

Baselines. We choose two kinds of commonly compared baselines (Bulusu et al., 2020). The first
kind constructs statistics upon the learned features after training the classifier, including kernel
density (KD) (Feinman et al., 2017), local intrinsic dimensionality (LID) (Ma et al., 2018), Gaussian
discriminant analysis (GDA) (Lee et al., 2018), and Gaussian mixture model (GMM) (Zheng and
Hong, 2018). The second kind jointly learns the rejector with the classifier, which involves Selec-
tiveNet (SNet) (Geifman and El-Yaniv, 2019), energy-based detection (EBD) (Liu et al., 2020b),
CARL (Laidlaw and Feizi, 2019), ATRO (Kato et al., 2020), and CCAT (Stutz et al., 2020). We
emphasize that most of these baselines are originally applied to STMs, while we adopt them to ATMs
as stronger baselines by re-tuning their hyperparameters, as detailed in Appendix D.2.

Adversarial attacks. We evaluate under PGD (Madry et al., 2018), C&W (Carlini and Wagner,
2017a), AutoAttack (Croce and Hein, 2020), multi-target attack (Gowal et al., 2019), GAMA
attack (Sriramanan et al., 2020), and general corruptions in CIFAR-10-C (Hendrycks and Dietterich,
2019). More details on the attacking hyperparameters can be found in Appendix D.3.

7

Under review as a conference paper at ICLR 2022

Table 3: TPR-95 accuracy (%) under common corruptions in CIFAR-10-C. The model architecture
is ResNet-18, and the reported accuracy under each corruption is averaged across five severity.

AT Rej. CIFAR-10-C
Glass Motion Zoom Snow Frost Fog Bright Contra Elastic JPEG

PGD-AT SNet 77.74 75.52 78.72 79.77 75.81 61.32 81.75 42.97 78.59 82.08
PGD-AT EBD 78.47 77.92 80.47 81.17 79.14 61.16 83.98 42.10 80.86 83.34
CARL Margin 77.45 74.94 78.00 79.86 74.16 56.09 81.28 40.33 78.17 82.64
ATRO Margin 55.36 53.74 54.59 50.84 41.12 42.82 50.13 33.54 54.48 56.82
CCAT Con. 83.04 85.47 89.33 89.38 88.21 76.32 92.71 55.99 89.34 91.94
TRADES Con. 79.89 78.48 80.92 78.75 71.61 63.53 80.97 45.22 80.53 84.50

PGD-AT RR 80.87 79.42 81.90 81.89 76.95 63.49 84.02 44.03 82.18 85.12
CCAT RR 85.03 86.26 89.83 89.22 88.41 77.45 92.62 58.95 89.59 92.06
TRADES RR 80.03 79.15 81.00 80.16 74.18 63.55 82.13 45.99 80.98 84.64

Table 4: TPR-95 accuracy (%) on CIFAR-10,
under multi-target attack and GAMA attacks.
The model architecture is ResNet-18, and
the threat model is (`∞, 8/255).

AT Rej. Multi- GAMA GAMA
target (PGD) (FW)

PGD-AT SNet 55.02 55.79 51.37
PGD-AT EBD 55.40 56.15 53.24
CARL Margin 46.17 48.49 44.78
ATRO Margin 32.53 31.74 28.31
CCAT Con. 34.21 49.78 38.01
TRADES Con. 53.69 56.89 50.88

PGD-AT RR 56.18 57.57 54.08
CCAT RR 36.48 51.30 40.72
TRADES RR 54.83 57.93 51.48

Figure 5: Confidence values w.r.t. ξ-error values of
ResNet-18 trained by PGD-AT+RR on CIFAR-10.
Here ξ is calculated as the minimum value satisfying
Definition 1. The settings are the same as in Fig. 3.

6.1 PERFORMANCE AGAINST NORMAL ATTACKS

We report the results on defending normal attacks, i.e., those only target at fooling the classifiers. The
results on CIFAR-10 are shown in Table 2 (results on CIFAR-100 are in Appendix D.4). The ’All’
accuracy indicates the case with no rejection. As for the ‘TPR-95’ accuracy, we fix the thresholds
to 95% true positive rate, which means at most 5% of correctly classified examples can be rejected.
We evaluate under PGD-10 (`∞, ε = 8/255) which is seen during training, and unseen attacks with
different perturbation constraint (ε = 16/255), threat model (`2), or steps (PGD-1000 in Table 8).
We apply untargeted mode with 5 restarts. We can observe that our RR module can well incorporate
with different AT frameworks, which outperform previous baselines and the vanilla versions of
AT + confidence, with little extra computation and memory usage. Besides, the improvement on
CIFAR-100 is more significant than it on CIFAR-10, which verifies our formulation on learning
difficulty in Section 4.3. The poor performance of statistics-based baselines is affected by the irregular
feature distributions in ATMs, as shown in Appendix D.5. We also investigate the performance of
our methods against the out-of-distribution corruptions on CIFAR-10-C, as summarized in Table 3.
In Table 4, we evaluate under multi-target attack and GAMA attacks. As to AutoAttack, we note
that its algorithm returns crafted adversarial examples for successful evasions, while returns original
clean examples otherwise. By using RR to train a ResNet-18, the All (TPR-95) accuracy (%) under
AutoAttack is 48.62 (84.32) and 25.20 (70.99) on CIFAR-10 and CIFAR-100, respectively.

6.2 ABLATION STUDIES

Empirical effects of temperature τ . In addition to the certified separability described in Section 4.2,
we show the curves of TPR-95 accuracy and averaged confidence / T-Con values in Fig. 4 w.r.t. the
temperature scaling, while in Fig. 5 we visualize the sample distributions of ξ-error vs. confidence
values. We can observe that the T-Con values become more discriminative for a lower temperature on
rejecting misclassified examples, but numerically provide less supervised information and require
smaller error ξ to make R-Con order-preserving w.r.t. T-Con. On the other hand, as the temperature
τ gets larger above one, the discriminative power of confidence becomes weaker, making R-Con

8

Under review as a conference paper at ICLR 2022

Table 5: Ablation studies on the effect of tem-
perature τ for RR. Note that in the objective
Eq. (5), τ is only tuned in the term of LRR,
while the temperature for LT is kept to be 1.

log2 τ
Clean inputs PGD-10 inputs

TPR-95 AUC TPR-95 AUC
−1 86.86 0.866 59.11 0.770
−2 86.62 0.865 60.63 0.762
−3 85.18 0.868 61.12 0.741
−4 80.22 0.836 55.15 0.740

Table 6: Ablation studies on rectified construc-
tion of R-Con in Eq. (3). Here ‘fθ(x)[ym]’ and
‘Aφ(x)’ indicate using confidence and auxiliary
function to substitute R-Con in LRR, respectively.

Rejector Clean inputs PGD-10 inputs
TPR-95 AUC TPR-95 AUC

Aφ(x) 85.77 0.844 56.97 0.765
RR 86.91 0.861 58.39 0.776
fθ(x)[ym] 86.76 0.865 57.42 0.768
RR (Con.) 87.12 0.868 58.49 0.777

Table 7: Minimal perturbations required by successful
evasions, searched by CW attacks. Here ‘Normal (Nor.)’
refers to fooling the classifier, and ‘Adaptive (Ada.)’ refers
to adaptively fooling both the classifier and rejector.

Rej.
CIFAR-10 CIFAR-100

CW-`∞ CW-`2 CW-`∞ CW-`2
Nor. Ada. Nor. Ada. Nor. Ada. Nor. Ada.

SNet 14.30 30.48 0.84 2.70 8.20 23.05 0.56 2.37
EBD 14.70 37.54 0.85 2.42 8.58 25.69 0.60 1.81
RR 14.99 38.58 0.87 3.28 8.53 28.67 0.61 3.21

Table 8: Classification accuracy (%)
and ROC-AUC scores under PGD-1000
attacks, where the step size is 2/255
and the perturbation constraint is 8/255
under `∞ threat model.

Rej. CIFAR-10 CIFAR-100
TPR-95 AUC TPR-95 AUC

SNet 55.83 0.725 32.69 0.744
EBD 56.12 0.763 33.35 0.769
RR 57.57 0.773 34.48 0.776

harder to distinguish misclassified inputs from correctly classified ones. In practice, we can trade-off
between the learning difficulty and the effectiveness of R-Con by tuning τ . Namely, in Table 5
we study the effects of tuning temperature values for fθ(x)[y] and fθ(x)[ym] in LRR. We find that
moderately lower down the temperature can benefit model robustness but sacrifice clean accuracy,
while overly low temperature degenerates both clean and robust performance.

Formula of R-Con. In Table 6, we investigate the cases if there is no rectified connection (i.e., only
use Aφ(x)) or no auxiliary flexibility (i.e., only use fθ(x)[ym]) in the constructed rejection module.
As shown, our rectifying paradigm indeed promote the effectiveness.

6.3 PERFORMANCE AGAINST ADAPTIVE ATTACKS

0 5 10 15 20
Value of

54

56

58

60

62

64

66

Te
st

 A
cc

ur
ac

y
(%

)

 TPR-95 accuracy
 ALL accuracy

0 50 100 500 1000
Value of

54

56

58

60

62

64

66

Te
st

 A
cc

ur
ac

y
(%

)

 TPR-95 accuracy
 ALL accuracy

0 1 2 5 10
Value of

51

53

55

57

59

61

63

65

Te
st

 A
cc

ur
ac

y
(%

)

 TPR-95 accuracy
 ALL accuracy

LCE + ⌘ · LRR
<latexit sha1_base64="qVQfEyZvfxuiWe+tGmv/TAHpB4w=">AAACOXicbVDLSsNAFJ3Ud31VXboJFkEQSlIFXbgoFsGFCxWrQhPCZHrbDp08mLmRlpCf8Tf8Abe6c+lGxK0/4LTNQlsPDBzOuZd75vix4Aot680ozMzOzS8sLhWXV1bX1ksbm7cqSiSDBotEJO99qkDwEBrIUcB9LIEGvoA7v1cf+ncPIBWPwhscxOAGtBPyNmcUteSVTpyAYpdRkV5kXuog9FEGaf0sy/YdQOqwVoT/jlxfZ5lXKlsVawRzmtg5KZMcl17pw2lFLAkgRCaoUk3bitFNqUTOBGRFJ1EQU9ajHWhqGtIAlJuOfpmZu1ppme1I6heiOVJ/b6Q0UGoQ+HpyGFhNekPxP6+ZYPvYTXkYJwghGx9qJ8LEyBxWZra4BIZioAllkuusJutSSRnqYv9c6Y+jFnUx9mQN0+S2WrEPKtWrw3LtNK9okWyTHbJHbHJEauScXJIGYeSRPJMX8mo8Ge/Gp/E1Hi0Y+c4W+QPj+wdEm7AS</latexit>

LCon. + ⌘ · LRR
<latexit sha1_base64="EtOB3u1fnQKU/JjCvLHCwdkXdZM=">AAACO3icbVC7SgNBFJ31bXxFLW0WgyAIYVcFrURMY2ERg4lCNoTZyU0yODuzzNyVhGX/xt/wB2y1sRYsxNbeyaMwxgMDh3Pu5Z45YSy4Qc97c2Zm5+YXFpeWcyura+sb+c2tmlGJZlBlSih9F1IDgkuoIkcBd7EGGoUCbsP70sC/fQBtuJI32I+hEdGO5G3OKFqpmT8LIopdRkV6lTXTAKGHOkpLShaz7CAApAFrKfx3qFLJsma+4BW9Idxp4o9JgYxRbuY/gpZiSQQSmaDG1H0vxkZKNXImIMsFiYGYsnvagbqlkkZgGunwn5m7Z5WW21baPonuUP29kdLImH4U2slBYPPXG4j/efUE26eNlMs4QZBsdKidCBeVOyjNbXENDEXfEso0t1ld1qWaMrTVTlzpjaLmbDH+3xqmSe2w6B8VD6+PC+cX44qWyA7ZJfvEJyfknFySMqkSRh7JM3khr86T8+58Ol+j0RlnvLNNJuB8/wD7ZLDs</latexit>

LCon. + ⌘ · LRR(multi)
<latexit sha1_base64="rnufiay365PWuIWBAUrk0FMMaqc=">AAACTHicbVBdSxtBFJ2N1dr40VQffRkaBEUIu1poH6W+9EHQSmMC2RBmJ3fj4HwsM3eLYdmf5d/wvfS1+gt8k0Inm32oxgMDZ865l3vvSTIpHIbhr6Cx9GZ55e3qu+ba+sbm+9aHrUtncsuhy400tp8wB1Jo6KJACf3MAlOJhF5yfTLzez/BOmH0D5xmMFRsokUqOEMvjVpnsWJ4xZksTstRESPcoFXFidGdsjyIAVnMxwZfLbq4KEu6V/2StFC5RFHuj1rtsBNWoIskqkmb1DgftR7iseG5Ao1cMucGUZjhsGAWBZdQNuPcQcb4NZvAwFPNFLhhUR1e0l2vjGlqrH8aaaX+31Ew5dxUJb5ydoF76c3E17xBjumXYSF0liNoPh+U5pKiobMU6VhY4CinnjBuhd+V8itmGUef9bMpN/NVmz6Y6GUMi+TysBMddQ6/f2off60jWiU75CPZIxH5TI7JN3JOuoSTW/Kb/CH3wV3wGDwFf+eljaDu2SbP0Fj5B7EMtxQ=</latexit>

PGD-AT + Con. (TPR95: 54.91%)
TRADES + Con. (TPR95: 53.66%)

PGD-AT + Con. (TPR95: 52.19%)
TRADES + Con. (TPR95: 52.04%)

PGD-AT + Con. (TPR95: 56.73%)
TRADES + Con. (TPR95: 57.88%)

Figure 6: Accuracy (%) under adaptive PGD-500 (10 restarts)
on CIFAR-10. The ResNet-18 is trained by PGD-AT+RR.

We design two kinds of adaptive at-
tacks to evade the classifier model
and rejection module simultaneously.
The first one follows Carlini and Wag-
ner (2017b), where we incorporate the
loss term of the RR module into the
original CW objective, and find the
minimal distortion for a per-example
successful evasion if the classifier is
fooled and the rejector value is higher
than the median value of the training
set. The binary search steps are 9 with 1,000 iteration steps for each search. As in Table 7, adaptive at-
tacks require larger minimal perturbations than normal attacks, and successfully evading our methods
is harder than baselines. In the second adaptive attack, we fix the maximal perturbation size to 8/255
under `∞-norm, and use adaptive objectives LCE +η ·LRR, LCon. +η ·LRR, and LCon. +η ·LRR(multi),
where LCon. is to directly optimize the confidence and multi refers to multi-target version. The results
are in Fig. 6, where we also report the TPR-95 accuracy of baselines for reference. As seen, even
under adaptive attacks, applying our RR module still outperforms the baselines.

7 CONCLUSION

We introduce T-Con as a certainty oracle, and use R-Con to mimic T-Con by training. Intriguingly, a
ξ-error R-Con rejector and a 1

2−ξ confidence rejector can be coupled to provide certified separability,
which demonstrates a promising prospect towards reliable predictions via coupling rejectors. We also
empirically validate the effectiveness of our RR module by using R-Con alone as the rejector, which
alleviates the overestimation of certainty, and is well compatible with different AT frameworks.

9

Under review as a conference paper at ICLR 2022

ETHICS STATEMENT

When deploying machine learning methods into practical systems, the adversarial vulnerability can
cause a potential security risk, as well as the negative impact on the crisis of confidence by the
public. To this end, this inherent defect raises the requirements for reliable, general, and lightweight
strategies to enhance the model robustness against malicious, especially adversarial attacks. In this
work, we provide an efficient strategy to couple two connected rejection metrics, which can certifiably
distinguish correctly and wrongly classified inputs, prevents the model from outputting over-confident
wrong predictions. Our methods contribute to the modules of constructing more reliable systems.

REPRODUCIBILITY STATEMENT

We include Appendix along with the main text, just after the references section. We provide code for
implementing our experiments in the supplemental material as a .zip file.

REFERENCES

Nilesh A Ahuja, Ibrahima Ndiour, Trushant Kalyanpur, and Omesh Tickoo. Probabilistic modeling
of deep features for out-of-distribution and adversarial detection. arXiv preprint arXiv:1909.11786,
2019.

Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stanforth, and
Pushmeet Kohli. Are labels required for improving adversarial robustness? In Advances in Neural
Information Processing Systems (NeurIPS), pages 12192–12202, 2019.

Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial
training. In Advances in neural information processing systems (NeurIPS), 2020.

Rushil Anirudh, Jayaraman J Thiagarajan, Bhavya Kailkhura, and Peer-Timo Bremer. Mimicgan:
Robust projection onto image manifolds with corruption mimicking. International Journal of
Computer Vision (IJCV), pages 1–19, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International Conference on Machine
Learning (ICML), 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases, pages 387–402.
Springer, 2013.

Saikiran Bulusu, Bhavya Kailkhura, Bo Li, Pramod K Varshney, and Dawn Song. Anomalous
instance detection in deep learning: A survey. arXiv preprint arXiv:2003.06979, 2020.

Qi-Zhi Cai, Chang Liu, and Dawn Song. Curriculum adversarial training. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 3740–3747, 2018.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy (S&P), 2017a.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM Workshop on Artificial Intelligence and Security (AISec), 2017b.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
arXiv preprint arXiv:1902.06705, 2019.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C Duchi. Unlabeled
data improves adversarial robustness. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

10

Under review as a conference paper at ICLR 2022

Fabio Carrara, Rudy Becarelli, Roberto Caldelli, Fabrizio Falchi, and Giuseppe Amato. Adversarial
examples detection in features distance spaces. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

Jinghui Chen and Quanquan Gu. Rays: A ray searching method for hard-label adversarial attack. In
International Conference on Knowledge Discovery & Data Mining (KDD), 2020.

Kejiang Chen, Yuefeng Chen, Hang Zhou, Xiaofeng Mao, Yuhong Li, Yuan He, Hui Xue, Weiming
Zhang, and Nenghai Yu. Self-supervised adversarial training. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 2218–2222. IEEE, 2020a.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial
robustness: From self-supervised pre-training to fine-tuning. In Conference on Computer Vision
and Pattern Recognition (CVPR), pages 699–708, 2020b.

Gilad Cohen, Guillermo Sapiro, and Raja Giryes. Detecting adversarial samples using influence
functions and nearest neighbors. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Jeremy M Cohen, Elan Rosenfeld, and J Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning (ICML), 2019.

Corinna Cortes, Giulia DeSalvo, and Mehryar Mohri. Learning with rejection. In International
Conference on Algorithmic Learning Theory, pages 67–82. Springer, 2016.

Francesco Crecchi, Marco Melis, Angelo Sotgiu, Davide Bacciu, and Battista Biggio. Fader: Fast
adversarial example rejection. arXiv preprint arXiv:2010.09119, 2020.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International Conference on Machine Learning (ICML), 2020.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung Chiang,
Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness benchmark.
arXiv preprint arXiv:2010.09670, 2020.

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu. Bench-
marking adversarial robustness. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Abhimanyu Dubey, Laurens van der Maaten, Zeki Yalniz, Yixuan Li, and Dhruv Mahajan. Defense
against adversarial images using web-scale nearest-neighbor search. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8767–8776, 2019.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting adversarial
samples from artifacts. arXiv preprint arXiv:1703.00410, 2017.

Yonatan Geifman and Ran El-Yaniv. Selective classification for deep neural networks. In Advances
in neural information processing systems (NeurIPS), 2017.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International Conference on Machine Learning (ICML), 2019.

Lovedeep Gondara. Detecting adversarial samples using density ratio estimates. arXiv preprint
arXiv:1705.02224, 2017.

Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and clean data are not twins. arXiv
preprint arXiv:1704.04960, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations (ICLR), 2015.

11

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Under review as a conference paper at ICLR 2022

Sven Gowal, Jonathan Uesato, Chongli Qin, Po-Sen Huang, Timothy Mann, and Pushmeet Kohli.
An alternative surrogate loss for pgd-based adversarial testing. arXiv preprint arXiv:1910.09338,
2019.

Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Uncovering
the limits of adversarial training against norm-bounded adversarial examples. arXiv preprint
arXiv:2010.03593, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In Advances in
neural information processing systems (NeurIPS), 2020.

Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick McDaniel. On
the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280, 2017.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning (ICML), 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision (ECCV), pages 630–645. Springer, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations (ICLR),
2019.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In International Conference on Machine Learning (ICML), 2019.

Haoming Jiang, Zhehui Chen, Yuyang Shi, Bo Dai, and Tuo Zhao. Learning to defense by learning
to attack. arXiv preprint arXiv:1811.01213, 2018.

Masahiro Kato, Zhenghang Cui, and Yoshihiro Fukuhara. Atro: Adversarial training with a rejection
option. arXiv preprint arXiv:2010.12905, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Cassidy Laidlaw and Soheil Feizi. Playing it safe: Adversarial robustness with an abstain option.
arXiv preprint arXiv:1911.11253, 2019.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Bai Li, Shiqi Wang, Suman Jana, and Lawrence Carin. Towards understanding fast adversarial
training. arXiv preprint arXiv:2006.03089, 2020.

Pengcheng Li, Jinfeng Yi, Bowen Zhou, and Lijun Zhang. Improving the robustness of deep neural
networks via adversarial training with triplet loss. In International Joint Conference on Artificial
Intelligence (IJCAI), 2019.

Guanxiong Liu, Issa Khalil, and Abdallah Khreishah. Using single-step adversarial training to defend
iterative adversarial examples. arXiv preprint arXiv:2002.09632, 2020a.

Weitang Liu, Xiaoyun Wang, John Owens, and Sharon Yixuan Li. Energy-based out-of-distribution
detection. Advances in Neural Information Processing Systems (NeurIPS), 2020b.

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-bnn: Improved adversarial defense
through robust bayesian neural network. In International Conference on Learning Representations
(ICLR), 2019.

Jiajun Lu, Theerasit Issaranon, and David Forsyth. Safetynet: Detecting and rejecting adversarial
examples robustly. In International Conference on Computer Vision (ICCV), pages 446–454, 2017.

12

Under review as a conference paper at ICLR 2022

Chengcheng Ma, Baoyuan Wu, Shibiao Xu, Yanbo Fan, Yong Zhang, Xiaopeng Zhang, and Zhifeng
Li. Effective and robust detection of adversarial examples via benford-fourier coefficients. arXiv
preprint arXiv:2005.05552, 2020.

Shiqing Ma and Yingqi Liu. Nic: Detecting adversarial samples with neural network invariant
checking. In Proceedings of the 26th Network and Distributed System Security Symposium (NDSS
2019), 2019.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck,
Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using local
intrinsic dimensionality. In International Conference on Learning Representations (ICLR), 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations (ICLR), 2018.

Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of multiple
perturbation models. In International Conference on Machine Learning (ICML), pages 6640–6650.
PMLR, 2020.

Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray. Metric learning for
adversarial robustness. In Advances in Neural Information Processing Systems (NeurIPS), pages
478–489, 2019.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial
perturbations. In International Conference on Learning Representations (ICLR), 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2574–2582, 2016.

Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli. A self-
supervised approach for adversarial robustness. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 262–271, 2020.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 427–436, 2015.

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu. Towards robust detection of adversarial
examples. In Advances in Neural Information Processing Systems (NeurIPS), pages 4579–4589,
2018.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via
promoting ensemble diversity. In International Conference on Machine Learning (ICML), 2019.

Tianyu Pang, Xiao Yang, Yinpeng Dong, Kun Xu, Hang Su, and Jun Zhu. Boosting adversarial
training with hypersphere embedding. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, and Jun Zhu. Bag of tricks for adversarial training.
In International Conference on Learning Representations (ICLR), 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
(NeurIPS), pages 8024–8035, 2019.

Julien Perolat, Mateusz Malinowski, Bilal Piot, and Olivier Pietquin. Playing the game of universal
adversarial perturbations. arXiv preprint arXiv:1809.07802, 2018.

Ambrish Rawat, Martin Wistuba, and Maria-Irina Nicolae. Adversarial phenomenon in the eyes of
bayesian deep learning. arXiv preprint arXiv:1711.08244, 2017.

13

Under review as a conference paper at ICLR 2022

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles, and Tim-
othy Mann. Fixing data augmentation to improve adversarial robustness. arXiv preprint
arXiv:2103.01946, 2021.

Leslie Rice, Eric Wong, and J Zico Kolter. Overfitting in adversarially robust deep learning. In
International Conference on Machine Learning (ICML), 2020.

Kevin Roth, Yannic Kilcher, and Thomas Hofmann. The odds are odd: A statistical test for detecting
adversarial examples. In International Conference on Machine Learning (ICML), 2019.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers
against adversarial attacks using generative models. In International Conference on Learning
Representations (ICLR), 2018.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. Adver-
sarially robust generalization requires more data. In Advances in Neural Information Processing
Systems (NeurIPS), pages 5019–5031, 2018.

Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chiang,
and Prateek Mittal. Improving adversarial robustness using proxy distributions. arXiv preprint
arXiv:2104.09425, 2021.

Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer, Larry S
Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Ali Shafahi, Mahyar Najibi, Zheng Xu, John P Dickerson, Larry S Davis, and Tom Goldstein.
Universal adversarial training. In AAAI Conference on Artificial Intelligence (AAAI), pages 5636–
5643, 2020.

Fatemeh Sheikholeslami, Swayambhoo Jain, and Georgios B Giannakis. Minimum uncertainty based
detection of adversaries in deep neural networks. arXiv preprint arXiv:1904.02841, 2019.

Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection.
In Conference on Uncertainty in Artificial Intelligence (UAI), 2018.

Angelo Sotgiu, Ambra Demontis, Marco Melis, Battista Biggio, Giorgio Fumera, Xiaoyi Feng, and
Fabio Roli. Deep neural rejection against adversarial examples. EURASIP Journal on Information
Security, 2020:1–10, 2020.

Philip Sperl, Ching-Yu Kao, Peng Chen, and Konstantin Böttinger. Dla: Dense-layer-analysis for
adversarial example detection. In IEEE European Symposium on Security and Privacy (EuroS&P),
2020.

Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, et al. Guided adversarial attack for evaluating
and enhancing adversarial defenses. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

David Stutz, Matthias Hein, and Bernt Schiele. Confidence-calibrated adversarial training: Generaliz-
ing to unseen attacks. In International Conference on Machine Learning (ICML), 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations (ICLR), 2014.

Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. Attacks meet interpretability: Attribute-
steered detection of adversarial samples. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Florian Tramer. Detecting adversarial examples is (nearly) as hard as classifying them. In ICML
2021 Workshop on Adversarial Machine Learning, 2021. URL https://openreview.net/
forum?id=6pgY2PkoXb0.

14

https://openreview.net/forum?id=6pgY2PkoXb0
https://openreview.net/forum?id=6pgY2PkoXb0

Under review as a conference paper at ICLR 2022

Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturbations. In
Advances in Neural Information Processing Systems (NeurIPS), pages 5858–5868, 2019.

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble ad-
versarial training: Attacks and defenses. In International Conference on Learning Representations
(ICLR), 2018.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. In Advances in Neural Information Processing Systems (NeurIPS),
2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research (JMLD), 9(11), 2008.

Huaxia Wang and Chun-Nam Yu. A direct approach to robust deep learning using adversarial
networks. In International Conference on Learning Representations (ICLR), 2019.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. In International Conference on Machine
Learning (ICML), pages 6586–6595, 2019a.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International Conference on
Learning Representations (ICLR), 2019b.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning (ICML), pages 5283–5292,
2018.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training. In
International Conference on Learning Representations (ICLR), 2020.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust general-
ization. Advances in Neural Information Processing Systems (NeurIPS), 33, 2020.

Xi Wu, Uyeong Jang, Jiefeng Chen, Lingjiao Chen, and Somesh Jha. Reinforcing adversarial
robustness using model confidence induced by adversarial training. In International Conference
on Machine Learning (ICML), pages 5334–5342. PMLR, 2018.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep
neural networks. arXiv preprint arXiv:1704.01155, 2017.

Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew Gardner, Andrew
Touchet, Wesley Wilkes, Heath Berry, and Hai Li. Dverge: Diversifying vulnerabilities for
enhanced robust generation of ensembles. In Advances in Neural Information Processing Systems
(NeurIPS), 2020a.

Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, and Michael I Jordan. Ml-loo: Detecting
adversarial examples with feature attribution. In Thirty-First AAAI Conference on Artificial
Intelligence (AAAI), 2020b.

Yao-Yuan Yang, Cyrus Rashtchian, Hongyang Zhang, Ruslan Salakhutdinov, and Kamalika Chaud-
huri. A closer look at accuracy vs. robustness. Advances in Neural Information Processing Systems
(NeurIPS), 33, 2020c.

Pourya Habib Zadeh, Reshad Hosseini, and Suvrit Sra. Deep-rbf networks revisited: Robust
classification with rejection. arXiv preprint arXiv:1812.03190, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In The British Machine Vision
Conference (BMVC), 2016.

Chiliang Zhang, Zuochang Ye, Yan Wang, and Zhimou Yang. Detecting adversarial perturbations
with saliency. In 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP),
pages 271–275. IEEE, 2018.

15

Under review as a conference paper at ICLR 2022

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. In Advances in Neural Information
Processing Systems (NeurIPS), 2019a.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning (ICML), 2019b.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankan-
halli. Attacks which do not kill training make adversarial learning stronger. In International
Conference on Machine Learning (ICML), 2020.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankanhalli.
Geometry-aware instance-reweighted adversarial training. In International Conference on Learning
Representations (ICLR), 2021.

Chenxiao Zhao, P Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, and Chaomin Shen. The
adversarial attack and detection under the fisher information metric. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 5869–5876, 2019.

Zhihao Zheng and Pengyu Hong. Robust detection of adversarial attacks by modeling the intrinsic
properties of deep neural networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

16

Under review as a conference paper at ICLR 2022

A PROOF

In this section, we provide proofs for the proposed Theorem 1, and Theorem 2.

A.1 PROOF OF THEOREM 1

Proof. The conditions in Theorem 1 can be written as fθ(x1)[ym1] > 1
2−ξ , ym1 = y1 and fθ(x2)[ym2] >

1
2−ξ , ym2 6= y2, where ξ ∈ [0, 1). Since Aφ(x) is ξ-error at x1 and x2, according to Definition 1, at
least one of the bounds holds for x1 and x2, respectively:

Bound (i):

∣∣∣∣∣log

(
Aφ(x)

A∗φ(x)

)∣∣∣∣∣ ≤ log

(
2

2− ξ

)
;

Bound (ii):
∣∣Aφ(x)−A∗φ(x)

∣∣ ≤ ξ

2
.

For x1, there is A∗φ(x1) = 1. Then if bound (i) holds, we can obtain

R-Con(x1) = fθ(x1)[ym1] ·Aφ(x1)

> fθ(x1)[ym1] · 2− ξ
2

>
1

2− ξ ·
2− ξ

2
=

1

2
,

and if bound (ii) holds, we can obtain
R-Con(x1) = fθ(x1)[ym1] ·Aφ(x1)

> fθ(x1)[ym1] ·
(

1− ξ

2

)
>

1

2− ξ ·
2− ξ

2
=

1

2
.

Similarly for x2, there is fθ(x2)[ym2] ·A∗φ(x2) = fθ(x2)[y2]. Then if bound (i) holds, we can obtain

R-Con(x2) = fθ(x2)[ym2] ·Aφ(x2)

= fθ(x2)[ym2] ·A∗φ(x2) · Aφ(x2)

A∗φ(x2)

< fθ(x2)[y2] · 2

2− ξ

<

(
1− 1

2− ξ

)
· 2

2− ξ

=
2− 2ξ

(2− ξ)2 <
1

2
,

where it is easy to verify that 2−2ξ
(2−ξ)2 is monotone decreasing in the interval of ξ ∈ [0, 1). If bound (ii)

holds for x2, we can obtain
R-Con(x2)

= fθ(x2)[ym2] ·Aφ(x2)

< fθ(x2)[ym2] ·
(
fθ(x2)[y2]

fθ(x2)[ym2]
+
ξ

2

)
= fθ(x2)[y2] + fθ(x2)[ym2] · ξ

2

= fθ(x2)[y2] ·
(

1− ξ

2

)
+ (fθ(x2)[y2] + fθ(x2)[ym2]) · ξ

2

<

(
1− 1

2− ξ

)
·
(

1− ξ

2

)
+
ξ

2
=

1

2
.

Thus we have proven R-Con(x1) > 1
2 > R-Con(x2).

17

Under review as a conference paper at ICLR 2022

A.2 PROOF OF THEOREM 2

Proof. Since A∗φ(x) is naturally bounded in [0, 1] for any input x, and Aφ(x) is bounded in [0, 1] by
model design, we denote {B0, B1, · · · , BS} as S + 1 points in [0, 1], where B0 = 0 and Bs = 1.
These S + 1 points induce S bins or intervals, i.e., Is = [Bs−1, Bs] for s = 1, · · · , S. When Aφ(x)
is ξ-error at x, we consider the cases of bound (i) and bound (ii) hold, respectively, as detailed below:

Bound (i) holds. We construct the bins in a geometric manner, where Bs = 2
2−ξ ·Bs−1 and we set

B1 = ρ be a rounding error. Note that we have

ρ ·
(

2

2− ξ

)S−2
< 1 ≤ ρ ·

(
2

2− ξ

)S−1
,

thus we can derive that

S =

 log ρ−1

log
(

2
2−ξ

)
+ 1.

It is easy to find that if Aφ(x) and A∗φ(x) locate in the same bin, then bound (i) holds. Therefore, this

regression task can be substituted by a classification task of classes N1 =

⌈
log ρ−1

log(2
2−ξ)

⌉
+ 1.

Bound (ii) holds. In this case, we construct the bins in an arithmetic manner, where Bs = Bs−1 + ξ
2 .

Then we have
(S − 1) · ξ

2
< 1 ≤ S · ξ

2
,

thus we can derive that

S =

⌈
2

ξ

⌉
.

It is easy to find that if Aφ(x) and A∗φ(x) locate in the same bin, then bound (ii) holds. So this

regression task can be substituted by a classification task of classes N2 =
⌈
2
ξ

⌉
.

B MORE BACKGROUNDS

Adversarial training. In recent years, adversarial training (AT) has become the critical ingredient
for the state-of-the-art robust models (Chen and Gu, 2020; Croce et al., 2020; Dong et al., 2020).
Many variants of AT have been proposed via adopting the techniques like ensemble learning (Pang
et al., 2019; Tramèr et al., 2018; Yang et al., 2020a), metric learning (Li et al., 2019; Mao et al.,
2019), generative modeling (Jiang et al., 2018; Wang and Yu, 2019), curriculum learning (Cai et al.,
2018), semi-supervised learning (Alayrac et al., 2019; Carmon et al., 2019), and self-supervised
learning (Chen et al., 2020a;b; Hendrycks et al., 2019; Naseer et al., 2020). Other efforts include
tuning AT mechanisms by universal perturbations (Perolat et al., 2018; Shafahi et al., 2020), reweight-
ing misclassified samples (Wang et al., 2019b; Zhang et al., 2021) or multiple threat models (Maini
et al., 2020; Tramèr and Boneh, 2019). Accelerating the training procedure of AT is another popular
research routine, where recent progresses involve reusing the computations (Shafahi et al., 2019;
Zhang et al., 2019a), adaptive adversarial steps (Wang et al., 2019a; Zhang et al., 2020) or one-step
training (Andriushchenko and Flammarion, 2020; Li et al., 2020; Liu et al., 2020a; Wong et al., 2020).

Adversarial detection. Instead of correctly classifying adversarial inputs, another complementary
research routine aims to detect / reject them (Crecchi et al., 2020; Grosse et al., 2017; Liu et al., 2019;
Lu et al., 2017; Metzen et al., 2017; Roth et al., 2019; Zhang et al., 2018). Previous detection methods
mainly fall into two camps, i.e., statistic-based and model-based. Statistic-based methods stem from
the features learned by standardly trained models. These statistics include density ratio (Gondara,
2017), kernel density (Feinman et al., 2017; Pang et al., 2018), prediction variation Xu et al. (2017),
mutual information (Sheikholeslami et al., 2019; Smith and Gal, 2018), Fisher information (Zhao
et al., 2019), local intrinsic dimension (Ma et al., 2018), activation invariance (Ma and Liu, 2019),
and feature attributions (Tao et al., 2018; Yang et al., 2020b). As for the model-based methods, the
auxiliary detector could be a sub-network (Carrara et al., 2018; Cohen et al., 2020; Sperl et al., 2020),
a Gaussian mixture model (Ahuja et al., 2019; Lee et al., 2018; Ma et al., 2020), or an additional
generative model (Anirudh et al., 2020; Dubey et al., 2019; Samangouei et al., 2018).

18

Under review as a conference paper at ICLR 2022

C MORE ANALYSES

In this section, we provide implementation details of the BCE loss, toy examples to intuitively
illustrate the effects of temperature tuning, and analyze the role of T-Con in randomized classifiers.

C.1 IMPLEMENTATION OF THE BCE LOSS

For notation simplicity, we generally denote the BCE objective as

BCE(f ‖ g) = g- · log f + (1− g-) · log (1− f) , (9)

where the subscript - indicates stopping gradients, an operation usually used to stabilize the training
processes (Grill et al., 2020). We show that the stopping-gradient operations shown in Fig. 1 can lead
to unbiased optimal solution for the classifier. Specifically, taking PGD-AT+RR as an example, the
training objective is

min
φ,θ

Ep(x,y) [LCE (fθ(x), y) + BCE (fθ(x)[ym] ·Aφ(x)||fθ(x)[y])] ,

where we use p(x, y) to represent adversarial data distribution. Note that the optimal solution of
minimizing LCE (fθ(x), y) is fθ(x)[y] = p(y|x), but if we do not stop gradients of fθ(x)[y] in the
RR term (BCE loss), then the optimal θ of the entire PGD-AT+RR objective no longer satisfies
fθ(x)[y] = p(y|x), i.e., in this case RR will introduce bias on the optimal solution of classifier. Thus,
stopping gradients on fθ(x)[y] in the RR term can avoid affecting the training of classifier.

C.2 TOY EXAMPLES ON TEMPERATURE TUNING

Assume that there are three classes, and the confidence / T-Con on x1 and x2 are

M(x1; τ) =
e
a1
τ

e
a1
τ + e

b1
τ + e

c1
τ

;M(x2; τ) =
e
a2
τ

e
a2
τ + e

b2
τ + e

c2
τ

.

Let a1 = a2 = 0, b1 = 3, c1 = −1000, b2 = c2 = 2, it is easy to numerically compute that

M(x1; τ = 1) <M(x2; τ = 1);

M(x1; τ = 2) >M(x2; τ = 2).
This mimics the case of T-Con for misclassified inputs. We can simply choose a1 = a2 = 0, b1 = −1,
c1 = −1000, b2 = c2 = −2 to mimic the case of confidence.

C.3 THE ROLE OF T-CON IN RANDOMIZED CLASSIFIERS

It has been shown that randomized classifiers like Bayesian neural networks (BNNs) (Liu et al., 2019;
Rawat et al., 2017) and DNNs with randomized smoothing (Cohen et al., 2019) can benefit adversarial
robustness. In practice, these methods are usually implemented by a Monte-Carlo ensemble with
finite sampled weights or inputs. We construct an abstract classification process that involves both
deterministic and randomized classifiers.

Specifically, the returned label ys is sampled from a categorical distribution as p(ys = l) = fθ(x)[l],
where in this case, fθ(x) is a deterministic mapping either explicitly (e.g., for DNNs) or implicitly
(e.g., for BNNs) defined. For example, considering a BNN gω(x) where ω ∼ qθ(ω), the induced
fθ(x) can be written as

fθ(x)[l] = p

(
l = arg max

ys

N∑
n=1

gωn(ys|x)

)
, (10)

which is the probability measure that the returned label is l from the Bayes ensemble
∑N
n=1 gωn(ys|x),

under the distributions of ωn ∼ qθ(ω), n ∈ {1, · · · , N}. In practice, we can obtain empirical
estimations on these implicitly defined fθ(x) by sampling.

By presetting the temperature τ , the expected accuracy of the returned labels can be written as

Aτ = Ep(x,y)Eys [1ys=y] = Ep(x,y) [fθ(x)[y]] , (11)

19

Under review as a conference paper at ICLR 2022

Table 9: Results of different hyperparameters
for the KD and LID methods on CIFAR-10,
under (`∞, 8/255) threat model. For KD, we
restore the features on 1, 000 correctly classified
training samples in each class. For LID, we
restore the features on totally 10, 000 correctly
classified training samples.

Method Hyperparameters ROC-AUC
Clean PGD-10

KD
σ = 10−1 0.562 0.545
σ = 10−2 0.609 0.581
σ = 10−3 0.618 0.587

LID

K = 100 0.686 0.622
K = 200 0.699 0.638
K = 300 0.706 0.648
K = 400 0.710 0.654
K = 500 0.712 0.658
K = 600 0.711 0.661
K = 700 0.709 0.661
K = 800 0.706 0.660
K = 1000 0.695 0.653
K = 2000 0.603 0.590

Table 10: Results of different hyperparameters
for the KD and LID methods on CIFAR-100.
The basic settings are the same as in Table 9,
except that for KD, we restore 100 correctly
classified training features in each class.

Method Hyperparameters ROC-AUC
Clean PGD-10

KD
σ = 101 0.522 0.517
σ = 1 0.549 0.532

σ = 10−1 0.500 0.479
σ = 10−2 0.473 0.453
σ = 10−3 0.477 0.457

LID

K = 10 0.662 0.652
K = 20 0.674 0.668
K = 40 0.672 0.667
K = 60 0.668 0.661
K = 80 0.659 0.652
K = 100 0.652 0.644
K = 200 0.615 0.607
K = 300 0.584 0.578
K = 400 0.559 0.551
K = 500 0.537 0.529

where 1ys=y is the indicator function, which equals to one if ys = y and zero otherwise. In
the limiting case of τ → 0, the returned labels are deterministic, and the expected accuracy is
A0 = Ep(x,y)[1ym=y], which degenerates to the traditional definition of accuracy. Note that in the
adversarial setting, the Bayes optimal classifier, i.e., τ = 0 may not be an empirically optimal choice.
For example, in the cases of A0 = 0, we can still have Aτ > 0 for the non-deterministic classifiers.

D MORE TECHNICAL DETAILS AND RESULTS

In this section, we provide more technical details and results. Our methods are implemented by
Pytorch (Paszke et al., 2019), and run on GeForce RTX 2080 Ti GPU workers. The experiments of
ResNet-18 are run by single GPU, while those on WRN-34-10 are run by two GPUs in parallel.

D.1 THE MLP ARCHITECTURE OF Aφ(x)

In our experiments, Aφ(x) is implemented by the MLP as

Aφ(x) = W2(ReLU(BN(W1z + b1))) + b2, (12)

where z is the feature vector shared with the classification branch, BN is an 1-D batch normalization
operation, W1, b1 are the parameters of the first linear layer, and W2, b2 are the parameters of the
second linear layer. For ResNet-18, there is z ∈ R512, W1 ∈ R256×512, b1 ∈ R256, W2 ∈ R1×256,
b2 ∈ R1. For WRN-34-10, there is z ∈ R640, W1 ∈ R320×640, b1 ∈ R320, W2 ∈ R1×320, b2 ∈ R1.

Empirically, on ResNet-18, the average running time for PGD-AT is about 316 seconds per epoch,
and it for PGD-AT+RR is about 320 seconds per epoch. As to the parameter sizes, saving a ResNet-18
model without/with RR branch uses 44.74 MB/45.27 MB, saving a WRN-34-10 model without/with
RR branch uses 184.77 MB/185.59 MB.

D.2 HYPERPARAMETERS FOR BASELINES

For KD, we restore 1, 000 correctly classified training features in each class and use σ = 10−3.
For LID, we restore a total of 10, 000 correctly classified training features and use K = 600. We

20

Under review as a conference paper at ICLR 2022

Table 11: Results of different hyperparameters for the SelectiveNet and EBD methods on CIFAR-10.
The AT framework is PGD-AT, and the evaluated PGD-10 adversarial inputs are crafted with ε = 8.

Method Hyperparameters Accuracy (%) ROC-AUC
Clean PGD-10 Clean PGD-10

SelectiveNet

λ = 8, c = 0.7 80.57 53.43 0.796 0.730
λ = 8, c = 0.8 82.16 53.90 0.768 0.716
λ = 8, c = 0.9 81.33 53.82 0.757 0.694
λ = 16, c = 0.7 81.08 53.62 0.792 0.725
λ = 16, c = 0.8 81.72 53.90 0.782 0.722
λ = 16, c = 0.9 82.21 54.08 0.751 0.701
λ = 32, c = 0.7 79.98 53.52 0.793 0.716
λ = 32, c = 0.8 80.60 53.71 0.774 0.711
λ = 32, c = 0.9 82.48 53.86 0.750 0.704

EBD
min = −5,mout = −23 overflow
min = 6,mout = 0 80.71 52.55 0.831 0.768
min = 6,mout = 3 81.98 53.89 0.832 0.763

Standard PGD-AT

Figure 7: t-SNE visualization of the learned fea-
tures on CIFAR-10. The irregular distributions
of adversarially learned features make previous
statistic-based detection methods less effective.

Confidence

A
cc
ur
ac
y

Clean inputs PGD-10 inputs

ECE=0.1807 ECE=0.0256

Figure 8: Reliability diagrams for an adversari-
ally trained ResNet-18 on CIFAR-10, and the ex-
pected calibration error (ECE) (Guo et al., 2017).
The model outputs are well calibrated.

calculate the mean and covariance matrix on all correctly classified training samples for GDA and
GMM. For SelectiveNet, the λ = 8 and coverage is 0.7. For EBD, there is min = 6 and mout = 3.

Kernel density (KD). In Feinman et al. (2017), KD applies a Gaussian kernel K(z1, z2) =
exp(−‖z1 − z2‖22/σ2) to compute the similarity between two features z1 and z2. There is a hyperpa-
rameter σ controlling the bandwidth of the kernel, i.e., the smoothness of the density estimation. In
Table 9 and Table 10, we report the ROC-AUC scores under different values of σ, where we restore
the features of 1, 000/100 correctly classified training samples in each class on CIFAR-10/CIFAR-100,
respectively.

Local intrinsic dimensionality (LID). In Ma et al. (2018), LID applies K nearest neighbors to
approximate the dimension of local data distribution. Instead of computing LID in each mini-batch,
we allow the detector to use a total of 10, 000 correctly classified training data points, and treat the
number of K as a hyperparameter, as tuned in Table 9 and Table 10.

SelectiveNet (SNet). In Geifman and El-Yaniv (2019), the training objective consists of three parts,
i.e., the prediction head, the selection head, and the auxiliary head. There are two hyperparameters in
SelectiveNet, one is the coverage c, which is the expected value of selection outputs, another one is λ
controlling the relative importance of the coverage constraint. In the standard setting, Geifman and
El-Yaniv (2019) suggest λ = 32 and c = 0.8, while we investigate a wider range of λ and c when
incorporating SelectiveNet with the PGD-AT framework, as reported in Table 11.

Energy-based detection (EBD). In Liu et al. (2020b), the discriminative classifier is implicitly
treated as an energy-based model, which returns unnormalized density estimation. The two hyperpa-
rameters in EBD aremin andmout, controlling the upper and lower clipping bounds for correctly and

21

Under review as a conference paper at ICLR 2022

Table 12: Classification accuracy (%) and the ROC-AUC scores on CIFAR-10. The AT framework is
PGD-AT and the model architecture is WRN-34-10. For KD, we restore 1, 000 correctly classified
training features in each class and use σ = 10−3. For LID, we restore totally 10, 000 correctly
classified training features and use K = 600. We calculate mean and covariance matrix on all
correctly classified training samples for GDA and GMM. For SNet, the λ = 8 and coverage is 0.7.
For EBD, there is min = 6 and mout = 3.

Rejector Clean `∞, 8/255 `∞, 16/255 `2, 128/255
TPR-95 AUC TPR-95 AUC TPR-95 AUC TPR-95 AUC

KD 85.51 0.759 57.26 0.674 34.87 0.605 67.55 0.695
LID 86.94 0.760 58.53 0.690 35.54 0.642 68.62 0.699
GDA 85.10 0.512 56.47 0.506 34.22 0.482 66.79 0.503
GDA∗ 87.16 0.694 57.62 0.627 34.66 0.561 68.23 0.637
GMM 88.36 0.747 57.98 0.650 34.79 0.568 68.87 0.667

SNet 88.30 0.803 60.07 0.733 37.63 0.695 70.14 0.730
EBD 89.63 0.860 60.96 0.778 36.92 0.712 70.97 0.792

RR 90.74 0.897 61.48 0.783 36.52 0.698 72.00 0.809

wrongly classified inputs, respectively. In Table 11, we tried the setting of min = −5,mout = −23
as used in the original paper, which overflows on ATMs.

D.3 DETAILS ON ATTACKING PARAMETERS

For PGD attacks (Madry et al., 2018), we use the step size of 2/255 under `∞ threat model, and
the step size of 16/255 under `2 threat model. We apply untargeted mode with 5 restarts. For
CW attacks (Carlini and Wagner, 2017a), we set the binary search steps to be 9 with the initial
c = 0.01. The iteration steps for each c are 1, 000 with the learning rate of 0.005. Let x, x∗ be the
clean and adversarial inputs with the pixels scaled to [0, 1]. The values reported for CW-`∞ are
‖x− x∗‖∞× 255, while those for CW-`2 are ‖x− x∗‖22. The default settings of AutoAttack (Croce
and Hein, 2020) involve 100-steps APGD-CE/APGD-DLR with 5 restarts, 100-steps FAB with 5
restarts, 5, 000 query times for the square attack. For multi-target attacks (Gowal et al., 2019), we
use 100 iterations and 20 restarts for each of the 9 targeted class, thus the number of total iteration
steps on each data point is 100 × 20 × 9 = 18, 000. For GAMA attacks, we follow the default
settings used in the offical code3.

D.4 MORE RESULTS OF WRN-34-10 AND CIFAR-100

In Table 12, we use the larger model architecture of WRN-34-10 (Zagoruyko and Komodakis, 2016).
We evaluate under PGD-10 (`∞, ε = 8/255) which is seen during training, and unseen attacks with
different perturbation constraint (ε = 16/255), threat model (`2). As to the baselines, we choose SNet
and EBD since they perform well in the cases of training ResNet-18. In Table 13, we experiment on
CIFAR-100, and similarly evaluate under different variants of PGD-10 attacks. We report the results
using both ResNet-18 and WRN-34-10 model architectures.

Moreover, to exclude gradient obstruction (Carlini et al., 2019), we do a sanity check by running
PGD-10 against PGD-AT+RR on CIFAR-10 under ε = {8, 16, 32, 64, 128}/255, where the model ar-
chitecture is ResNet-18. The ALL accuracy (%) before rejection is {54.40, 33.56, 19.80, 6.71, 0.95},
which converges to zero.

D.5 VISUALIZATION OF ADVERSARIALLY LEARNED FEATURES

Although statistic-based detection methods like KD, LID, GDA, and GMM have achieved good
performance on STMs against non-adaptive or oblivious attacks (Carlini et al., 2019), they perform
much worse when combined with ATMs. To explain this phenomenon, we plot the t-SNE visual-
ization (Van der Maaten and Hinton, 2008) in Fig. 7 on the standardly and adversarially learned

3https://github.com/val-iisc/GAMA-GAT

22

Under review as a conference paper at ICLR 2022

Table 13: Classification accuracy (%) and the ROC-AUC scores on CIFAR-100 under PGD-10 attacks.
For KD, we restore the features on 100 correctly classified training samples in each class and use
σ = 1. For LID, we restore the features on totally 10, 000 correctly classified training samples and
use K = 20. For SNet, the λ = 8 and coverage is 0.7. For EBD, there is min = 6 and mout = 3.

Rejector Clean `∞, 8/255 `∞, 16/255 `2, 128/255
TPR-95 AUC TPR-95 AUC TPR-95 AUC TPR-95 AUC

Architecture backbone: ResNet-18

KD 58.20 0.549 30.23 0.532 16.39 0.510 40.67 0.539
LID 59.49 0.674 31.60 0.668 16.86 0.661 42.01 0.658
GDA 57.06 0.416 29.67 0.412 16.17 0.410 39.83 0.416
GDA∗ 58.98 0.599 31.40 0.593 17.04 0.588 42.10 0.596
GMM 58.06 0.518 30.48 0.505 16.69 0.508 40.68 0.511

SNet 59.68 0.729 33.12 0.743 19.48 0.759 42.72 0.726
EBD 61.44 0.795 34.56 0.776 20.50 0.762 44.22 0.777

RR 64.44 0.837 35.52 0.782 19.89 0.767 47.03 0.802

Architecture backbone: WRN-34-10

KD 62.04 0.602 32.59 0.573 18.19 0.559 41.66 0.575
LID 63.17 0.705 33.27 0.672 18.97 0.652 42.97 0.672
GDA 60.12 0.436 31.64 0.426 17.75 0.421 40.52 0.423
GDA∗ 62.71 0.601 33.79 0.605 18.65 0.575 42.91 0.602
GMM 61.80 0.519 33.33 0.520 18.95 0.529 42.27 0.513

SNet 64.09 0.727 36.14 0.738 22.02 0.753 44.32 0.713
EBD 66.83 0.810 37.76 0.775 21.80 0.743 46.80 0.789

RR 70.14 0.853 38.81 0.790 22.20 0.765 48.26 0.801

features. As seen, ATMs have much more irregular feature distributions compared to STMs, while
this fact breaks the statistic assumptions and rationale of previous statistic-based detection methods.
For example, GDA applying a tied covariance matrix becomes unreasonable for ATMs, and this is
why after using the conditional covariance matrix, GDA∗ performs better than GDA.

In Fig. 8, we also plot the reliability diagrams for an adversarially trained ResNet-18 on CIFAR-10,
and we report the expected calibration error (ECE) (Guo et al., 2017). We can observe that the model
trained by PGD-AT is well-calibrated, at least on the seen attack PGD-10, which is consistent with
previous observations (Stutz et al., 2020; Wu et al., 2018).

23

	Introduction
	Related work
	Classification with a rejection option
	True confidence (T-Con) as a certainty oracle
	Certified separability by coupling confidence and T-Con

	Learning T-Con via rectifying confidence
	Construction of rectified confidence (R-Con)
	Certified separability by coupling confidence and R-Con
	The difficulty of learning TEXT

	Further discussion
	Experiments
	Performance against normal attacks
	Ablation studies
	Performance against adaptive attacks

	Conclusion
	Proof
	Proof of Theorem 1
	Proof of Theorem 2

	More backgrounds
	More analyses
	Implementation of the BCE loss
	Toy examples on temperature tuning
	The role of T-Con in randomized classifiers

	More technical details and results
	The MLP architecture of TEXT
	Hyperparameters for baselines
	Details on attacking parameters
	More results of WRN-34-10 and CIFAR-100
	Visualization of adversarially learned features

