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ABSTRACT

Animals often receive information about errors and rewards after significant delays.
In some cases these delays are fixed aspects of neural processing or sensory feed-
back, for example, there is typically a delay of tens to hundreds of milliseconds
between motor actions and visual feedback. The standard approach to handling
delays in models of synaptic plasticity is to use eligibility traces. However, stan-
dard eligibility traces that decay exponentially mix together any events that happen
during the delay, presenting a problem for any credit assignment signal that oc-
curs with a significant delay. Here, we show that eligibility traces formed by a
state-space model, inspired by a cascade of biochemical reactions, can provide
a temporally precise memory for handling credit assignment at arbitrary delays.
We demonstrate that these cascading eligibility traces (CETs) work for credit as-
signment at behavioral time-scales, ranging from seconds to minutes. As well, we
can use CETs to handle extremely slow retrograde signals, as have been found in
retrograde axonal signaling. These results demonstrate that CETs can provide an
excellent basis for modeling synaptic plasticity.

1 INTRODUCTION

Learning requires a mechanism for assigning credit for errors and successes to past neural activity
(Gerstner et al., 2018). In biological learning, the signals necessary for credit assignment in neural
circuits arrive after a temporal delay, for instance via latency in sensory feedback following motor
actions (Omrani et al., 2016; Scott, 2016). The source of delays can be generally categorized as
either external or internal. External delays occur due to latency in environmental reward signals, for
example receiving food or other external reinforcers, and as such can be variable. In contrast, internal
delays arise from delays in the neural processing mediating the credit assignment calculation itself.
Depending on the neural mechanisms involved, they are approximately fixed and can range from
hundreds of milliseconds to several minutes (Fitzsimonds & Poo, 1998). Synaptic plasticity rules that
model the credit assignment calculation, therefore, need to account for such fixed internal delays.

The traditional solution to internal delays in synaptic plasticity rules is to use exponentially decaying
synaptic eligibility traces (ETs) (Gerstner et al., 2018; Shouval & Kirkwood, 2025), which are
decaying records of synaptic activity. However, some experimentally observed synaptic plasticity
rules are tuned to fixed non-zero delays (Suvrathan et al., 2016; Shindou et al., 2019), and therefore do
not fit with an exponential decay of credit eligibility. When the neural activity and the corresponding
credit assignment signal are separated by few intervening events, such delays will have minimal
impact on learning. However, in general, ongoing neural activity will override past activity relevant
to the current reward or error signal. Therefore, traditional eligibility traces are not well-suited for
the temporal scale of credit assignment delays in biological learning when the delay is non-zero and
fixed.

To solve this problem we present a generalization of traditional eligibility traces. Inspired by synaptic
biochemical cascades (Zhang et al., 2021), we model eligibility traces as state-space models that
incorporate a cascade of synaptic memory traces. These cascading eligibility traces (CETs) provide
a delayed and concentrated temporal window of maximal credit assignment. This model fits the
experimentally observed unimodal delays, and is also consistent with biological mechanisms of
synaptic plasticity (Friedrich et al., 2011; Fusi et al., 2005; Zhang et al., 2021).
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We present a series of results that demonstrate the utility of CETs for credit assignment with
biologically realistic delays. Specifically, we show that we can engage in both supervised and
reinforcement learning in multi-layer networks under two distinct delay scenarios. First, we examine
learning situations where the delays are consistent across layers of the network, as would be the case
for various models of biological credit assignment in which a learning signal is broadcast across
layers (e.g. direct feedback alignment (Nøkland, 2016) and other local learning rules (Frémaux &
Gerstner, 2016; Ororbia, 2023)). Second, we show that CETs work when delays are stacked through
the network, such that late layers receive credit signals sooner than early layers. We provide evidence
that this approach works in both scenarios under a variety of biologically relevant delays, ranging
from hundreds of milliseconds to minutes. Notably, the fact that CETs work when delays are stacked
across layers and last for minutes shows that CETs could be applicable to credit assignment signals
carried by retrograde axonal signals or neuropeptides, making this approach relevant for a number of
biologically plausible credit assignment models (Liu et al., 2022; Fan & Mysore, 2024).

Altogether, our results indicate that CETs are a promising approach for handling delayed credit
assignment signals in models of biological learning. More broadly, this provides a general framework
for reasoning about synaptic memory in real neural networks.

2 RELATED WORK

Our work is related to and builds upon several strands of research on synaptic plasticity and biological
credit assignment.

Eligibility traces (ETs) have long been a dominant framework for modeling how synaptic plasticity
mechanisms may bridge temporal gaps between neural activity and feedback (Gerstner et al., 2018;
Shouval & Kirkwood, 2025). Related theoretical extensions include ETs to approximate backpropa-
gation through time (BPTT; Bellec et al. (2020)). Experimental evidence for ETs is well-established,
with multiple studies reporting how synaptic changes can be induced by reward signals arriving
seconds to minutes after neural activity (Brzosko et al., 2015; He et al., 2015; Bittner et al., 2017;
Suvrathan, 2019).

In some experimental results, the timing of maximum synaptic change is tuned to specific delays
(e.g. 120ms in the cerebellum (Suvrathan et al., 2016) and 2s in the striatum (Shindou et al., 2019)).
This is in contrast to traditional ETs, and indicates a plasticity rule that encodes temporal structure in
addition to the presence of past activity. One approach to model these findings is to combine two
independent ETs for potentiation and depression to produce a composite ET that peaks at a required
time delay (He et al., 2015; Huertas et al., 2016). This approach is conceptually similar to our CET
model with 2 states. However, as we discuss below, this approach is restricted to producing ETs with
a broad integration window, making it suitable for short delays only. As we show in our work, CETs
with a larger number of states overcome this issue.

An example of extreme delays in plasticity-related signals is retrograde axonal signaling: i.e. “back-
ward” propagation of chemical signal through the axon and synapses (Maday et al., 2014; Alger,
2002; Fitzsimonds & Poo, 1998). These signals play a role in activity-dependent synaptic plasticity at
the level of individual synapses (Regehr et al., 2009), and have been suggested to coordinate plasticity
across several neurons (Fitzsimonds et al., 1997; Hui-zhong et al., 2000; Du & Poo, 2004).

However, retrograde signals have generally been discarded as a component of credit assignment (e.g.
Lillicrap et al. (2016)) because retrograde axonal signaling is extremely slow (on average 1.31µm/s;
Cui et al. (2007)), meaning that any error signal delivered via retrograde signaling would arrive
minutes after the relevant neural activity. Nevertheless, there’s been recent interest in this approach
(Fan & Mysore, 2024). Here, we study to what extent delays on the order of retrograde process
timescales could be compensated with CETs.

In parallel to neuroscience, the deep learning community has also worked on the the problem of
delayed feedback from the perspective of decoupling the forward and backward passes for efficiency
(Jaderberg et al., 2017; Malinowski et al., 2020). More generally, there is an extensive body of related
work modeling how neural circuits may estimate and communicate credit in a biological plausible
manner (Lillicrap et al., 2020). This includes credit computations with dendrites and bursts (Greedy
et al., 2022; Payeur et al., 2021; Sacramento et al., 2017), and neuropeptides (Liu et al., 2022).
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3 CASCADING ELIGIBILITY TRACES (CETS)

Synaptic plasticity for learning always requires some memory for presynaptic activity in the network.
Consider a network containing a neuron with activity zt = f(x⊤

t w), where w are the synaptic
weights and xt are the presynaptic inputs to the neuron at time t. To minimize a loss L, synaptic
changes in w can follow the negative gradient over the loss L,

−∂ L(x⊤
t w)

∂w
= −∂ L(zt)

∂ zt
f ′(x⊤

t w)xt ≡ −δt f
′(x⊤

t w)xt . (1)

This gradient-based formulation of plasticity Eq. (1) covers various forms of biological learning. For
example, Hebbian learning can be recovered by using the loss L(zt) = −z2t and layer-wise learning
rules can be defined similarly. And, of course, backpropagation follows the same chain rule logic for
the loss defined over several layers of neurons.

Importantly, these updates require that the credit assignment signal δt is paired with the appropriate
presynaptic inputs, xt. Hence, in the presence of any delays in computation of the credit assignment
signal a learning system would face a temporal mismatch problem: if it takes T seconds to calculate
and propagate the credit assignment, then at time t the error signal δt received by a neuron would
have to be matched to an older presynaptic activity memory xt−T (see Fig. 1A, top row). If learning
is done in phases this need not be problematic. But, if learning happens online, as is likely the case
in real brains, neural activity would correspond to the current time point, xt only, so the previous
presynaptic activity information, xt−T , would have to be somehow stored by the synapses.

Eligibility traces (ET) represent the classic solution to this problem: they add a memory component
to the synapse that keeps track of recent activation for a single presynaptic neuron. Here, we will
pick one weight wi and the corresponding input xi

t, and discuss an ET hET
t such that changes in wi

are proportional to −δt h
ET
t (as in Eq. (1); dropping the index i from hET

t for convenience).

Denoting the Hebbian-like term h = f ′(x⊤
t w)xi

t (in the sense of it being a product of pre- and
postsynaptic factors, xi

t and f ′(x⊤
t w) correspondingly),

hET
t =

∫ t

0

e−γ (t−s) hs ds , (2)

where γ > 0 is a discount factor. The main advantage of ETs is that they’re easy to implement:

ḣET
t = −γ hET

t + ht .

ETs effectively convolve the presynaptic activity hs with an exponential kernel g(t), i.e.

hET
t = (g ∗ h)(t) =

∫ t

0

g(t− s)hs ds , (3)

and use this as a means of weighting past activity for combining it with credit assignment signals.
One of the appeals of ETs as a solution to delayed credit assignment signals is that they do not require
extensive memory, and are therefore a biologically plausible approach for learning.

Notably, the classic form of ET assigns the maximal trace values to the most recent time-points s = t
in Eq. (3). That is appropriate for situations in which there are few intervening presynaptic events
between times t, when the credit assignment signal arrives, and t− T , when the presynaptic activity
occurred (as in Fig. 1A). But, if ht changes frequently relative to the delay in the credit assignment
signal then gradients calculated with classic ETs, i.e. δt hET

t , can be a poor approximation of the true
gradient, δt ht−T .

Ideally, when we consider the long delays faced by biological learning agents we would have ETs
satisfying two conditions. First, the maximal value of the synaptic trace should occur at a delay of
s = t− T , rather than s = t in Eq. (3). Second, it is better if we can use a more precise weighting of
the past, i.e. if the ET values g(t− s) are as small as possible for anything other than s = t− T .

Classic ETs do not provide these characteristics. Combined LTP & LTD eligibility traces (He et al.,
2015; Huertas et al., 2016) satisfy the first condition, but not the second. They effectively take
a difference of two standard ETs in Eq. (2) to convolve past activity with g(t) = exp(−γPt) −
exp(−γDt) (as in Eq. (3)). While this g peaks with a delay T = (log γD − log γP)/(γD − γP), it
keeps a large weight for more recent points.
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Figure 1: A. Learning with eligibility traces: neural activity h is followed by a delayed error signal δ.
The standard eligibility trace (ET) is an exponentially decaying trace of h that can be matched to the
error signal at time t. The cascading ET (CET) reflects h like a regular ET, but peaks at the required
time t. B. Time evolution of each state of a 6-state CET with a delay T and a unit input at t− T . C.
Comparison of a standard ET and CETs with 2/6/10 states representing delay T for a unit input at
t− T .
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Figure 2: Representation of the input signal h (gray)
with a T = 2 delay (dashed orange line) using a
standard eligibility trace (ET) and cascading ETs
(CETs) of different orders. Only CETs of higher
order reflect the time evolution of the input (i.e.
match the orange line).

As a flexible solution to both of these prob-
lems, we propose using ETs constructed from
a simple state-space model:

ḣ1
t = −αh1

t + ht ,

. . .

ḣk
t = −αhk

t + hk−1
t ,

. . .

ḣCET
t = −αhCET

t + hn−1
t .

(4)

Eq. (4) can be used as a model of a cascade
of biochemical reactions. This could involve,
for example, a cascade of phosphorylation pro-
cesses or enzymatic reactions (Zhang et al.,
2021).

This form of CET gives us the following formulation (see Section A for a derivation):

hCET
t =

1

(n− 1)!

∫ t

0

(t− s)n−1e−α (t−s) hs ds , (5)

which for α = n−1
T convolves the presynaptic activity with a kernel g(t) ∝ tn−1e−α t that peaks at

t = T (Fig. 1C). For classical ETs (which correspond to a single-state model of n = 1) we either set
the decay to be α = 1

T (for supervised learning) or we conduct a grid search on this hyperparameter
(for reinforcement learning).

The dynamical system in Eq. (4) is defined by two parameters: the number of states n and the decay
term α. Increasing n while keeping the peak-time fixed leads to a narrower kernel (see Fig. 1C for a
visualization of different kernels g(t)), but having even two states (instead of one for standard ETs)
can account for delayed signals. However, to accurately represent delayed signals, more states are
typically needed (see Fig. 2).

4 EXPERIMENTS

We illustrate the influence of CETs on learning with delays in two scenarios1: (1) learning with
delays on behaviorally relevant timescales (e.g. on the order of seconds) in Section 4.1; (2) credit
propagation through very slow chemical signals (e.g. retrograde axonal signaling (Fitzsimonds et al.,
1997)) in Section 4.2. In our simulations we assume that each input lasts for 200 ms, which is roughly
one saccade or one theta cycle in the brain (Young & Stark, 1963). Thus, a single time-step in the
simulation is treated as a 200 ms, so a delay of T = 1 s would mean that the δ signal arrives 5

1Code is available in the Supplementary Material and will be made public.
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time-steps after the input is initially presented to the network. Put another way, with a simulated
delay of T = 1 s there are 4 image presentations that occur after the initial image presentation and
before the δ signal for that image arrives.

In (1), we assume that the error signal δ is propagated to all layers simultaneously since credit signals
propagated via action potentials could be transmitted to the entire network in parallel. As well, we
calculate the error signal explicitly, but we note that this calculation could easily be substituted with
any of the available mechanisms for biologically plausible error calculation (e.g. 3-factor Hebbian
learning rules Frémaux & Gerstner (2016)).

In (2), we consider a much longer delay T of 2 minutes, which corresponds to roughly the amount of
time it takes for chemical signals to travel backwards along the axon. At the speed of 1.31µm/s (Cui
et al., 2007), this covers roughly ∼ 160µm, corresponding to the typical < 200µm distance in the
cortex (Song et al., 2005; Cui et al., 2007). As well, in-line with propagation of a retrograde signal,
we assume that the delays stack up over layers. Thus, the last layer has no delay, the penultimate
layer has a delay of T = 2 minutes, the next layer has a delay of T = 4 minutes, and so on. Thus,
each preceding layer’s delay is increased by T .

We use two types of tasks: supervised image recognition on MNIST (LeCun, 1998) and CIFAR-10
(Krizhevsky et al., 2014), and reinforcement learning on state-based environments (namely CartPole
and LunarLander), as well as on a more complex visual environment (namely MinAtar/SpaceInvaders
(Young & Tian, 2019), which use raw pixel observations as input). We use a 3-layer MLP (input
→ 512 → 512 → 10) for MNIST and a small CNN with 3 convolutional layers (input → 32 →
64 → 128) and two linear layers (512 → 10) for CIFAR-10. For RL, we use a 3-layer MLP with
a hidden dimension of 256 that we train with the Actor-Critic method, and report results over 3
seeds. To simplify training in the delayed setup, only the Actor is trained with a delayed error
signal, while the Critic is updated via standard backpropagation. The Actor is trained using an online
implementation of the λ-return via RL eligibility traces (Sutton & Barto, 2018). Other experimental
details (hyperparameters, compute resources) can be found in Section C. The PyTorch (Paszke et al.,
2019) implementation and experiments are provided in the Supplementary Material.

4.1 LEARNING WITH DELAYS ON BEHAVIORALLY RELEVANT TIMESCALES

On MNIST, we observed that classical ETs (corresponding to a CET with one state) maintain strong
performance up to delays of two seconds, i.e. up to 10 image presentations before a δ arrives (Fig. 3,
left). This shows that classical ETs can remain effective for relatively simple tasks and short delays.
However, their performance breaks down at longer delays of T ≥ 4 s. At these longer delays we
can see that increasing the number of states in the CETs improves performance, and can keep the
accuracy level high at up to 10 s delay (50 image presentations). Past this point, we found that only
a perfect eligibility trace (i.e. an infinite number of states corresponding to a Dirac delta memory)
would preserve performance.

The results with CIFAR-10 were even more pronounced (Fig. 3, right). Classical ET performance
deteriorates at any delay tested and rapidly decreases, showing that more complex visual tasks are less
robust to imprecise time resolution. A key observation is the gradient in performance, with accuracy
generally improving with the number of states in the CETs and decreasing with delays. This trend
reflects how the CET impulse response becomes increasingly concentrated around the target delay as
the number of states increases, which provides finer temporal resolution. The same trends also holds
on a more challenging dataset: see Section F in the Appendix for TinyImageNet performance.

We observe the same trend for the RL tasks (see Fig. 4): shorter delays and a higher number of CET
states result in better performance. Note that CartPole and LunarLander are simple RL tasks and re-
main solvable even with long delays and fewer states in the CETs. In contrast, MinAtar/SpaceInvaders
(Fig. 4, right) is a more complex, image-based environment where performance begins to degrade
more quickly when a delay is introduced. In fact, CET performance is at best only half the perfor-
mance of a perfect memory, even at the shortest delay we tested. We therefore hypothesize that precise
credit assignment, without mixing nearby time points, is especially important for complex, non-i.i.d.
tasks. Altogether, our results demonstrate that at behaviorally relevant time delays higher-order CETs
can greatly enhance performance beyond that achieved by classical ETs, particularly at long delays.
However, they cannot fully compensate for delays in highly complex, non-i.i.d. tasks.
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Figure 3: Accuracy for MNIST and CIFAR-10 datasets across varying numbers of CET states and
delays on behaviorally relevant timescales. A single state (top row) corresponds to standard ETs.
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Figure 4: Mean episodic return for different RL environments across varying numbers of CET states
and delays on behaviorally relevant timescales. A single state (top row) corresponds to standard ETs.
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Figure 5: Average cosine similarity over all layers between true gradients and gradients computed
with either ETs or CETs for the CIFAR-10 dataset.

To better understand the reasons for the performance we examined how well the weight updates were
aligned to the true gradient. We measured the cosine similarity, a⊤b/(∥a∥ ∥b∥), between the vector
of weight updates given by our CETs, a, and the true gradient as calculated by backpropagation,
b. In Fig. 5, we plot cosine similarity for all CET models for delays of 1, 2, and 4 s on CIFAR-10
(as performance differences were noticeable across these delays in Fig. 3). We observed that at all
times during training, and at shorter delays, an increase in the number of states in the CETs lead to
better alignment with the true gradient (Fig. 5, left and center). However, as the delay increases, the
alignment drops even for higher-order CETs (e.g. with 10 states; Fig. 5, right). When we broke this
down by layer, we observed similar patterns (Section D).

Finally, we studied if CETs can handle variable and unknown delays. First, we compared the
performance of CETs and ETs in situations where reward delay followed uni-modal distributions
with differing variance. We found that CETs always outperformed ETs (Section I in the Appendix),
though the benefit decreased as the variance increased and the delay distribution became closer to
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uniform. Second, for unknown delays, we found that α (and hence the position of the CET’s peak)
can be learned using weight perturbation, outperforming ETs (see Section I.4 in the Appendix).

4.2 COMPUTATION WITH EXTREMELY LONG DELAYS FOR RETROGRADE AXONAL SIGNALING

We next investigated the possibility of using CETs to model situations with very long, and accumulat-
ing, delays. Here, the goal was to consider delays introduced by chemical signals (e.g. retrograde
axonal signaling) which could in principle be used for credit assignment (Fan & Mysore, 2024), but
would take minutes to propagate from synapses back to cell bodies. We assume that we do not have
to solve the weight transport problem of backpropagation (Grossberg, 1987), since retrograde signals
could easily have access to synaptic weight values (Fan & Mysore, 2024). (See Discussion.) However,
the approach with CETs here could also easily be used in conjunction with other solutions to weight
transport, including feedback alignment (Lillicrap et al., 2016) or feedback learning mechanisms
(Akrout et al., 2019). Additionally, we assume that the calculation of the δ signals has access to the
post-synaptic activation derivative f ′(x⊤w) at the appropriate delay, which implies another memory
mechanism at the soma, rather than the synapse. This could be modeled with CETs as well, but we
leave that for future work.

backward pass

t+T tt+2Tt+3T
last layer

Figure 6: Backprop using retro-
grade axonal signaling results in
delay accumulation: in the last
layer, the forward and backward
signal are computed simultane-
ously at time t. Each consecutive
layer of the backwards pass takes
T more seconds (time taken by
retrograde signaling).

An additional consideration that we took into account here is
that if credit signals were propagating backwards via retroaxonal
biochemical transmission, then error signals would take progres-
sively more time as they travel across a number of synaptic steps
(i.e. network depth). Therefore, in a feedforward network if we
assume that a single layer takes T time to propagate the error
signal backwards, then a layer m synaptic steps back will receive
the error signal at time t = (m− 1)T (Fig. 6).

Finally, to handle very long delays on visual tasks (MNIST,
CIFAR-10), we reduced the number of inputs being stored in
CETs. To achieve this, inspired by work on reducing the ener-
getic costs of plasticity (van Rossum & Pache, 2024), we assume
that the CETs are modulated by an additional “salience signal”
that zeros out the input to the CETs unless the loss is very large.
We use 1.25 % of points with the largest losses in a batch (keeping
their positions in the batch, such that position index encodes time;
see Section B.2 for details). We assume that salience signal is
computed with little delay and can be propagated to the whole
network (e.g. via neuromodulators or plateau potential in apical
dendrites (Sacramento et al., 2017; Dabney et al., 2020)). To
handle long retrograde signal delays in RL without sparsification,
we simplify the setting by assuming each time step lasts 300 ms instead of 200 ms as in other our
experiments. This corresponds to a delay of 400 frames for the second layer and 800 frames for the
first layer.

When training networks on visual tasks with large stacking delays across layers, we observed that the
performance increased with increasing CET order (Fig. 7). Moreover, networks with different CET
orders trained at markedly different rates, with higher orders learning faster (Fig. 7) . This was more
pronounced for the deeper convolution network trained on CIFAR-10 (Fig. 7B) than the shallow MLP
trained on MNIST (Fig. 7A). Given that the last layer was trained without delay in these experiments,
these results must be due to the impact of delays on learning in the intermediate representations.

To understand the performance differences for different orders of CET we analyzed gradient alignment
during training. Because networks learned at different speeds, which affects the dynamics of gradient
alignment (Section D), we used test accuracy as the independent variable, rather than training iteration.
On both MNIST and CIFAR-10 we observed that gradient alignment degrades for the earlier layers,
as is expected for the increasing delays (Fig. 7C,D). Across all layers, increasing CET order was
associated with an increase in gradient alignment, in line with task performance. However, higher
orders were unable to fully recover alignment with the gradient.

For the RL tasks, we observed similar trends. Increasing the number of CET states leads to improved
performance on both CartPole and LunarLander (Fig. 8A-B). As before, the increase in the number
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Figure 7: A. Test accuracy on MNIST as a function of number of CET states for the retrograde
experiments. B. Same as A, but on CIFAR-10. C. Cosine similarity between the true gradient and the
ET/CET approximation across different test accuracies (see A). Each plot shows an individual layer
of an MLP during training on MNIST. D. Same as C, but each plot shows an individual layer of a
CNN during training on CIFAR-10.

of CET states also led to increased alignment with the true gradient (Fig. 8C-D), although mostly in
the second layer, which helps to explain the improved performance.
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Figure 8: A. Episodic return on CartPole-v1 during training in the retrograde experiments. Solid lines:
mean (3 seeds); shaded area: min/max values; dashed line: mean final backprop performance. B.
Same as A but for LunarLander-v2. C. Mean cosine similarity (over cosine similarity values assigned
to binned return values) between the true gradient and the ET/CET approximation w.r.t. return values
in A.. D. Same as C, but for LunarLander-v2.

Altogether, our results demonstrate that when delays in credit signals are very long (on the order
of minutes), and stacked (summing for each synaptic step), CETs can be used to store memory
for previous activity in order to accurately estimate gradients and learn. As such, CETs would, in
principle, permit credit assignment in situations where errors are propagated backwards via very slow
chemical retrograde signals (Fitzsimonds et al., 1997). However, there is a depth limit beyond which
the delay would be too large to accurately approximate the gradient.
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5 DISCUSSION

For organisms to learn, their brains must have mechanisms for handling delays between learning
signals and past neural activity. Here we presented cascading eligibility traces (CETs), a generalization
of classical eligibility traces and an abstract model of interacting biochemical processes within cells,
as a candidate mechanism for bridging such delays. We showed that CETs enable learning over long
delays on standard image datasets and RL settings, and found that by increasing the number of states
in the eligibility trace cascade (with 1 state being equivalent to classical ETs) learning performance
can be maintained with delays on the order of seconds. We explored how CETs contribute to
the ongoing discussion around biologically plausible implementations of backpropagation (Fan &
Mysore, 2024; Liu et al., 2022). Here we tested the hypothesis that synaptic CETs and learning
from salient examples enable slow cytoskeletal retroaxonal signals to carry gradient information
recursively over layers – an idea popular over two decades ago but since discarded (Harris, 2008).
Again, we found CETs with a larger number of states improved performance. Though accumulating
delays with network depth was still problematic for learning, CETs demonstrate that learning over
timescales relevant for slow chemical signaling is feasible. Our experiments with CETs validate
retroaxonal signals a potential solution to the credit assignment problem.

Our work was limited to experiments with feedforward architectures. While extending it to more
biologically relevant scenarios, such as RNNs or spiking networks, is beyond the scope of this work,
preliminary experiments with recurrent reservoir networks (Appendix E) and leaky intergrate-and-fire
neurons (Appendix G) show promising results.

Classical ETs are exponentially decaying “memories” of synaptic activation that are thought to be
implemented by activation of biochemical processes, such as CaMKII activation or other protein
kinases (such as PKA, PKC, ERK, MAPK), which are typically triggered by the activation of G-
protein coupled receptors (Gerstner et al., 2018). While the complexity of such interacting pathways
has been recognized, there has been very little work exploring interactions between such biochemical
processes for learning (though see (Friedrich et al., 2011; Huertas et al., 2016)). In this context, we are
building off work exploring how complex interactions between kinase cascades mediates plasticity
(Zhang et al., 2021). More generally, CETs provide a normative explanation for the complexity of
cascade interactions in the context of learning—the improved performance with higher order CETs
could explain why cells use biochemical cascades rather than a single biochemical signal.

One of the well-known biological implausibilities of backpropagation is that it requires that weights
in the forward pass be reused in the backward pass. In the context of biology, this algorithmic
requirement is known as the weight transport problem (Grossberg, 1987). Retroaxonal signals
provide a potential solution to this problem because they pass back through the very same synapses
used in the forward pass. As such, they could, in principle, carry information about the synaptic
weights, thereby solving the weight transport problem (Fan & Mysore, 2024). However, the challenge
with retroaxonal signals is that they are very slow, taking minutes to pass from the synapse to the
cell body (Fitzsimonds & Poo, 1998). As we showed here, CETs provide a potential mechanism for
making learning at such delays feasible. Therefore, they open up the possibility of using retroaxonal
signals for credit assignment. However, our results also showed that you can only stack such long
delays over a few synaptic steps before learning deteriorates significantly, which would suggest that if
retroaxonal signals are used for learning in the brain they would only be used for learning at relatively
shallow “depths”. Indeed this is consistent with experimental findings: for example Hui-zhong et al.
(2000); Fitzsimonds et al. (1997) only found retroaxonal potentiation and depression over one "layer"
in cultured neurons (i.e. one synaptic step). Although it was originally suggested that the lack of
further propagation may be due to the size of the plasticity change (Fitzsimonds et al., 1997), our
results provide evidence that recursive propagation delays are problematic, even with CETs, and
would require additional mechanisms such as direct reward signaling (Nøkland, 2016).

In summary, our work on CETs provides an extension to the classical ET approach for handling
delays between activity and feedback error signals or rewards. We have demonstrated that cascades
of biochemical processes could be used by cells to store more temporally precise memories of past
cell activity. These memories could then be combined with delayed error signals to estimate loss
gradients. Therefore, our work provides another potential means of understanding how the brain can
learn complicated tasks in a biologically plausible manner.
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Reproducibility Statement. We include an anonymized code archive in the supplementary material
with instructions to run the main experiments. Appendix C describes details for all hyperparameter
configurations, model architectures, and the training pipeline.
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A CASCADING ELIGIBILITY TRACES DERIVATIONS

A.1 UPDATE DERIVATION

The ET we presented in Eq. (4) has the form

ẋ(t) = Ax(t) + b(t) ,

which are solved by

x(t) = exp(At)x(0) +

∫ t

0

exp(A(t− s))b(s) ds . (6)

While the matrix exponent exp(At) is hard to compute in general, in our case, ẋ1
t

. . .
ẋn−1
t

ẋCET
t

 =

−α 0 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 1 −α 0
0 . . . 0 1 −α


 x1

t
. . .
xn−1
t

xCET
t

+

xt

. . .
0
0

 , (7)

therefore A = α In +N for a nilpotent N (i.e. Nn = 0), hence

exp((α In +N) t) = exp(α t)

(
n−1∑
i=0

1

i!
N iti

)

= exp(α t)


1 0 . . . 0 0
t 1 0 . . . 0
t2

2! t 1 . . . 0
. . .
tn−1

(n−1)!
tn−2

(n−2)! . . . t 1

 .

Therefore, for x(0) = 0 and b(t) being non-zero only for the first coordinate, the last coordinate of x
implements

xn(t) =

∫ t

0

exp(α (t− s))
(t− s)n−1

(n− 1)!
b0(s) ds .

Moreover, if b(t) is a step-wise function taking on a new value every ∆t points, a single step of the
integration between t and t+∆t can be computed (exactly) using Eq. (6) as

x(t+∆t) = exp(A∆t)x(t) +

[∫ ∆t

0

exp(A(∆t− s)) ds

]
b(t)

= exp(A∆t)x(t) +

[∫ ∆t

0

exp(A s) ds

]
b(t) .

As A is non-singular, we can integrate this solution further to obtain

x(t+∆t) = exp(A∆t)x(t) + [exp(A∆t)− I]A−1b(t) . (8)

B IMPLEMENTATION DETAILS

B.1 ALTERNATIVE EXPRESSION FOR STEPWISE INPUTS

For experiments on visual tasks, we consider that a batch of inputs corresponds to a time-series where
the batch dimension corresponds to the time dimension. In this case, the output of the state-space
model in Eq. (4) can be obtained via a discrete convolution, which can be efficiently computed as a
matrix multiplication.

Starting from Eq. (8), we can denote M = exp(A∆t) and K = [exp(A∆t)− I]A−1, such that

x(t+∆t) = Mx(t) +Kb(t) ,
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and therefore

x(k∆t) = Mk x(0) +

k∑
i=0

Mk−iKb(i∆t) .

If we assume the initial state was zero, x(0) = 0, the SSM outputs xCET
k∆t will be computed as

(dropping the SSM superscript for convenience)


x0

x∆t

...
xk∆t

 =

g0 0 . . . 0
g1 g0 . . . 0
. . .
gk gk−1 . . . g0




b0
b∆t

...
bk∆t

 = Gb[t] (9)

where gj = (MjK)n0.

Alternatively, to get a closed form expression for g, we may rewrite the stepwise constant input as
the convolution of the appropriate impulse train with the rectangular function. Using δ for the Dirac
delta and θ for the Heavyside function, we have

b(t) =

∞∑
i=1

aiδ(t− ti), rect(t) = θ(t)− θ(t− 1)

b̂(t) =

∞∑
i=1

airect(t− ti) = (b ∗ rect)(t)

x(t) = b̂ ∗ g = b ∗ (rect ∗ g)

=

∞∑
i=1

ai(rect ∗ g)(t− ti).

We can therefore compute the exact continuous-time output with a discrete convolution using
ĝ = rect ∗ g.

g(t) = θ(t)ktne−
n
T t

rect ∗ g =

∫ ∞

−∞
h(τ)rect(t− τ)dτ

= k

∫ t

max(0,t−1)

τne−
n
T τdτ

= k(
T

n
)n+1

[
γ(n+ 1,

n

T
t)− γ(n+ 1,

n

T
max(0, t− 1))

]
(10)

where γ is the incomplete Gamma function.

B.2 SPARSIFICATION

In matrix form, sparsification with indices in T = {t1, ..., tk} then corresponds to a matrix multipli-
cation with the diagonal matrix ST = diag (1T ),

x̃[t] = ST x[t]

When using the Hebbian-like term h[t] = f ′(x[t]⊤w)x[t] as inputs to the SSM, the gradient
computation when both inputs and gradients are sparsified, respectively with T , T ′ will be

∂ L(x[t]⊤w)

∂w
= ST ′δ[t]⊙GST h[t]

= ST ′δ[t]⊙ ST ′GST h[t].

(11)
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Since the sparsifying matrices are indicator functions, this is equivalent to indexing δt, G, and h[t] at
the appropriate positions defined by T and T ′. When simulating sparsity, we obtain the original input
presentation indices T as the salient image indices and compute the arrival time gradient indices as
T ′ = T + (m− 1)T . The gradient over the batch is then computed by summing over the time—or
equivalently, batch—dimension.

C EXPERIMENTAL DETAILS

Visual experiments. For visual experiments, we consider the batch dimension to be the time
dimension, and we compute the delayed signals over the batch dimension using a matrix convolution
as described in Section B.2. The experiments in Section 4.1 use a batch size of 128 samples, while
the experiments in Section 4.2 use a batch size of 1280 samples, where only the samples with the
top 1.25% of training losses are used. Networks were trained using the cross-entropy loss and the
AdamW optimizer with β1 = 0.9, β2 = 0.999. The learning rate was scaled with a linear warm-up
over 10% and 20% of the training steps for Section 4.1 and Section 4.2, respectively, followed by
cosine annealing to 10% of the initial learning rate. For the experiments in Section 4.1, the maximal
learning rate was selected from a logarithmic grid of 5 points spanning 10−3 to 10−7, and the weight
decay was chosen from the set {0.1, 0.01, 0.001, 0.0}. For the CIFAR-10 experiments in Section 4.2,
the maximal learning rate was selected from {5 × 10−5, 2.5 × 10−5, 1 × 10−5, 7.5 × 10−6, 5 ×
10−6, 2.5 × 10−6, 1 × 10−6}, and the weight decay was fixed to 0.1. Hyper-parameters for the
MNIST experiments in Section 4.2, were searched the same way as for Section 4.1. Hyper-parameters
presented in Tables 1 to 4 were independently selected using a 90%/10% split of the standard training
set, and the models were retrained using the standard training set and tested on the standard test set.
All experiments in Section 4.1 as well as the MNIST experiments in Section 4.2 were run for 20000
training steps. The CIFAR-10 experiments in Section 4.2 were run for 1562500 steps, in large part
due to lower learning rates. Data augmentation using random horizontal flips was applied only to the
CIFAR-10 experiments.

Table 1: Experiment configurations for CIFAR-
10 experiments at behavioural timescales.

CET order delay lr weight decay

1 0.2 1e-3 1e-1
2 0.2 1e-3 1e-1
6 0.2 1e-3 1e-1

10 0.2 1e-3 1e-1
1 0.6 1e-3 1e-3
2 0.6 1e-3 1e-1
6 0.6 1e-3 1e-1

10 0.6 1e-3 1e-1
1 1.0 1e-4 0
2 1.0 1e-3 1e-2
6 1.0 1e-3 1e-1

10 1.0 1e-3 1e-1
1 2.0 1e-4 1e-3
2 2.0 1e-4 1e-3
6 2.0 1e-3 1e-3

10 2.0 1e-3 0
1 4.0 1e-4 1e-3
2 4.0 1e-4 0
6 4.0 1e-4 1e-3

10 4.0 1e-4 1e-2
1 10.0 1e-4 0
2 10.0 1e-4 1e-2
6 10.0 1e-4 1e-3

10 10.0 1e-4 1e-3

Table 2: Experiment configurations for MNIST
experiments at behavioural timescales.

CET order delay lr weight decay

1 0.2 1e-3 1e-1
2 0.2 1e-3 1e-3
6 0.2 1e-3 1e-2

10 0.2 1e-3 1e-2
1 0.6 1e-3 1e-3
2 0.6 1e-3 1e-1
6 0.6 1e-3 1e-1

10 0.6 1e-3 1e-3
1 1.0 1e-3 0
2 1.0 1e-3 0
6 1.0 1e-3 0

10 1.0 1e-3 1e-3
1 2.0 1e-3 1e-3
2 2.0 1e-3 1e-2
6 2.0 1e-3 0

10 2.0 1e-3 1e-2
1 4.0 1e-3 0
2 4.0 1e-3 0
6 4.0 1e-3 0

10 4.0 1e-3 1e-3
1 10.0 1e-4 0
2 10.0 1e-4 1e-2
6 10.0 1e-3 0

10 10.0 1e-3 1e-3

RL. In Actor-Critic, we train the Critic using the standard λ-return, while the Actor is trained using
RL eligibility traces (see Algorithm 1). The term ∇θ log πθ(at | st) in Algorithm 1 refers either to
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Table 3: Experiment configurations for CIFAR-
10 experiments at retrograde timescales.

CET order lr weight decay

1 1e-5 1e-1
2 1e-5 1e-1
6 5e-5 1e-1

10 5e-5 1e-1

Table 4: Configurations for MNIST experiments
at retrograde timescales.

CET order lr weight decay

1 1e-4 1e-3
2 1e-4 1e-1
6 1e-4 1e-3

10 1e-4 0.0

the true gradient obtained via backpropagation or to its ET/CET approximations, computed as the
product of the top-level gradient signal and the ET/CET output. The CET update is computed using
Eq. 8.

Algorithm 1 Actor learning via RL eligibility traces.
1: Initialize actor parameters θ, RL eligibility trace vector e = 0, gradient accumulator ∇θL = 0,

learning rate α, and trace decay λ.
2: Sample initial state s0 from the environment
3: for t ∈ 0, . . . , L do
4: Select action at ∼ πθ(· | st)
5: Take action at, observe rt, st+1

6: Update RL eligibility trace vector: e = λγe+∇θ log πθ(at | st)
7: Compute TD error: ηt = rt + γV (st+1)− V (st)
8: Accumulate gradient: ∇θL = ∇θL+ ηte
9: if t mod n = 0 then

10: Update actor: θ = θ + α∇θL
11: Reset gradient: ∇θL = 0
12: end if
13: end for

The learning rate was selected from the set 2.5e−4, 5e−4, 9e−4, 1e−4 based on performance for all
experiments. For all classic ET runs, the ET discount factor, β, was chosen from 0.5, 0.7, 0.9, 0.99.
Additionally, we used two normalization schemes for CET outputs: area and peak normalizations. In
area normalization, the CET output is scaled so that the response to a unit input integrates to one
across all future states. In peak normalization, the CET output is scaled such that the maximum
response to a unit input is one. For Fig.8, this normalization hyperparameter was also searched.

For the Critic, we used either the same architecture as the Actor, a three-layer MLP with hidden
dimension 256, or a convolutional neural network (CNN) for MinAtar/SpaceInvaders-v0, consisting
of three convolutional layers (kernel size 3, zero-padding 1) followed by two fully connected layers.
The ReLU activation function was used in all experiments. For CartPole and LunarLander, we also
controlled the simulated time elapsed between the environment receiving an action from the agent
and producing the corresponding next state and reward. This time was set to 200 ms for behavioral
timescale experiments (Section 4.1) and 300 ms for retrograde signaling (Section 4.2), based on the
time modeling assumptions described in the referenced sections.

To better preserve gradient alignment with ET/CET in the first layer, we ensured positive inputs by
doubling the input dimensionality and representing each original dimension with separate positive
and negative components.

The remaining hyperparameters used in the experiments are summarized in Table 5, and tuned
hyperparameters are reported in Tables 6 and 7. Note that for MinAtar/SpaceInvaders, we use a
randomly sampled λ value, as we found this improves performance in this environment. A separate
λ is sampled independently for every learned parameter, which is feasible due to our RL eligibility
traces implementation of Actor learning.

Compute. All experiments were done on RTX 8000 and A100 GPUs. Each MNIST run takes
between 3 and 10 minutes on an RTX 8000 GPU, while each CIFAR-10 run takes approximately
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Table 5: Hyperparameters used in RL experiments.

Parameter Value

Common
Optimizer Adam
Adam beta (0.9, 0.999)
Adam epsilon 1e-5
Weight decay 0
Policy entropy regularization coefficient 0.01
Maximum gradient norm for clipping 0.5
Learning rate Tuned
Discount rate γ 0.99

CartPole-v1
Total number of samples 5_000_000
Number of environments 4
Number of steps to accumulate a policy gradient 128
Lambda for general advantage estimation 0.95
Anneal lr True
CET normalization Peak

LunaLander-v2
Total number of samples 5_000_000
Number of environments 4
Number of steps to accumulate a policy gradient 128
Lambda for general advantage estimation 0.95
Anneal lr False
CET normalization Area or Tuned

MinAtar/SpaceInvaders-v0
Total number of samples 10_000_000
Number of environments 32
Number of steps to accumulate a policy gradient 32
Lambda for general advantage estimation Random Uniform(0.1, 0.99)
Anneal lr False
CET normalization Peak
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Table 6: Optimal learning rate and ET discounting factor configurations, β, for experiments at
behavioral timescales.

CartPole-v1

CET order delay lr β

backprop - 0.00090 -
1 2 0.00050 0.5
2 2 0.00025 -
5 2 0.00025 -
8 2 0.00025 -

10 2 0.00025 -
1 4 0.00050 0.9
2 4 0.00025 -
8 4 0.00025 -
5 4 0.00025 -

10 4 0.00050 -
1 8 0.00050 0.99
2 8 0.00025 -
5 8 0.00025 -
8 8 0.00025 -

10 8 0.00050 -
1 32 0.00010 0.99
2 32 0.00025 -
5 32 0.00025 -
8 32 0.00025 -

10 32 0.00010 -
1 64 0.00010 0.99
2 64 0.00025 -
5 64 0.00090 -
8 64 0.00090 -

10 64 0.00050 -
1 128 0.00050 0.5
2 128 0.00010 -
5 128 0.00025 -
8 128 0.00025 -

10 128 0.00025 -

LunarLander-v2

CET order delay lr β

backprop - 0.00050 -
1 2 0.00090 0.99
2 2 0.00050 -
5 2 0.00050 -
8 2 0.00050 -

10 2 0.00050 -
1 4 0.00090 0.99
2 4 0.00050 -
5 4 0.00050 -
8 4 0.00050 -

10 4 0.00090 -
1 8 0.00090 0.99
2 8 0.00050 -
5 8 0.00050 -
8 8 0.00090 -

10 8 0.00050 -
1 32 0.00090 0.99
2 32 0.00090 -
5 32 0.00090 -
8 32 0.00050 -

10 32 0.00025 -
1 64 0.00090 0.99
2 64 0.00090 -
5 64 0.00090 -
8 64 0.00090 -

10 64 0.00050 -
1 128 0.00050 0.7
2 128 0.00090 -
5 128 0.00090 -
8 128 0.00090 -

10 128 0.00090 -

MinAtar/SpaceInvaders-v0

CET order delay lr β

backprop 1 0.00090 -
1 1.2 0.00025 0.9
2 1.2 0.00090 -
5 1.2 0.00050 -
8 1.2 0.00050 -

10 1.2 0.00090 -
1 2 0.00090 0.99
2 2 0.00050 -
5 2 0.00050 -
8 2 0.00050 -

10 2 0.00050 -
1 4 0.00090 0.99
2 4 0.00050 -
5 4 0.00090 -
8 4 0.00050 -

10 4 0.00050 -
1 8 0.00050 0.99
2 8 0.00050 -
5 8 0.00090 -
8 8 0.00025 -

10 8 0.00050 -

Table 7: Optimal learning rate, CET normalization, and ET discounting factor configurations, β, for
experiments at retrograde timescales.

CartPole-v1
CET order lr normalization β

1 0.00010 - 0.9
2 0.00010 peak -
5 0.00010 peak -

10 0.00025 peak -

LunarLander-v2
CET order lr normalization β

1 0.00025 - 0.5
2 0.00050 area -
5 0.00025 area -

10 0.00050 peak -

30 minutes for Section 4.1 and up to 24 hours for Section 4.2 on a RTX 8000. Each RL run takes
approximately 1-2 hours to complete.

D SUPPLEMENTAL RESULTS ON GRADIENT ALIGNMENT

To complement the analyses in the main text, we provide additional results on gradient alignment
across all layers for different tasks. First, we show in Fig. 9 that the separation observed in Fig. 5
generally holds across different layers. A similar trend is observed for RL tasks in Fig. 11, although
the separation is much noisier and sometimes does not hold for the first layer. We hypothesize that
the training dynamics of ET and CET can differ significantly, guiding parameters to distinct regions
in the loss landscape. In these regions, gradient alignment might occasionally be higher for ET, yet
overall performance remains lower.

We can also see in Fig. 10 that the separation between the different CETs is still evident when plotting
the similarity against training steps for MNIST. However, Fig. 12 shows that this relationship is
muddied for CIFAR-10, which justifies plotting against accuracy.

Additionally, we note that no experiments were conducted with MinAtar/SpaceInvaders at the
retrograde timescale. As shown in the rightmost heatmap of Fig. 4, CET does not scale well to
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longer timescales on SpaceInvaders, exhibiting only modest performance with an 8-second delay and
consequently failing at a 120-second delay at the retrograde timescale (not shown).
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Figure 9: Cosine similarity for different layers of a CNN between between true gradients and ETs or
CETs approximated gradients for all considered environments during training on CIFAR-10. C1-3:
convolutional layers 1-3; W1-2: MLP layers 1-2.
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Figure 10: Cosine similarity between the true gradient and the ET/CET approximation in a retrograde
setting. Each plot shows an individual layer of an MLP during training on MNIST
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Figure 11: Average cosine similarity between the true gradients and those approximated by ETs or
CETs during training, computed for each layer of a 3-layer MLP across all considered environments.
The delay is set to the maximum behavioral-timescale value reported in the main text.
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Figure 12: Cosine similarity between the true gradient and the ET/CET approximation in a retrograde
setting. Each plot shows an individual layer of a CNN during training on CIFAR-10

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E SUPPLEMENTAL RESULTS WITH RESERVOIR (RECURRENT) NEURAL
NETWORK

To demonstrate the compatibility of CETs with learning in recurrent settings, we consider a partially
observable variant of LunarLander-v2 in which one velocity component is masked (POMDP). In this
setting, memory improves performance, motivating recurrent augmentation.

We employ a reservoir network, a recurrent architecture with a fixed, non-trainable recurrent matrix
(commonly used in motor learning; see, e.g., Sussillo & Abbott (2009); Hoerzer et al. (2014)).
Concretely, we augment the masked POMDP observation with a 256-dimensional reservoir state
whose dynamics are driven by the raw LunarLander-v2 observation. Apart from this augmentation,
the downstream MLP head is identical to the feedforward architecture used in the fully observable
MDP. Both the feedforward and reservoir-augmented variants are trained with CET(5) under a fixed
delay of 2 seconds.

CETs effectively solved the POMDP task (average return >200) with the reservoir augmentation,
whereas a non-recurrent MLP baseline failed entirely (average return ≈ 0), see Table 8. For
completeness, we also evaluated Exponential Traces (ET) on the same reservoir architecture with
decay factors 0.5 and 0.9; both configurations failed to learn (average return ≈ 0).

Table 8: Partially observable LunarLander-v2 with masked velocity and 2s. delay. Reservoir has 256
units with fixed recurrent weights.

Architecture / Rule Avg. Return
MLP (no recurrence) + CET(5) ≈ 0
Reservoir (256) + ET ≈ 0
Reservoir (256) + CET(5) > 200

In a POMDP with delayed credit assignment, CETs leverage recurrent state to overcome temporal
mismatch, while ET fails under identical conditions.

F TINYIMAGENET

As a step towards scalability, we report results on TINY IMAGENET (Table 9) under the same training
setup as Section 4.1, using a ResNet-20 with strided convolutions replaced with average pooling.
We compare Exponential Traces (ET), Cascading Eligibility Traces with 10 states, and standard
backpropagation. We evaluate performance with a fixed delay of 1 second after 50K training steps.

Table 9: TINY IMAGENET performance with a 1 s delay after 50K training steps.

Method Top-1 Acc. Top-5 Acc.
ET 0.0973 0.2658
CET (10) 0.3431 0.6136
Backprop 0.4060 0.6791

These results reinforce our hypothesis that more complex visual tasks are more sensitive to temporal
mismatch, and that CETs provide substantial gains when the system is well matched to the delay. To
check whether ET could be improved by mitigating gradient alignment issues via a smaller learning
rate, we also tested ET with a reduced learning rate; for equal training time (50K steps), but the
performance decreased relative to the table above.

G SUPPLEMENTAL RESULTS WITH LEAKY INTEGRATE-AND-FIRE NEURONS

As an additional step towards biologically plausible learning, we evaluate a feedforward network of
leaky integrate-and-fire (LIF) neurons on the standard LunarLander-v2, see Table 10. We compare
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ET and CET with 5 states across multiple feedback delays. LIF neurons are implemented with
snnTorch, using membrane decay β = 0.9 and a fast-sigmoid surrogate gradient for the spike
nonlinearity.

Table 10: LunarLander-v2 average return with LIF neurons across delays (in seconds).

Method / Delay (s) 2 8 16 32 64
ET 274 226 −133 −136 −89
CET(5) 270 246 127 122 64

The results mirror the trends in the main paper: increasing delay degrades performance for both ET
and CET, but CET becomes significantly better than ET at longer delays (e.g., T ≥ 16s).

All architectural components other than the spiking layer remain identical to the feedforward MLP
used in the main text.

H STANDARD DEVIATION FOR REINFORCEMENT LEARNING RESULTS

We report results with standard deviations for RL tasks reported in the main text at the behavioral
timescale in Fig. 13 to show reliability.
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Figure 13: Same as Fig. 4, but with standard deviation over three seeds. “inf” refers to backpropaga-
tion baseline.

I SUPPLEMENTAL RESULTS ON VARIABLE DELAY

We report result on variable delay in three settings long delays, moderate delays, and to the RL.

Across settings, CETs consistently outperform ETs for unimodal, peaky variable–reward/feedback
distributions. As expected, when the delay variance approaches the full delay range (i.e., the truncated
Gaussian approaches uniform), the performance gap between CET and ET diminishes.

I.1 VARIABLE DELAYS ON BEHAVIORAL TIME SCALE

For visual experiments, we study robustness to variable feedback delays by drawing per-trial delays
from a Gaussian centered at the nominal mean (T = 1 s or T = 2 s), truncated to [0, 2T ]. We sweep
standard deviations Tvar ∈ {0, 1

4T,
1
2T, T}, mirroring the CIFAR-10 setup in Section 4.1.

CETs consistently outperform ETs under variable delays; increasing CET degree improves accuracy
even when Tvar = 1

2T . Importantly, CET performance does not collapse below ET under high
variability.

I.2 VARIABLE DELAYS ON MINUTES-SCALE

We also evaluate CIFAR-10 with delays sampled from a truncated Gaussian on [0, 2T ] at minutes-
scale and show that CETs remain viable under longer delays with sparse activity. In these experiments,
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Table 11: Accuracy vs. standard deviation for T = 1 s with delays in [0, 2T ].

Method Tvar=0.00 Tvar=0.25 Tvar=0.50 Tvar=1.00

ET 0.68 0.68 0.68 0.68
CET(2) 0.71 0.70 0.70 0.68
CET(6) 0.73 0.73 0.72 0.70
CET(10) 0.74 0.73 0.72 0.69

Table 12: Accuracy vs. standard deviation for T = 2 s with delays in [0, 2T ].

# States Tvar=0.00 Tvar=0.50 Tvar=1.00 Tvar=2.00

ET 0.62 0.63 0.64 0.64
CET(2) 0.66 0.66 0.65 0.63
CET(6) 0.71 0.70 0.69 0.65
CET(10) 0.72 0.72 0.70 0.65

we consider a variable delay applied uniformly to the entire network and the sparsification method in
Section B.2 used in Section 4.2 with random 1% sparsity.

Table 13: CIFAR-10 accuracy with mean delay T = 60 s and range [0, 2T ].

Method Tvar=0.00 Tvar=15.00 Tvar=30.00 Tvar=60.00

ET 0.70 0.70 0.71 0.69
CET(2) 0.73 0.72 0.72 0.70
CET(6) 0.74 0.74 0.72 0.69
CET(10) 0.74 0.74 0.72 0.68

Table 14: CIFAR-10 accuracy with mean delay T = 120 s and range [0, 2T ].

Method Tvar=0.00 Tvar=30.00 Tvar=60.00 Tvar=120.00

ET 0.67 0.68 0.68 0.65
CET(2) 0.70 0.69 0.68 0.66
CET(6) 0.73 0.72 0.70 0.66
CET(10) 0.73 0.73 0.70 0.65

I.3 VARIABLE DELAY ON RL TASKS

We report variable feedback delay for LunarLander-v2 under a mean delay of T = 32s and different
trancated variances in Table 15.

Table 15: Mean episodic return on LunarLander-v2 under a mean delay of T = 32s, across different
delay variances.

Method / Var var = 2.0 var = 8.0 var = 16 var = 32

ET −42 −66 −146 −152
CET(5) 198 55 81 −109
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I.4 VARIABLE DELAYS: UNKNOWN FIXED DELAY (LEARNED)

We next consider fixed but unknown delays that must be learned. The CET kernel is initialized to
peak at 200ms (ET initialized with 200ms mean as an exponential distribution). We tune a single
delay parameter α via a simple weight-perturbation (finite-difference) update:

∆α = − η
L+ − L−

2δ
,

where δ ∼ N (0, 1), and L+ (resp. L−) is the loss obtained when computing the network update
assuming time constant α+δ (resp. α−δ). This approximates gradient descent on L(·) in expectation
via a first-order Taylor expansion.

We can see that eligibility trace performance degrades if the decay parameter is poorly initialized,
more so for higher-order CETs; thus time-constant tuning is a shared challenge. Nevertheless, when
α is learned online, CETs outperform ETs.

Table 16: Accuracy vs. true (unknown) delay T when initialized at 200ms.

# States T=1 s T=2 s

ET 0.67 0.55
CET(2) 0.72 0.61
CET(6) 0.74 0.65
CET(10) 0.74 0.67
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