

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING FROM THE PAST WITH CASCADING ELIGIBILITY TRACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Animals often receive information about errors and rewards after significant delays. In some cases these delays are fixed aspects of neural processing or sensory feedback, for example, there is typically a delay of tens to hundreds of milliseconds between motor actions and visual feedback. The standard approach to handling delays in models of synaptic plasticity is to use eligibility traces. However, standard eligibility traces that decay exponentially mix together any events that happen during the delay, presenting a problem for any credit assignment signal that occurs with a significant delay. Here, we show that eligibility traces formed by a state-space model, inspired by a cascade of biochemical reactions, can provide a temporally precise memory for handling credit assignment at arbitrary delays. We demonstrate that these cascading eligibility traces (CETs) work for credit assignment at behavioral time-scales, ranging from seconds to minutes. As well, we can use CETs to handle extremely slow retrograde signals, as have been found in retrograde axonal signaling. These results demonstrate that CETs can provide an excellent basis for modeling synaptic plasticity.

1 INTRODUCTION

Learning requires a mechanism for assigning credit for errors and successes to past neural activity (Gerstner et al., 2018). In biological learning, the signals necessary for credit assignment in neural circuits arrive after a temporal delay, for instance via latency in sensory feedback following motor actions (Omrani et al., 2016; Scott, 2016). The source of delays can be generally categorized as either *external* or *internal*. External delays occur due to latency in environmental reward signals, for example receiving food or other external reinforcers, and as such can be variable. In contrast, internal delays arise from delays in the neural processing mediating the credit assignment calculation itself. Depending on the neural mechanisms involved, they are approximately fixed and can range from hundreds of milliseconds to several minutes (Fitzsimonds & Poo, 1998). Synaptic plasticity rules that model the credit assignment calculation, therefore, need to account for such fixed internal delays.

The traditional solution to internal delays in synaptic plasticity rules is to use exponentially decaying synaptic eligibility traces (ETs) (Gerstner et al., 2018; Shouval & Kirkwood, 2025), which are decaying records of synaptic activity. However, some experimentally observed synaptic plasticity rules are tuned to fixed non-zero delays (Suvrathan et al., 2016; Shindou et al., 2019), and therefore do not fit with an exponential decay of credit eligibility. When the neural activity and the corresponding credit assignment signal are separated by few intervening events, such delays will have minimal impact on learning. However, in general, ongoing neural activity will override past activity relevant to the current reward or error signal. Therefore, traditional eligibility traces are not well-suited for the temporal scale of credit assignment delays in biological learning when the delay is non-zero and fixed.

To solve this problem we present a generalization of traditional eligibility traces. Inspired by synaptic biochemical cascades (Zhang et al., 2021), we model eligibility traces as state-space models that incorporate a cascade of synaptic memory traces. These cascading eligibility traces (CETs) provide a delayed and concentrated temporal window of maximal credit assignment. This model fits the experimentally observed unimodal delays, and is also consistent with biological mechanisms of synaptic plasticity (Friedrich et al., 2011; Fusi et al., 2005; Zhang et al., 2021).

We present a series of results that demonstrate the utility of CETs for credit assignment with biologically realistic delays. Specifically, we show that we can engage in both supervised and reinforcement learning in multi-layer networks under two distinct delay scenarios. First, we examine learning situations where the delays are consistent across layers of the network, as would be the case for various models of biological credit assignment in which a learning signal is broadcast across layers (e.g. direct feedback alignment (Nøkland, 2016) and other local learning rules (Frémaux & Gerstner, 2016; Ororbia, 2023)). Second, we show that CETs work when delays are stacked through the network, such that late layers receive credit signals sooner than early layers. We provide evidence that this approach works in both scenarios under a variety of biologically relevant delays, ranging from hundreds of milliseconds to minutes. Notably, the fact that CETs work when delays are stacked across layers and last for minutes shows that CETs could be applicable to credit assignment signals carried by retrograde axonal signals or neuropeptides, making this approach relevant for a number of biologically plausible credit assignment models (Liu et al., 2022; Fan & Mysore, 2024).

Altogether, our results indicate that CETs are a promising approach for handling delayed credit assignment signals in models of biological learning. More broadly, this provides a general framework for reasoning about synaptic memory in real neural networks.

2 RELATED WORK

Our work is related to and builds upon several strands of research on synaptic plasticity and biological credit assignment.

Eligibility traces (ETs) have long been a dominant framework for modeling how synaptic plasticity mechanisms may bridge temporal gaps between neural activity and feedback (Gerstner et al., 2018; Shouval & Kirkwood, 2025). Related theoretical extensions include ETs to approximate backpropagation through time (BPTT; Bellec et al. (2020)). Experimental evidence for ETs is well-established, with multiple studies reporting how synaptic changes can be induced by reward signals arriving seconds to minutes after neural activity (Brzosko et al., 2015; He et al., 2015; Bittner et al., 2017; Suvrathan, 2019).

In some experimental results, the timing of maximum synaptic change is tuned to specific delays (e.g. 120ms in the cerebellum (Suvrathan et al., 2016) and 2s in the striatum (Shindou et al., 2019)). This is in contrast to traditional ETs, and indicates a plasticity rule that encodes temporal structure in addition to the presence of past activity. One approach to model these findings is to combine two independent ETs for potentiation and depression to produce a composite ET that peaks at a required time delay (He et al., 2015; Huertas et al., 2016). This approach is conceptually similar to our CET model with 2 states. However, as we discuss below, this approach is restricted to producing ETs with a broad integration window, making it suitable for short delays only. As we show in our work, CETs with a larger number of states overcome this issue.

An example of extreme delays in plasticity-related signals is retrograde axonal signaling: i.e. “backward” propagation of chemical signal through the axon and synapses (Maday et al., 2014; Alger, 2002; Fitzsimonds & Poo, 1998). These signals play a role in activity-dependent synaptic plasticity at the level of individual synapses (Regehr et al., 2009), and have been suggested to coordinate plasticity across several neurons (Fitzsimonds et al., 1997; Hui-zhong et al., 2000; Du & Poo, 2004).

However, retrograde signals have generally been discarded as a component of credit assignment (e.g. Lillicrap et al. (2016)) because retrograde axonal signaling is extremely slow (on average $1.31\mu\text{m/s}$; Cui et al. (2007)), meaning that any error signal delivered via retrograde signaling would arrive minutes after the relevant neural activity. Nevertheless, there’s been recent interest in this approach (Fan & Mysore, 2024). Here, we study to what extent delays on the order of retrograde process timescales could be compensated with CETs.

In parallel to neuroscience, the deep learning community has also worked on the the problem of delayed feedback from the perspective of decoupling the forward and backward passes for efficiency (Jaderberg et al., 2017; Malinowski et al., 2020). More generally, there is an extensive body of related work modeling how neural circuits may estimate and communicate credit in a biological plausible manner (Lillicrap et al., 2020). This includes credit computations with dendrites and bursts (Greedy et al., 2022; Payeur et al., 2021; Sacramento et al., 2017), and neuropeptides (Liu et al., 2022).

108 **3 CASCADING ELIGIBILITY TRACES (CETs)**
 109

110 Synaptic plasticity for learning always requires some memory for presynaptic activity in the network.
 111 Consider a network containing a neuron with activity $z_t = f(\mathbf{x}_t^\top \mathbf{w})$, where \mathbf{w} are the synaptic
 112 weights and \mathbf{x}_t are the presynaptic inputs to the neuron at time t . To minimize a loss L , synaptic
 113 changes in \mathbf{w} can follow the negative gradient over the loss L ,

$$115 -\frac{\partial L(\mathbf{x}_t^\top \mathbf{w})}{\partial \mathbf{w}} = -\frac{\partial L(z_t)}{\partial z_t} f'(\mathbf{x}_t^\top \mathbf{w}) \mathbf{x}_t \equiv -\delta_t f'(\mathbf{x}_t^\top \mathbf{w}) \mathbf{x}_t. \quad (1)$$

117 This gradient-based formulation of plasticity Eq. (1) covers various forms of biological learning. For
 118 example, Hebbian learning can be recovered by using the loss $L(z_t) = -z_t^2$ and layer-wise learning
 119 rules can be defined similarly. And, of course, backpropagation follows the same chain rule logic for
 120 the loss defined over several layers of neurons.

122 Importantly, these updates require that the credit assignment signal δ_t is paired with the appropriate
 123 presynaptic inputs, \mathbf{x}_t . Hence, in the presence of any delays in computation of the credit assignment
 124 signal a learning system would face a temporal mismatch problem: if it takes T seconds to calculate
 125 and propagate the credit assignment, then at time t the error signal δ_t received by a neuron would
 126 have to be matched to an older presynaptic activity memory \mathbf{x}_{t-T} (see Fig. 1A, top row). If learning
 127 is done in phases this need not be problematic. But, if learning happens online, as is likely the case
 128 in real brains, neural activity would correspond to the current time point, \mathbf{x}_t only, so the previous
 129 presynaptic activity information, \mathbf{x}_{t-T} , would have to be somehow stored by the synapses.

130 Eligibility traces (ET) represent the classic solution to this problem: they add a memory component
 131 to the synapse that keeps track of recent activation for a single presynaptic neuron. Here, we will
 132 pick one weight w^i and the corresponding input x_t^i , and discuss an ET h_t^{ET} such that changes in w^i
 133 are proportional to $-\delta_t h_t^{\text{ET}}$ (as in Eq. (1); dropping the index i from h_t^{ET} for convenience).

134 Denoting the Hebbian-like term $h = f'(\mathbf{x}_t^\top \mathbf{w}) x_t^i$ (in the sense of it being a product of pre- and
 135 postsynaptic factors, x_t^i and $f'(\mathbf{x}_t^\top \mathbf{w})$ correspondingly),

$$136 \quad h_t^{\text{ET}} = \int_0^t e^{-\gamma(t-s)} h_s ds, \quad (2)$$

139 where $\gamma > 0$ is a discount factor. The main advantage of ETs is that they're easy to implement:

$$140 \quad \dot{h}_t^{\text{ET}} = -\gamma h_t^{\text{ET}} + h_t.$$

142 ETs effectively convolve the presynaptic activity h_s with an exponential kernel $g(t)$, i.e.

$$144 \quad h_t^{\text{ET}} = (g * h)(t) = \int_0^t g(t-s) h_s ds, \quad (3)$$

147 and use this as a means of weighting past activity for combining it with credit assignment signals.
 148 One of the appeals of ETs as a solution to delayed credit assignment signals is that they do not require
 149 extensive memory, and are therefore a biologically plausible approach for learning.

151 Notably, the classic form of ET assigns the maximal trace values to the most recent time-points $s = t$
 152 in Eq. (3). That is appropriate for situations in which there are few intervening presynaptic events
 153 between times t , when the credit assignment signal arrives, and $t - T$, when the presynaptic activity
 154 occurred (as in Fig. 1A). But, if h_t changes frequently relative to the delay in the credit assignment
 155 signal then gradients calculated with classic ETs, i.e. $\delta_t h_t^{\text{ET}}$, can be a poor approximation of the true
 156 gradient, $\delta_t h_{t-T}$.

157 Ideally, when we consider the long delays faced by biological learning agents we would have ETs
 158 satisfying two conditions. First, the maximal value of the synaptic trace should occur at a delay of
 159 $s = t - T$, rather than $s = t$ in Eq. (3). Second, it is better if we can use a more precise weighting of
 160 the past, i.e. if the ET values $g(t-s)$ are as small as possible for anything other than $s = t - T$.

161 Classic ETs do not provide these characteristics. Combined LTP & LTD eligibility traces (He et al.,
 162 2015; Huertas et al., 2016) satisfy the first condition, but not the second. They effectively take

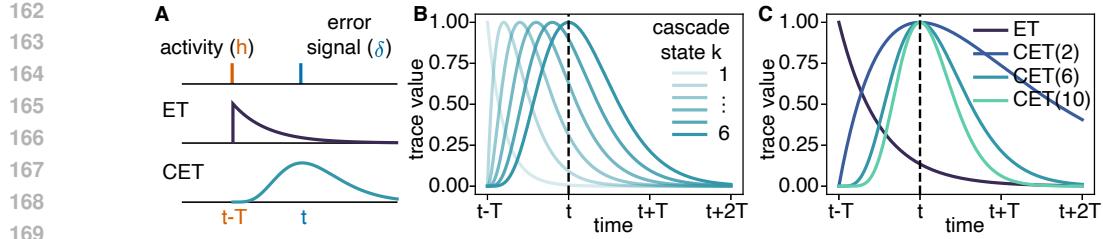


Figure 1: **A.** Learning with eligibility traces: neural activity h is followed by a delayed error signal δ . The standard eligibility trace (ET) is an exponentially decaying trace of h that can be matched to the error signal at time t . The cascading ET (CET) reflects h like a regular ET, but peaks at the required time t . **B.** Time evolution of each state of a 6-state CET with a delay T and a unit input at $t - T$. **C.** Comparison of a standard ET and CETs with 2/6/10 states representing delay T for a unit input at $t - T$.

a difference of two standard ETs in Eq. (2) to convolve past activity with $g(t) = \exp(-\gamma_P t) - \exp(-\gamma_D t)$ (as in Eq. (3)). While this g peaks with a delay $T = (\log \gamma_D - \log \gamma_P)/(\gamma_D - \gamma_P)$, it keeps a large weight for more recent points. **Additionally, we show in Section A.3 that the limiting sequence of γ_D, γ_D for minimizing the second moment around T constrained to a maximum at T converges to our proposed method.**

As a flexible solution to both of these problems, we propose using ETs constructed from a simple state-space model:

$$\begin{aligned} \dot{h}_t^1 &= -\alpha h_t^1 + h_t, \\ &\dots \\ \dot{h}_t^k &= -\alpha h_t^k + h_t^{k-1}, \\ &\dots \\ \dot{h}_t^{\text{CET}} &= -\alpha h_t^{\text{CET}} + h_t^{n-1}. \end{aligned} \quad (4)$$

Eq. (4) can be used as a model of a cascade of biochemical reactions. This could involve, for example, a cascade of phosphorylation processes or enzymatic reactions (Zhang et al., 2021) **Implementing CET(n) online requires n states per synapse each with a constant update cost so the computational costs scale linearly in time and memory.**

This form of CET gives us the following formulation (see Section A for a derivation):

$$h_t^{\text{CET}} = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} e^{-\alpha(t-s)} h_s ds, \quad (5)$$

which for $\alpha = \frac{n-1}{T}$ convolves the presynaptic activity with a kernel $g(t) \propto t^{n-1} e^{-\alpha t}$ that peaks at $t = T$ (Fig. 1C). For classical ETs (which correspond to a single-state model of $n = 1$) we either set the decay to be $\alpha = \frac{1}{T}$ (for supervised learning) or we conduct a grid search on this hyperparameter (for reinforcement learning).

The dynamical system in Eq. (4) is defined by two parameters: the number of states n and the decay term α . Increasing n while keeping the peak-time fixed leads to a narrower kernel (see Fig. 1C for a visualization of different kernels $g(t)$), but having even two states (instead of one for standard ETs) can account for delayed signals. However, to accurately represent delayed signals, more states are typically needed (see Fig. 2 for time domain response and Section A.2 for Laplace domain analysis).

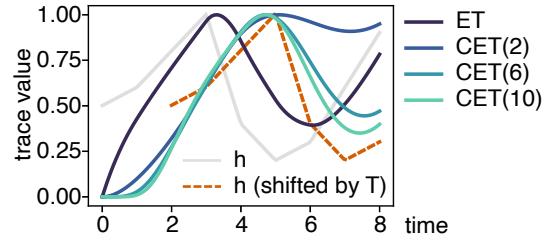


Figure 2: Representation of the input signal h (gray) with a $T = 2$ delay (dashed orange line) using a standard eligibility trace (ET) and cascading ETs (CETs) of different orders. Only CETs of higher order reflect the time evolution of the input (i.e. match the orange line).

216

4 EXPERIMENTS

218
 219 We illustrate the influence of CETs on learning with delays in two scenarios¹: (1) learning with
 220 delays on behaviorally relevant timescales (e.g. on the order of seconds) in Section 4.1; (2) credit
 221 propagation through very slow chemical signals (e.g. retrograde axonal signaling (Fitzsimonds et al.,
 222 1997)) in Section 4.2. In our simulations we assume that each input lasts for 200 ms, which is roughly
 223 one saccade or one theta cycle in the brain (Young & Stark, 1963). Thus, a single time-step in the
 224 simulation is treated as a 200 ms, so a delay of $T = 1$ s would mean that the δ signal arrives 5
 225 time-steps after the input is initially presented to the network. Put another way, with a simulated
 226 delay of $T = 1$ s there are 4 image presentations that occur after the initial image presentation and
 227 before the δ signal for that image arrives.

228 In (1), we assume that the error signal δ is propagated to all layers simultaneously since credit signals
 229 propagated via action potentials could be transmitted to the entire network in parallel. As well, we
 230 calculate the error signal explicitly, but we note that this calculation could easily be substituted with
 231 any of the available mechanisms for biologically plausible error calculation (e.g. 3-factor Hebbian
 232 learning rules Frémaux & Gerstner (2016)).

233 In (2), we consider a much longer delay T of 2 minutes, which corresponds to roughly the amount of
 234 time it takes for chemical signals to travel backwards along the axon. At the speed of $1.31 \mu\text{m/s}$ (Cui
 235 et al., 2007), this covers roughly $\sim 160 \mu\text{m}$, corresponding to the typical $< 200 \mu\text{m}$ distance in the
 236 cortex (Song et al., 2005; Cui et al., 2007). As well, in-line with propagation of a retrograde signal,
 237 we assume that the delays stack up over layers. Thus, the last layer has no delay, the penultimate
 238 layer has a delay of $T = 2$ minutes, the next layer has a delay of $T = 4$ minutes, and so on. Thus,
 239 each preceding layer's delay is increased by T .

240 We use two types of tasks: supervised image recognition on MNIST (LeCun, 1998) and CIFAR-10
 241 (Krizhevsky et al., 2014), and reinforcement learning on state-based environments (namely CartPole
 242 and LunarLander), as well as on a more complex visual environment (namely MinAtar/SpaceInvaders
 243 (Young & Tian, 2019), which use raw pixel observations as input). We use a 3-layer MLP (*input*
 244 $\rightarrow 512 \rightarrow 512 \rightarrow 10$) for MNIST and a small CNN with 3 convolutional layers (*input* $\rightarrow 32 \rightarrow$
 245 $64 \rightarrow 128$) and two linear layers ($512 \rightarrow 10$) for CIFAR-10. For RL, we use a 3-layer MLP with
 246 a hidden dimension of 256 that we train with the Actor-Critic method, and report results over 3
 247 seeds. To simplify training in the delayed setup, only the Actor is trained with a delayed error
 248 signal, while the Critic is updated via standard backpropagation. The Actor is trained using an online
 249 implementation of the λ -return via *RL eligibility traces* (Sutton & Barto, 2018). Other experimental
 250 details (hyperparameters, compute resources) can be found in Section C. The PyTorch (Paszke et al.,
 251 2019) implementation and experiments are provided in the Supplementary Material.

252

4.1 LEARNING WITH DELAYS ON BEHAVIORALLY RELEVANT TIMESCALES

253
 254 On MNIST, we observed that classical ETs (corresponding to a CET with one state) maintain strong
 255 performance up to delays of two seconds, i.e. up to 10 image presentations before a δ arrives (Fig. 3,
 256 left). This shows that classical ETs can remain effective for relatively simple tasks and short delays.
 257 However, their performance breaks down at longer delays of $T \geq 4$ s. At these longer delays we
 258 can see that increasing the number of states in the CETs improves performance, and can keep the
 259 accuracy level high at up to 10 s delay (50 image presentations). Past this point, we found that only
 260 a perfect eligibility trace (i.e. an infinite number of states corresponding to a Dirac delta memory)
 261 would preserve performance.

262 The results with CIFAR-10 were even more pronounced (Fig. 3, right). Classical ET performance
 263 deteriorates at any delay tested and rapidly decreases, showing that more complex visual tasks are less
 264 robust to imprecise time resolution. A key observation is the gradient in performance, with accuracy
 265 generally improving with the number of states in the CETs and decreasing with delays. This trend
 266 reflects how the CET impulse response becomes increasingly concentrated around the target delay as
 267 the number of states increases, which provides finer temporal resolution. The same trends also holds
 268 on a more challenging dataset: see Section F in the Appendix for TinyImageNet performance.

269 ¹Code is available in the Supplementary Material and will be made public.

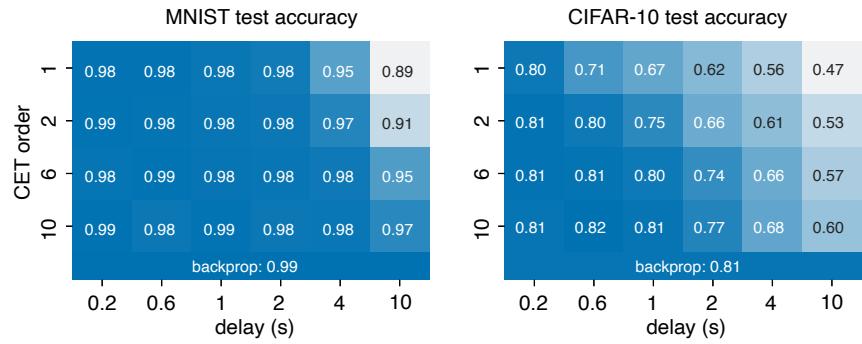


Figure 3: Accuracy for MNIST and CIFAR-10 datasets across varying numbers of CET states and delays on behaviorally relevant timescales. A single state (top row) corresponds to standard ETs.

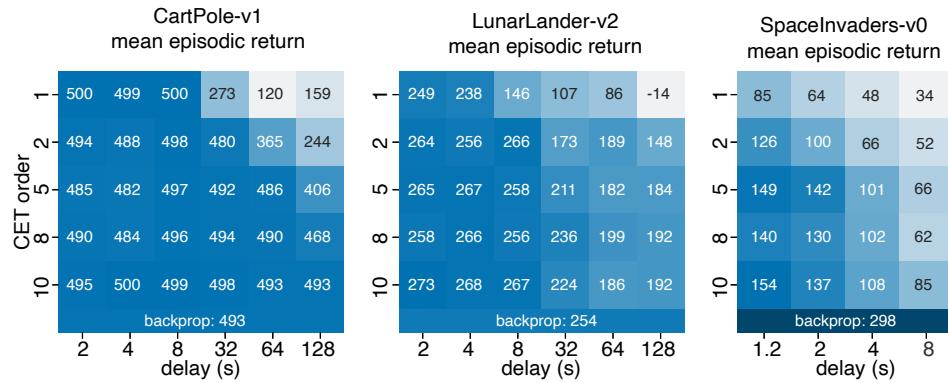


Figure 4: Mean episodic return for different RL environments across varying numbers of CET states and delays on behaviorally relevant timescales. A single state (top row) corresponds to standard ETs.

We observe the same trend for the RL tasks (see Fig. 4): shorter delays and a higher number of CET states result in better performance. Note that CartPole and LunarLander are simple RL tasks and remain solvable even with long delays and fewer states in the CETs. In contrast, MinAtar/SpaceInvaders (Fig. 4, right) is a more complex, image-based environment where performance begins to degrade more quickly when a delay is introduced. In fact, CET performance is at best only half the performance of a perfect memory, even at the shortest delay we tested. We therefore hypothesize that precise credit assignment, without mixing nearby time points, is especially important for complex, non-i.i.d. tasks. Altogether, our results demonstrate that at behaviorally relevant time delays higher-order CETs can greatly enhance performance beyond that achieved by classical ETs, particularly at long delays. However, they cannot fully compensate for delays in highly complex, non-i.i.d. tasks.

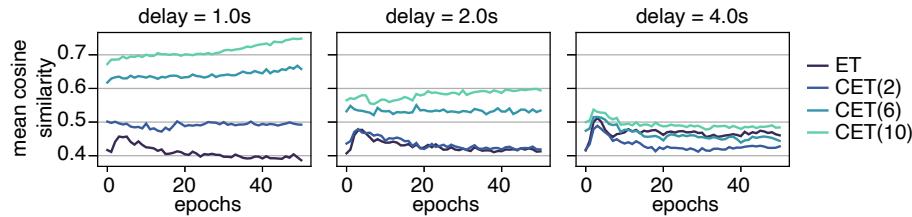


Figure 5: Average cosine similarity over all layers between true gradients and gradients computed with either ETs or CETs for the CIFAR-10 dataset.

To better understand the reasons for the performance we examined how well the weight updates were aligned to the true gradient. We measured the cosine similarity, $\mathbf{a}^\top \mathbf{b} / (\|\mathbf{a}\| \|\mathbf{b}\|)$, between the vector of weight updates given by our CETs, \mathbf{a} , and the true gradient as calculated by backpropagation,

324 b. In Fig. 5, we plot cosine similarity for all CET models for delays of 1, 2, and 4 s on CIFAR-10
 325 (as performance differences were noticeable across these delays in Fig. 3). We observed that at all
 326 times during training, and at shorter delays, an increase in the number of states in the CETs lead to
 327 better alignment with the true gradient (Fig. 5, left and center). However, as the delay increases, the
 328 alignment drops even for higher-order CETs (e.g. with 10 states; Fig. 5, right). When we broke this
 329 down by layer, we observed similar patterns (Section D).

330 Finally, we studied if CETs can handle variable and unknown delays. First, we compared the
 331 performance of CETs and ETs in situations where reward delay followed uni-modal distributions
 332 with differing variance. We found that CETs always outperformed ETs (Section L in the Appendix),
 333 though the benefit decreased as the variance increased and the delay distribution became closer to
 334 uniform. **This is expected since the kernel shape should be matched to the delay distribution. Indeed,**
 335 **the standard ET can approximate the uniform delay well enough so the advantage of CETs is reduced.**
 336 Second, for unknown delays, we found that α (and hence the position of the CET’s peak) can be
 337 learned using weight perturbation, outperforming ETs (see Section L.4 in the Appendix).

339 4.2 COMPUTATION WITH EXTREMELY LONG DELAYS FOR RETROGRADE AXONAL SIGNALING

341 We next investigated the possibility of using CETs to model situations with very long, and accumulat-
 342 ing, delays. Here, the goal was to consider delays introduced by chemical signals (e.g. retrograde
 343 axonal signaling) which could in principle be used for credit assignment (Fan & Mysore, 2024), but
 344 would take minutes to propagate from synapses back to cell bodies. We assume that we do not have
 345 to solve the weight transport problem of backpropagation (Grossberg, 1987), since retrograde signals
 346 could easily have access to synaptic weight values (Fan & Mysore, 2024). (See Discussion.) However,
 347 the approach with CETs here could also easily be used in conjunction with other solutions to weight
 348 transport, including feedback alignment (Lillicrap et al., 2016) or feedback learning mechanisms
 349 (Akroot et al., 2019). Additionally, we assume that the calculation of the δ signals has access to the
 350 post-synaptic activation derivative $f'(\mathbf{x}^\top \mathbf{w})$ at the appropriate delay, which implies another memory
 351 mechanism at the soma, rather than the synapse. This could be modeled with CETs as well, but we
 352 leave that for future work.

353 An additional consideration that we took into account here is
 354 that if credit signals were propagating backwards via retroaxonal
 355 biochemical transmission, then error signals would take pro-
 356 gressively more time as they travel across a number of synaptic steps
 357 (i.e. network depth). Therefore, in a feedforward network if we
 358 assume that a single layer takes T time to propagate the error
 359 signal backwards, then a layer m synaptic steps back will receive
 360 the error signal at time $t = (m - 1)T$ (Fig. 6).

361 Finally, to handle very long delays on visual tasks (MNIST,
 362 CIFAR-10), **we make an additional assumption: the CETs are**
 363 **modulated by an additional “salience signal” that zeros out the**
 364 **input to the CETs unless the loss is very large.** This mechanism
 365 reduces the number of inputs being stored in CETs, in line with
 366 work on reducing the energetic costs of plasticity (van Rossum
 367 & Pache, 2024). This assumption is also consistent with theories
 368 of predictive processing and surprise-driven learning, in which
 369 events with high prediction error drive plasticity (Friston, 2005;
 370 Itti & Baldi, 2009; Dabney et al., 2020). We use 1.25 % of points
 371 with the largest losses in a batch (keeping their positions in the
 372 batch, such that position index encodes time; see Section B.2 for
 373 details). To handle long retrograde signal delays in RL without
 374 sparsification, we simplify the setting by assuming each time step lasts 300 ms instead of 200 ms as
 375 in other our experiments. This corresponds to a delay of 400 frames for the second layer and 800
 376 frames for the first layer.

377 When training networks on visual tasks with large stacking delays across layers, we observed that the
 378 performance increased with increasing CET order (Fig. 7). Moreover, networks with different CET
 379 orders trained at markedly different rates, with higher orders learning faster (Fig. 7). This was more

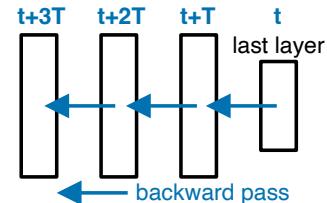
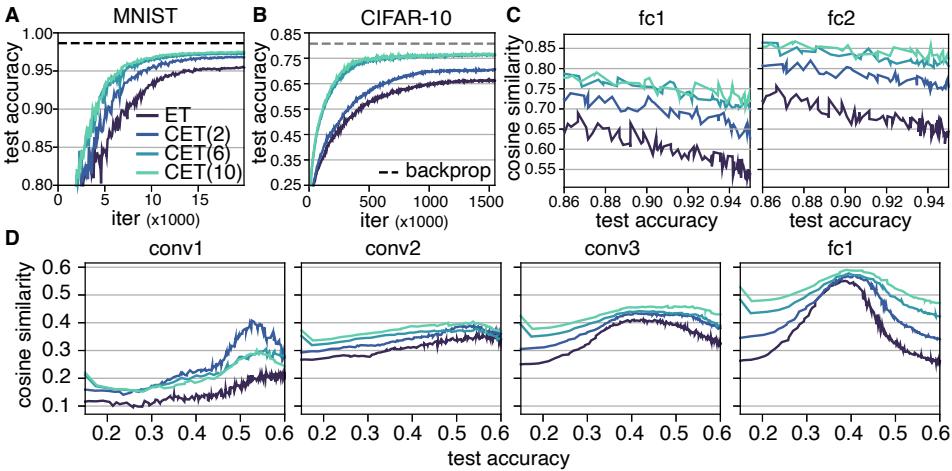


Figure 6: Backprop using retrograde axonal signaling results in delay accumulation: in the last layer, the forward and backward signal are computed simultaneously at time t . Each consecutive layer of the backwards pass takes T more seconds (time taken by retrograde signaling).

378 pronounced for the deeper convolution network trained on CIFAR-10 (Fig. 7B) than the shallow MLP
 379 trained on MNIST (Fig. 7A). Given that the last layer was trained without delay in these experiments,
 380 these results must be due to the impact of delays on learning in the intermediate representations.
 381

382 To understand the performance differences for different orders of CET we analyzed gradient alignment
 383 during training. Because networks learned at different speeds, which affects the dynamics of gradient
 384 alignment (Section D), we used test accuracy as the independent variable, rather than training iteration.
 385 On both MNIST and CIFAR-10 we observed that gradient alignment degrades for the earlier layers,
 386 as is expected for the increasing delays (Fig. 7C,D). Across all layers, increasing CET order was
 387 associated with an increase in gradient alignment, in line with task performance. However, higher
 388 orders were unable to fully recover alignment with the gradient.



404
 405 **Figure 7: A.** Test accuracy on MNIST as a function of number of CET states for the retrograde
 406 experiments. **B.** Same as A, but on CIFAR-10. **C.** Cosine similarity between the true gradient and the
 407 ET/CET approximation across different test accuracies (see A). Each plot shows an individual layer
 408 of an MLP during training on MNIST. **D.** Same as C, but each plot shows an individual layer of a
 409 CNN during training on CIFAR-10.

410 For the RL tasks, we observed similar trends. Increasing the number of CET states leads to improved
 411 performance on both CartPole and LunarLander (Fig. 8A-B). As before, the increase in the number
 412 of CET states also led to increased alignment with the true gradient (Fig. 8C-D), although mostly in
 413 the second layer, which helps to explain the improved performance.

414 Altogether, our results demonstrate that when delays in credit signals are very long (on the order
 415 of minutes), and stacked (summing for each synaptic step), CETs can be used to store memory
 416 for previous activity in order to accurately estimate gradients and learn. As such, CETs would, in
 417 principle, permit credit assignment in situations where errors are propagated backwards via very slow
 418 chemical retrograde signals (Fitzsimonds et al., 1997). However, there is a depth limit beyond which
 419 the delay would be too large to accurately approximate the gradient.

421 5 DISCUSSION

423 For organisms to learn, their brains must have mechanisms for handling delays between learning
 424 signals and past neural activity. Here we presented cascading eligibility traces (CETs), a generalization
 425 of classical eligibility traces and an abstract model of interacting biochemical processes within cells,
 426 as a candidate mechanism for bridging such delays. We showed that CETs enable learning over long
 427 delays on standard image datasets and RL settings, and found that by increasing the number of states
 428 in the eligibility trace cascade (with 1 state being equivalent to classical ETs) learning performance
 429 can be maintained with delays on the order of seconds. We explored how CETs contribute to
 430 the ongoing discussion around biologically plausible implementations of backpropagation (Fan &
 431 Mysore, 2024; Liu et al., 2022). Here we tested the hypothesis that synaptic CETs and learning
 from salient examples enable slow cytoskeletal retroaxonal signals to carry gradient information

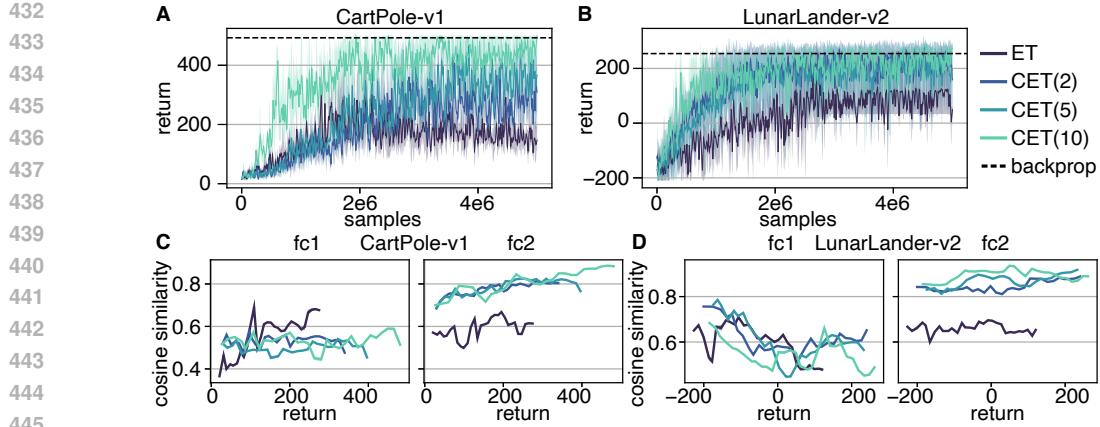


Figure 8: **A.** Episodic return on CartPole-v1 during training in the retrograde experiments. Solid lines: mean (3 seeds); shaded area: min/max values; dashed line: mean final backprop performance. **B.** Same as A but for LunarLander-v2. **C.** Mean cosine similarity (over cosine similarity values assigned to binned return values) between the true gradient and the ET/CET approximation w.r.t. return values in A. **D.** Same as C, but for LunarLander-v2.

recursively over layers – an idea popular over two decades ago but since discarded (Harris, 2008). Again, we found CETs with a larger number of states improved performance. Though accumulating delays with network depth was still problematic for learning, CETs demonstrate that learning over timescales relevant for slow chemical signaling is feasible. Our experiments with CETs validate retroaxonal signals a potential solution to the credit assignment problem.

Our work was limited to experiments with feedforward architectures. While extending it to more biologically relevant scenarios, such as RNNs or spiking networks, is beyond the scope of this work, preliminary experiments with recurrent reservoir networks (Appendix E) and leaky intergrate-and-fire neurons (Appendix J) show promising results.

Classical ETs are exponentially decaying “memories” of synaptic activation that are thought to be implemented by activation of biochemical processes, such as CaMKII activation or other protein kinases (such as PKA, PKC, ERK, MAPK), which are typically triggered by the activation of G-protein coupled receptors (Gerstner et al., 2018). While the complexity of such interacting pathways has been recognized, there has been very little work exploring interactions between such biochemical processes for learning (though see (Friedrich et al., 2011; Huertas et al., 2016)). In this context, we are building off work exploring how complex interactions between kinase cascades mediates plasticity (Zhang et al., 2021). More generally, CETs provide a normative explanation for the complexity of cascade interactions in the context of learning—the improved performance with higher order CETs could explain why cells use biochemical cascades rather than a single biochemical signal.

One of the well-known biological implausibilities of backpropagation is that it requires that weights in the forward pass be reused in the backward pass. In the context of biology, this algorithmic requirement is known as the weight transport problem (Grossberg, 1987). Retroaxonal signals provide a potential solution to this problem because they pass back through the very same synapses used in the forward pass. As such, they could, in principle, carry information about the synaptic weights, thereby solving the weight transport problem (Fan & Mysore, 2024). However, the challenge with retroaxonal signals is that they are very slow, taking minutes to pass from the synapse to the cell body (Fitzsimonds & Poo, 1998). As we showed here, CETs provide a potential mechanism for making learning at such delays feasible. Therefore, they open up the possibility of using retroaxonal signals for credit assignment. However, our results also showed that you can only stack such long delays over a few synaptic steps before learning deteriorates significantly, which would suggest that if retroaxonal signals are used for learning in the brain they would only be used for learning at relatively shallow “depths”. Indeed this is consistent with experimental findings: for example Hui-zhong et al. (2000); Fitzsimonds et al. (1997) only found retroaxonal potentiation and depression over one “layer” in cultured neurons (i.e. one synaptic step). Although it was originally suggested that the lack of further propagation may be due to the size of the plasticity change (Fitzsimonds et al., 1997), our

486 results provide evidence that recursive propagation delays are problematic, even with CETs, and
487 would require additional mechanisms such as direct reward signaling (Nøkland, 2016).
488

489 For the retrograde experiments, we also relied on a salience signal to gate which presynaptic events
490 were stored in the CETs. Conceptually, this mechanism reflects a broader class of theories in
491 neuroscience and machine learning in which a subset of events—typically those associated with large
492 prediction errors—drive plasticity. Three-factor learning rules, for instance, can encode surprise,
493 effectively shutting down learning when no unexpected outcome occurs (Gerstner et al., 2018).
494 Similarly, normative accounts link large prediction errors to high information gain (Friston, 2005;
495 Itti & Baldi, 2009). Our use of top-k losses operationalizes this principle by ensuring that only
496 high-salience presynaptic events are retained in the CETs. While we do not commit to a specific
497 biological mechanism, this abstraction is consistent with proposals in which global neuromodulators
498 signal behavioral relevance (Dabney et al., 2020) or dendritic compartments represent mismatches
499 between predictions and inputs (Sacramento et al., 2017; Aizenbud et al., 2025).

500 In summary, our work on CETs provides an extension to the classical ET approach for handling
501 delays between activity and feedback error signals or rewards. We have demonstrated that cascades
502 of biochemical processes could be used by cells to store more temporally precise memories of past
503 cell activity. These memories could then be combined with delayed error signals to estimate loss
504 gradients. Therefore, our work provides another potential means of understanding how the brain can
505 learn complicated tasks in a biologically plausible manner.

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
 541 **Reproducibility Statement.** We include an anonymized code archive in the supplementary material
 542 with instructions to run the main experiments. Appendix C describes details for all hyperparameter
 543 configurations, model architectures, and the training pipeline.

544 **REFERENCES**

546 Ido Aizenbud, Nicholas Audette, Ryszard Auksztulewicz, Krzysztof Basiński, André M Bastos,
 547 Michael Berry, Andres Canales-Johnson, Hannah Choi, Claudia Clopath, Uri Cohen, et al. Neu-
 548 ral mechanisms of predictive processing: a collaborative community experiment through the
 549 openscope program. *arXiv preprint arXiv:2504.09614*, 2025.

550 Mohamed Akroud, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
 551 learning without weight transport. *Advances in neural information processing systems*, 32, 2019.

552 Bradley E Alger. Retrograde signaling in the regulation of synaptic transmission: focus on endo-
 553 cannabinoids. *Progress in neurobiology*, 68(4):247–286, 2002.

554 Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
 555 and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
 556 *Nature communications*, 11(1):3625, 2020.

557 Katie C Bittner, Aaron D Milstein, Christine Grienberger, Sandro Romani, and Jeffrey C Magee.
 558 Behavioral time scale synaptic plasticity underlies ca1 place fields. *Science*, 357(6355):1033–1036,
 559 2017.

560 Zuzanna Brzosko, Wolfram Schultz, and Ole Paulsen. Retroactive modulation of spike timing-
 561 dependent plasticity by dopamine. *elife*, 4:e09685, 2015.

562 Bianxiao Cui, Chengbiao Wu, Liang Chen, Alfredo Ramirez, Elaine L Bearer, Wei-Ping Li, William C
 563 Mobley, and Steven Chu. One at a time, live tracking of ngf axonal transport using quantum dots.
 564 *Proceedings of the National Academy of Sciences*, 104(34):13666–13671, 2007.

565 Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather, Demis Hassabis, Rémi
 566 Munos, and Matthew Botvinick. A distributional code for value in dopamine-based reinforcement
 567 learning. *Nature*, 577(7792):671–675, 2020.

568 Jiu-lin Du and Mu-ming Poo. Rapid bdnf-induced retrograde synaptic modification in a developing
 569 retinotectal system. *Nature*, 429(6994):878–883, 2004.

570 Xinhao Fan and Shreesh P Mysore. Contribute to balance, wire in accordance: Emergence of
 571 backpropagation from a simple, bio-plausible neuroplasticity rule. *bioRxiv*, pp. 2024–05, 2024.

572 Reiko Maki Fitzsimonds and Mu-ming Poo. Retrograde signaling in the development and modification
 573 of synapses. *Physiological reviews*, 78(1):143–170, 1998.

574 Reiko Maki Fitzsimonds, Hong-jun Song, and Mu-ming Poo. Propagation of activity-dependent
 575 synaptic depression in simple neural networks. *Nature*, 388(6641):439–448, 1997.

576 Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
 577 theory of three-factor learning rules. *Frontiers in neural circuits*, 9:85, 2016.

578 Johannes Friedrich, Robert Urbanczik, and Walter Senn. Spatio-temporal credit assignment in
 579 neuronal population learning. *PLoS computational biology*, 7(6):e1002092, 2011.

580 Karl Friston. A theory of cortical responses. *Philosophical transactions of the Royal Society B:
 581 Biological sciences*, 360(1456):815–836, 2005.

582 Stefano Fusi, Patrick J Drew, and Larry F Abbott. Cascade models of synaptically stored memories.
 583 *Neuron*, 45(4):599–611, 2005.

584 Wulfram Gerstner, Marco Lehmann, Vasiliki Liakoni, Dane Corneil, and Johanni Brea. Eligibility
 585 traces and plasticity on behavioral time scales: experimental support of neohebbian three-factor
 586 learning rules. *Frontiers in neural circuits*, 12:53, 2018.

594 Will Greedy, Heng Wei Zhu, Joseph Pemberton, Jack Mellor, and Rui Ponte Costa. Single-phase
 595 deep learning in cortico-cortical networks. *Advances in neural information processing systems*, 35:
 596 24213–24225, 2022.

597

598 Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. *Cognitive
 599 science*, 11(1):23–63, 1987.

600 Kenneth D Harris. Stability of the fittest: organizing learning through retroaxonal signals. *Trends in
 601 neurosciences*, 31(3):130–136, 2008.

602

603 Kaiwen He, Marco Huertas, Su Z Hong, XiaoXiu Tie, Johannes W Hell, Harel Shouval, and Alfredo
 604 Kirkwood. Distinct eligibility traces for ltp and ltd in cortical synapses. *Neuron*, 88(3):528–538,
 605 2015.

606

607 Gregor M Hoerzer, Robert Legenstein, and Wolfgang Maass. Emergence of complex computational
 608 structures from chaotic neural networks through reward-modulated hebbian learning. *Cerebral
 cortex*, 24(3):677–690, 2014.

609

610 Marco A Huertas, Sarah E Schwettmann, and Harel Z Shouval. The role of multiple neuromodulators
 611 in reinforcement learning that is based on competition between eligibility traces. *Frontiers in
 612 synaptic neuroscience*, 8:37, 2016.

613

614 W Tao Hui-zhong, Li I Zhang, Guo-qiang Bi, and Mu-ming Poo. Selective presynaptic propagation
 615 of long-term potentiation in defined neural networks. *Journal of neuroscience*, 20(9):3233–3243,
 2000.

616

617 Laurent Itti and Pierre Baldi. Bayesian surprise attracts human attention. *Vision research*, 49(10):
 1295–1306, 2009.

618

619 Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
 620 Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
 621 *International conference on machine learning*, pp. 1627–1635. PMLR, 2017.

622

623 Alex Krizhevsky, Vinod Nair, Geoffrey Hinton, et al. The cifar-10 dataset. *online: <http://www.cs.toronto.edu/kriz/cifar.html>*, 55(5):2, 2014.

624

625 Yann LeCun. The mnist database of handwritten digits. *<http://yann.lecun.com/exdb/mnist/>*, 1998.

626

627 Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
 628 feedback weights support error backpropagation for deep learning. *Nature communications*, 7(1):
 13276, 2016.

629

630 Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
 631 agation and the brain. *Nature Reviews Neuroscience*, 21(6):335–346, 2020.

632

633 Yuhan Helena Liu, Stephen Smith, Stefan Mihalas, Eric Shea-Brown, and Uygar Sümbül.
 634 Biologically-plausible backpropagation through arbitrary timespans via local neuromodulators.
 635 *Advances in Neural Information Processing Systems*, 35:17528–17542, 2022.

636

637 Sandra Maday, Alison E Twelvetrees, Armen J Moughamian, and Erika LF Holzbaur. Axonal
 638 transport: cargo-specific mechanisms of motility and regulation. *Neuron*, 84(2):292–309, 2014.

639

640 Mateusz Malinowski, Grzegorz Swirszcz, Joao Carreira, and Viorica Patraucean. Sideways: Depth-
 641 parallel training of video models. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 642 and Pattern Recognition*, pp. 11834–11843, 2020.

643

644 Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. *Advances in
 645 neural information processing systems*, 29, 2016.

646

647 Mohsen Omrami, Chantelle D Murnaghan, J Andrew Pruszynski, and Stephen H Scott. Distributed
 648 task-specific processing of somatosensory feedback for voluntary motor control. *Elife*, 5:e13141,
 2016.

649

650 Alexander G Ororbia. Brain-inspired machine intelligence: A survey of neurobiologically-plausible
 651 credit assignment. *arXiv preprint arXiv:2312.09257*, 2023.

648 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 649 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 650 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
 651 Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
 652 library, 2019. URL <https://arxiv.org/abs/1912.01703>.

653 Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A Richards, and Richard Naud. Burst-
 654 dependent synaptic plasticity can coordinate learning in hierarchical circuits. *Nature neuroscience*,
 655 24(7):1010–1019, 2021.

656

657 Wade G Regehr, Megan R Carey, and Aaron R Best. Activity-dependent regulation of synapses by
 658 retrograde messengers. *Neuron*, 63(2):154–170, 2009.

659

660 J Sacramento, RP Costa, Y Bengio, and W Senn. Dendritic error backpropagation in deep cortical
 661 microcircuits. arxiv. *arXiv preprint arXiv:1801.00062*, 2017.

662

663 Stephen H Scott. A functional taxonomy of bottom-up sensory feedback processing for motor actions.
Trends in neurosciences, 39(8):512–526, 2016.

664

665 Tomomi Shindou, Mayumi Shindou, Sakurako Watanabe, and Jeffery Wickens. A silent eligibility
 666 trace enables dopamine-dependent synaptic plasticity for reinforcement learning in the mouse
 667 striatum. *European Journal of Neuroscience*, 49(5):726–736, 2019.

668

669 Harel Z Shouval and Alfredo Kirkwood. Eligibility traces as a synaptic substrate for learning. *Current
 Opinion in Neurobiology*, 91:102978, 2025.

670

671 Sen Song, Per Jesper Sjöström, Markus Reigl, Sacha Nelson, and Dmitri B Chklovskii. Highly
 672 nonrandom features of synaptic connectivity in local cortical circuits. *PLoS biology*, 3(3):e68,
 2005.

673

674 David Sussillo and Larry F Abbott. Generating coherent patterns of activity from chaotic neural
 675 networks. *Neuron*, 63(4):544–557, 2009.

676

677 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*, chapter 12, pp.
 287–319. MIT Press, 2 edition, 2018. URL <https://www.andrew.cmu.edu/course/10-703/textbook/BartoSutton.pdf>.

678

679 Aparna Suvrathan. Beyond stdp—towards diverse and functionally relevant plasticity rules. *Current
 opinion in neurobiology*, 54:12–19, 2019.

680

681 Aparna Suvrathan, Hannah L Payne, and Jennifer L Raymond. Timing rules for synaptic plasticity
 682 matched to behavioral function. *Neuron*, 92(5):959–967, 2016.

683

684 Mark CW van Rossum and Aaron Pache. Competitive plasticity to reduce the energetic costs of
 685 learning. *PLOS Computational Biology*, 20(10):e1012553, 2024.

686

687 Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
 688 reinforcement learning experiments. *arXiv preprint arXiv:1903.03176*, 2019.

689

690 Laurence R Young and Lawrence Stark. Variable feedback experiments testing a sampled data model
 691 for eye tracking movements. *IEEE Transactions on Human Factors in Electronics*, (1):38–51,
 692 1963.

693

694 Yili Zhang, Paul D Smolen, Leonard J Cleary, and John H Byrne. Quantitative description of the
 695 interactions among kinase cascades underlying long-term plasticity of aplysia sensory neurons.
Scientific reports, 11(1):14931, 2021.

696

697

698

699

700

701

702 **A CASCADING ELIGIBILITY TRACES DERIVATIONS**
703704 **A.1 UPDATE DERIVATION**
705706 The ET we presented in Eq. (4) has the form
707

708
$$\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{b}(t),$$

709 which are solved by
710

711
$$\mathbf{x}(t) = \exp(\mathbf{A}t) \mathbf{x}(0) + \int_0^t \exp(\mathbf{A}(t-s)) \mathbf{b}(s) ds. \quad (6)$$

712

713 While the matrix exponent $\exp(\mathbf{A}t)$ is hard to compute in general, in our case,
714

715
$$\begin{pmatrix} \dot{x}_t^1 \\ \vdots \\ \dot{x}_t^{n-1} \\ \dot{x}_t^{\text{CET}} \end{pmatrix} = \begin{pmatrix} -\alpha & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & -\alpha & 0 \\ 0 & \dots & 0 & 1 & -\alpha \end{pmatrix} \begin{pmatrix} x_t^1 \\ \vdots \\ x_t^{n-1} \\ x_t^{\text{CET}} \end{pmatrix} + \begin{pmatrix} x_t \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad (7)$$

716

717 therefore $\mathbf{A} = \alpha \mathbf{I}_n + \mathbf{N}$ for a nilpotent \mathbf{N} (i.e. $\mathbf{N}^n = 0$), hence
718

719
$$\begin{aligned} 720 \exp((\alpha \mathbf{I}_n + \mathbf{N}) t) &= \exp(\alpha t) \left(\sum_{i=0}^{n-1} \frac{1}{i!} N^i t^i \right) \\ 721 &= \exp(\alpha t) \begin{bmatrix} 1 & 0 & \dots & 0 & 0 \\ t & 1 & 0 & \dots & 0 \\ \frac{t^2}{2!} & t & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ \frac{t^{n-1}}{(n-1)!} & \frac{t^{n-2}}{(n-2)!} & \dots & t & 1 \end{bmatrix}. \end{aligned} \quad (7)$$

722

723 Therefore, for $\mathbf{x}(0) = 0$ and $\mathbf{b}(t)$ being non-zero only for the first coordinate, the last coordinate of \mathbf{x}
724 implements
725

726
$$727 x_n(t) = \int_0^t \exp(\alpha(t-s)) \frac{(t-s)^{n-1}}{(n-1)!} b_0(s) ds. \quad (7)$$

728

729 Moreover, if $\mathbf{b}(t)$ is a step-wise function taking on a new value every Δt points, a single step of the
730 integration between t and $t + \Delta t$ can be computed (exactly) using Eq. (6) as
731

732
$$\begin{aligned} 733 \mathbf{x}(t + \Delta t) &= \exp(\mathbf{A}\Delta t) \mathbf{x}(t) + \left[\int_0^{\Delta t} \exp(\mathbf{A}(\Delta t - s)) ds \right] \mathbf{b}(t) \\ 734 &= \exp(\mathbf{A}\Delta t) \mathbf{x}(t) + \left[\int_0^{\Delta t} \exp(\mathbf{A}s) ds \right] \mathbf{b}(t). \end{aligned} \quad (7)$$

735

736 As \mathbf{A} is non-singular, we can integrate this solution further to obtain
737

738
$$\mathbf{x}(t + \Delta t) = \exp(\mathbf{A}\Delta t) \mathbf{x}(t) + [\exp(\mathbf{A}\Delta t) - \mathbf{I}] \mathbf{A}^{-1} \mathbf{b}(t). \quad (8)$$

739

740 **A.2 LAPLACE DOMAIN ANALYSIS**
741742 To clarify the effect of increasing n , we include a brief Laplace domain analysis. We can show that
743 the Laplace transform converges pointwise to the Laplace transform of the perfect delay. Therefore,
744 the outputs $u * h_n$ converge to $u(t - T)$ for finite-bandwidth low-frequency signals since the system
745 acts as a low-pass filter, which explains why increasing n sharpens the kernel and yields better results.
746747 **Proposition 1.** *Let*

748
$$749 h_n(t) = Z_n^{-1} t^n e^{-nt/T}, \quad Z_n = \int_0^\infty t^n e^{-nt/T} dt.$$

750

751 *Then the Laplace transform $\mathcal{L}\{h_n\}(s)$ converges pointwise to e^{-sT} as $n \rightarrow \infty$.*
752

756 *Proof.* We first compute the normalization constant:

$$758 \quad Z_n = \int_0^\infty t^n e^{-nt/T} dt = \frac{\Gamma(n+1)}{(n/T)^{n+1}}.$$

760 The Laplace transform of h_n is

$$762 \quad \mathcal{L}\{h_n(t)\}(s) = Z_n^{-1} \int_0^\infty t^n e^{-nt/T} e^{-st} dt.$$

764 Evaluating the integral gives

$$766 \quad \mathcal{L}\{h_n\}(s) = \frac{(n/T)^{n+1}}{\Gamma(n+1)} \frac{\Gamma(n+1)}{(s+n/T)^{n+1}} = \left(\frac{n/T}{s+n/T} \right)^{n+1} = \left(1 + \frac{sT}{n} \right)^{-(n+1)}.$$

768 Taking the limit,

$$770 \quad \lim_{n \rightarrow \infty} \mathcal{L}\{h_n\}(s) = \lim_{n \rightarrow \infty} \left(1 + \frac{sT}{n} \right)^{-(n+1)} = e^{-sT},$$

772 which is the Laplace transform of the ideal delay $\delta(t - T)$. \square

773 A.3 CONNECTION TO COMBINED LTP & LTD TRACES

775 **Proposition 2.** *The L_1 normalized LTP-LTD kernel over $[0, \infty)$ is given by*

$$778 \quad h(t) = \frac{ab}{b-a} (e^{-at} - e^{-bt}),$$

780 and we wish to find a, b to concentrate the mass around T . When viewing $h(t)$ as a probability
781 density function we want to minimize $f(a, b) = \mathbb{E}_h [(t - T)^2]$

$$784 \quad f(a, b) = \frac{1}{a^2} + \frac{1}{b^2} + \left(\frac{1}{a} + \frac{1}{b} - T \right)^2$$

785 subject to h reaching a maximum at T or equivalently with the constraint

$$787 \quad 0 = g(a, b) = \begin{cases} \frac{\ln(a) - \ln(b)}{a-b} - T, & a \neq b, \\ \frac{1}{a} - T, & a = b. \end{cases}$$

791 Then the infimum over $\{(a, b) : g(a, b) = 0, a \neq b, a > 0, b > 0\}$ is achieved only in the limit
792 $a, b \rightarrow 1/T$, with such a sequence converging pointwise and in L_1 to $\frac{1}{T^2} te^{-t/T}$.

793 *Proof.* Solving the constraint $g(a, b) = 0$ for (a, b) in terms of a single real parameter x yields the
795 smooth parametrization

$$796 \quad a(x) = \frac{xe^{Tx}}{e^{Tx} - 1}, \quad b(x) = \frac{x}{e^{Tx} - 1},$$

798 valid for $x \neq 0$, with the continuous extension $a(0) = b(0) = 1/T$.

799 Substituting this parametrization into the objective gives

$$801 \quad f(x) = f(a(x), b(x)) = \frac{(1 - e^{Tx})^2}{x^2} + \frac{(1 - e^{Tx})^2 e^{-2Tx}}{x^2} + \frac{(-Txe^{Tx} + e^{2Tx} - 1)^2 e^{-2Tx}}{x^2}.$$

804 We can directly check that $f(x)$ is an even function, hence $x = 0$ is an extreme point.

805 A computational verification shows that the extended function is strictly convex and therefore attains
806 its unique minimum at $x = 0$.

807 It follows that the objective is minimized by taking a sequence (a_n, b_n) with

$$809 \quad a_n, b_n \rightarrow \frac{1}{T}, \quad a_n \neq b_n.$$

810 It remains to show that such a sequence converges to $\frac{1}{T^2} te^{-t/T}$.
 811

812 Let $f(\lambda, t) = e^{-\lambda t}$. By the mean value theorem, there exists $c \in (a_n, b_n)$ such that
 813

$$\begin{aligned} \frac{\partial}{\partial \lambda} f(\lambda, t) \Big|_c &= -te^{-ct} = \frac{e^{-at} - e^{-bt}}{a - b} \\ 816 \quad te^{-ct} &= \frac{e^{-at} - e^{-bt}}{b - a}. \end{aligned}$$

819 Then for any sequence (a_n, b_n) with $|a_n - b_n| \rightarrow 0$ and $a_n \rightarrow 1/T$, the corresponding kernels h_n
 820 converge pointwise to the desired limit. Since $0 \leq h_n(t) \leq Ce^{-t/(T+1)^2}$ for all sufficiently large n ,
 821 dominated convergence ensures L_1 convergence. \square
 822

824 B IMPLEMENTATION DETAILS

826 B.1 ALTERNATIVE EXPRESSION FOR STEPWISE INPUTS

828 For experiments on visual tasks, we consider that a batch of inputs corresponds to a time-series where
 829 the batch dimension corresponds to the time dimension. In this case, the output of the state-space
 830 model in Eq. (4) can be obtained via a discrete convolution, which can be efficiently computed as a
 831 matrix multiplication.

832 Starting from Eq. (8), we can denote $\mathbf{M} = \exp(\mathbf{A} \Delta t)$ and $\mathbf{K} = [\exp(\mathbf{A} \Delta t) - \mathbf{I}] \mathbf{A}^{-1}$, such that
 833

$$\mathbf{x}(t + \Delta t) = \mathbf{M} \mathbf{x}(t) + \mathbf{K} \mathbf{b}(t),$$

835 and therefore

$$\mathbf{x}(k \Delta t) = \mathbf{M}^k \mathbf{x}(0) + \sum_{i=0}^k \mathbf{M}^{k-i} \mathbf{K} \mathbf{b}(i \Delta t).$$

839 If we assume the initial state was zero, $\mathbf{x}(0) = 0$, the SSM outputs $x_{k \Delta t}^{\text{CET}}$ will be computed as
 840 (dropping the SSM superscript for convenience)

$$\begin{bmatrix} x_0 \\ x_{\Delta t} \\ \vdots \\ x_{k \Delta t} \end{bmatrix} = \begin{bmatrix} g_0 & 0 & \dots & 0 \\ g_1 & g_0 & \dots & 0 \\ \dots & & & \\ g_k & g_{k-1} & \dots & g_0 \end{bmatrix} \begin{bmatrix} b_0 \\ b_{\Delta t} \\ \vdots \\ b_{k \Delta t} \end{bmatrix} = \mathbf{G} \mathbf{b}[t] \quad (9)$$

847 where $g_j = (\mathbf{M}^j \mathbf{K})_{n0}$.
 848

849 Alternatively, to get a closed form expression for g , we may rewrite the stepwise constant input as
 850 the convolution of the appropriate impulse train with the rectangular function. Using δ for the Dirac
 851 delta and θ for the Heavyside function, we have

$$\begin{aligned} 853 \quad b(t) &= \sum_{i=1}^{\infty} a_i \delta(t - t_i), \quad \text{rect}(t) = \theta(t) - \theta(t-1) \\ 854 \\ 855 \quad \hat{b}(t) &= \sum_{i=1}^{\infty} a_i \text{rect}(t - t_i) = (b * \text{rect})(t) \\ 856 \\ 857 \quad x(t) &= \hat{b} * g = b * (\text{rect} * g) \\ 858 \\ 859 \quad &= \sum_{i=1}^{\infty} a_i (\text{rect} * g)(t - t_i). \end{aligned}$$

862 We can therefore compute the exact continuous-time output with a discrete convolution using
 863 $\hat{g} = \text{rect} * g$.

$$\begin{aligned}
864 \quad g(t) &= \theta(t) k t^n e^{-\frac{n}{T} t} \\
865 \quad \text{rect} * g &= \int_{-\infty}^{\infty} h(\tau) \text{rect}(t - \tau) d\tau \\
866 \quad &= k \int_{\max(0, t-1)}^t \tau^n e^{-\frac{n}{T} \tau} d\tau \\
867 \quad &= k \left(\frac{T}{n} \right)^{n+1} \left[\gamma(n+1, \frac{n}{T} t) - \gamma(n+1, \frac{n}{T} \max(0, t-1)) \right]
\end{aligned} \tag{10}$$

874 where γ is the incomplete Gamma function.

876 B.2 SPARSIFICATION

878 In matrix form, sparsification with indices in $\mathcal{T} = \{t_1, \dots, t_k\}$ then corresponds to a matrix multiplication
879 with the diagonal matrix $\mathbf{S}_{\mathcal{T}} = \text{diag}(\mathbf{1}_{\mathcal{T}})$,

$$881 \quad \tilde{\mathbf{x}}[\mathbf{t}] = \mathbf{S}_{\mathcal{T}} \mathbf{x}[\mathbf{t}]$$

883 When using the Hebbian-like term $\mathbf{h}[t] = f'(\mathbf{x}[t]^\top \mathbf{w}) \mathbf{x}[t]$ as inputs to the SSM, the gradient
884 computation when both inputs and gradients are sparsified, respectively with $\mathcal{T}, \mathcal{T}'$ will be

$$\begin{aligned}
886 \quad \frac{\partial L(\mathbf{x}[t]^\top \mathbf{w})}{\partial \mathbf{w}} &= \mathbf{S}_{\mathcal{T}'} \delta[t] \odot \mathbf{G} \mathbf{S}_{\mathcal{T}} \mathbf{h}[t] \\
887 \quad &= \mathbf{S}_{\mathcal{T}'} \delta[t] \odot \mathbf{S}_{\mathcal{T}'} \mathbf{G} \mathbf{S}_{\mathcal{T}} \mathbf{h}[t].
\end{aligned} \tag{11}$$

890 Since the sparsifying matrices are indicator functions, this is equivalent to indexing δ_t , \mathbf{G} , and $\mathbf{h}[\mathbf{t}]$ at
891 the appropriate positions defined by \mathcal{T} and \mathcal{T}' . When simulating sparsity, we obtain the original input
892 presentation indices \mathcal{T} as the salient image indices and compute the arrival time gradient indices as
893 $\mathcal{T}' = \mathcal{T} + (m-1)T$. The gradient over the batch is then computed by summing over the time—or
894 equivalently, batch—dimension.

896 C EXPERIMENTAL DETAILS

898 **Visual experiments.** For visual experiments, we consider the batch dimension to be the time
899 dimension, and we compute the delayed signals over the batch dimension using a matrix convolution
900 as described in Section B.2. The experiments in Section 4.1 use a batch size of 128 samples, while
901 the experiments in Section 4.2 use a batch size of 1280 samples, where only the samples with the
902 top 1.25% of training losses are used. Networks were trained using the cross-entropy loss and the
903 AdamW optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$. The learning rate was scaled with a linear warm-up
904 over 10% and 20% of the training steps for Section 4.1 and Section 4.2, respectively, followed by
905 cosine annealing to 10% of the initial learning rate. For the experiments in Section 4.1, the maximal
906 learning rate was selected from a logarithmic grid of 5 points spanning 10^{-3} to 10^{-7} , and the weight
907 decay was chosen from the set $\{0.1, 0.01, 0.001, 0.0\}$. For the CIFAR-10 experiments in Section 4.2,
908 the maximal learning rate was selected from $\{5 \times 10^{-5}, 2.5 \times 10^{-5}, 1 \times 10^{-5}, 7.5 \times 10^{-6}, 5 \times$
909 $10^{-6}, 2.5 \times 10^{-6}, 1 \times 10^{-6}\}$, and the weight decay was fixed to 0.1. Hyper-parameters for the
910 MNIST experiments in Section 4.2, were searched the same way as for Section 4.1. Hyper-parameters
911 presented in Tables 1 to 4 were independently selected using a 90%/10% split of the standard training
912 set, and the models were retrained using the standard training set and tested on the standard test set.
913 All experiments in Section 4.1 as well as the MNIST experiments in Section 4.2 were run for 20000
914 training steps. The CIFAR-10 experiments in Section 4.2 were run for 1562500 steps, in large part
915 due to lower learning rates. Data augmentation using random horizontal flips was applied only to the
CIFAR-10 experiments.

916 **RL.** In Actor-Critic, we train the Critic using the standard λ -return, while the Actor is trained using
917 RL eligibility traces (see Algorithm 1). The term $\nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$ in Algorithm 1 refers either to

918
919
920

Table 1: Experiment configurations for CIFAR-10 experiments at behavioural timescales.

CET order	delay	lr	weight decay
1	0.2	1e-3	1e-1
2	0.2	1e-3	1e-1
6	0.2	1e-3	1e-1
10	0.2	1e-3	1e-1
1	0.6	1e-3	1e-3
2	0.6	1e-3	1e-1
6	0.6	1e-3	1e-1
10	0.6	1e-3	1e-1
1	1.0	1e-4	0
2	1.0	1e-3	1e-2
6	1.0	1e-3	1e-1
10	1.0	1e-3	1e-1
1	2.0	1e-4	1e-3
2	2.0	1e-4	1e-3
6	2.0	1e-3	1e-3
10	2.0	1e-3	0
1	4.0	1e-4	1e-3
2	4.0	1e-4	0
6	4.0	1e-4	1e-3
10	4.0	1e-4	1e-2
1	10.0	1e-4	0
2	10.0	1e-4	1e-2
6	10.0	1e-4	1e-3
10	10.0	1e-4	1e-3

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942

Table 2: Experiment configurations for MNIST experiments at behavioural timescales.

CET order	delay	lr	weight decay
1	0.2	1e-3	1e-1
2	0.2	1e-3	1e-3
6	0.2	1e-3	1e-2
10	0.2	1e-3	1e-2
1	0.6	1e-3	1e-3
2	0.6	1e-3	1e-1
6	0.6	1e-3	1e-1
10	0.6	1e-3	1e-3
1	1.0	1e-3	0
2	1.0	1e-3	0
6	1.0	1e-3	0
10	1.0	1e-3	1e-3
1	2.0	1e-3	1e-3
2	2.0	1e-3	1e-2
6	2.0	1e-3	0
10	2.0	1e-3	1e-2
1	4.0	1e-3	0
2	4.0	1e-3	0
6	4.0	1e-3	0
10	4.0	1e-3	1e-3
1	10.0	1e-4	0
2	10.0	1e-4	1e-2
6	10.0	1e-3	0
10	10.0	1e-3	1e-3

943
944

Table 3: Experiment configurations for CIFAR-10 experiments at retrograde timescales.

CET order	lr	weight decay
1	1e-5	1e-1
2	1e-5	1e-1
6	5e-5	1e-1
10	5e-5	1e-1

945
946
947
948
949
950
951

Table 4: Configurations for MNIST experiments at retrograde timescales.

CET order	lr	weight decay
1	1e-4	1e-3
2	1e-4	1e-1
6	1e-4	1e-3
10	1e-4	0.0

952
953

the true gradient obtained via backpropagation or to its ET/CET approximations, computed as the product of the top-level gradient signal and the ET/CET output. The CET update is computed using Eq. 8.

954

Algorithm 1 Actor learning via RL eligibility traces.

955

- 1: Initialize actor parameters θ , RL eligibility trace vector $e = 0$, gradient accumulator $\nabla_\theta L = 0$, learning rate α , and trace decay λ .
- 2: Sample initial state s_0 from the environment
- 3: **for** $t \in 0, \dots, L$ **do**
- 4: Select action $a_t \sim \pi_\theta(\cdot | s_t)$
- 5: Take action a_t , observe r_t, s_{t+1}
- 6: Update RL eligibility trace vector: $e = \lambda \gamma e + \nabla_\theta \log \pi_\theta(a_t | s_t)$
- 7: Compute TD error: $\eta_t = r_t + \gamma V(s_{t+1}) - V(s_t)$
- 8: Accumulate gradient: $\nabla_\theta L = \nabla_\theta L + \eta_t e$
- 9: **if** $t \bmod n = 0$ **then**
- 10: Update actor: $\theta = \theta + \alpha \nabla_\theta L$
- 11: Reset gradient: $\nabla_\theta L = 0$
- 12: **end if**
- 13: **end for**

972 The learning rate was selected from the set $2.5e-4$, $5e-4$, $9e-4$, $1e-4$ based on performance for all
 973 experiments. For all classic ET runs, the ET discount factor, β , was chosen from 0.5, 0.7, 0.9, 0.99.
 974 Additionally, we used two normalization schemes for CET outputs: *area* and *peak* normalizations. In
 975 *area* normalization, the CET output is scaled so that the response to a unit input integrates to one
 976 across all future states. In *peak* normalization, the CET output is scaled such that the maximum
 977 response to a unit input is one. For Fig.8, this normalization hyperparameter was also searched.

978 For the Critic, we used either the same architecture as the Actor, a three-layer MLP with hidden
 979 dimension 256, or a convolutional neural network (CNN) for MinAtar/SpaceInvaders-v0, consisting
 980 of three convolutional layers (kernel size 3, zero-padding 1) followed by two fully connected layers.
 981 The ReLU activation function was used in all experiments. For CartPole and LunarLander, we also
 982 controlled the simulated time elapsed between the environment receiving an action from the agent
 983 and producing the corresponding next state and reward. This time was set to 200 ms for behavioral
 984 timescale experiments (Section 4.1) and 300 ms for retrograde signaling (Section 4.2), based on the
 985 time modeling assumptions described in the referenced sections.

986 To better preserve gradient alignment with ET/CET in the first layer, we ensured positive inputs by
 987 doubling the input dimensionality and representing each original dimension with separate positive
 988 and negative components.

989 The remaining hyperparameters used in the experiments are summarized in Table 5, and tuned
 990 hyperparameters are reported in Tables 6 and 7. Note that for MinAtar/SpaceInvaders, we use a
 991 randomly sampled λ value, as we found this improves performance in this environment. A separate
 992 λ is sampled independently for every learned parameter, which is feasible due to our RL eligibility
 993 traces implementation of Actor learning.

995 **Compute.** All experiments were done on RTX 8000 and A100 GPUs. Each MNIST run takes
 996 between 3 and 10 minutes on an RTX 8000 GPU, while each CIFAR-10 run takes approximately
 997 30 minutes for Section 4.1 and up to 24 hours for Section 4.2 on a RTX 8000. Each RL run takes
 998 approximately 1-2 hours to complete.

1000 D SUPPLEMENTAL RESULTS ON GRADIENT ALIGNMENT

1002 To complement the analyses in the main text, we provide additional results on gradient alignment
 1003 across all layers for different tasks. First, we show in Fig. 9 that the separation observed in Fig. 5
 1004 generally holds across different layers. A similar trend is observed for RL tasks in Fig. 11, although
 1005 the separation is much noisier and sometimes does not hold for the first layer. We hypothesize that
 1006 the training dynamics of ET and CET can differ significantly, guiding parameters to distinct regions
 1007 in the loss landscape. In these regions, gradient alignment might occasionally be higher for ET, yet
 1008 overall performance remains lower.

1009 We can also see in Fig. 10 that the separation between the different CETs is still evident when plotting
 1010 the similarity against training steps for MNIST. However, Fig. 12 shows that this relationship is
 1011 muddied for CIFAR-10, which justifies plotting against accuracy.

1012 Additionally, we note that no experiments were conducted with MinAtar/SpaceInvaders at the
 1013 retrograde timescale. As shown in the rightmost heatmap of Fig. 4, CET does not scale well to
 1014 longer timescales on SpaceInvaders, exhibiting only modest performance with an 8-second delay and
 1015 consequently failing at a 120-second delay at the retrograde timescale (not shown).

1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037

Table 5: Hyperparameters used in RL experiments.

Parameter	Value
Common	
Optimizer	Adam
Adam beta	(0.9, 0.999)
Adam epsilon	1e-5
Weight decay	0
Policy entropy regularization coefficient	0.01
Maximum gradient norm for clipping	0.5
Learning rate	Tuned
Discount rate γ	0.99
CartPole-v1	
Total number of samples	5_000_000
Number of environments	4
Number of steps to accumulate a policy gradient	128
Lambda for general advantage estimation	0.95
Anneal lr	True
CET normalization	Peak
LunarLander-v2	
Total number of samples	5_000_000
Number of environments	4
Number of steps to accumulate a policy gradient	128
Lambda for general advantage estimation	0.95
Anneal lr	False
CET normalization	Area or Tuned
MinAtar/SpaceInvaders-v0	
Total number of samples	10_000_000
Number of environments	32
Number of steps to accumulate a policy gradient	32
Lambda for general advantage estimation	Random Uniform(0.1, 0.99)
Anneal lr	False
CET normalization	Peak

1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080
 1081 Table 6: Optimal learning rate and ET discounting factor configurations, β , for experiments at
 1082 behavioral timescales.

CartPole-v1				LunarLander-v2				MinAtar/SpaceInvaders-v0			
CET order	delay	lr	β	CET order	delay	lr	β	CET order	delay	lr	β
backprop	-	0.00090	-	backprop	-	0.00050	-	backprop	1	0.00090	-
1	2	0.00050	0.5	1	2	0.00090	0.99	1	1.2	0.00025	0.9
2	2	0.00025	-	2	2	0.00050	-	2	1.2	0.00090	-
5	2	0.00025	-	5	2	0.00050	-	5	1.2	0.00050	-
8	2	0.00025	-	8	2	0.00050	-	8	1.2	0.00050	-
10	2	0.00025	-	10	2	0.00050	-	10	1.2	0.00090	-
1	4	0.00050	0.9	1	4	0.00090	0.99	1	2	0.00090	0.99
2	4	0.00025	-	2	4	0.00050	-	2	2	0.00050	-
8	4	0.00025	-	5	4	0.00050	-	5	2	0.00050	-
5	4	0.00025	-	8	4	0.00050	-	8	2	0.00050	-
10	4	0.00050	-	10	4	0.00090	-	10	2	0.00050	-
1	8	0.00050	0.99	1	8	0.00090	0.99	1	4	0.00090	0.99
2	8	0.00025	-	2	8	0.00050	-	2	4	0.00050	-
5	8	0.00025	-	5	8	0.00050	-	5	4	0.00090	-
8	8	0.00025	-	8	8	0.00090	-	8	4	0.00050	-
10	8	0.00050	-	10	8	0.00050	-	10	4	0.00050	-
1	32	0.00010	0.99	1	32	0.00090	0.99	1	8	0.00050	0.99
2	32	0.00025	-	2	32	0.00090	-	2	8	0.00050	-
5	32	0.00025	-	5	32	0.00090	-	5	8	0.00090	-
8	32	0.00025	-	8	32	0.00050	-	8	8	0.00025	-
10	32	0.00010	-	10	32	0.00025	-	10	8	0.00050	-
1	64	0.00010	0.99	1	64	0.00090	0.99	1	4	0.00050	-
2	64	0.00025	-	2	64	0.00090	-	2	8	0.00050	-
5	64	0.00090	-	5	64	0.00090	-	5	8	0.00090	-
8	64	0.00090	-	8	64	0.00090	-	8	8	0.00025	-
10	64	0.00050	-	10	64	0.00050	-	10	8	0.00050	-
1	128	0.00050	0.5	1	128	0.00050	0.7				
2	128	0.00010	-	2	128	0.00090	-				
5	128	0.00025	-	5	128	0.00090	-				
8	128	0.00025	-	8	128	0.00090	-				
10	128	0.00025	-	10	128	0.00090	-				

1107
 1108 Table 7: Optimal learning rate, CET normalization, and ET discounting factor configurations, β , for
 1109 experiments at retrograde timescales.

CartPole-v1				LunarLander-v2			
CET order	lr	normalization	β	CET order	lr	normalization	β
1	0.00010	-	0.9	1	0.00025	-	0.5
2	0.00010	peak	-	2	0.00050	area	-
5	0.00010	peak	-	5	0.00025	area	-
10	0.00025	peak	-	10	0.00050	peak	-

E SUPPLEMENTAL RESULTS WITH RESERVOIR (RECURRENT) NEURAL NETWORK

To demonstrate the compatibility of CETs with learning in recurrent settings, we consider a partially observable variant of LunarLander-v2 in which one velocity component is masked (POMDP). In this setting, memory improves performance, motivating recurrent augmentation.

We employ a reservoir network, a recurrent architecture with a *fixed*, non-trainable recurrent matrix (commonly used in motor learning; see, e.g., Sussillo & Abbott (2009); Hoerzer et al. (2014)). Concretely, we augment the masked POMDP observation with a 256-dimensional reservoir state whose dynamics are driven by the raw LunarLander-v2 observation. Apart from this augmentation, the downstream MLP head is identical to the feedforward architecture used in the fully observable MDP. Both the feedforward and reservoir-augmented variants are trained with CET(5) under a fixed delay of 2 seconds.

CETs effectively solved the POMDP task (average return > 200) with the reservoir augmentation, whereas a non-recurrent MLP baseline failed entirely (average return ≈ 0), see Table 8. For completeness, we also evaluated Exponential Traces (ET) on the same reservoir architecture with decay factors 0.5 and 0.9; both configurations failed to learn (average return ≈ 0).

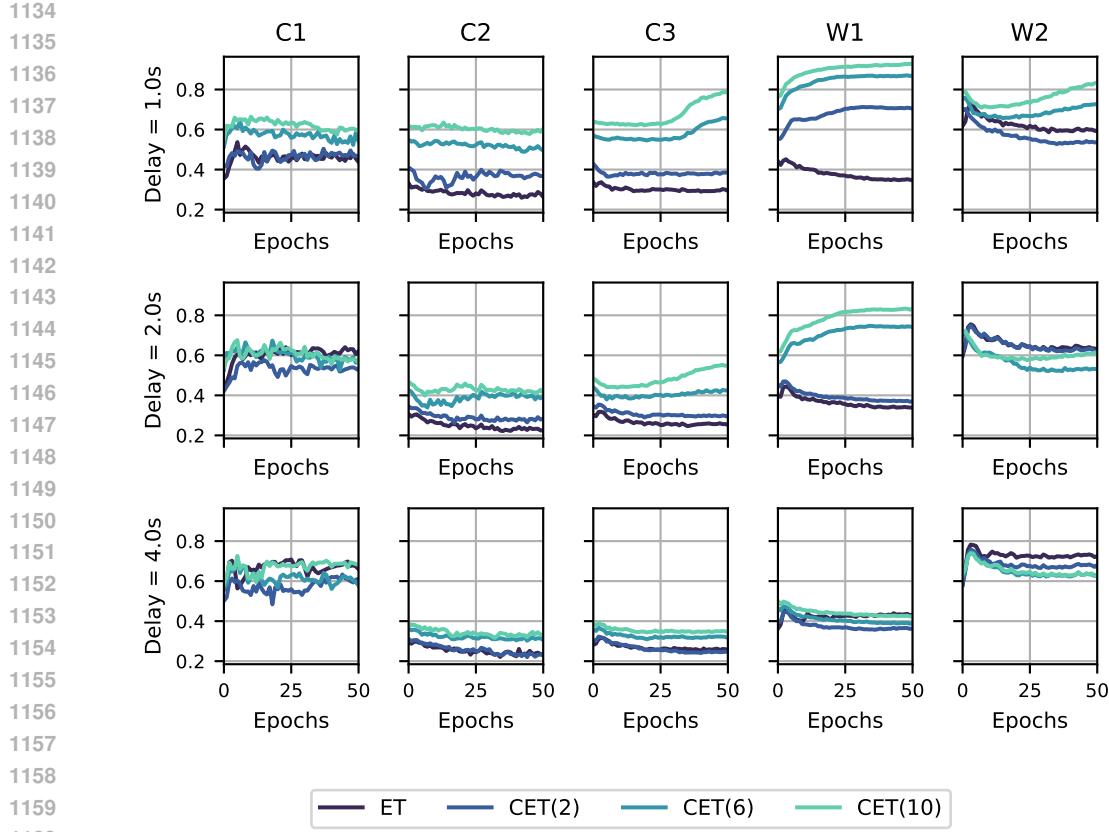


Figure 9: Cosine similarity for different layers of a CNN between true gradients and ETs or CETs approximated gradients for all considered environments during training on CIFAR-10. C1-3: convolutional layers 1-3; W1-2: MLP layers 1-2.

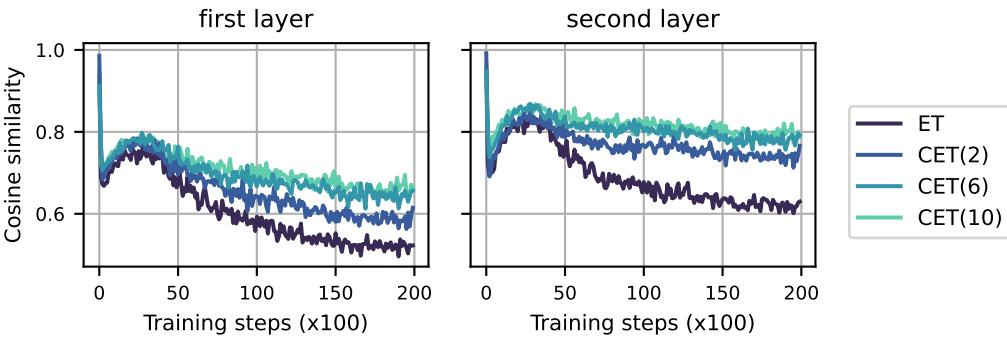


Figure 10: Cosine similarity between the true gradient and the ET/CET approximation in a retrograde setting. Each plot shows an individual layer of an MLP during training on MNIST

In a POMDP with delayed credit assignment, CETs leverage recurrent state to overcome temporal mismatch, while ET fails under identical conditions.

F TINYIMAGENET

As a step towards scalability, we report results on TINY IMAGENET (Table 9) under the same training setup as Section 4.1, using a *ResNet-20* with strided convolutions replaced with average pooling.

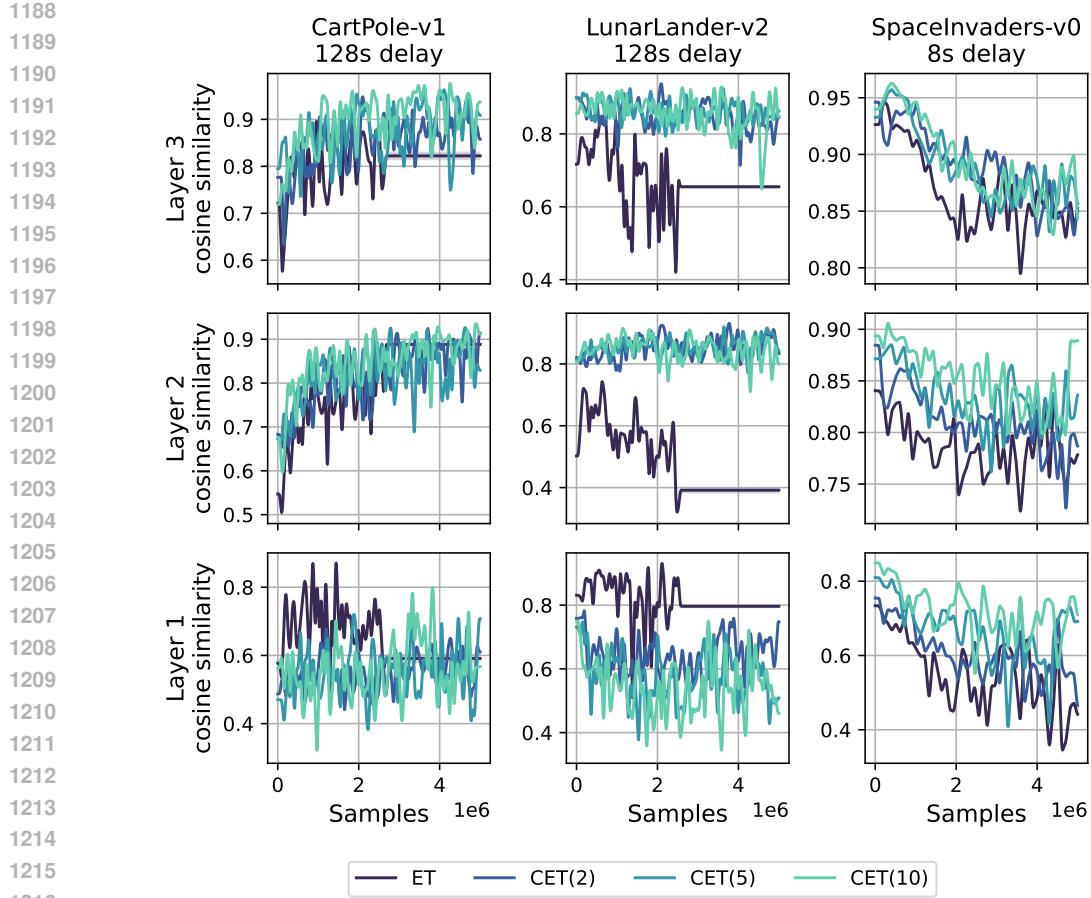


Figure 11: Average cosine similarity between the true gradients and those approximated by ETs or CETs during training, computed for each layer of a 3-layer MLP across all considered environments. The delay is set to the maximum behavioral-timescale value reported in the main text.

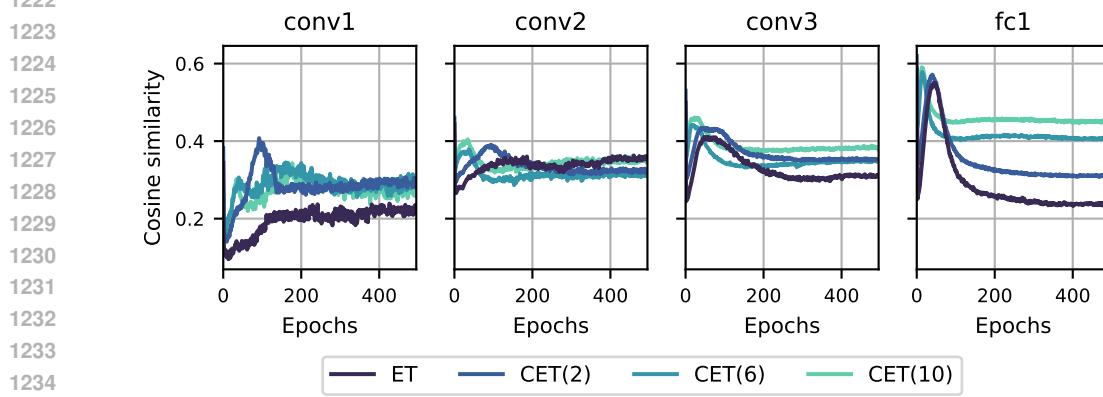


Figure 12: Cosine similarity between the true gradient and the ET/CET approximation in a retrograde setting. Each plot shows an individual layer of a CNN during training on CIFAR-10

We compare Exponential Traces (ET), Cascading Eligibility Traces with 10 states, and standard backpropagation. We evaluate performance with a fixed delay of 1 second after 50K training steps.

1242
 1243 Table 8: Partially observable LunarLander-v2 with masked velocity and 2s. delay. Reservoir has 256
 1244 units with fixed recurrent weights.

Architecture / Rule	Avg. Return
MLP (no recurrence) + CET(5)	≈ 0
Reservoir (256) + ET	≈ 0
Reservoir (256) + CET(5)	> 200

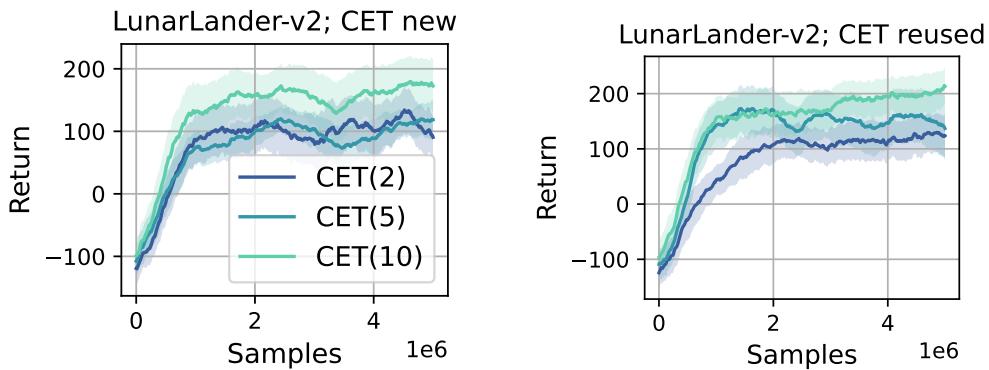
1250
 1251 Table 9: TINY IMAGENET performance with a 1 s delay after 50K training steps.

Method	Top-1 Acc.	Top-5 Acc.
ET	0.0973	0.2658
CET (10)	0.3431	0.6136
Backprop	0.4060	0.6791

1258
 1259 These results reinforce our hypothesis that more complex visual tasks are more sensitive to temporal
 1260 mismatch, and that CETs provide substantial gains when the system is well matched to the delay. To
 1261 check whether ET could be improved by mitigating gradient alignment issues via a smaller learning
 1262 rate, we also tested ET with a reduced learning rate; for equal training time (50K steps), but the
 1263 performance decreased relative to the table above.

1264
 1265 **G APPROXIMATING ACTIVATION FUNCTION DERIVATIVES ON RETROGRADE**
 1266 **TIMESCALE**

1267
 1268 In Subsection 4.2, for retrograde experiments to test the CET model ability with fewer compounding
 1269 factors, we assumed a simplified setup: perfect derivatives of activation functions are given to us by
 1270 an oracle, though they are delayed in the same way as activations are. In this supplementary section,
 1271 we remove this assumption.



1274
 1275 Figure 13: Preliminary results on approximating activation function derivatives on a retrograde
 1276 a 2-minute delay setup. **Left:** We use an independent additional CET model to approximate the
 1277 derivative of the activation function. **Right:** We use the same CET model that we use to approximate
 1278 activations to also approximate the derivatives. In both cases, we use a CET output threshold (*CET*
 1279 *output* > *threshold*) to obtain the final approximation, motivated by the usage of a ReLU activation
 1280 function.

1281
 1282 To account for delayed activation function derivatives, we perform preliminary experiments with two
 1283 setups: (1) we use a separate CET model to approximate the derivatives during the backward pass;
 1284 (2) we reuse the same CET model that we use to approximate activations at each layer. Given that we

use a ReLU activation function, to obtain the final derivative approximation we apply a threshold on the CET output: *CET output > threshold*. Results are shown in Fig. 13.

We used learning rate of 5e-4 and the threshold value was set to 1 in all experiments in this section. This choice of the threshold is motivated by the fact that in all LunarLander experiments the CET output is scaled such that the maximum response to a unit input is one. We view this as a reasonable heuristic, although more work is needed to derive an optimal threshold value, and the results should be considered preliminary.

H VARYING THE ALPHA PARAMETER FOR A FIXED DELAY

In Section 3, we assume that the parameter α is chosen as $\alpha = \frac{n-1}{T}$, which peaks at $t = T$. In this section, we assume the delay is T , but we vary $\alpha = \frac{n-1}{T'}$ by varying T' , making it peak at the wrong T' . We experiment with a 32-second delay, T , on the behavioral timescale in LunarLander, varying the CET peak, T' , from 8 seconds to 56 seconds. Fig. 14 shows the results.

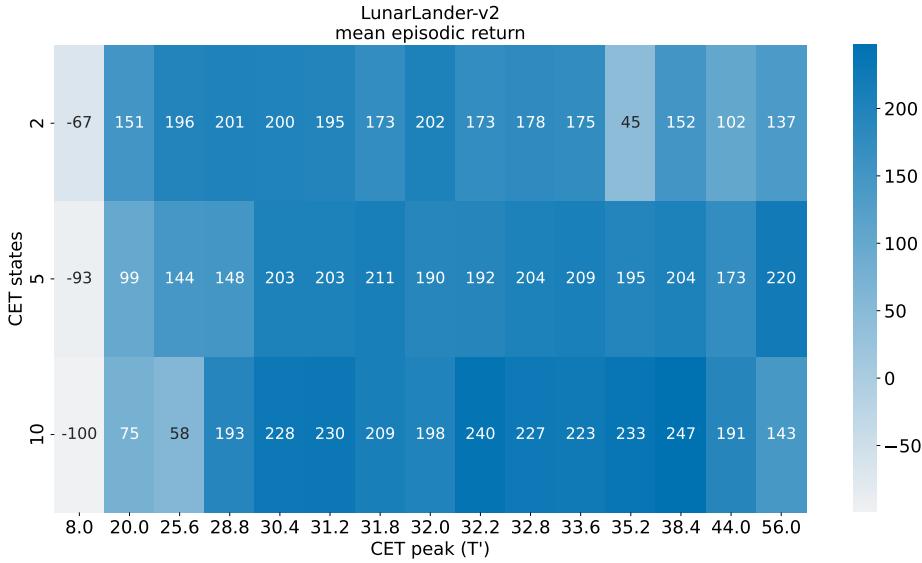


Figure 14: Mean episodic return for the LunarLander environment with a delay of 32 seconds across different numbers of CET states and α parameters that peak at shown timesteps. All results are averaged over 3 seeds. Note when T' is equal to 32 seconds it recovers a kernel shape assumed in the rest of the paper.

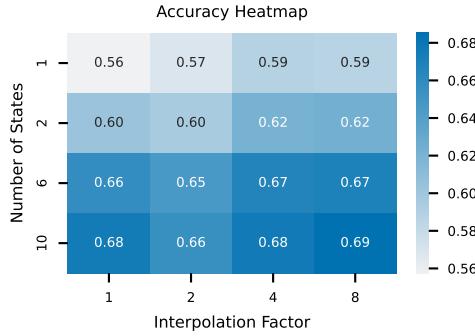
While the results are noisy, we can see that T' can vary by a few seconds without hurting performance; it is not symmetric as it supports overestimating the delay more than underestimating it, which is consistent with the shape of the kernel. Moreover, performance degrades more rapidly for narrower kernels (e.g., CET(10)), as expected.

Similar to the experiments in the main text, the CET output is scaled such that the maximum response to a unit input is one, which is achieved at time T' . We used a fixed learning rate of 9e-4. That and different seeding explains the difference between these results and the results in the main paper.

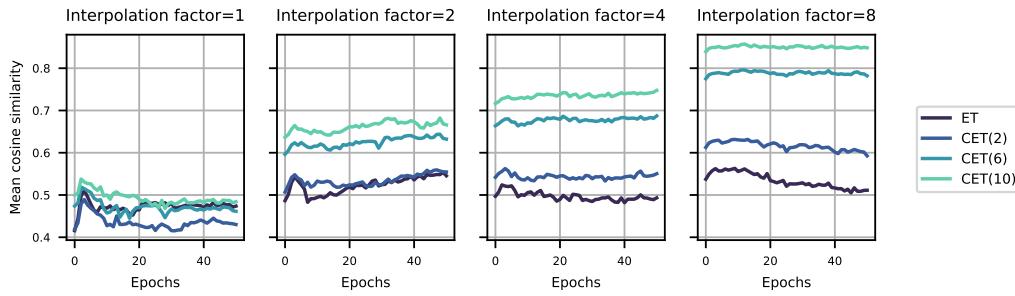
I NON I.I.D. VISUAL DATA

To study the effect of non i.i.d. visual streams on performance, we conduct additional experiments on synthetic videos derived from CIFAR-10 in a setup matching experiments in Section 4.1. We generate temporally coherent sequences by interpolating intermediate frames and the label probabilities using a Hahn kernel. Across interpolation factors, the proposed approach maintains stable performance on these non-i.i.d. inputs. Intuitively, increasing temporal correlation shifts the input spectrum toward

1350
 1351 lower frequencies, where CETs are particularly effective because they act as low-pass temporal filters
 1352 whose fidelity improves with n .
 1353
 1354



1365
 1366 Figure 15: Accuracy for CIFAR-10 dataset across varying numbers of CET states and interpolation
 1367 factors with delay of 2s. Interpolation factor of 1 corresponds to i.i.d. setting, while factors 2, 4,
 1368 and 8 introduce 1, 3, and 7 interpolated frames between real images respectively during training.
 1369 Performance is measured on non-interpolated frames only.
 1370



1381
 1382 Figure 16: Average cosine similarity between the true gradient and the gradients produced by CETs
 1383 on CIFAR-10, evaluated across varying numbers of CET states and interpolation factors with a fixed
 1384 delay of 2 s.
 1385

J SUPPLEMENTAL RESULTS WITH LEAKY INTEGRATE-AND-FIRE NEURONS

1388 As an additional step towards biologically plausible learning, we evaluate a feedforward network of
 1389 leaky integrate-and-fire (LIF) neurons on the standard LunarLander-v2, see Table 10. We compare
 1390 ET and CET with 5 states across multiple feedback delays. LIF neurons are implemented with
 1391 snnTorch, using membrane decay $\beta = 0.9$ and a fast-sigmoid surrogate gradient for the spike
 1392 nonlinearity.
 1393

1394 Table 10: LunarLander-v2 average return with LIF neurons across delays (in seconds).
 1395

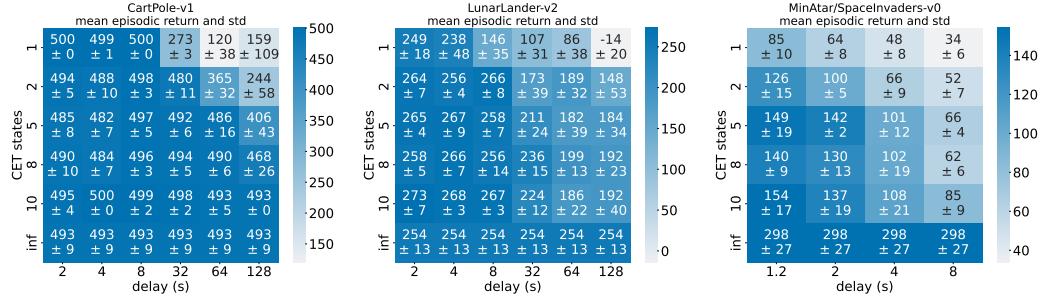
Method / Delay (s)	2	8	16	32	64
ET	274	226	-133	-136	-89
CET(5)	270	246	127	122	64

1400 The results mirror the trends in the main paper: increasing delay degrades performance for both ET
 1401 and CET, but CET becomes significantly better than ET at longer delays (e.g., $T \geq 16s$).
 1402

1403 All architectural components other than the spiking layer remain identical to the feedforward MLP
 used in the main text.
 1404

1404 K STANDARD DEVIATION FOR REINFORCEMENT LEARNING RESULTS

1406 We report results with standard deviations for RL tasks reported in the main text at the behavioral
 1407 timescale in Fig. 17 to show reliability.



1419 Figure 17: Same as Fig. 4, but with standard deviation over three seeds. ‘‘inf’’ refers to backpropagation
 1420 baseline.

1424 L SUPPLEMENTAL RESULTS ON VARIABLE DELAY

1426 We report result on variable delay in three settings long delays, moderate delays, and to the RL.

1427 Across settings, CETs consistently outperform ETs for unimodal, peaky variable-reward/feedback
 1428 distributions. As expected, when the delay variance approaches the full delay range (i.e., the truncated
 1429 Gaussian approaches uniform), the performance gap between CET and ET diminishes.

1431 L.1 VARIABLE DELAYS ON BEHAVIORAL TIME SCALE

1433 For visual experiments, we study robustness to variable feedback delays by drawing per-trial delays
 1434 from a Gaussian centered at the nominal mean ($T = 1$ s or $T = 2$ s), truncated to $[0, 2T]$. We sweep
 1435 standard deviations $T_{\text{var}} \in \{0, \frac{1}{4}T, \frac{1}{2}T, T\}$, mirroring the CIFAR-10 setup in Section 4.1.

1436 CETs consistently outperform ETs under variable delays; increasing CET degree improves accuracy
 1437 even when $T_{\text{var}} = \frac{1}{2}T$. Importantly, CET performance does not collapse below ET under high
 1438 variability.

1441 Table 11: Accuracy vs. standard deviation for $T = 1$ s with delays in $[0, 2T]$.

Method	$T_{\text{var}}=0.00$	$T_{\text{var}}=0.25$	$T_{\text{var}}=0.50$	$T_{\text{var}}=1.00$
ET	0.68	0.68	0.68	0.68
CET(2)	0.71	0.70	0.70	0.68
CET(6)	0.73	0.73	0.72	0.70
CET(10)	0.74	0.73	0.72	0.69

1451 Table 12: Accuracy vs. standard deviation for $T = 2$ s with delays in $[0, 2T]$.

# States	$T_{\text{var}}=0.00$	$T_{\text{var}}=0.50$	$T_{\text{var}}=1.00$	$T_{\text{var}}=2.00$
ET	0.62	0.63	0.64	0.64
CET(2)	0.66	0.66	0.65	0.63
CET(6)	0.71	0.70	0.69	0.65
CET(10)	0.72	0.72	0.70	0.65

1458 L.2 VARIABLE DELAYS ON MINUTES-SCALE
1459

1460 We also evaluate CIFAR-10 with delays sampled from a truncated Gaussian on $[0, 2T]$ at minutes-
1461 scale and show that CETs remain viable under longer delays with sparse activity. In these experiments,
1462 we consider a variable delay applied uniformly to the entire network and the sparsification method in
1463 Section B.2 used in Section 4.2 with random 1% sparsity.

1464
1465 Table 13: CIFAR-10 accuracy with mean delay $T = 60$ s and range $[0, 2T]$.
1466

Method	$T_{\text{var}}=0.00$	$T_{\text{var}}=15.00$	$T_{\text{var}}=30.00$	$T_{\text{var}}=60.00$
ET	0.70	0.70	0.71	0.69
CET(2)	0.73	0.72	0.72	0.70
CET(6)	0.74	0.74	0.72	0.69
CET(10)	0.74	0.74	0.72	0.68

1474 Table 14: CIFAR-10 accuracy with mean delay $T = 120$ s and range $[0, 2T]$.
1475

Method	$T_{\text{var}}=0.00$	$T_{\text{var}}=30.00$	$T_{\text{var}}=60.00$	$T_{\text{var}}=120.00$
ET	0.67	0.68	0.68	0.65
CET(2)	0.70	0.69	0.68	0.66
CET(6)	0.73	0.72	0.70	0.66
CET(10)	0.73	0.73	0.70	0.65

1483 L.3 VARIABLE DELAY ON RL TASKS
1484

1485 We report variable feedback delay for LunarLander-v2 under a mean delay of $T = 32$ s and different
1486 truncated variances in Table 15.

1487 Table 15: Mean episodic return on LunarLander-v2 under a mean delay of $T = 32$ s, across different
1488 delay variances.
1489

Method / Var	var = 2.0	var = 8.0	var = 16	var = 32
ET	-42	-66	-146	-152
CET(5)	198	55	81	-109

1496 L.4 VARIABLE DELAYS: UNKNOWN FIXED DELAY (LEARNED)
1497

1498 We next consider fixed but *unknown* delays that must be learned. The CET kernel is initialized to
1499 peak at 200 ms (ET initialized with 200 ms mean as an exponential distribution). We tune a single
1500 delay parameter α via a simple weight-perturbation (finite-difference) update:

$$1501 \quad \Delta\alpha = -\eta \frac{L_+ - L_-}{2\delta},$$

1504 where $\delta \sim \mathcal{N}(0, 1)$, and L_+ (resp. L_-) is the loss obtained when computing the network update
1505 assuming time constant $\alpha + \delta$ (resp. $\alpha - \delta$). This approximates gradient descent on $L(\cdot)$ in expectation
1506 via a first-order Taylor expansion.

1507 We can see that eligibility trace performance degrades if the decay parameter is poorly initialized,
1508 more so for higher-order CETs; thus time-constant tuning is a shared challenge. Nevertheless, when
1509 α is learned online, CETs outperform ETs.
1510

1511

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535

1536 Table 16: Accuracy vs. true (unknown) delay T when initialized at 200 ms.
 1537

# States	$T=1\text{ s}$	$T=2\text{ s}$
ET	0.67	0.55
CET(2)	0.72	0.61
CET(6)	0.74	0.65
CET(10)	0.74	0.67

1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565