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Abstract
In order to sample from an unnormalized probabil-
ity density function, we propose to combine con-
tinuous normalizing flows (CNFs) with rejection-
resampling steps based on importance weights.
We relate the iterative training of CNFs with reg-
ularized velocity fields to a JKO scheme and
prove convergence of the involved velocity fields
to the velocity field of the Wasserstein gradient
flow (WGF). The alternation of local flow steps
and non-local rejection-resampling steps allows
to overcome local minima or slow convergence
of the WGF for multimodal distributions. Since
the proposal of the rejection step is generated by
the model itself, they do not suffer from common
drawbacks of classical rejection schemes. The
arising model can be trained iteratively, reduces
the reverse Kullback-Leibler (KL) loss function
in each step, allows to generate iid samples and
moreover allows for evaluations of the generated
underlying density. Numerical examples show
that our method yields accurate results on various
test distributions including high-dimensional mul-
timodal targets and outperforms the state of the
art in almost all cases significantly.

1. Introduction
We consider the problem of sampling from an unnormal-
ized probability density function. That is, we are given an
integrable function g : Rd → R>0 and we aim to generate
samples from the probability distribution ν given by the
density q(x) = g(x)/Zg, where the normalizing constant
Zg =

∫
Rd g(x)dx is unknown. Many classical sampling

methods are based on Markov chain Monte Carlo (MCMC)
methods like the overdamped Langevin sampling, see, e.g.,
(Welling & Teh, 2011). The generated probability path of
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the underlying stochastic differential equation follows the
Wasserstein-2 gradient flow of the reverse KL divergence
F(µ) = KL(µ, ν). Over the last years, generative models
like normalizing flows (Rezende & Mohamed, 2015) or dif-
fusion models (Ho et al., 2020; Song et al., 2021) became
more popular for sampling, see, e.g., (Phillips et al., 2024;
Vargas et al., 2023a). Also these methods are based on the
reverse KL divergence as a loss function. While genera-
tive models have successfully been applied in data-driven
setups, their application to the problem of sampling from
arbitrary unnormalized densities is not straightforward. This
difficulty arises from the significantly harder nature of the
problem, even in moderate dimensions, particularly when
dealing with target distributions that exhibit phenomena
such as concentration effects, multimodalities, heavy tails,
or other issues related to the curse of dimensionality.

In particular, the reverse KL is non-convex in the Wasser-
stein space as soon as the target density ν is not log-concave
which is for example the case when ν consists of multi-
ple modes. In this case generative models often collapse
to one or a small number of modes. We observe that for
continuous normalizing flows (CNFs, Chen et al., 2018;
Grathwohl et al., 2019) this can be prevented by regular-
izing the L2-norm of the velocity field as proposed under
the name OT-flow by (Onken et al., 2021). In particular,
this regularization converts the objective functional into a
convex one. However, the minimizer of the regularized loss
function is no longer given by the target measure ν but by
the Wasserstein proximal mapping of the objective func-
tion applied onto the latent distribution. Considering that
the Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al.,
1998) iteratively applies the Wasserstein proximal mapping
and converges to the Wasserstein gradient flow, several pa-
pers proposed to approximate the steps of the scheme by
generative models, see (Altekrüger et al., 2023; Alvarez-
Melis et al., 2022; Fan et al., 2022; Lambert et al., 2022;
Mokrov et al., 2021; Vidal et al., 2023; Xu et al., 2024). We
will refer to this class of method by the name neural JKO.
Even though this approximates the same gradient flow of
the Langevin dynamics these approaches have usually the
advantage of faster inference (once they are trained) and
additional possibly allow for density evaluations.

However, already the time-continuous Wasserstein gradi-
ent flow suffers from the non-convexity of the reverse KL
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loss function by getting stuck in local minima or by very
slow convergence times. In particular, it is well-known that
Langevin-based sampling methods often do not distribute
the mass correctly onto multimodal target distributions. As
a remedy, (Neal, 2001) proposed importance sampling, i.e.,
to reweight the sample based on quotients of the target dis-
tribution and its current approximation which leads to an
unbiased estimator of the Monte Carlo integral. However,
this estimator may lead to highly imbalanced weights be-
tween these samples and the resulting estimator might have
a large variance. Moreover, the density of the current ap-
proximation has to be known up to a possible multiplicative
constant, which is not the case for many MCMC methods
like Langevin sampling or Hamiltonian Monte Carlo. In
(Del Moral et al., 2006) the authors propose a scheme for al-
ternating importance sampling steps with local Monte Carlo
steps. However, the corresponding importance sampling
step generates non-iid samples, that de-correlate over time
by construction.

Contributions In this paper, we propose a sampling
method which combines neural JKO steps based on CNFs
with importance based rejection steps. While the CNFs
adjust the position of the generated samples locally, the
rejection steps readjust the inferred distribution non-locally
based on the quotient of generated and target distribution.
Then, in each rejection step we resample the rejected points
based on the current constructed generative model. We
illustrate this procedure in Figure 1.

Our method generates independent samples and allows to
evaluate the density of the generated distribution. In our
numerical examples, we apply our method to common test
distributions up to the dimension d = 1600 which are par-
tially highly multimodal. We show that our importance
corrected neural JKO sampling (neural JKO IC) achieves
significantly better results than the comparisons1.

From a theoretical side, we prove that the velocity fields
from a sequence of neural JKO steps strongly converge to
the velocity field of the corresponding Wasserstein gradi-
ent flow and that the reverse KL loss function decreases
throughout the importance-based rejection steps.

Outline In Section 2, we recall the fundamental concepts
which will be required. Afterwards, we consider neural
JKO schemes more detail in Section 3. We introduce our
importance-based rejection steps in Section 4. Finally, we
evaluate our model numerically and compare it to existing
methods in Section 5. Conclusions are drawn in Section 6.
Additionally, proofs, further numerical and technical details
are presented in Appendix A- E.

Related Work Common methods for sampling of unnor-

1The code is available at https://github.com/
johertrich/neural_JKO_ic

malized densities are often based on Markov Chain Monte
Carlo (MCMC) methods, see e.g. (Gilks et al., 1995). In
particular first order based variants, such as the Hamilto-
nian Monte Carlo (HMC) (Betancourt, 2017; Hoffman &
Gelman, 2014) and the Metropolis Adjusted Langevin Algo-
rithm (MALA Girolami & Calderhead, 2011; Rossky et al.,
1978; Roberts & Tweedie, 1996) are heavily used in practice,
see (Andrieu et al., 2003) for an overview. The viewpoint of
these samplers as sample space description of gradient flows
defined in a metricized probability space then allows for ex-
tensions such as interacting particle systems (Chen et al.,
2023; Eigel et al., 2024; Garbuno-Inigo et al., 2020; Wang
& Li, 2022). However, since these algorithms are based on
local transformations of the samples, they are unable to dis-
tribute the mass correctly among different modes, which can
partially be corrected by importance sampling (Neal, 2001)
and sequential Monte Carlo samplers (SMC) (Del Moral
et al., 2006) as described above. In contrast to our model,
SMC approximates the density of the approximation by as-
signing “inverse Markov kernels” to certain MCMC kernels,
which might lead to propagating errors. Furthermore, the
generation of additional samples requires to rerun the whole
procedure which can be very costly. Other approaches ap-
proximate the target density by combination of transport
maps and low-rank models such as tensor trains (Eigel et al.,
2022) yielding efficient access to posterior statistics.

In the last years, generative models became very popular,
including VAEs (Kingma & Welling, 2014), normalizing
flows (Rezende & Mohamed, 2015), diffusion models (Ho
et al., 2020) or flow-matching (Lipman et al., 2022) which
is also known as rectified flow (Liu et al., 2022). In con-
trast to our setting, they initially consider the modeling
task, i.e., they assume that they are given samples from the
target measure instead of an unnormalized density. How-
ever, there are several papers, which adapt these algorithms
for the sampling task. For normalizing flows, this mostly
amounts to changing the loss function (Hoffman et al., 2019;
Marzouk et al., 2016; Qiu & Wang, 2024). Very recently,
there appeared also a flow-matching variant for the sampling
task (Woo & Ahn, 2024) based on (Akhound-Sadegh et al.,
2024). For diffusion (and stochastic control) models this
was done based on variational approaches (Blessing et al.,
2024; Phillips et al., 2024; Vargas et al., 2023a;b; Zhang
& Chen, 2021) or by computing the score by solving a
PDE (Richter & Berner, 2024; Sommer et al., 2024). These
methods usually provide much faster sampling times than
MCMC methods and are often used in combination with
some conditioning parameter for inverse problems, where
a (generative) prior is combined with a known likelihood
term (Ardizzone et al., 2019; Altekrüger & Hertrich, 2023;
Andrle et al., 2021; Denker et al., 2024). Combinations of
generative models with stochastic sampling steps were con-
sidered in the literature for generative modeling under the
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Figure 1: Iterative application of neural JKO steps and rejection steps for a shifted mixture target distribution. The red
samples are rejected in the next following rejection step and the green samples are the resampled points. The latter approach
enables for the correction of wrong mode weights introduced by the underlying WGF. See Figure 3 for more steps.

name stochastic normalizing flows (Hagemann et al., 2023;
2022; Noé et al., 2019; Wu et al., 2020) and for sampling
under the name annealed flow transport Monte Carlo (Arbel
et al., 2021; Matthews et al., 2022). (Gabrié et al., 2022)
use normalizing flows to learn proposal distributions in an
Metropolis-Hastings algorithm. These generative models
can be adapted to follow a Wasserstein gradient flow, by
mimicking a JKO scheme with generative models or directly
following the velocity field of a kernel-based functional.
Such approaches were proposed for generative modeling
(Fan et al., 2022; Hagemann et al., 2024; Hertrich et al.,
2024; Liutkus et al., 2019; Vidal et al., 2023; Xu et al.,
2024), sampling (Fan et al., 2022; Lambert et al., 2022;
Liu & Wang, 2016a; Mokrov et al., 2021) or other tasks
(Altekrüger et al., 2023; Arbel et al., 2019; Alvarez-Melis
et al., 2022). Gradient flows of the reverse KL divergence
with respect to different metric were considered in (Liu &
Wang, 2016b) under the name Stein variational gradient de-
scent. Moreover, Lu et al. (2019) study gradient flows in the
Wasserstein-Fisher-Rao metric which can be implemented
via birth-death processes.

After the first version of our paper appeared, several re-
lated preprints were released, including (Albergo & Vanden-
Eijnden, 2024; Chen et al., 2025; He et al., 2025; Wu & Xie,
2024).

2. Preliminaries
In this section, we provide a rough overview of the required
concepts for this paper. To this end, we first revisit the basic
definitions of Wasserstein gradient flows, e.g., based on
(Ambrosio et al., 2005). Afterwards we recall continuous
normalizing flows with OT-regularizations.

2.1. Curves in Wasserstein Spaces

Wasserstein Distance Let P(Rd) be the space of prob-
ability measures on Rd and denote by P2(Rd) := {µ ∈
P(Rd) :

∫
Rd ∥x∥2dµ(x) < ∞} the subspace of proba-

bility measures with finite second moment. Let Pac
2 (Rd)

be the subspace of absolutely continuous measures from
P2(Rd). Moreover, we denote for µ, ν ∈ P2(Rd) by
Γ(µ, ν) := {π ∈ P2(Rd × Rd) : P1#π = µ, P2#π = ν}
the set of all transport plans with marginals µ and ν, where
Pi : Rd × Rd → Rd defined by Pi(x1, x2) = xi is the pro-
jection onto the i-th component for i = 1, 2. Then, we equip
P2(Rd) with the Wasserstein-2 metric defined by

W 2
2 (µ, ν) = inf

π∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥2dπ(x, y).

If µ ∈ Pac
2 (Rd), the above problem has always a unique

minimizer.

Absolutely Continuous Curves A curve γ : I → P2(Rd)
on the interval I ⊆ R is called absolutely continuous if
there exists a Borel velocity field v : Rd × I → Rd with∫
I
∥v(·, t)∥L2(γ(t),Rd)dt < ∞ such that the continuity equa-

tion
∂tγ(t) +∇ · (v(·, t)γ(t)) = 0 (1)

is fulfilled on I × Rd in a weak sense. Then, any velocity
field v solving the continuity equation (1) for fixed γ char-
acterizes γ as γ(t) = z(·, t)#γ(t0), where z is the solution
of the ODE ż(x, t) = v(z(x, t), t) with z(x, t0) = x and
t0 ∈ I . It can be shown that for an absolutely continuous
curve there exists a unique solution of minimal norm which
is equivalently characterized by the so-called regular tangent
space Tγ(t)P2(Rd), see Appendix A for details. An abso-
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lutely continuous curve is a geodesic if there exists some
c > 0 such that W2(γ(s), γ(t)) = c|s− t|.

The following theorem formulates a dynamic version of the
Wasserstein distance based minimal energy curves in the
Wasserstein space.

Theorem 2.1 (Benamou & Brenier, 2000). Assume that
µ, ν ∈ Pac

2 (Rd). Then, W 2
2 (µ, ν) is equal to

inf
v : Rd×[0,1]→Rd,
ż(x,t)=v(z(x,t),t),

z(x,0)=x, z(·,1)#µ=ν

∫ 1

0

∫
Rd

∥v(z(x, t), t)∥2dµ(x)dt.

Moreover, there exists a unique minimizing velocity field v
and the curve defined by γ(t) = z(·, t)#µ with t ∈ [0, 1]
and ż(x, t) = v(z(x, t), t), z(x, 0) = x is a geodesic which
fulfills the continuity equation ∂tγ(t)+∇·(v(·, t)γ(t)) = 0.

Let τ > 0. Then, by substitution of t by t/τ and rescaling
v in the time variable, this is equal to

inf
v : Rd×[0,τ ]→Rd,
ż(x,t)=v(z(x,t),t),

z(x,0)=x, z(·,τ)#µ=ν

τ

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµ(x)dt.

(2)

Wasserstein Gradient Flows An absolutely continuous
curve γ : (0,∞) → P2(Rd) with velocity field vt ∈
Tγ(t)P2(Rd) is a Wasserstein gradient flow with respect to
F : P2(Rd) → (−∞,∞] if vt ∈ −∂F(γ(t)), for a.e. t > 0,
where ∂F(µ) denotes the reduced Fréchet subdiffential at
µ, see Appendix A for a definition.

To compute Wasserstein gradient flows numerically, we
can use the generalized minimizing movements or Jordan-
Kinderlehrer-Otto (JKO) scheme (Jordan et al., 1998). To
this end, we consider the Wasserstein proximal mapping
defined as

proxτF (µ̂) = argmin
µ∈P2(Rd)

{
1
2W

2
2 (µ, µ̂) + τF(µ)

}
.

Then, define as µk
τ for k ∈ N the steps of the minimizing

movements scheme, i.e.,

µ0
τ = µ0, µk+1

τ = proxτF (µ
k
τ ). (3)

We denote the piecewise constant interpolations
γ̃τ : [0,∞) → P2(Rd) of the minimizing movement
scheme by

γ̃τ (kτ + tτ) = µk
τ , t ∈ [0, 1). (4)

Then, the following convergence result holds true. We recall
the necessary definitions of coercivity and λ-convexity in
Wasserstein spaces in Appendix A.

Theorem 2.2 (Ambrosio et al., 2005, Thm 11.2.1). Let
F : P2(Rd) → (−∞,+∞] be proper, lsc, coercive, and
λ-convex along generalized geodesics, and let µ0 ∈ domF .
Then the curves γ̃τ defined via the minimizing movement
scheme (4) converge for τ → 0 locally uniformly to a locally
Lipschitz curve γ : (0,+∞) → P2(Rd) which is the unique
Wasserstein gradient flow of F with γ(0+) = µ0.

2.2. Continuous Normalizing Flows and OT-Flows

The concept of normalizing flows first appeared in (Rezende
& Mohamed, 2015). It follows the basic idea to approxi-
mate a probability distribution ν by considering a simple
latent distribution µ0 (usually a standard Gaussian) and to
construct a diffeomorphism Tθ : Rd → Rd depending on
some parameters θ such that ν ≈ Tθ#µ0. In practice, the
diffeomorphism can be approximated by coupling-based
neural networks (Dinh et al., 2016; Kingma & Dhariwal,
2018), residual architectures (Behrmann et al., 2019; Chen
et al., 2019; Hertrich, 2023) or autoregressive flows (De Cao
et al., 2020; Durkan et al., 2019; Huang et al., 2018; Pa-
pamakarios et al., 2017). In this paper, we mainly fo-
cus on continuous normalizing flows proposed by (Chen
et al., 2018; Grathwohl et al., 2019), see also (Ruthotto
& Haber, 2021) for an overview. Here the diffeomor-
phism Tθ is parameterized as neural ODE. To this end let
vθ : Rd × R → Rd be a neural network with parameters
θ and let zθ : Rd × [0, τ ] → Rd for fixed τ > 0 be the
solution of żθ = vθ, with initial condition zθ(x, 0) = x.
Then, we define Tθ via the solution zθ as Tθ(x) = zθ(x, τ).
The density pθ of Tθ#µ0 can be described by the change-of-
variables formula pθ(x) = p0(x)/|det(∇Tθ(x))|, where p0
is the density of the latent distribution µ0. In the case of con-
tinuous normalizing flows, it can be shown that the denom-
inator can be computed as log(|det(∇Tθ(x))|) = ℓθ(x, τ)
with ∂tℓθ(x, t) = trace(∇vθ(zθ(x, t), t)) and ℓθ(·, 0) = 0.
In order to train a normalizing flow, one usually uses the
Kullback-Leibler divergence. If ν is given by a density
q(x) = g(x)/Zg, where Zg is an unknown normalizing
constant, then this amounts to the reverse KL loss function

L(θ) = KL(Tθ#µ0, ν)

= Ex∼µ0 [− log(q(Tθ(x))) + log(pθ(x))]

= Ex∼µ0 [− log(q(Tθ(x)))− ℓθ(x, τ)] + C,

for some constant C independent of θ.

In order to stabilize and accelerate the training, (Onken
et al., 2021) propose to regularize the velocity field vθ by
its expected squared norm. More precisely, they propose
to add the regularizer R(θ) = τ

∫ τ

0
∥vθ(zθ(x, t), t)∥2dt

to the loss function. This leads to straight trajectories in
the ODE such that adaptive solvers only require very few
steps to solve them. Following Theorem 2.1, the authors
of (Onken et al., 2021) note that for β > 0 the functional
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L(θ) + αR(θ) has the same minimizer as the functional
L(θ)+βW 2

2 (µ0, Tθ#µ0), which relates to the JKO scheme
as pointed out by (Vidal et al., 2023).

3. Neural JKO Scheme
In the following, we learn the steps (3) of the JKO scheme
by neural ODEs. While similar schemes were already sug-
gested in several papers (Altekrüger et al., 2023; Alvarez-
Melis et al., 2022; Fan et al., 2022; Lambert et al., 2022;
Mokrov et al., 2021; Vidal et al., 2023; Xu et al., 2024),
we are particularly interested in the convergence properties
of the corresponding velocity fields. In Subsection 3.1, we
introduce the general scheme and derive its properties. Af-
terwards, in Subsection 3.2, we describe the corresponding
neural network approximation. Throughout this section, we
consider the following assumptions on the objective func-
tional F and our initialization µ0.

Assumption 3.1. Let F : P2(Rd) → R ∪ {∞} be proper,
lower semi-continuous with respect to narrow conver-
gence, coercive, λ-convex along generalized geodesics and
bounded from below. Moreover, assume that dom(|∂F|) ⊆
Pac
2 (Rd) and that F has finite metric derivative |∂F|(µ0) <

∞ at the initialization µ0 ∈ Pac
2 (Rd).

This assumption is fulfilled for many important divergences
and loss functions F . We list some examples in Ap-
pendix B.1. We will later pay particular attention to the
reverse Kullback-Leibler divergence F(µ) = KL(µ, ν) =∫
p(x) log

(
p(x)
q(x)

)
dx, where ν is a fixed target measure and

p and q are the densities of µ and ν respectively. This
functional fulfills Assumption 3.1 if − log(q) is λ-convex.

We stress the fact that the λ-convexity property is assumed
for some λ ∈ R, which explicitly includes negative values.
Consequently, the theoretical results are also applicable for
target densities which are not log-concave.

Additionally, (Ambrosio et al., 2005, Lem 9.2.7) states that
the functional G(µ) = 1

2τW
2
2 (µ, µ

k
τ ) + F(µ) is (λ + 1

τ )-
convex along geodesics. In particular, for τ < 1

λ , the
functional G is strongly convex such that we expect that
optimizing it with a generative model is much easier than
optimizing F , see also Appendix F.1 for a discussion how
this can prevent mode collapse.

3.1. Piecewise Geodesic Interpolation

In order to represent the JKO scheme by neural ODEs, we
first reformulate it based on Theorem 2.1. To this end, we
insert the dynamic formulation of the Wasserstein distance
in the Wasserstein proximal mapping defining the steps in

(3). This leads to µk+1
τ = zkτ (·, τ)#µk

τ , where

(vτ,k, zτ,k) ∈ argmin
v : Rd×[0,τ ]→Rd

ż(x,t)=v(z(x,t),t), z(x,0)=x

Eµk
τ
(z, v), (5)

where Eµk
τ
(z, v) is given by the dynamic formulation (2) as

1

2

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµk
τ (x)dt+ F(z(·, τ)#µk

τ ).

Finally, we concatenate the velocity fields of all steps by
vτ |(kτ,(k+1)τ ] = vτ,k and obtain the ODE

żτ (x, t) = vτ (zτ (x, t), t), zτ (x, 0) = x.

As a straightforward observation, we obtain that the curve
defined by the velocity field vτ is the geodesic interpolation
between the points from JKO scheme (3). We state a proof
in Appendix B.2.

Corollary 3.2. Under Ass. 3.1 the following holds true.

(i) It holds that

W 2
2 (µ

k
τ , µ

k+1
τ ) = τ

∫ τ

0

∫
Rd

∥vτ,k(zτ,k(x, t), t)∥2dµk
τ (x)dt,

i.e., vτ,k is the optimal velocity field from Theorem 2.1.

(ii) The curve γτ (t) := z(·, t)#µ0 fulfills γτ (kτ + tτ) =
((1 − t)I + tT k

τ )#µ
k
τ for t ∈ [0, 1], where T k

τ is the
optimal transport map between µk

τ and µk+1
τ .

(iii) vτ and γτ solve the continuity equation

∂tγτ (t) +∇ · (vτ (·, t)γ(t)) = 0.

Analogously to Theorem 2.2 one can show that also the
curves γτ are converging locally uniformly to the unique
Wasserstein gradient flow (see, e.g., the proof of Ambrosio
et al., 2005, Thm 11.1.6). In the next subsection, we will
approximate the velocity fields vτ,k by neural networks.
In order to retain the stability of the resulting scheme, the
next theorem states that also the velocity fields vτ converge
strongly towards the velocity field from the Wasserstein
gradient flow. The proof is given in Appendix B.3.

Theorem 3.3. Suppose that Assumption 3.1 is fulfilled and
let (τl)l ⊆ (0,∞) with τl → 0. Then, (vτl)l converges
strongly to the velocity field v̂ ∈ L2(γ,Rd × [0, T ]) of
the Wasserstein gradient flow γ : (0,∞) → P2(Rd) of F
starting in µ0.

In some cases the limit velocity field v can be stated explic-
itly, even though its direct computation is intractable. For
details, we refer to Appendix B.1.
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3.2. Neural JKO Sampling

In the following, we learn the velocity fields vτ,k as neural
ODEs in order to sample from a target measure ν given by
the density q(x) = 1

Zg
g(x) with unknown normalization

constant Zg =
∫
Rd g(x)dx. To this end, we consider the

Wasserstein gradient flow with respect to the reverse KL loss
function F(µ) = KL(µ, ν) which has the unique minimizer
µ = ν. Note that similar derivations were done in (Vidal
et al., 2023; Xu et al., 2024) for the application of generative
modeling instead of sampling.

Then, due to (5) the loss function L(θ) from the JKO steps
for the training of the velocity field vθ reads as

1

2

∫ τ

0

∫
Rd

∥vθ(zθ(x, t), t)∥2dµk
τ (x)dt+ F(zθ(·, τ)#µk

τ ),

where zθ is the solution of żθ(x, t) = vθ(zθ(x, t), t) with
zθ(x, 0) = x. Now, following the derivations of continuous
normalizing flows, cf. Section 2.2, the second term of L can
be rewritten (up to an additive constant) as

F(zθ(·, τ)#µk
τ ) ∝ Ex∼µk

τ
[− log(g(zθ(x, τ)))− ℓθ(x, τ)],

where ℓθ solves ℓ̇θ(x, t) = trace(∇vθ(zθ(x, t), t)) with
ℓθ(·, 0) = 0. Moreover, we can rewrite the first term of
L based on∫ τ

0

∫
Rd

∥vθ(zθ(x, t), t)∥2dµk
τ (x)dt = Ex∼µk

τ
[ωθ(x, τ)],

where ωθ is the solution of ω̇θ(x, t) = ∥vθ(zθ(x, t), t)∥2.
Hence, we can represent L up to an additive constant as

L(θ) = Ex∼µk
τ
[− log(g(zθ(x, τ)))− ℓθ(x, τ) + ωθ(x, τ)],

(6)
where (zθ, ℓθ, ωθ) solves the ODE system żθ(x, t)

ℓ̇θ(x, t)
ω̇θ(x, t)

 =

 vθ(zθ(x, t), t)
trace(∇vθ(zθ(x, t), t))

∥vθ(zθ(x, t), t)∥2

 , (7)

with initial conditions zθ(x, 0) = x, ℓθ(x, 0) = 0 and
ωθ(x, 0) = 0. In particular, the loss function L can be eval-
uated and differentiated based on samples from µk

τ . Once
the parameters θ are optimized, we can evaluate the JKO
steps in the same way as standard continuous normalizing
flows. We summarize training and evaluation of the JKO
steps in Algorithm 3 and 4 in Appendix D.1. In practice,
the density values are computed and stored in log-space for
numerical stability. Additionally, note that the continuous
normalizing flows can be replaced by other normalizing
flow architectures, see Appendix F.2 and Remark F.3 for
details.

4. Importance-Based Rejection Steps
While a large number of existing sampling methods rely on
Wasserstein gradient flows with respect to some divergences,
it is well known that these loss functions are non-convex.
This leads to very slow convergence or only convergence to
suboptimal local minima. In particular, if the target distri-
bution is multimodal the modes often do not have the right
mass assigned. In this section, we derive a novel rejection
step that corrects such imbalanced mass assignments. Re-
markably, we will see in Theorem 4.2, that it is possible to
access the density after these rejection steps. This observa-
tion is crucial, since it allows for the iterative combination
of several rejection and neural JKO steps, leading to the
proposed importance corrected neural JKO sampling.

Importance Sampling As a remedy, many sampling algo-
rithms from the literature are based on importance weights,
see, e.g., sequential Monte Carlo samplers (Del Moral
et al., 2006) or annealed importance sampling (Neal, 2001).
That is, we assign to each generated sample xi a weight
wi = q(xi)

p(xi)
, where p is some proposal density and q is

the density of the target distribution ν. Then, for any ν-
integrable function f : Rd → R it holds that

∑N
i=1 wif(xi)

is an unbiased estimator of
∫
Rd f(x)dν(x). Note that impor-

tance sampling is very sensitive with respect to the proposal
p which needs to be designed carefully and problem adapted.

Rejection Steps Inspired by importance sampling, we
propose to use importance-based rejection steps. More pre-
cisely, let µ be a proposal distribution where we can sample
from with density p(x) = f(x)/Zf and denote by ν the
target distribution with density q(x) = g(x)/Zg . In the fol-
lowing, we assume that we have access to the unnormalized
densities f and g, but not to the normalization constants
Zf and Zg Then, for a random variable X ∼ µ, we now
generate a new random variable X̃ by the following proce-
dure: First, we compute the importance based acceptance
probability α(X) = min

{
1, q(X)

c̃p(X)

}
= min

{
1, g(X)

cf(X)

}
,

where c > 0 is a positive hyperparameter and c̃ = cZf/Zg.
Then, we set X̃ = X with probability α(X) and choose
X̃ = X ′ otherwise, where X ′ ∼ µ and X are independent.
Remark 4.1. This is a one-step approximation of the classi-
cal rejection sampling scheme (Von Neumann, 1951), see
also (Andrieu et al., 2003) for an overview. More precisely,
we arrive at the classical rejection sampling scheme by
choosing c̃ > supx q(x)/p(x) and redo the procedure when
X is rejected instead of choosing X̃ = X ′.

Similarly to importance sampling, the rejection sampling al-
gorithm is highly sensitive towards the proposal distribution
p. In particular, it suffers from the curse of dimensionality,
in case of a non-tailored proposal p. We will tackle this
problem later in the section by choosing p already close to
the target density q.
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The following theorem describes the density of the distribu-
tion µ̃ of X̃ . Moreover, it ensures that the KL divergence
to the target distribution decreases. We include the proof in
Appendix C.1

Theorem 4.2. Let µ̃ be the distribution of X̃ . Then, the
following holds true.

(i) µ̃ admits the density p̃ given by p̃(x) = p(x)(α(x) +
1−E[α(X)]). In particular, we have p̃(x) = f̃(x)/Zf̃

with f̃(x) = f(x)(α(x) + 1− E[α(X)]).

(ii) It holds that KL(µ̃, ν) ≤ KL(µ, ν).

The application of a single importance-based rejection step
is summarized in Algorithm 1 and illustrated in Figure 2
in the appendix. Note that the value E[α(X)] can easily
be estimated based on samples during the training phase.
Indeed, given N iid copies X1, ..., XN of X , we obtain
that E[α(X)] ≈ 1

N

∑N
i=1 α(XN ) is an unbiased estimator

fulfilling the error estimate from the following corollary.
The proof is a direct consequence of Hoeffding’s inequality
and given in Appendix C.2.

Corollary 4.3. Let X1, ..., XN be iid copies of X . Then, it
holds

E

[∣∣∣∣∣E[α(X)]− 1

N

N∑
i=1

α(XN )

∣∣∣∣∣
]
≤

√
2π√
N

∈ O

(
1√
N

)
.

Algorithm 1 Sampling and density propagation for
importance-based rejection steps

Input:
{

- samples xk
1 , ..., x

k
N of µk with density pk,

- hyperparameter c (see Remark 4.4).

Assume:
{

- can draw samples from µk,
- can evaluate the unnormalized density g.

for i = 1, ..., N do
1. Compute αk(x

k
i ) = min

{
1,

g(xk
i )

cpk(xk
i )

}
.

2. Draw u uniformly from [0, 1] and x′ from µk
τ .

3. Set xk+1
i =

{
xk
i , if u ≤ α(xk

i ),

x′ if u > α(xk
i ).

4. Compute αk(x
k+1
i ) = min

{
1,

g(xk+1
i )

cpk(xk+1
i )

}
.

5. Define the density value

pk+1(xk+1
i ) = pk(xk+1

i )(αk(x
k+1
i ) + 1− E[αk(Xk)]).

end for

Output:

{
- Samples xk+1

1 , ..., xk+1
N of µk+1

τ .
- Density values

{
pk+1
τ (xk+1

i )
}N
i=1

.

Remark 4.4 (Choice of c). We choose the hyperparameter
c such that a constant ratio r > 0 of the samples will be
resampled, i.e., that E[α(X)] ≈ 1 − r. To this end, we
assume that we are given samples x1, ..., xN from X and
approximate

E[α(X)] ≈ 1

N

N∑
i=1

α(xi) =
1

N

N∑
i=1

min

{
1,

g(x)

cp(x)

}
.

Note that the right side of this formula depends mono-
tonically on c such that we can find c > 0 such that
E[α(X)] = 1 − r by a bisection search. In our numeri-
cal experiments, we set r = 0.2. We summarize the choice
of c in Algorithm 5 in Appendix D.1.

Algorithm 2 Importance corrected neural JKO sampling

Input:


• unnormalized target density g,

• initial measure µ0 with density p0,
• Number N ∈ N of samples,
• Number K ∈ N of total steps.

Output: Sample generator {xi}Ni=1 ∼ ν̂ ≈ ν = g · λ.
Let x0

1, . . . , x
0
N ∼ µ0.

for k = 1, . . . ,K do
Define µk with density pk and draw samples
xk
1 , . . . , x

k
N ∼ µk either by

• neural JKO step by solving the ODE (7) or
• importance based rejection by Alg. 1.
(details in Alg. 3, 4 resp. Alg. 1, 5)

end for
Set ν̂ = µK with density pK .

Neural JKO Sampling with Importance Correction Fi-
nally, we combine the neural JKO scheme from the previ-
ous section with our rejection steps to obtain a sampling
algorithm. More precisely, we start with a simple latent dis-
tribution µ0 with known density and which we can sample
from. In our numerical experiments this will be a standard
Gaussian distribution. Now, we iteratively generate distribu-
tions µk, k = 1, ...,K by applying either neural JKO steps
as described in Algorithm 3 and 4 or importance-based re-
jection steps as described in Algorithm 5 and 1. We call
the resulting model an importance corrected neural JKO
model, which we summarize in Algorithm 2. During the
sampling process we can maintain the density values pk(x)
of the density pk of µk for the generated samples by the
Algorithms 4 and 1. Moreover, we can also use Theorem 4.2
to evaluate the density pk at some arbitrary point x ∈ Rd.
We outline this density evaluation process in Appendix D.2.
Remark 4.5 (Runtime Limitations). The sampling time of
our importance corrected neural JKO sampling depends
exponentially on the number of rejection steps since in each
rejection step we resample a constant fraction of the samples.
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Table 1: Energy distance. We run each method 5 times and state the average value and corresponding standard deviations.
The rightmost column shows the reference sampling error, i.e., the lower bound magnitude of the average energy distance
between two sets of different samples drawn from the ground truth. A smaller energy distance indicates a better result.

Sampler

Distribution MALA HMC DDS CRAFT Neural JKO Neural JKO IC (ours) Sampling Error

Mustache 4.6× 10−2 ± 1.6× 10−3 1.7× 10−2 ± 4.3× 10−4 6.9× 10−2 ± 1.8× 10−3 9.2× 10−2 ± 9.9× 10−3 1.8× 10−2 ± 2.0× 10−3 2.9× 10−3 ± 4.4× 10−4 8.6× 10−5

shifted 8 Modes 5.3× 10−3 ± 4.9× 10−4 4.1× 10−5 ± 3.3× 10−5 1.2× 10−2 ± 4.1× 10−3 5.2× 10−2 ± 1.1× 10−2 1.3× 10−1 ± 3.8× 10−3 1.2× 10−5 ± 5.1× 10−6 2.6× 10−5

shifted 8 Peaky 1.3× 10−1 ± 3.2× 10−3 1.2× 10−1 ± 2.4× 10−3 1.1× 10−2 ± 3.4× 10−3 5.2× 10−2 ± 2.2× 10−2 1.3× 10−1 ± 2.2× 10−3 3.4× 10−5 ± 8.2× 10−6 2.4× 10−5

Funnel 1.2× 10−1 ± 3.1× 10−3 3.1× 10−3 ± 3.2× 10−4 2.6× 10−1 ± 2.6× 10−2 7.4× 10−2 ± 2.8× 10−3 4.6× 10−2 ± 1.6× 10−3 1.4× 10−2 ± 8.2× 10−4 3.4× 10−4

GMM-10 1.2× 10−2 ± 5.5× 10−3 1.2× 10−2 ± 5.2× 10−3 3.7× 10−3 ± 1.6× 10−3 1.8× 10−1 ± 6.6× 10−2 1.1× 10−2 ± 5.6× 10−3 5.3× 10−5 ± 1.7× 10−5 4.6× 10−5

GMM-20 9.1× 10−3 ± 2.8× 10−3 9.1× 10−3 ± 2.7× 10−3 5.0× 10−3 ± 1.5× 10−3 5.4× 10−1 ± 1.4× 10−1 1.0× 10−2 ± 2.8× 10−3 1.1× 10−4 ± 3.4× 10−5 6.4× 10−5

GMM-50 2.4× 10−2 ± 7.5× 10−3 2.4× 10−2 ± 7.5× 10−3 2.3× 10−2 ± 1.1× 10−2 1.8× 100 ± 1.7× 10−1 2.7× 10−2 ± 7.8× 10−3 1.0× 10−4 ± 4.6× 10−5 1.1× 10−4

GMM-100 3.6× 10−2 ± 1.6× 10−2 3.7× 10−2 ± 1.7× 10−2 3.9× 10−2 ± 2.1× 10−2 2.8× 10+1 ± 1.0× 10−1 4.7× 10−2 ± 2.2× 10−2 6.0× 10−4 ± 3.4× 10−4 1.5× 10−4

GMM-200 6.4× 10−2 ± 2.1× 10−2 6.6× 10−2 ± 1.9× 10−2 9.8× 10−2 ± 3.1× 10−2 3.9× 100 ± 1.6× 10−1 8.9× 10−2 ± 2.7× 10−2 3.3× 10−3 ± 1.9× 10−3 2.0× 10−4

Table 2: Estimated log(Z). We run each method 5 times and state the average value and corresponding standard deviations.
The DDS values for LGCP are from (Vargas et al., 2023a). Higher values of log(Z) estimates correspond to better results.

Sampler

Distribution DDS CRAFT Neural JKO Neural JKO IC (ours) Ground Truth

Mustache −1.5× 10−1 ± 2.7× 10−2 −6.5× 10−2 ± 5.5× 10−2 −3.0× 10−2 ± 2.6× 10−3 −7.3× 10−3 ± 8.2× 10−4 0
shifted 8 Modes −5.7× 10−2 ± 2.0× 10−2 −1.2× 10−2 ± 1.4× 10−3 −3.4× 10−1 ± 3.1× 10−3 +5.1× 10−6 ± 2.4× 10−3 0
shifted 8 Peaky −1.2× 10−1 ± 2.2× 10−2 −1.8× 10−3 ± 2.6× 10−3 −3.5× 10−1 ± 3.1× 10−3 −2.1× 10−3 ± 3.2× 10−3 0

Funnel −1.8× 10−1 ± 6.8× 10−2 −1.2× 10−1 ± 7.9× 10−3 −1.4× 10−1 ± 1.6× 10−3 −7.1× 10−3 ± 1.9× 10−3 0
GMM-10 −2.3× 10−1 ± 1.0× 10−1 −8.5× 10−1 ± 1.7× 10−1 −4.3× 10−1 ± 5.1× 10−2 +3.5× 10−3 ± 2.0× 10−3 0
GMM-20 −5.1× 10−1 ± 6.0× 10−2 −1.5× 100 ± 1.7× 10−1 −6.3× 10−1 ± 2.7× 10−2 +6.4× 10−3 ± 3.8× 10−3 0
GMM-50 −1.3× 100 ± 3.3× 10−1 −2.3× 100 ± 1.5× 10−3 −9.3× 10−1 ± 4.6× 10−2 +1.1× 10−2 ± 3.9× 10−3 0

GMM-100 −3.0× 100 ± 7.3× 10−1 −2.3× 100 ± 8.6× 10−2 −1.8× 100 ± 9.6× 10−2 −3.9× 10−2 ± 7.8× 10−3 0
GMM-200 −9.4× 100 ± 7.2× 10−1 −6.3× 100 ± 1.5× 10−1 −5.2× 100 ± 2.5× 10−1 −5.6× 10−2 ± 1.3× 10−2 0

LGCP 503.0± 7.7× 10−1 507.6± 3.2× 10−1 499.9± 1.7× 10−1 508.2± 1.0× 10−1 not available

However, due to the moderate exponential base of 1 + r we
will see in the numerical part that we are able to perform a
significant number of rejection steps in a tractable time.

In our numerics, we build our importance corrected neural
JKO model by first applying n1 ∈ N neural JKO steps
followed by n2 ∈ N blocks consisting out of one neural JKO
step and three importance-based rejection steps, where n1

and n2 are hyperparameters given for each model separately
in Table 6. For the neural JKO steps, we choose an initial
step size τ0 > 0 as a hyper-parameter and then increase the
step size exponentially by τk+1 = 4τk. Note that one could
alternatively use adaptive step sizes similar to (Xu et al.,
2024). However, for our setting, we found that the simple
step size rule is sufficient.

5. Numerical Results
We compare our method with classical Monte Carlo sam-
plers like a Metropolis adjusted Langevin sampling (MALA)
and Hamiltonian Monte Carlo (HMC), see e.g., (Betancourt,
2017; Roberts & Tweedie, 1996). Additionally, we com-
pare with two recent deep-learning based sampling algo-
rithms, namely denoising diffusion samplers (DDS, Vargas
et al., 2023a) and continual repeated annealed flow transport
Monte Carlo (CRAFT, Matthews et al., 2022). We evaluate
all methods on a set of common test distributions which is
described in detail in Appendix E.1. Moreover, we report
the error measures for our importance corrected neural JKO
sampler (neural JKO IC), see Appendix E.5 for implementa-
tion details. Additionally, we emphasize the importance of

the rejection steps by reporting values for the same a neural
JKO scheme without rejection steps (neural JKO).

For evaluating the quality of our results, we use two different
metrics. First, we evaluate the energy distance (Székely,
2002). It is a kernel metric which can be evaluated purely
based on two sets of samples from the model and the ground
truth. Moreover it encodes the geometry of the space such
that a slight perturbation of the samples only leads to a slight
change in the energy distance. Second, we estimate the log-
normalizing constant which is equivalent to approximating
the reverse KL loss of the model. A higher estimate of
the log-normalizing constant corresponds to a smaller KL
divergence between generated and target distribution and
therefore to a higher similarity of the two measures. Since
this requires the density of the model, this approach is not
applicable for MALA and HMC.

The results are given in Table 1 and 2. Our importance
corrected neural JKO sampling significantly outperforms
the comparison for all test distributions. In particular, we
observe that for shifted 8 modes, shifted 8 peaky and GMM-
d the energy distance between neural JKO IC and ground
truth samples is in the same order of magnitude as the energy
distance between to different sets of ground truth samples.
This implies that the distribution generated by neural JKO
IC is indistinguishable from the target distribution in the
energy distance. For these examples, the log(Z) esitmate
is sometimes slightly larger than the ground truth, which
can be explained by numerical effects, see Remark E.1 for
a detailed discussion. We point out to a precise description
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of the metrics, the implementation details and additional
experiments and figures in Appendix E.

6. Conclusions
Methodology We proposed a novel and expressive gen-
erative method that enables the efficient and accurate sam-
pling from a prescribed unnormalized target density which
is empirically confirmed in numerical examples. To this
end, we combine local sampling steps, relying on piece-
wise geodesic interpolations of the JKO scheme realized by
CNFs, and non-local rejection and resampling steps based
on importance weights. Since the proposal of the rejection
step is generated by the model itself, they do not suffer from
the curse of dimensionality as opposed to classical variants
of rejection sampling. The proposed approach provides
the advantage that we can draw independent samples while
correcting imbalanced mode weights, iteratively refine the
current approximation and evaluate the density of the gener-
ated distribution. This is a consequence of the density value
propagation through CNFs and Theorem 4.2 and enables
possible further post-processing steps that require density
evaluations of the approximated sample process.

Outlook Our method allows for the pointwise access to
the approximated target density and the log normalization
constant. These quantities can be used for the error moni-
toring during the training and hence provide guidelines for
the adaptive design of the emulator in terms of CNF -or
rejection/resampling steps and provide a straightforward
stopping criterion. The importance-based rejection steps
can also be used in other domains like fine-tuning of score-
based diffusion models for downstream tasks, see Denker
et al. (2025).

Limitations In the situation, when the emulator is realized
through a stack of underlying rejection/resampling steps, the
sample generation process time is negatively affected, see
Remark 4.5. In order to resolve the drawback we plan to uti-
lize diffusion models for the sample generation. This is part
of ongoing and future work by the authors. Finally, the use
of continuous normalizing flows comes with computational
challenges, which we discuss in detail in Appendix F.2.

Impact Statement
This paper studies a general problem from the field of statis-
tics and machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Background on Wasserstein Spaces
We give some theoretical background on Wasserstein gradient flows extending Section 2. In what follows we refer to
L2(µ) := L2(µ,Rd) as the set of square integrable measurable functions on Rd with respect to a given measure µ ∈ P(Rd).

For an absolutely continuous curve γ, there exists a unique minimal norm solution vt of the continuity equation (1) in the
sense that any solution ṽ of (1) fulfills ∥ṽ(·, t)∥L2(γ(t)) ≥ ∥v(·, t)∥L2(γ(t)) for almost every t. This is the unique solution of
(1) such that v(·, t) is contained in the regular tangent space

TµP2(Rd) := {λ(T − Id) : (Id, T )#µ ∈ Γopt(µ, T#µ), λ > 0}
L2(µ)

.

An absolutely continuous curve γ : (0,∞) → P2(Rd) with velocity field vt ∈ Tγ(t)P2(Rd) is a Wasserstein gradient flow
with respect to F : P2(Rd) → (−∞,∞] if

vt ∈ −∂F(γ(t)), for a.e. t > 0,

where ∂F(µ) denotes the reduced Fréchet subdiffential at µ defined as

∂F(µ) :=

ξ ∈ L2(µ) : F(ν)−F(µ) ≥ inf
π∈Γopt(µ,ν)

∫
Rd×Rd

⟨ξ(x), y − x⟩ dπ(x, y) + o(W2(µ, ν)) ∀ν ∈ P2(Rd)

 .

The norm ∥vt∥L2(γ(t)) of the velocity field of a Wasserstein gradient flow coincides for almost every t with the metric
derivative

|∂F|(µ) = inf
ν→µ

F(µ)−F(ν)

W2(µ, ν)
.

For the convergence result from Theorem 2.2, we need two more definitions. First, we need some convexity assumption.
For λ ∈ R, F : P2(Rd) → R ∪ {+∞} is called λ-convex along geodesics if, for every µ, ν ∈ domF := {µ ∈ P2(Rd) :
F(µ) < ∞}, there exists at least one geodesics γ : [0, 1] → P2(Rd) between µ and ν such that

F(γ(t)) ≤ (1− t)F(µ) + tF(ν)− λ
2 t(1− t)W 2

2 (µ, ν), t ∈ [0, 1].

To ensure uniqueness and convergence of the JKO scheme, a slightly stronger condition, namely being λ-convex along
generalized geodesics will be in general needed. Based on the set of three-plans with base σ ∈ P2(Rd) given by

Γσ(µ, ν) :=
{
α ∈ P2(Rd × Rd × Rd) : (π1)#α = σ, (π2)#α = µ, (π3)#α = ν

}
,

the so-called generalized geodesics γ : [0, ϵ] → P2(Rd) joining µ and ν (with base σ) is defined as

γ(t) :=
(
(1− t

ϵ )π2 +
t
ϵπ3

)
#
α, t ∈ [0, ϵ], (8)

where α ∈ Γσ(µ, ν) with (π1,2)#α ∈ Γopt(σ, µ) and (π1,3)#α ∈ Γopt(σ, ν), see Definition 9.2.2 in (Ambrosio et al.,
2005). The plan α may be interpreted as transport from µ to ν via σ. Then a function F : P2(Rd) → (−∞,∞] is called
λ-convex along generalized geodesics (see Ambrosio et al., 2005, Definition 9.2.4), if for every σ, µ, ν ∈ domF , there
exists at least one generalized geodesics γ : [0, 1] → P2(Rd) related to some α in (8) such that

F(γ(t)) ≤ (1− t)F(µ) + tF(ν)− λ
2 t(1− t)W 2

α(µ, ν), t ∈ [0, 1],

where
W 2

α(µ, ν) :=

∫
Rd×Rd×Rd

∥y − z∥22 dα(x, y, z).

Every function being λ-convex along generalized geodesics is also λ-convex along geodesics since generalized geodesics
with base σ = µ are actual geodesics. Second, a λ-convex functional F : P2(Rd) → R ∪ {+∞} is called coercive, if there
exists some r > 0 such that

inf{F(µ) : µ ∈ P2(Rd),

∫
Rd

∥x∥2dµ(x) ≤ r} > −∞,

see (Ambrosio et al., 2005, eq. (11.2.1b)). In particular, any functional which is bounded from below is coercive.

If F is proper, lower semicontinuous, coercive and λ-convex along generalized geodesics, one can show that the proxτF (µ)
is non-empty and unique for τ small enough (see Ambrosio et al., 2005, page 295).
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B. Proofs and Examples from Section 3
B.1. Examples fulfilling Assumption 3.1

Assumption 3.1 is fulfilled for many important divergences and loss functions F . We list some examples below. While it
is straightforward to check that they are proper, lower semicontinuous, coercive and bounded from below, the convexity
is non-trivial. However, the conditions under which these functionals are λ-convex along generalized geodesics are well
investigated in (Ambrosio et al., 2005, Section 9.3). In the following we denote the Lebesgue measure as µLeb. For a
measure µ ∈ Pac(Rd), we denote by dµ/dµLeb the Lebesgue density of µ if it exists.

- Let ν ∈ Pac
2 (Rd) with Lebesgue density q and define the forward Kullback-Leibler (KL) loss function

F(µ) = KL(ν, µ) :=

{∫
Rd q(x) log

(
q(x)
p(x)

)
dx, if ∃dµ/dµLeb = p and dν/dµLeb = q,

+∞ otherwise.

By (Ambrosio et al., 2005, Proposition 9.3.9), we obtain that F fulfills Assumption 3.1.

- We can also derive a functional, be reversing the arguments in the KL divergence. Then, we arrive at the reverse KL
loss function given by

F(µ) = KL(µ, ν) :=

{∫
Rd p(x) log

(
p(x)
q(x)

)
dx, if ∃dµ/dµLeb = p and dν/dµLeb = q,

+∞ otherwise.

Given that − log(q) is λ-convex, we obtain that F fulfills Assumption 3.1, see (Ambrosio et al., 2005, Proposition
9.3.2).

- Finally, we can define F based on the Jensen-Shannon divergence. This results into the function

F(µ) = JS(µ, ν) :=
1

2

[
KL
(
µ, 1

2 (µ+ ν)
)
+KL

(
ν, 1

2 (µ+ ν)
)]

.

Assume µ and ν admit Lebesgue densities p and q respectively. Then, combining the two previous statements, this
fulfills Assumption 3.1 whenever − log(p) and − log(q) are λ-convex.

All of these functionals are integrals of a smooth Lagrangian functional, i.e., there exists some smooth F : Rd×R×Rd → R
such that

F(µ) =

{∫
Rd F (x, p(x),∇p(x))dx, if ∃dµ/dµLeb = p,

∞ otherwise.

In this case, the limit velocity field from Theorem 2.2 (which appears as a limit in Theorem 3.3) can be expressed analytically
as the gradient of the so-called variational derivative of F , which is given by

δF
δγ(t)

(x) = −∇ · ∂3F (x, p(x),∇p(x)) + ∂2F (x, p(x),∇p(x))

where ∂iF is the derivative of F with respect to the i-th argument and γ is the Wasserstein gradient flow, see (Ambrosio
et al., 2005, Example 11.1.2). For the above divergence functionals, computing these terms lead to a (weighted) difference
of the Stein scores of the input measure γ(t) and the target measure ν which is a nice link to score-based methods. More
precisely, denoting the density of γ(t) by pt, we obtain the following limiting velocity fields.

- For the forward KL loss function we have that F (x, y, z) = q(x) log
(

q(x)
y

)
. Thus, we have that δF

δµ (x) = − q(x)
p(x) .

Hence, the velocity field v(·, t) = ∇ δF
δγ(t) is given by

v(x, t) =
q(x)

pt(x)

∇pt(x)

pt(x)
− q(x)

pt(x)

∇q(x)

q(x)
=

q(x)

pt(x)
(∇ log(pt(x))−∇ log(q(x))) .
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- For the reverse KL loss function the Lagrangian is given by F (x, y, z) = y log
(

y
q(x)

)
. Thus, we have that δF

δµ (x) =

log
(

p(x)
q(x)

)
+ 1 = log(p(x))− log(q(x)) + 1. Hence, the velocity field v(·, t) = ∇ δF

δγ(t) is given by

v(x, t) = ∇(log(pt)(x))−∇(log(q)(x)).

- For the Jensen-Shannon divergence the Lagrangian is given by F (x, y, z) = 1
2

(
y log

(
2y

y+q(x)

)
+ q(x)

(
2q(x)
y+q(x)

))
.

Thus, we have that δF
δµ (x) =

1
2 log

(
p(x)

p(x)+q(x)

)
. Hence, the velocity field v(·, t) = ∇ δF

δγ(t) is given by

v(x, t) =
1

2

pt(x) + q(x)

pt(x)

∇pt(x)(pt(x) + q(x))− pt(x)(∇pt(x) +∇q(x))

(pt(x) + q(x))2

=
1

2

∇pt(x)q(x)− pt(x)∇q(x)

(pt(x) + q(x))pt(x)

=
q(x)

2(pt(x) + q(x))

[
∇pt(x)

pt(x)
− ∇q(x)

q(x)

]
=

q(x)

2(pt(x) + q(x))
[∇(log(pt)(x))−∇(log(q)(x))] .

Note that computing the score ∇ log(pt) of the current approximation is usually intractable, such that these limits cannot be
inserted into a neural ODE directly.

B.2. Proof of Corollary 3.2

Using similar arguments as in (Altekrüger et al., 2023; Mokrov et al., 2021; Onken et al., 2021; Xu et al., 2024), let
v : Rd × [0, τ ] → Rd such that the solution of

ż(x, t) = v(z(x, t), t), z(x, 0) = x,

fulfills z(·, τ)#µk
τ = µk+1

τ . Since (vτ,k, zτ,k) is a minimizer of (5), we obtain that

1

2

∫ τ

0

∫
Rd

∥vτ,k(zτ,k(x, t), t)∥2dµk
τ (x)dt+ F(zτ,k(·, τ)#µk

τ )

≤ 1

2

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµk
τ (x)dt+ F(z(·, τ)#µk

τ ).

Observing that F(zτ,k(·, τ)#µk
τ ) = F(z(·, τ)#µk

τ ) = F(µk+1
τ ), we obtain that

τ

∫ τ

0

∫
Rd

∥vτ,k(zτ,k(x, t), t)∥2dµk
τ (x) ≤ τ

∫ τ

0

∫
Rd

∥v(z(x, t), t)∥2dµk
τ (x)dt.

Since v was chose arbitrary, we obtain that vτ,k is the optimal velocity field from the theorem of Benamou-Brenier, which
now directly implies part (ii) and (iii). □

B.3. Proof of Theorem 3.3

In order to prove convergence of the velocity fields vτ , we first introduce some notations. To this end, let T k
τ be the optimal

transport maps between µk
τ and µk+1

τ and define by vkτ = (T k
τ − I)/τ the corresponding discrete velocity fields. Then, the

velocity fields vτ can be expressed as

vτ (x, kτ + tτ) = vkτ (((1− t)I + tT k
τ )−1(x)). (9)

Further, we denote the piece-wise constant concatenation of the discrete velocity fields by

ṽτ (x, kτ + tτ) = vkτ , t ∈ (0, 1).
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Note that for any τ it holds that vτ ∈ L2(γτ ,Rd × [0, T ]) and ṽτ ∈ L2(γ̃τ ,Rd × [0, T ]). To derive limits of these velocity
fields, we recall the notion of convergence from (Ambrosio et al., 2005, Definition 5.4.3) allowing that the iterates are not
defined on the same space. In this paper, we stick to square integrable measurable functions defined on finite dimensional
domains, which slightly simplifies the definition.

Definition B.1. Let Ω ⊆ Rd be a measurable domain, assume that µk ∈ P2(Ω) converges weakly to µ ∈ P2(Ω) and let
fk ∈ L2(µk,Ω) and f ∈ L2(µ,Ω). Then, we say that fk converges weakly to f , if∫

Ω

⟨ϕ(x), fk(x)⟩dµk(x) →
∫
Ω

⟨ϕ(x), f(x)⟩dµ(x), as k → ∞

for all test functions ϕ ∈ C∞
c (Ω). We say that fk converges strongly to f if

lim sup
k→∞

∥fk∥L2(µk,Ω) ≤ ∥f∥L2(µ,Ω). (10)

Note that (Ambrosio et al., 2005, Theorem 5.4.4 (iii)) implies that formula (10) is fulfilled with equality for any strongly
convergent sequence fk to f . Moreover it is known from the literature that subsequences of the piece-wise constant velocity
admit weak limits.

Theorem B.2 (Ambrosio et al., 2005, Theorem 11.1.6). Suppose that Assumption 3.1 is fulfilled for F . Then, for any
µ0 ∈ dom(F) and any sequence (τl)l ⊂ (0,∞), there exists a subsequence (again denoted by (τl)l) such that

- The piece-wise constant curve γ̃τl(t) narrowly converges to some limit curve γ̂(t) for all t ∈ [0,∞).

- The velocity field ṽτl ∈ L2(γ̃τl(t),Rd × [0, T ]) weakly converges to some limit v̂ ∈ L2(γ̂(t),Rd × [0, T ]) according to
Definition B.1 for any T > 0.

- The limit v̂ fulfills the continuity equation with respect to γ̂, i.e.,

∂tγ̂(t) +∇ · (v̂τl(·, t)γ̂(t)) = 0.

In order to show the desired result, there remain the following questions, which we answer in the rest of this section:

- Does Theorem B.2 also hold for the velocity fields vτl defined in (9) belonging to the geodesic interpolations?

- Can we show strong convergence for the whole sequence vτl?

- Does the limit v̂ have the norm-minimizing property that ∥v̂(·, t)∥L2(γ̂(t)) = |∂F|(γ̂(t))?

To address the first of these questions, we show that weak limits of ṽτ and vτ coincide. The proof is a straightforward
computation. A similar statement in a slightly different setting was proven in (Santambrogio, 2015, Section 8.3).

Lemma B.3. Suppose that Assumption 3.1 is fulfilled and let (τl)l ⊆ (0,∞) be a sequence with τl → 0 as l → ∞ such
that ṽτl ∈ L2(γ̃τl ,Rd × [0, T ]) converges weakly to some v̂ ∈ L2(γ̂,Rd × [0, T ]). Then, also vτl ∈ L2(γτl ,Rd × [0, T ])
converges weakly to v̂.

Proof. Let ϕ ∈ C∞
c (Rd × [0, T ]). In particular, ϕ is Lipschitz continuous with some Lipschitz constant L < ∞. Then, it

holds that ∣∣∣∣∣
∫
Rd×[0,T ]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T ]

⟨ϕ, v⟩dγ̂

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Rd×[0,T ]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T ]

⟨ϕ, ṽτl⟩dγ̃τl

∣∣∣∣∣+
∣∣∣∣∣
∫
Rd×[0,T ]

⟨ϕ, ṽτl⟩dγ̃τl −
∫
Rd×[0,T ]

⟨ϕ, v⟩dγ̂

∣∣∣∣∣ .
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Since ṽτl converges weakly to v̂, the second term converges to zero as l → ∞. Thus in order to show that also vτl converges
weakly to v̂, it remains to show that also the first term converges to zero. By using the notations Tl = min{kτl : kτl ≥
T, k ∈ Z≥0} and Kl = ⌈ T

τl
⌉ = Tl

τl
, we can estimate

∣∣∣∣∣
∫
Rd×[0,T ]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T ]

⟨ϕ, ṽτl⟩dγ̃τl

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

(∫
Rd

⟨ϕ(x, t), vτl(x, t)⟩dγτl(t)(x)−
∫
Rd

⟨ϕ(x, t), ṽτl(x, t)⟩dγ̃τl(t)(x)
)
dt

∣∣∣∣∣
≤
∫ Tl

0

∣∣∣∣∫
Rd

⟨ϕ(x, t), vτl(x, t)⟩dγτl(t)(x)−
∫
Rd

⟨ϕ(x, t), ṽτl(x, t)⟩dγ̃τl(t)(x)
∣∣∣∣dt

≤
Kl−1∑
k=0

∫ (k+1)τl

kτl

∣∣∣∣∫
Rd

⟨ϕ(x, t), vτl(x, t)⟩dγτl(t)(x)−
∫
Rd

⟨ϕ(x, t), ṽτl(x, t)⟩dγ̃τl(t)(x)
∣∣∣∣ dt

= τl

Kl−1∑
k=0

∫ 1

0

∣∣∣∣∫
Rd

⟨ϕ(x, kτl + tτl), vτl(x, kτl + tτl)⟩dγτl(kτl + tτl)(x)

−
∫
Rd

⟨ϕ(x, kτl + tτl), ṽτl(x, kτl + tτl)⟩dγ̃τl(kτl + tτl)(x)

∣∣∣∣dt.
By denoting with T k

τl
the optimal transport map from µk

τl
to µk+1

τl
, we have for t ∈ (0, 1) that

γτl(kτl + tτl) = ((1− t)I + tT k
τl
)#µ

k
τl
, γ̃τl(kτl + tτl) = µk

τl
,

and the velocity fields satisfy

vτl(x, kτl + tτl) = vkτl(((1− t)I + tT k
τl
)−1(x)), ṽτl(x, kτl + tτl) = vkτl(x).

Then, the above term becomes

τl

Kl−1∑
k=0

∫ 1

0

∣∣∣∣∫
Rd

⟨ϕ(x, kτl + tτl), v
k
τl
(((1− t)I + tT k

τl
)−1(x))⟩d((1− t)I + tT k

τl
)#µ

k
τl
(x)

−
∫
Rd

⟨ϕ(x, kτl + tτl), v
k
τl
(x)⟩dµk

τl
(x)

∣∣∣∣ dt
= τl

Kl−1∑
k=0

∫ 1

0

∣∣∣∣∫
Rd

⟨ϕ((1− t)x+ tT k
τl
(x)), kτl + tτl), v

k
τl
(x)⟩dµk

τl
(x)

−
∫
Rd

⟨ϕ(x, kτl + tτl), v
k
τl
(x)⟩dµk

τl
(x)

∣∣∣∣ dt
≤ τl

Kl−1∑
k=0

∫ 1

0

∫
Rd

∣∣⟨ϕ((1− t)x+ tT k
τl
(x)), kτl + tτl)− ϕ(x, kτl + tτl), v

k
τl
(x)⟩

∣∣dµk
τl
(x)dt.

Using Hölders’ inequality and we obtain that this is smaller or equal than

τl

Kl−1∑
k=0

∫ 1

0

(∫
Rd

∥ϕ((1 − t)x + tT k
τl
(x)), kτl + tτl) − ϕ(x, kτl + tτl)∥2

dµ
k
τl
(x)

∫
Rd

∥vk
τl
(x)∥2

dµ
k
τl
(x)

)1/2

dt

18
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By the Lipschitz continuity of ϕ and inserting the definition of vkτl =
T k
τl
−I

τl
this is smaller or equal than

τl

Kl−1∑
k=0

∫ 1

0

(
t2
L2

τ2l

∫
Rd

∥T k
τl
(x)− x∥2dµk

τl
(x)

∫
Rd

∥T k
τl
(x)− x∥2dµk

τl
(x)

)1/2

dt

= L

Kl−1∑
k=0

(∫ 1

0

tdt

)(∫
Rd

∥T k
τl
(x)− x∥2dµk

τl
(x)

)

=
L

2

Kl−1∑
k=0

W 2
2 (µ

k
τl
, µk+1

τl
)

≤ L

2

∞∑
k=0

W 2
2 (µ

k
τl
, µk+1

τl
)

Finally, we have by the definition of the minimizing movements scheme that

1

2τl
W 2

2 (µ
k
τl
, µk+1

τl
) ≤ F(µk

τl
)−F(µk+1

τl
).

Summing up for k = 0, 1, ... we finally arrive at the bound∣∣∣∣∣
∫
Rd×[0,T ]

⟨ϕ, vτl⟩dγτl −
∫
Rd×[0,T ]

⟨ϕ, v⟩dγ̂

∣∣∣∣∣ ≤ τlL

(
F(µ0)− inf

µ∈P2(Rd)
F(µ)

)
.

Since F is bounded from below the upper bound converges to zero as l → ∞. This concludes the proof.

Finally, we employ the previous results to show Theorem 3.3 from the main part of the paper. That is, we show that for any
(τl)l ⊆ (0,∞) with τl → 0 the whole vτl converges strongly to v.

Theorem B.4 (Theorem 3.3). Suppose that Assumption 3.1 is fulfilled and let (τl)l ⊆ (0,∞) with τl → 0. Then, (vτl)l
converges strongly to the velocity field v̂ ∈ L2(γ,Rd × [0, T ]) of the Wasserstein gradient flow γ : (0,∞) → P2(Rd) of F
starting in µ0.

Proof. We show that any subsequence of τl admits a subsequence converging strongly to v̂. Using the sub-subsequence
criterion this yields the claim.

By Theorem B.2 and Lemma B.3 we know that any subsequence of τl admits a weakly convergent subsequence. In an abuse
of notations, we denote it again by τl and its limit by ṽ. Then, we prove that the convergence is indeed strong and that ṽ = v̂.

Step 1: Bounding lim sup
l→∞

∫ T

0
∥vτl(·, t)∥2L2(γτl

(t),Rd)dt from above. Since λ-convexity with λ ≥ 0 implies λ-convexity

with λ = −1, we can assume without loss of generality that λ < 0. Then, by (Ambrosio et al., 2005, Lemma 9.2.7, Theorem
4.0.9), we know that for any τ > 0 it holds

W2(γ̃τ (t), γ(t)) ≤ τC(τ, t), C(τ, t) =
(1 + 2|λ|tτ )|∂F|(µ0)√

2(1 + λτ)
exp

(
− log(1 + λτ)

τ
t

)
,

where tτ = min{kτ : kτ ≥ t, k ∈ N0}. For simplicity, we use the notations τmax = max{τl : l ∈ N0}, Kl = ⌈ T
τl
⌉ and

Tmax = T + τmax. Since λ < 0, we have that C(τ, t) ≤ C(τ, Tmax) =: C(τ) for all t ∈ [0, Tmax]. Moreover, we have
that C(τ) → (1+2|λ|Tmax|∂F|(µ0)√

2
exp(−λTmax) as τ → 0, such that the sequence (C(τl))l is bounded. In particular, there

exists a C > 0 such that
W2(γ̃τl(t), γ(t)) ≤ τlC, for all t ∈ [0, Tmax].

Inserting t = kτl for k = 0, ...,Kl gives

W2(µ
k
τl
, γ(kτl)) ≤ τlC, for all k = 0, ...,Kl. (11)
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Now, we can conclude by the theorem of Benamou-Brenier that∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt ≤

∫ Klτl

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt

=

Kl−1∑
k=0

∫ (k+1)τl

kτl

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt

=

Kl−1∑
k=1

W 2
2 (µ

k
τl
, µk+1

τl
).

Now applying the triangular inequality for any k = 1, . . . ,Kl − 1

W 2
2 (µ

k
τl
, µk+1

τl
) ≤

(
W2(µ

k
τl
, γ(τlk)) +W2(γ(τlk), γ(τl(k + 1)) +W2(γ(τl(k + 1)), µk+1

τl
)
)2

and the estimate from (11) yields

∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt ≤

Kl−1∑
k=0

(2τC +W2(γ(τlk), γ(τl(k + 1)))
2

By Jensens’ inequality the right hand side can be bounded from above by

4Klτ
2C2 + 2τKlC

(
Kl−1∑
k=0

1

Kl
W 2

2 (γ(τlk), γ(τl(k + 1)))

)1/2

+

Kl−1∑
k=0

W 2
2 (γ(τlk), γ(τl(k + 1)))

Finally, again Benamou-Brenier gives that W 2
2 (γ(τlk), γ(τl(k + 1))) ≤

∫ (k+1)τl
kτl

∥v̂(·, t)∥2L2(γ(t))
dt such that the above

formula is smaller or equal than

4Klτ
2
l C

2 + 2τl
√
KlC

(∫ Klτl

0

∥v̂(·, t)∥2L2(γ(t))
dt

)1/2

+

∫ Klτl

0

∥v̂(·, t)∥2L2(γ(t))
dt.

Since Klτl → T and τl → 0 as l → ∞ this converges to
∫ T

0
∥v̂(·, t)∥2L2(γ(t))

dt such that we can conclude

lim sup
l→∞

∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt ≤

∫ T

0

∥v̂(·, t)∥2L2(γ(t))
dt.

Step 2: Strong convergence. By (Ambrosio et al., 2005, Theorem 8.3.1, Proposition 8.4.5) we know that for any v fulfilling
the continuity equation

∂tγ(t) +∇ · (v(·, t)γ(t)) = 0,

it holds that ∥v(·, t)∥L2(γ(t),Rd ≥ ∥v̂(·, t)∥L2(γ(t),Rd . Since ṽ fulfills the continuity equation by Theorem B.2, this implies
that ∫ T

0

∥ṽ(·, t)∥2L2(γ(t),Rddt ≥
∫ T

0

∥v̂(·, t)∥2L2(γ(t),Rddt = lim sup
l→∞

∫ T

0

∥vτl(·, t)∥2L2(γτl
(t),Rd)dt.

In particular, vτl ∈ L2(γτl ,Rd × [0, T ]) converges strongly to ṽ such that by (Ambrosio et al., 2005, Theorem 5.4.4 (iii)) it
holds equality in the above equation, i.e.,∫ T

0

∥ṽ(·, t)∥2L2(γ(t),Rddt =

∫ T

0

∥v̂(·, t)∥2L2(γ(t),Rddt

Using again (Ambrosio et al., 2005, Theorem 8.3.1, Proposition 8.4.5) this implies that ṽ = v̂.
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C. Proofs from Section 4
C.1. Proof of Theorem 4.2

i) Let A ⊂ Rd Lebesgue-measurable set. We denote by accept and reject the measurable set of accepted and rejected
draws of X respectively. By the law of total probability, we have

P(X̃ ∈ A) = P(X̃ ∈ A and X was accepted) + P(X̃ ∈ A and X was rejected).

Since it holds X̃ = X if X is accepted and X̃ = X ′ if X is rejected this can be reformulated as

P(X̃ ∈ A) = P(X ∈ A, accept) + P(X ′ ∈ A, reject)

Now it holds

P(X ∈ A, accept) =
∫
A

α(x)p(x) dx

P(X ′ ∈ A, reject) = P(X ′ ∈ A) · P(reject) =
(∫

A

p(x) dx

)
(1− E[α(X)]) ,

where we used the fact that X,X ′ ∼ µ are independent. As a consequence, we obtain

P(X̃ ∈ A) =

∫
A

α(x)p(x)dx+

(∫
A

p(x)dx

)
(1− E[α(X)])

=

∫
A

p(x) (α(x) + 1− E[α(X)]) dx.

Thus, p̃(x) = p(x)(α(x) + 1− E[α(X)]) is the density of X̃ .

(ii) Note, since X ∼ p, we have ∫
Rd

p(x)α(x)

E[α(X)]
dx =

∫
Rd

p(x)α(x)∫
Rd p(y)α(y)dy

dx = 1,

in particular p(x)α(x)
E[α(X)] defines a density. Now let η ∈ P2(Rd) be the corresponding probability measure. Then, it holds

by part (i) that µ̃ = E[α(X)]η + (1− E[α(X)])µ. We will show that KL(η, ν) ≤ KL(µ, ν). Due to the convexity of
the KL divergence in the linear space of measures this implies the claim.

We denote Z = E[α(X)] =
∫
Rd min(p(x), q(x)

c̃ )dx. Then it holds

KL(η, ν) =

∫
Rd

p(x)α(x)

Z
log

(
p(x)α(x)

Zq(x)

)
dx

=

∫
Rd

min(p(x), q(x)
c̃ )

Z
log

(
c̃p(x)α(x)

q(x)

)
dx− log(Zc̃)

∫
Rd

min(p(x), q(x)
c̃ )

Z
dx

=

∫
Rd

min(p(x), q(x)
c̃ )

Z
log

(
min

(
c̃p(x)

q(x)
, 1

))
dx− log(Z)− log(c̃)

=

∫
Rd

min

(
min(p(x), q(x)

c̃ )

Z
log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(Z)− log(c̃).

Since log
(

c̃p(x)
q(x)

)
≤ 0 if and only if p(x) ≤ q(x)/c̃ this can be reformulated as∫

Rd

min

(
p(x)

Z
log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(Z)− log(c̃)

≤
∫
Rd

min

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(Z)− log(c̃), (12)
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xk
i accepted?

resample
xk
i ∼ µk

xk+1
i

previous layer

CNF/ rejection

next layer

CNF/ rejection

yes

no yields

rejection at k-th layer

Figure 2: Illustration of a single sample within a rejection layer. The independent sample xk
i is either accepted directly or

else resampled once, and then used to define xk+1
i as input for the next layer.

where the inequality comes from the fact that Z = E[α(X)] ∈ [0, 1]. Moreover, it holds by Jensen’s inequality that

− log(Z) = − log(E[α(X)]) = − log

(∫
Rd

p(x)min

(
q(x)

c̃p(x)
, 1

)
dx

)
≤ −

∫
Rd

p(x) log

(
min

(
q(x)

c̃p(x)
, 1

))
dx

= −
∫
Rd

p(x)min

(
log

(
q(x)

c̃p(x)

)
, 0

)
dx

=

∫
Rd

p(x)max

(
log

(
c̃p(x)

q(x)

)
, 0

)
dx

=

∫
Rd

max

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx.

Thus, we obtain that (12) can be bounded from above by∫
Rd

min

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx+

∫
Rd

max

(
p(x) log

(
c̃p(x)

q(x)

)
, 0

)
dx− log(c̃)

which equals ∫
Rd

p(x) log

(
c̃p(x)

q(x)

)
dx− log(c̃) =

∫
Rd

p(x) log

(
p(x)

q(x)

)
dx = KL(µ, ν).

In summary, we have KL(η, ν) ≤ KL(µ, ν), which implies the assertion.

□

C.2. Proof of Corollary 4.3

Let Y =
∣∣∣E[α(X)]− 1

N

∑N
i=1 α(XN )

∣∣∣ denote the random variable representing the error. Since α(XN ) ∈ [0, 1], Hoeffding’s

inequality (Hoeffding, 1963) yields that P (Y > t) ≤ 2 exp(−Nt2

2 ). Consequently, we have that

E[Y ] =

∫ ∞

0

P (Y > t)dt ≤ 2

∫ ∞

0

exp

(
−Nt2

2

)
dt =

√
2π√
N

.

□

D. Algorithms
D.1. Training and Evaluation Algorithms

We summarize the training and evaluation procedures for the neural JKO steps in Algorithm 3 and 4 and the parameter
selection for the importance-based rejection steps in Algorithm 5. The evaluation of the importance-based rejection steps is
summarized in Algorithm 1 in the main text.
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Algorithm 3 Training of neural JKO steps
Input: Samples xk

1 , ..., x
k
N of µk.

Minimize the loss function θ 7→ L(θ) from (6) using the Adam optimizer.
Output: Parameters θ.

Algorithm 4 Sampling and density propagation for neural JKO steps

Input:
{

- Samples xk
1 , ..., x

k
N of µk,

- Density values pk(xk
1), ..., p

k(xk
N ).

for i = 1, ..., N do
1. Solve the ODE (7) for x = xk

i .
2. Set xk+1

i = zθ(x
k
i , τ).

3. Set pk+1(xk+1
i ) =

pk(xk
i )

exp(ℓθ(xk
i ,τ))

.
end for

Output:
{

- Samples xk
1 , ..., x

k
N of µk+1,

- Density values pk+1(xk+1
1 ), ..., pk+1(xk+1

N ).

Algorithm 5 Parameter selection for importance-based rejection steps

Input:
{

- Samples xk
1 , ..., x

k
N of µk with corresponding densities

- desired rejection rate r, unnormalized target density g

Choose c by bisection search such that

1− r =
1

N

N∑
i=1

αk(x
k
i ), αk(x) = min

{
1,

g(x)

cpk(x)

}
.

Output: Rejection parameter c and estimate of E[α(Xk
τ )] ≈ 1− r.

Algorithm 6 Density Evaluation of Importance Corrected Neural JKO Models
Input: x ∈ Rd, model (X0, ..., XK)
if K = 0 then

Return latent density p0(x).
else if the last step is a rejection step then

1. Evaluate pK−1(x) by applying this algorithm for (X0, ..., XK−1).
2. Return pK(x) = pK−1(αk(x) + 1− E[αk(Xk−1)])

else
last step is a neural JKO step

1. Solve the ODE system (with vθ from the neural JKO step)(
żθ(x, t)

ℓ̇θ(x, t)

)
=

(
vθ(zθ(x, t), t)

trace(∇vθ(zθ(x, t), t))

)
,

(
zθ(x, τ)
ℓθ(x, τ)

)
=

(
x
0

)
.

2. Set x̃ = zθ(x, 0).
3. Evaluate pK−1(x̃) by applying this algorithm for (X0, ..., XK−1).
4. Return pK(x) = pK−1(x̃) exp(ℓθ(x, 0)).

end if
Output: Density pK(x)
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D.2. Density Evaluation of Importance Corrected Neural JKO Models

Let (X0, ..., XK) be an importance corrected neural JKO model. We aim to evaluate the density pK of XK at some given
point x ∈ Rd. Using Theorem 4.2, this can be done recursively by Algorithm 6. Note that the algorithm always terminates
since K is reduced by one in each call.

E. Additional Numerical Results and Implementation Details
E.1. Test Distributions

We evaluate our method on the following test distributions.

- Mustache: The two-dimensional log-density is given as logN (0,Σ) ◦ T with Σ = [1, σ;σ, 1] and T (x1, x2) =
(x1, (x2 − (x2

1 − 1)2)). Note that det(∇T (x)) = 1 for all x. In particular, we obtain directly by the transformation
formula that the normalization constant is one. Depending on σ ∈ [0, 1) close to 1, this probability distribution has very
long and narrow tails making it hard for classical MCMC methods to sample them. In our experiments we use σ = 0.9.

- Shifted 8 Modes: A two-dimensional Gaussian mixture model with 8 equal weighted modes and covariance matrix
1 × 10−2I . The modes are placed in a circle with radius 1 and center (−1, 0). Due to the shifted center classical
MCMC methods have difficulties to distribute the mass correctly onto the modes.

- Shifted 8 Peaky: This is the same distribution as the shifted 8 Modes with the difference that we reduce the width of
the modes to the covariance matrix 5× 10−3I . Since the modes are disconnected, it becomes harder to sample from
them.

- Funnel: We consider the (normalized) probability density function given by q(x) =
N (x1|0, σ2

f )N (x2:10|0, exp(x1)I), where σ2
f = 9. This example was introduced by (Neal, 2003). Similarly

to the mustache example, this distribution has a narrow funnel for small values x1 which can be hard to sample.

- GMM-d: A d-dimensional Gaussian mixture model with 10 equal weighted modes with covariance matrix 1× 10−2I
and means drawn randomly from a uniform distribution on [−1, 1]d. This leads to a peaky high-dimensional and
multimodal probability distribution which is hard to sample from.

- GMM40-50D: Another Gaussian mixture model, which was used as an example in (Blessing et al., 2024; Chen et al.,
2025) based on (Midgley et al., 2023). It is a 50 dimensional GMM with 40 equally weighted modes with the identity
as covariance matrix, where the means are drawn uniformly from [−40, 40]d. We use the same seed for drawing the
modes as in (Chen et al., 2025).

- LGCP: This is a high dimensional standard example taken from (Arbel et al., 2021; Matthews et al., 2022; Vargas
et al., 2023a). It describes a Log-Gaussian Cox process on a 40 × 40 grid as arising from spatial statistics (Møller
et al., 1998). This leads to a 1600-dimensional probability distribution with the unnormalized density function
q(x) ∝ N (x|µ,K)

∏
i∈{1,...,40}2 exp(xiyi − a exp(xi)), where µ and K are a fixed mean and covariance kernel, yi

is some data and a is a hyperparameter. For details on this example and the specific parameter choice we refer to
(Matthews et al., 2022).

E.2. Error Measures

We use the following error measures.

- The energy distance was proposed by (Székely, 2002) and is defined by

D(µ, ν) = −1

2

∫
Rd

∫
Rd

∥x− y∥d(µ− ν)(x)d(µ− ν)(y).

It is the maximum mean discrepancy with the negative distance kernel K(x, y) = −∥x − y∥ (see Sejdinovic et al.,
2013) and can be estimated from below and above by the Wasserstein-1 distance (see Hertrich et al., 2024). It is a
metric on the space of probability measures. Consequently, a smaller energy distance indicates a higher similarity of the
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Table 3: We report the expected squared empirical Wasserstein-2 distance (W 2
2 ) and its standard deviation between generated

and ground truth samples of size N = 5000 for the different methods and for all examples where the ground truth
model is known. A smaller value of W 2

2 indicates a better result. Note that the curse of dimensionality present in the
sample complexity, might limit the reliability of the results for the high-dimensional examples. In particular for the funnel
distribution, we observe that the expected empirical Wasserstein-2 distance between two independent sets of ground truth
samples is higher than the observed W 2

2 values.

Sampler

Distribution MALA HMC DDS CRAFT Neural JKO Neural JKO IC (ours) Sampling Error

Mustache 4.7× 10+1 ± 1.3× 10+1 2.8× 10+1 ± 4.2× 100 5.2× 10+1 ± 2.0× 100 5.4× 10+1 ± 1.2× 10+1 3.0× 10+1 ± 1.3× 10+1 1.7 × 10+1 ± 6.0 × 100 1.2× 10+1

shifted 8 Modes 5.5× 10−2 ± 6.9× 10−3 4.7× 10−3 ± 3.6× 10−3 8.7× 10−2 ± 3.1× 10−2 2.4× 10−1 ± 2.4× 10−3 5.6× 10−1 ± 1.6× 10−2 6.5 × 10−3 ± 2.1 × 10−3 7.4× 10−3

shifted 8 Peaky 5.8× 10−2 ± 2.4× 10−2 5.6× 10−1 ± 1.4× 10−2 1.0× 10−1 ± 2.5× 10−2 2.5× 10−1 ± 1.1× 10−1 5.9× 10−1 ± 1.7× 10−2 7.2× 10−3 ± 1.3× 10−3 5.6× 10−3

Funnel 5.5× 10+2 ± 1.2× 10+2 7.4× 10+2 ± 5.6× 10+2 5.3 × 10+2 ± 7.5 × 10+1 7.9× 10+2 ± 4.4× 10+2 9.4× 10+2 ± 9.3× 10+2 8.5× 10+2 ± 3.9× 10+2 1.0× 10+3

GMM-10 3.8× 100 ± 4.2× 10−1 3.8× 100 ± 3.9× 10−1 3.8× 10−1 ± 1.1× 10−1 2.4× 100 ± 1.0× 100 6.3× 10−1 ± 1.4× 10−1 1.4 × 10−1 ± 2.3 × 10−2 1.4× 10−1

GMM-20 8.9× 100 ± 4.0× 10−1 9.0× 100 ± 3.9× 10−1 8.8× 10−1 ± 1.0× 10−1 7.9× 100 ± 1.5× 100 1.2× 100 ± 2.0× 10−1 3.7 × 10−1 ± 5.0 × 10−2 3.7× 10−1

GMM-50 2.7× 10+1 ± 1.0× 100 2.7× 10+1 ± 9.8× 10−1 3.6× 100 ± 8.9× 10−1 2.6× 10+1 ± 2.6× 100 4.4× 100 ± 7.9× 10−1 1.2 × 100 ± 1.3 × 10−1 1.2× 100

GMM-100 5.7× 10+1 ± 1.2× 100 5.7× 10+1 ± 1.3× 100 9.9× 100 ± 2.9× 100 5.6× 10+1 ± 1.1× 100 1.1× 10+1 ± 2.7× 100 2.9 × 100 ± 4.7 × 10−1 2.8× 100

GMM-200 1.2× 10+2 ± 2.8× 100 1.2× 10+2 ± 2.8× 100 2.4× 10+1 ± 4.0× 10+1 1.1× 10+2 ± 3.0× 100 2.4× 10+1 ± 3.9× 100 7.8 × 100 ± 6.9 × 10−1 5.9× 100

input distributions. By discretizing the integrals it can be easily evaluated based on N ∈ N samples x = (xi)i ∼ µ⊗N ,
y = (yi)i ∼ ν⊗N as

D(x,y) =

N∑
i,j=1

∥xi − yj∥ −
1

2

N∑
i,j=1

∥xi − xj∥ −
1

2

N∑
i,j=1

∥yi − yj∥.

We use N = 50000 samples in Table 1.

- We also evaluate the squared Wasserstein-2 distance which is defined in Section 2. To this end, we use the Python
Optimal Transport package (POT, Flamary et al., 2021). Note that computing the Wasserstein distance has complexity
O(n3) where n is the number of points. Hence, we evaluate the Wasserstein distance based on fewers samples
compared to the case of other metrics. We use N = 5000 samples in Table 3. In addition, we want to highlight that
the expected Wasserstein distance evaluated on empirical measures instead of its continuous counterpart suffers from
the curse of dimensionality. In particular, its sample complexity scales as O(n−1/d) (Peyré & Cuturi, 2019, Chapter
8.4.1). Consequently, the sample-based Wasserstein distance in high dimensions can differ significantly from the true
Wasserstein distance of the continuous distributions. Indeed, we can see in Table 3 that the sampling error has often the
same order of magnitude as the reported errors. Overall we can draw similar conclusions from this evaluation as for the
energy distance in Table 1.

- We estimate the log normalizing constant (short log(Z) estimation) which is used as a benchmark standard in various
references (e.g., in Arbel et al., 2021; Matthews et al., 2022; Phillips et al., 2024; Vargas et al., 2023a). More precisely,
for the generated distribution µ with normalized density p and target measure ν with density q(x) = g(x)/Zg we
evaluate the term

Ex∼µ

[
log

(
g(x)

p(x)

)]
= log(Zg)− Ex∼µ

[
log

(
p(x)

q(x)

)]
= log(Zg)−KL(µ, ν).

Due to the properties of the KL divergence, a higher log(Z) estimate implies a lower KL divergence between µ and
ν and therefore a higher similarity of generated and target distribution. In our experiments we compute the log(Z)
estimate based on N = 50000 samples. The results are given in Table 2.

- To quantify how well the mass is distributed on different modes for the mixture model examples (shifted 8 Modes,
shifted 8 Peaky, GMM-d), we compute the mode weights. That is, we generate N = 50000 samples and assign each
generated samples to the closest mode of the GMM. Afterwards, we compute for each mode the fraction of samples
which is assigned to each mode. To evaluate this distribution quantitatively, we compute the mean square error (MSE)
between the mode weights of the generated samples and the ground truth weights from the GMM. We call this error
metric the mode MSE, give the results are in Table 4.

Remark E.1 (Bias in log(Z) Computation). In the cases, where the importance corrected neural JKO sampling fits the target
distribution almost perfectly, we sometimes report in Table 2 log(Z) estimates which are slightly larger than the ground
truth. This can be explained by the fact that the density evaluation of the continuous normalizing flows uses the Hutchinson
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Table 4: We report the mode MSEs for the different methods for all examples which can be represented as mixture model. A
smaller mode MSE indicates a better result.

Sampler

Distribution MALA HMC DDS CRAFT Neural JKO Neural JKO IC (ours)

shifted 8 Modes 3.2× 10−3 ± 1.3× 10−4 1.9× 10−5 ± 1.1× 10−5 8.8× 10−3 ± 2.2× 10−3 3.2× 10−2 ± 6.1× 10−3 8.3× 10−2 ± 1.0× 10−3 1.3× 10−5 ± 4.4× 10−6

shifted 8 Peaky 8.3× 10−2 ± 3.7× 10−4 7.8× 10−2 ± 9.9× 10−4 7.9× 10−3 ± 2.2× 10−3 3.3× 10−2 ± 1.3× 10−2 8.4× 10−2 ± 6.7× 10−4 1.5× 10−5 ± 3.2× 10−6

GMM-10 1.2× 10−2 ± 5.5× 10−3 1.0× 10−2 ± 5.8× 10−3 3.6× 10−3 ± 1.9× 10−3 1.4× 10−1 ± 4.7× 10−2 1.1× 10−2 ± 5.6× 10−3 2.1× 10−5 ± 3.0× 10−6

GMM-20 6.6× 10−3 ± 2.2× 10−3 6.6× 10−3 ± 2.4× 10−3 3.6× 10−3 ± 1.5× 10−3 3.8× 10−1 ± 3.9× 10−2 7.3× 10−3 ± 2.8× 10−3 2.4× 10−5 ± 9.8× 10−6

GMM-50 1.0× 10−2 ± 3.8× 10−3 9.8× 10−3 ± 3.6× 10−3 9.6× 10−3 ± 4.9× 10−3 9.0× 10−1 ± 6.4× 10−5 1.2× 10−2 ± 4.4× 10−3 2.6× 10−5 ± 6.0× 10−6

GMM-100 1.1× 10−2 ± 5.4× 10−3 1.1× 10−2 ± 5.4× 10−3 1.1× 10−2 ± 5.8× 10−3 9.0× 10−1 ± 4.8× 10−8 1.4× 10−2 ± 7.0× 10−3 1.5× 10−4 ± 8.5× 10−5

GMM-200 1.4× 10−2 ± 5.1× 10−3 1.4× 10−2 ± 4.6× 10−3 2.2× 10−2 ± 8.6× 10−3 9.0× 10−1 ± 5.8× 10−8 1.9× 10−2 ± 6.3× 10−3 6.8× 10−4 ± 4.0× 10−4

Table 5: We report the mode Sinkhorn distance for the different methods for the GMM40-50D example. A smaller mode
Sinkhorn distance indicates a better result. The comparison values are taken from (Chen et al., 2025).

Sampler

SMC DDS CRAFT PIS CMCD-LV SCLD Neural JKO IC (ours)

Sinkhorn distance 46370.34± 137.79 5435.18± 172.20 28960.70± 354.89 10405.75± 69.41 4258.57± 737.15 3787.73± 249.75 3025.61± 418.10

trace estimator for evaluating the divergence and a numerical method for solving the ODE. Therefore, we have a small
error in the density propagation of the neural JKO steps. This error is amplified by the rejection steps since samples with
underestimated density are more likely to be rejected than samples with overestimated density.

We would like to emphasize that this effect only appears for examples, where the energy distance between generated and
ground truth samples is in the same order of magnitude like the average distance between two different sets of ground truth
samples (see Table 1). This means that in the terms of the energy distance the generated and ground truth distribution are
indistinguishable. At the same time the bias in the log(Z) estimate appears at the third or fourth relevant digit meaning that
it is likely to be negligible.

E.3. Additional Comparison

We additionally compare our importance corrected neural JKO model with several other methods on the example of a 50
dimensional Gaussian mixture model as used in (Midgley et al., 2023). We follow the setting of Table 3 in Chen et al. (2025)
and evaluate the Sinkhorn distance (Cuturi, 2013) with entropic regularization parameter 10−3 based on 2000 generated
and ground truth samples. Moreover we average the results over 5 training runs with 25 evaluations from each run. We
compare our results with sequential Monte Carlo (SMC, Del Moral et al., 2006), denoising diffusion sampler (DDS, Vargas
et al., 2023a), continual repeated annealed flow transport Monte Carloe (CRAFT, Matthews et al., 2022), path integral
sampler (PIS, Zhang & Chen, 2021), controlled Monte Carlo Diffusion (CMCD, Vargas et al., 2023b) and sequential
controlled Langevin diffusion (SCLD, Chen et al. (2025)). For CMCD, we consider the log-variance (LV) variant considered
in (Chen et al., 2025) since it gives better results. The hyperparameters used for our importance corrected neural JKO
scheme are given in Table 6. Similar as most comparison methods, we use a normal distribution with a larger variance as
initial distribution µ0 and use a gradient flow on the negative log-density prior to the learned CNF and rejection steps, see
Remark E.2 for details.

The results are given in Table 5, where the values for the comparison are taken from (Chen et al., 2025). We observe that
neural JKO IC significantly outperforms the comparisons on this example.

E.4. Additional Figures and Evaluations

Additionally to the results from the main part of the paper, we provide the following evaluations.

Visualization of the Rejection Steps In Figure 1 and with involved steps in Figure 3, we visualize the different steps of
our importance corrected neural JKO model on the shifted 8 Peaky example. Due to the shift of the modes, the modes on the
right attract initially more mass than the ones on the left. In the rejection layers, we can see that samples are mainly rejected
in oversampled regions such that the mode weights are equalized over time. This can also be seen in Figure 4, where we plot
the weights of the different modes over time. We observe, that these weights are quite imbalanced for the latent distribution
but are equalized over the rejection steps until they reach the ground truth value.
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(Marginal) Plots of Generated Samples Despite the quantitative comparison of the methods in the Tables 1, 2 and 4,
we also plot the first to coordinates of generated samples for the different test distributions for all methods for a visual
comparison.

In Figure 5, we plot samples of the shifted 8 Modes example. We can see that all methods roughly cover the ground truth
distribution even though CRAFT and DDS have slight and the uncorrected neural JKO scheme has a severe imbalance in the
assigned mass for the different modes.

For the shifted 8 Peaky example in Figure 6, we see that this imbalance increases drastically for CRAFT, HMC, MALA and
the uncorrected neural JKO. Also DDS has has a slight imbalance, while the importance corrected neural JKO scheme fits
the ground truth almost perfectly.

The Funnel distribution in Figure 7 has two difficult parts, namely the narrow but high-density funnel on the left and the
wide moderate density fan on the right. We can see that DDS does cover none of them very well. Also MALA, CRAFT and
the uncorrected neural JKO do not cover the end of the funnel correctly and have also difficulties to cover the fan. HMC
covers the fan well, but not the funnel. Only our importance corrected neural JKO scheme covers both parts in a reasonable
way.

For the Mustache distribution in Figure 8, the critical parts are the two heavy but narrow tails. We observe that CRAFT and
DDS are not able to cover them at all, while HMC and MALA and uncorrected neural JKO only cover them only partially.
The importance corrected neural JKO covers them well.

Finally, for the GMM-d example we consider the dimensions d = 10 and d = 200 in the Figures 9 and 10. We can see that
CRAFT mode collapses, i.e., for d = 10 it already finds some of the modes and for d = 200 it only finds one mode. DDS,
HMC, MALA and the uncorrected neural JKO find all modes but do not distribute the mass correctly onto all modes. While
this already appears for d = 10 it is more severe for d = 200. The importance corrected neural JKO sampler finds all modes
and distributes the mass accurately.

Note that the distributions generated by MALA and the neural JKO are always similar. This is not surprising since both
simulate a Wasserstein gradient flow with respect to the KL divergence and only differ by the time-discretization and the
Metropolis correction in MALA.

Development of Error Measures over the Steps We plot how the quantities of interest decrease over the application
of the steps of our model. The results are given in the Figure 11. It can be observed that the different steps may optimize
different metrics. While the rejection steps improve the log(Z) estimate more significantly, the JKO steps focus more on the
minimization of the energy distance. Overall, we see that in all figures the errors decrease over time.

E.5. Implementation Details

To build our importance corrected neural JKO model, we first apply n1 ∈ N JKO steps followed by n2 ∈ N blocks consisting
out of a JKO step and three importance-based rejection steps. The velocity fields of the normalizing flows are parameterized
by a dense three-layer feed-forward neural network. For the JKO steps, we choose an initial step size τ0 > 0 and then increase
the step size exponentially by τk+1 = 4τk. The choices of n1, n2, τ0 and the number of hidden neurons from the networks
is given in Table 6 together with the execution times for training and sampling. For evaluating the density propagation
through the CNFs, we use the Hutchinson trace estimator with 5 Rademacher distributed random vectors whenever d > 5
and the exact trace evaluation otherwise. Note that we redraw the Rademacher vectors in every step of the ODE solver such
that errors average out throughout the trajectory. We observed that the estimator of the divergence already has a sufficiently
small variance, particularly, since the trajectories are almost straight due to the norm penalty of the velocity field, see also
Appendix F.2. For implementing the CNFs, we use the code from Ffjord (Grathwohl et al., 2019) and the torchdiffeq
library by (Chen, 2018). We provide the code online at https://github.com/johertrich/neural_JKO_ic.

For the MALA and HMC we run an independent chain for each generated sample and perform 50000 steps of the algorithm.
For HMC we use 5 momentum steps and set the step size to 0.1 for 8Modes and Funnel and step size 0.01 for mustache. To
stabilize the first iterations of MALA and HMC we run the first iterations with smaller step sizes (0.01 times the final step
size in the first 1000 iterations and 0.1 times the final step size for the second 1000 iterations). For MALA we use step size
0.001 for all examples. For DDS and CRAFT we use the official implementations. In particular for the test distributions such
as Funnel and LGCP we use the hyperparameters suggested by the original authors. For the other examples we optimized
them via grid search.
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Table 6: Parameters, training and sampling times for the different examples. For the sampling time we draw N = 50000
samples once the method is trained. The execution times are measured on a single NVIDIA RTX 4090 GPU with 24 GB
memory.

Distribution

Parameter Mustache shifted 8 Modes shifted 8 Peaky Funnel GMM-10 GMM-20 GMM-50 GMM-100 GMM-200 GMM40-50D LGCP

Dimension 2 2 2 10 10 20 50 100 200 50 1600
Number n1 of flow steps 6 2 2 6 4 4 4 4 5 4 3

Number n2 of rejection blocks 6 4 4 6 6 6 7 8 8 7 6
Initial step size τ0 0.05 0.01 0.01 5 0.0025 0.0025 0.0025 0.0025 0.001 1 5
Latent scaling c 1 1 1 1 1 1 1 1 1 40 1

Gradient Flow Initialization - - - - - - - - - 3 -
Hidden neurons 54 54 54 256 70 90 150 250 512 256 1024

batch size 5000 5000 5000 5000 5000 5000 5000 5000 2000 5000 500
Required GPU memory 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 5 GB 6 GB 6 GB 11 GB

Training time (min) 38 20 21 107 33 34 44 53 80 34 163
Sampling time (sec) 15 2 3 79 22 23 72 129 473 550 535

Remark E.2 (Initializations). To deal with target distributions living on different scales, we consider initial distributions
µ0 = N (0, c2Id), where c2 is a scaling parameter. The choice of c for each target distribution is givein in Table 6 in the row
“latent scaling”. Moreover, it is beneficial in some cases to choose the velocity field in the first CNF not by learning it, but by
fixing it to vt(x) = ∇x log(g(x)) = ∇x log(q(x)). We report the final time T of this first gradient flow step in Table 6 in
the row “gradient flow initialization” with value - if we do not use a gradient flow step. This initialization is closely related
to Langevin preconditioning, which is used in most neural sampling methods, see (He et al., 2025) for a detailed study.

During the training of vk+1
θ , we do not draw in each training step a new batch from µk. Instead, we maintain a dataset

of N = 50000 samples of µk and draw batches from it. After the training is completed, we generate a new dataset of N
samples by applying the learned CNF onto N new drawn samples from µk. To avoid overfitting effects, we redraw our
dataset after each CNF step.

F. Computational Aspects of Normalizing Flows
In this appendix, we give some more details about the computational aspects of the normalizing flows in our model. First, we
discuss the relation between multimodal target distributions, mode collapse and non-convex loss functions of normalizing
flows. Afterwards, we discuss some computational aspects of continuous normalizing flows like ODE discretizations and
density evaluations with trace estimators. Finally, we run some standard normalizing flow networks on our numerical
example distributions and compare them with our importance corrected neural JKO sampling.

F.1. Multimodalities, Mode Collapse and Non-Convex Loss Functions

For the sampling application, normalizing flows are usually trained with the reverse KL loss function F(µ) = KL(µ, ν), see,
e.g., (Marzouk et al., 2016). More precisely, a normalizing flow aims to learn the parameters θ of a family of diffeomorphisms
Tθ such that Tθ#µ0 ≈ ν by minimizing F(Tθ#µ0). In the case that ν is multimodal it can be observed that this training
mode collapses. That is, the approximation T#µ0 covers not all of the modes of ν but instead neglects some of them.
Examples of this phenomenon can be seen in the numerical comparison in Appendix F.3. One reason for this effect is that
the functional F is convex if and only if ν is log-concave and therefore unimodal, see (Ambrosio et al., 2005, Prop. 9.3.2).
In particular, for multimodal ν, the functional F is non-convex. In the latter case of, then the mode collapses can correspond
to the convergence to a local minimum, as the following example shows.

Example F.1. We consider the case d = 1 and the target distribution

ν = 1
2N (− 1

2 , 0.05
2) + 1

2N ( 12 , 0.05
2).

As latent distribution µ0 we choose a standard Gaussian. Then, we parametrize the normalizing flow Tθ = (1− θ)T0 + θT1
for θ ∈ [0, 1], where T0 is the optimal transport map between µ0 and ν and T1 is the optimal transport map between µ0

and N ( 12 , 0.05
2). In particular, Tθ#µ0 perfectly recovers the target distribution for θ = 0 and produces a mode collapsed

version of it for θ = 1. Now, we plot the reverse KL loss function L(θ) = KL(Tθ#µ0, ν) and the densities of the generated
distributions Tθ#µ0 in Figure 12. We observe that it has two local minima for θ = 0 and θ = 1 (for θ outside of [0, 1], T is
no longer invertible), where θ = 0 is the perfectly learned parameter and θ = 1 is the mode collapsed version. At the same
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time, we note that the curve θ 7→ Tθ#µ0 is a geodesic in the Wasserstein space. In particular, the non-convexity of L is a
direct consequence of the fact that F(µ) = KL(µ, ν) is geodesically non-convex.

Remark F.2 (Motivation of Wasserstein Regularization). This connection between the non-convexity of the loss function
F and mode collapse also motivates the Wasserstein regularization from Section 3. By considering the loss function
G(µ) = F(µ) + 1

2τW
2
2 (µ, µ

k
τ ) for τ > 0 small enough instead of F , we obtain a loss function which is convex in the

Wasserstein space, see (Ambrosio et al., 2005, Lem. 9.2.7). Even though this does not imply that the map θ 7→ G(Tθ#µ0) is
convex, we can expect that the training does not get stuck in local minima as long as the architecture of Tθ is expressive
enough.

Theoretically, we need for λ-convex F that τ ≤ 1
λ to ensure that G is geodesically convex. However, if µk is already close

to a minimum of F , then it can be sufficient that the functional G is convex locally around µk. In this case, the distribution
generated by the CNF will stay in this neighborhood. Note that in practice the constant λ is unknown such that we start with
a small step size τ0 and increase it over time as outlined at the end of Section 4 and in Appendix E.5.

F.2. Computational Limitations of (Continuous) Normalizing Flows

Similar to the literature on neural JKO schemes (Vidal et al., 2023; Xu et al., 2024), our implementation of the neural JKO
scheme relies on continuous normalizing flows (Chen et al., 2018). This comes with some limitations and challenges, which
were extensively discussed in (Chen et al., 2018). Since they are relevant for our method, we give a synopsis below.

Derivatives of ODE Solutions For the training phase we need the derivative of the solution of an ODE. For this, we
use the torchdiffeq package (Chen, 2018). In particular, this package does not rely on backpropagation through the
steps from the forward solver. Instead, it overwrites the backward pass of the ODE by solving an adjoint ODE. This avoids
expensive tracing in the automatic differentiation process within the forward pass and keeps the memory consumption low.
Moreover, the quadratic regularization of the velocity field leads to straight paths such that the adaptive solvers only require a
few steps for solving the ODE, see (Onken et al., 2021) for a detailed discussion. Indeed, we use in our numerical examples
the dopri5 solver from torchdiffeq, which is an adaptive Runge-Kutta method. However, we still have to solve two
ODEs during the training time. This still can be computational costly, in particular when the underlying model is large.

Trace Estimation for Density Computations In order to evaluate the (log-)density of our model, we have to compute the
divergence div vθ = trace(∇vθ(zθ(x, t), t)) of the learned vector field vθ (and integrate it over time), see (7). Computing
the trace of the Jacobian of vθ becomes computationally costly in high dimensions. As a remedy, we consider the Hutchinson
trace estimator (Hutchinson, 1989), which states that for any matrix A and a random vector z with mean zero and identity
covariance matrix it holds that E[zTAz] = trace(A). Applying this estimator to the divergence, we obtain that the
divergence coincides with E[zT∇vθ(zθ(x, t), t)z]. The integrand is now again a Jacobian-vector product which can be
computed efficiently. Finally, we estimate the trace by empirically discretizing the expectation by finitely many realizations
of z.

In our numerics, we choose z to be Rademacher random vectors, i.e. each entry is with probability 1
2 either −1 or 1. For the

training of the continuous normalizing flow, an unbiased low-precision estimator is sufficient, such that we discretize the
expectation with one realization of z. During evaluation, we require a higher precision and use 5 realizations instead.

Initialization In order to find a stable initialization of the model, we initialize the last layer of the velocity field vθ with
zeros such that it holds vθ(x, t) = 0 for all x ∈ Rd, t ∈ [0, τ ]. In this case, the solution zθ of the ODE żθ = vθ with initial
condition zθ(x, 0) = x is given by zθ(x, t) = x for all t. In particular, we have that the transport map Tθ = zθ(x, τ) is the
identity such that the generated distribution Tθ#µ0 coincides with the latent distribution for the initial parameters.
Remark F.3 (Other Normalizing Flow Architectures). In general any architecture Tθ of normalizing flows can be considered
in the neural JKO scheme. To this end, we can replace the velocity field regularization in (5) by the penalizer

∫
Rd ∥Tθ(x)−

x∥2dµk
τ . By Brenier’s theorem (Brenier, 1987) this is again equivalent to minimizing the Wasserstein distance. However,

while discrete-time normalizing flows like coupling-based networks (Dinh et al., 2016; Kingma & Dhariwal, 2018) and
autoregressive flows (De Cao et al., 2020; Durkan et al., 2019; Huang et al., 2018; Papamakarios et al., 2017) are often faster
than CNFs, this is not generally true in our setting, since their evaluation time does not benefit from the OT-regularization.
Additionally, we observed numerically that the expressiveness of discrete-time architectures scales much worse to high
dimensions and that these architectures are less stable to train. Nevertheless, their evaluation can be cheaper since these
architectures do not have to deal with trace estimators within the density evaluation. Residual architectures (Behrmann
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Table 7: Comparison of neural JKO IC with normalizing flows trained with the reverse KL loss function. We evaluate
the energy distance (smaller values are better), the log(Z)-estimation (larger values are better) and the expected squared
empirical Wasserstein distance (smaller values are better).

Energy distance log(Z)-estimation squared Wasserstein-2

Distribution continuous NF coupling NF neural JKO IC continuous NF coupling NF neural JKO IC continuous NF coupling NF neural JKO IC

Mustache 2.1× 10−2 4.9× 10−3 2.9 × 10−3 −7.1× 10−2 −2.2× 10−2 −7.3 × 10−3 3.8× 10+1 3.1× 10+1 1.7 × 10+1

shifted 8 Modes 4.1× 10−1 4.1× 10−2 1.2 × 10−5 −1.4× 100 −4.3× 10−1 +5.1 × 10−6 1.4× 100 2.2× 10−1 6.5 × 10−3

shifted 8 Peaky 5.7× 10−1 5.8× 10−1 3.4 × 10−5 −2.1× 100 −2.1× 100 −2.1 × 10−3 1.8× 100 1.8× 100 7.2 × 10−3

Funnel 1.9× 10−1 2.2 × 10−3 1.4× 10−2 −9.4× 10−1 −2.8× 10−2 −7.1 × 10−3 3.8 × 10+2 8.1× 10+2 8.5× 10+2

GMM-10 5.4× 10−1 5.3× 10−1 5.2 × 10−5 −2.3× 100 −2.3× 100 +3.5 × 10−3 3.4× 100 3.5× 100 1.4 × 10−1

GMM-20 1.1× 100 1.1× 100 1.1 × 10−4 −2.4× 100 −2.3× 100 +6.4 × 10−3 9.5× 100 9.4× 100 3.7 × 10−1

et al., 2019; Chen et al., 2019) are at least similar to continuous normalizing flows, but they are very expensive to train and
evaluate, and additionally rely on trace estimators for computing the density of the generated samples.

F.3. Numerical Comparison

Finally, we compare our neural JKO IC scheme with standard normalizing flows trained with the reverse KL loss function as
proposed in (Marzouk et al., 2016). In particular, we aim to demonstrate the benefits of our neural JKO IC scheme to avoid
mode collapse.

To this end, we train two architectures of normalizing flows for our examples using the reverse KL loss function as proposed
in (Marzouk et al., 2016). First, we use a continuous normalizing flow with the same architecture as used in the neural JKO
(IC). That is, we parameterize the velocity field vθ by a dense neural network with three hidden layers and the same hidden
dimensions as in Table 6. Second, we compare with a coupling network with 5 Glow-coupling blocks (Kingma & Dhariwal,
2018), where the coupling blocks have two hidden layers with three times the hidden dimension as in Table 6. We found
numerically that choosing larger architectures does not bring significant advantages.

We plot some generated distributions of the continuous and coupling normalizing flows as well as the neural JKO IC scheme
in Figure 13. As we have already seen in the previous examples, the neural JKO IC scheme is able to recover multimodal
distributions almost perfectly. On the other hand, the normalizing flow architectures always collapse to one or a small
number of modes. We additionally report the error measures in Table 7. We can see that neural JKO IC performs always
better than the normalizing flow architectures (note that for the Funnel distribution all W 2

2 -values are below the sampling
error reported in Table 3). For multimodal distributions, the normalizing flow approximations are by several orders of
magnitude worse than neural JKO IC, while they work quite well for unimodal distributions (Mustache and Funnel).
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Figure 3: Visualization of the steps of the importance corrected neural JKO model for the shifted 8 Peaky example. We
start at the top left with the latent distribution and apply in each image one step from the model. The orange color indicates
samples which are rejected in the next step and the blue color marks the resampled points.
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Figure 4: Plot of the mode weights for the 8 Peaky example over the different layers of the importance corrected neural JKO
model. We observe that the weights are mainly changed by the rejection steps and not by the neural JKO steps.
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Figure 5: Sample generation with various methods for shifted 8 Modes example with ground truth samples and generated
samples for each associated method. While most methods recover the distribution well, we can see a imbalance in the modes
for the uncorrected neural JKO, CRAFT and DDS.

Figure 6: Sample generation with various methods for shifted 8 Peaky mixtures with ground truth samples and generated
samples for each associated method. We can see a severe imbalance among the modes for HMC, MALA, CRAFT and
neural JKO. Also DDS has a slight imbalance between the modes.
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Figure 7: Marginalized sample generation with various methods for the d = 10 funnel distribution with ground truth samples
and generated samples for each associated method. We observe that only the importance corrected neural JKO covers the
thin part of the funnel well.
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Figure 8: Sample generation with various methods for the d = 2 mustache distribution with ground truth samples and
generated samples for each associated method. We can see that MALA, CRAFT and DDS have difficulties to model the
long tails of the distribution properly.
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Figure 9: Marginalized sample generation with various methods for the GMM-10 distribution with ground truth samples
and generated samples for each associated method. We observe that CRAFT mode collapses and that only the importance
corrected neural JKO model distributes the mass correctly onto the modes.

Figure 10: Marginalized sample generation with various methods for the GMM-200 distribution with ground truth samples
and generated samples for each associated method. We observe that CRAFT mode collapses and that only the importance
corrected neural JKO model distributes the mass correctly onto the modes.
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Figure 11: We plot the energy distance (left) and log(Z) estimate (right) over the steps of our importance corrected neural
JKO method for different examples. The error measures decrease in the beginning and then saturate at some values.
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Non-convex loss function L(θ) = KL(Tθ#µ0, ν)
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Figure 12: Illustration of the loss function [0, 1] ∋ θ 7→ L(θ) = KL(Tθ#µ0, ν) and the densities of the generated
distributions Tθ#µ0 from Example F.1. Both values θ = 0 and θ = 1 correspond to local minima (note that L(1) > 0 =
L(0)). In particular θ = 1 corresponds to the case of mode collapse.
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Figure 13: Marginalized sample generation for a single normalizing flow compared with neural JKO IC for different example
distributions with ground truth samples and generated samples for each associated method. We observe that the standard
normalizing flow architectures always collapse to one or few modes while neural JKO IC recovers all modes correctly.
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